WO2011114608A1 - 発光装置、面光源および液晶ディスプレイ装置 - Google Patents

発光装置、面光源および液晶ディスプレイ装置 Download PDF

Info

Publication number
WO2011114608A1
WO2011114608A1 PCT/JP2011/000326 JP2011000326W WO2011114608A1 WO 2011114608 A1 WO2011114608 A1 WO 2011114608A1 JP 2011000326 W JP2011000326 W JP 2011000326W WO 2011114608 A1 WO2011114608 A1 WO 2011114608A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
light
light source
emitting device
lens
Prior art date
Application number
PCT/JP2011/000326
Other languages
English (en)
French (fr)
Inventor
飯山智子
吉川智延
松木大三郎
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/202,958 priority Critical patent/US8845119B2/en
Priority to JP2011532452A priority patent/JP5518881B2/ja
Publication of WO2011114608A1 publication Critical patent/WO2011114608A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/08Anamorphotic objectives
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Definitions

  • the present invention relates to a light emitting device that spreads the directionality of light from a light source such as a light emitting diode (hereinafter simply referred to as “LED”) with a lens.
  • a light source such as a light emitting diode (hereinafter simply referred to as “LED”) with a lens.
  • the present invention also relates to a surface light source including a plurality of light emitting devices, and a liquid crystal display device in which the surface light source is disposed behind a liquid crystal panel as a backlight.
  • a large number of cold cathode fluorescent lamps are arranged directly under the liquid crystal panel, and these cold cathode fluorescent lamps are used together with members such as a diffusion plate and a reflector.
  • LEDs have been used as light sources for backlights. LEDs have been improved in efficiency in recent years, and are expected as light sources with low power consumption, which are replaced with fluorescent lamps. Further, as a light source for a liquid crystal display device, the power consumption of the liquid crystal display device can be reduced by controlling the brightness of the LED according to the image.
  • Patent Document 1 proposes a light emitting device that can obtain a uniform surface light source even with a small number of LEDs. Yes.
  • the lens used in the light emitting device of Patent Document 1 has a circular shape in a plan view, and has both a concave incident surface, a concave portion near the optical axis, and a convex emission surface on the outer side. It is rotationally symmetric with respect to the optical axis.
  • Patent Document 2 discloses a light-emitting device using a lens in which a V-groove extending in a direction perpendicular to the optical axis is formed at the center of the exit surface. According to the lens of this light emitting device, the light from the LED is expanded while maintaining the angular distribution of the normal distribution in the direction (longitudinal direction) in which the V groove extends, but the direction orthogonal to the direction in which the V groove extends ( In the horizontal direction, the angular distribution is greatly depressed near the optical axis and expanded so as to rise steeply on both sides.
  • a light emitting device it is desirable to emit light that is symmetric in any direction with respect to the optical axis, that is, light having no anisotropy, even if a light source having an asymmetric light emitting surface is used. Further, from the viewpoint of reducing the backlight height and reducing the cost of the light emitting device, it is desirable to be able to radiate light uniform in the circumferential direction while using a relatively small lens.
  • the present invention provides a light emitting device capable of uniformizing and emitting light from a light source having an asymmetric light emitting surface in the circumferential direction while using a relatively small lens. It is an object of the present invention to provide a surface light source including a liquid crystal display device and a liquid crystal display device.
  • the present invention provides a light emitting device that emits light around an optical axis, a light source having a light emitting surface extending in a first direction orthogonal to the optical axis, and light from the light source And a lens having a refractive power in a second direction orthogonal to the optical axis and the first direction larger than a refractive power in the first direction.
  • the present invention provides a plurality of light emitting devices arranged in a plane and a state in which light emitted from one surface of the plurality of light emitting devices is diffused from the other surface.
  • a surface light source comprising: a diffuser plate that radiates at a plurality of light emitting devices, wherein each of the plurality of light emitting devices provides the surface light source.
  • the present invention provides a liquid crystal display device comprising a liquid crystal panel and the above surface light source disposed on the back side of the liquid crystal panel.
  • the refractive power of the lens in the length direction of the light emitting surface of the light source is larger than the refractive power in the direction perpendicular thereto, the anisotropy of light from the light source is reduced by the lens. Is done. Therefore, according to the present invention, it is possible to radiate light from a light source having an asymmetric light emitting surface in the circumferential direction while using a relatively small lens.
  • FIG. 1 is a plan view of a light-emitting device according to Embodiment 1 of the present invention.
  • 2A is a cross-sectional view taken along line IIA-IIA in FIG. 1
  • FIG. 2B is a cross-sectional view taken along line IIB-IIB in FIG. 3A to 3C are perspective views showing specific examples of the light source.
  • Luminance distribution on the light emitting surface of the light source used in the light emitting device of FIG. 5A and 5B are plan views of a light emitting device according to a modification. The figure for demonstrating the light-emitting device of Examples 1-4 FIG.
  • FIG. 7A is a graph showing the incident surface shape of the lens used in the light emitting device of Example 1, showing the relationship between R and sagAX, sagAY, and FIG. 7B shows the relationship between R and sagB showing the shape of the exit surface of the lens.
  • Graph both Table 1 is graphed
  • Illuminance distribution of the light emitting device of Example 1 Illuminance distribution of a light emitting device having the same configuration as in Example 1 except that the entrance surface of the lens is rotationally symmetric.
  • FIG. 1 is a graph showing the incident surface shape of the lens used in the light emitting device of Example 1, showing the relationship between R and sagAX, sagAY
  • FIG. 7B shows the relationship between R and sagB showing the shape of the exit surface of the lens.
  • Graph both Table 1 is graphe
  • FIG. 11A is a graph showing the shape of the entrance surface of the lens used in the light emitting device of Example 2, showing the relationship between R and sagAX, sagAY, and FIG. 11B shows the relationship between R and sagB showing the shape of the exit surface of the lens.
  • FIG. 13A is a graph showing an incident surface shape of a lens used in the light emitting device of Example 3, and showing a relationship between R, sagAX, and sagAY.
  • FIG. 13B shows an outgoing surface shape of the lens, and showing a relationship between R and sagB.
  • FIG. 15A is a graph showing an incident surface shape of a lens used in the light emitting device of Example 4, and shows a relationship between R, sagAX, and sagAY, and FIG. 15B shows an emission surface shape of the lens, and showing a relationship between R and sagB.
  • Graph Illuminance distribution of the light emitting device of Example 4 For Examples 1 to 4, a graph showing a sag difference curve in the region where the standard distance is 0.5 or more and an approximate straight line of this curve A graph showing that the range defined by the conditional expression and Examples 1 to 4 are within the range 19A is a graph showing the incident surface shape of a lens used in the light emitting device of Reference Example 1, and shows the relationship between R, sagAX, and sagAY.
  • FIG. 19B is the illuminance distribution of the light emitting device of Reference Example 1.
  • 20A is a graph showing an incident surface shape of a lens used in the light emitting device of Reference Example 2, and shows a relationship between R, sagAX, and sagAY.
  • FIG. 20B is an illuminance distribution of the light emitting device of Reference Example 2.
  • FIG. 6 is a diagram for explaining a light emitting device according to Example 5; 22A is a graph showing the incident surface shape of the lens used in the light emitting device of Example 5, showing the relationship between R and sagA, and FIG. 22B shows the emission surface shape of the lens, showing the relationship between R and sagBX, sagBY.
  • Illuminance distribution of the light emitting device of Example 5 Illuminance distribution of a light emitting device having the same configuration as in Example 5 except that the exit surface of the lens is rotationally symmetric
  • Configuration diagram of a surface light source according to Embodiment 2 of the present invention 26 is a partial sectional view of the surface light source of FIG. Illuminance distribution when the light emitting device of Example 1 is used with the surface light source of FIG. Illuminance distribution when a surface light source is composed of only LEDs for confirming the effect of the light emitting device of Example 1.
  • the light emitting device 1 emits light in a substantially circular shape with an optical axis A as a center on an irradiated surface, for example, and includes a light source 2 and a lens 3 that radially expands light from the light source 2. Yes. That is, the directionality of light from the light source 2 is widened by the lens 3, thereby illuminating a wide range around the optical axis A on the irradiated surface.
  • the illuminance distribution on the surface to be irradiated decreases substantially monotonically as the distance on the optical axis A reaches the maximum.
  • the light source 2 has a light emitting surface 21 extending in a first direction orthogonal to the optical axis A. For this reason, anisotropic light is emitted from the light source 2.
  • the first direction is referred to as the X direction
  • the second direction orthogonal to the first direction and the optical axis A is referred to as the Y direction.
  • a chip-like LED which is a light emitting element, is employed as the light source 2, and the light emitting surface 21 is configured by the flat surface of the LED.
  • the shape of the light emitting surface 21 is not particularly limited as long as it extends in the X direction.
  • the light emitting surface 21 may have a rectangular shape as shown in FIG. 3A, or may have an oval shape as shown in FIG. 3B.
  • the light source 2 does not need to be comprised only by LED, for example, as shown to FIG. 3C, it is comprised by LED and the phosphor layer formed in the dome shape on LED, A phosphor layer
  • the light emitting surface 21 may be configured by a three-dimensional surface.
  • the light emission in the LED is light emission having no directivity, but the refractive index of the light emitting region is 2.0 or more.
  • the interface method is affected by the refraction of the interface. The maximum intensity in the line direction and the greater the angle from the normal direction, the smaller the light intensity.
  • the LED has directivity, and in order to illuminate a wide range on the irradiated surface, it is necessary to widen the directivity of light from the LED with the lens 3.
  • FIG. 4 shows a luminance distribution on a line extending in the X direction through the optical axis A on the light emitting surface 21 of the light source 2 and a luminance distribution on a line extending in the Y direction through the optical axis A.
  • the luminance distribution differs between the X direction and the Y direction. Specifically, the luminance distribution in the X direction is wider than the luminance distribution in the Y direction.
  • the light source 2 emits light that is asymmetric with respect to the optical axis A, that is, light having anisotropy.
  • the lens 3 is made of a transparent material having a predetermined refractive index.
  • the refractive index of the transparent material is, for example, about 1.4 to 2.0.
  • an epoxy resin, a silicon resin, an acrylic resin, a resin such as polycarbonate, a glass, or a rubber such as silicon rubber can be used.
  • an epoxy resin or silicon rubber that has been conventionally used as a sealing resin for LEDs.
  • the lens 3 includes an incident surface 31 that allows light from the light source 2 to enter the lens 3, and an output surface 32 that emits light that has entered the lens 3. have.
  • the outermost diameter of the emission surface 32 defines the effective diameter of the lens 3.
  • the lens 3 has a bottom surface 33 facing the exit surface 32 around the entrance surface 31.
  • a ring portion 35 that projects radially outward is provided between the emission surface 32 and the bottom surface 33, and the periphery of the emission surface 32 is an outer surface that is substantially U-shaped in cross section of the ring portion 35.
  • the outer peripheral edge of the bottom surface 33 are connected.
  • the ring portion 35 can be omitted, and the peripheral edge of the emission surface 32 and the outer peripheral edge of the bottom surface 33 may be connected by an end surface having a linear cross section or an arc shape.
  • the incident surface 31 is a continuous concave surface in this embodiment.
  • the light source 2 is disposed away from the incident surface 31 of the lens 3.
  • the emission surface 32 is a continuous convex surface that is rotationally symmetric with respect to the optical axis A.
  • the annular bottom surface 33 surrounding the incident surface 31 is preferably flat.
  • the light emitting surface 21 of the light source 2 is at the same position in the optical axis direction in which the flat bottom surface 33 and the optical axis A extend.
  • the light from the light source 2 enters the lens 3 from the incident surface 31 and then exits from the exit surface 32 to reach the irradiated surface (not shown).
  • the light emitted from the light source 2 is expanded by the refracting action of the entrance surface 31 and the exit surface 32 and reaches a wide range of the illuminated surface.
  • the lens 3 also plays a role of uniforming the anisotropic light emitted from the light source 2 in the circumferential direction.
  • the lens 3 is configured such that the refractive power in the Y direction is larger than the refractive power in the X direction.
  • the incident surface 31 includes an anamorphic curved surface having different curvatures in the X direction and the Y direction, the refractive power in the Y direction is larger than the refractive power in the X direction.
  • the entire entrance surface 31 is such a curved surface.
  • the incident surface 31 has a vertex Q on the optical axis A.
  • the incident surface 31 has a sag amount (the sign is negative from the vertex Q to the light source 2 side, the vertex is the distance along the optical axis A from the vertex Q to the point P on the incident surface 31).
  • Sag amount in the X direction at a position separated from the optical axis A by the same distance R in the radial direction (that is, on the same circumference centered on the optical axis A).
  • SagAX has a shape larger than the sag amount sagAY in the Y direction.
  • the incident surface 31 may extend to the light source 2 side after retreating from the apex Q to the side opposite to the light source 2 so that the sag amount becomes positive in the vicinity of the optical axis A, but the sag amount extends over the entire area. It is preferable to extend only from the apex Q toward the light source 2 so as to be negative.
  • the shape of the incident surface 31 is the curvature of the portion intersecting the optical axis A in the cross section in the X direction (1 / curvature radius) Cx. Can be expressed as smaller than the curvature Cy of the portion intersecting the optical axis A in the cross section in the Y direction.
  • the anisotropy of light from the light source 2 is reduced by the lens 3. Accordingly, it is possible to radiate light from the light source 2 having an asymmetric light emitting surface 21 in the circumferential direction while using a relatively small lens 3.
  • the sag difference sagD obtained by subtracting the sag amount sagAY in the Y direction from the sag amount sagAX in the X direction is preferably increased as the distance from the optical axis A increases. This is because luminance unevenness can be reduced even when a positional deviation in the rotational direction about the optical axis A occurs between the light source 2 and the lens 3.
  • the sag difference sagD at that time is preferably increased toward the radially outer side so that the following conditional expression is satisfied.
  • F is a light emitting surface length / shortness ratio which is a ratio (L / W) of the length L of the light emitting surface 21 in the X direction to the width W of the light emitting surface 21 in the Y direction
  • S is a ratio from the optical axis A.
  • the exit surface 32 that is rotationally symmetric with respect to the optical axis A does not necessarily have to be a convex surface as a whole.
  • a portion near the optical axis may be a concave surface, and an outer portion thereof may be a convex surface.
  • the optical axis vicinity part in the output surface 32 may be flat.
  • the entrance surface 31 includes an anamorphic aspherical curved surface.
  • the entrance surface 31 and the exit surface are used. It is sufficient that at least one of 32 includes an anamorphic aspherical curved surface.
  • the entrance surface 31 may be a continuous concave surface that is rotationally symmetric with respect to the optical axis A, and the exit surface 32 may be a convex surface including an anamorphic aspheric surface.
  • the incident surface 31 may be flat, and the light emitting surface 21 of the light source 2 may be optically bonded to the incident surface 31 via a bonding material. Further, when the incident surface 31 is flat, the incident surface 31 may not be rotationally symmetric but may have the same shape as the light emitting surface 21.
  • both the entrance surface 31 and the exit surface 32 may include an anamorphic aspheric surface.
  • the light emitting element used for the light source 2 is not necessarily an LED, and may be an organic EL, for example.
  • Examples 1 to 5 of the light emitting device 1 are shown below as specific numerical examples of the present invention.
  • FIG. 6 is a diagram for explaining the light emitting devices of Examples 1 to 4, and FIG. 21 is a diagram for explaining the light emitting device of Example 5.
  • the entire surface of the incident surface 31 is an anamorphic curved surface and the lens 3 having a rotationally symmetric exit surface 32 is employed.
  • the entire surface of the emission surface 32 is an anamorphic curved surface, and the lens 3 whose entrance surface 31 is rotationally symmetric is employed.
  • sagB in FIG. 6 is a sag amount of the emission surface 32 at a position away from the optical axis A by a distance R.
  • Q is the vertex on the optical axis A of the exit surface 32
  • P is a point on the exit surface 32 at a distance R from the optical axis A
  • sagBX is the sag amount (vertex) of the exit surface 32 in the X direction.
  • SagBY is a sag amount of the exit surface 32 in the Y direction. The distance along the optical axis A from Q to the point P).
  • sagA in FIG. 21 is the sag amount of the incident surface 31 at a position away from the optical axis A by the distance R.
  • Example 1 employs a general-purpose LED in which the length of the light emitting surface 21 in the X direction is 2.60 mm and the width of the light emitting surface 21 in the Y direction is 1.00 mm as the light source 2, and the direction of light from the light source 2 This is a design example for the purpose of expanding the performance.
  • the effective diameter of the lens 3 is 15 mm. Specific numerical values of Example 1 are shown in Table 1.
  • FIG. 7A is a graph of R, sagAX, and sagAY in Table 1
  • FIG. 7B is a graph of R and sagB of Table 1.
  • FIG. 8 shows the illuminance distribution on the irradiated surface obtained by calculation when the irradiated surface is arranged at a position 23 mm away from the light emitting surface 21 of the light source 2 using the light emitting device of Example 1.
  • FIG. 9 shows a case where a light emitting device having the same configuration as in Example 1 is used except that the incident surface of the lens is rotationally symmetric, and the irradiated surface is arranged at a position 23 mm away from the light emitting surface 21 of the light source 2.
  • the illuminance distribution on the irradiated surface obtained by calculation is represented.
  • Example 10 shows a light emitting device having the same configuration as in Example 1 except that the entrance surface of the lens is rotationally symmetric and the lens is enlarged to an effective diameter of 20 mm, and is covered at a position 23 mm away from the light emitting surface 21 of the light source 2. It represents the illuminance distribution on the irradiated surface obtained by calculation when the irradiated surface is arranged.
  • the illuminance distribution on the irradiated surface is not so different between the X direction and the Y direction.
  • the effective diameter of the lens is reduced to 15 mm, the illuminance distribution on the irradiated surface is greatly shifted between the X direction and the Y direction as shown in FIG.
  • Example 1 since the lens 3 having a larger refractive power in the Y direction than that in the X direction is used, even if the effective diameter of the lens 3 is as small as 15 mm as shown in FIG.
  • the illuminance distribution on the irradiation surface can be made similar in the X direction and the Y direction.
  • Example 2 employs a general-purpose LED in which the length of the light emitting surface 21 in the X direction is 2.20 mm and the width of the light emitting surface 21 in the Y direction is 1.10 mm as the light source 2, and the direction of light from the light source 2 This is a design example for the purpose of expanding the performance.
  • the effective diameter of the lens 3 is 15 mm.
  • 11A and 11B show the incident surface shape and the output surface shape of the lens 3 used in the light emitting device of Example 2, respectively.
  • FIG. 12 shows the illuminance distribution on the irradiated surface obtained by calculation when the irradiated surface is arranged at a position 23 mm away from the light emitting surface 21 of the light source 2 using the light emitting device of Example 2.
  • the illuminance distribution on the irradiated surface can be made similar in the X direction and the Y direction.
  • Example 3 employs a general-purpose LED in which the length of the light emitting surface 21 in the X direction is 2.07 mm and the width of the light emitting surface 21 in the Y direction is 1.17 mm as the light source 2, and the direction of light from the light source 2 This is a design example for the purpose of expanding the performance.
  • the effective diameter of the lens 3 is 15 mm.
  • 13A and 13B show the incident surface shape and the output surface shape of the lens 3 used in the light emitting device of Example 3, respectively.
  • FIG. 14 shows the illuminance distribution on the irradiated surface obtained by calculation when the irradiated surface is arranged at a position 23 mm away from the light emitting surface 21 of the light source 2 using the light emitting device of Example 2.
  • Example 14 similarly to Example 1, even in Example 3, even if the effective diameter of the lens 3 is as small as 15 mm, the illuminance distribution on the irradiated surface can be made similar in the X direction and the Y direction.
  • Example 4 employs a general-purpose LED in which the length of the light emitting surface 21 in the X direction is 1.80 mm and the width of the light emitting surface 21 in the Y direction is 1.35 mm as the light source 2, and the direction of light from the light source 2 This is a design example for the purpose of expanding the performance.
  • the effective diameter of the lens 3 is 15 mm.
  • 15A and 15B respectively show the incident surface shape and the output surface shape of the lens 3 used in the light emitting device of Example 4.
  • FIG. 16 shows the illuminance distribution on the irradiated surface obtained by calculation when the irradiated surface is arranged at a position 23 mm away from the light emitting surface 21 of the light source 2 using the light emitting device of Example 4.
  • Example 16 similarly to Example 1, even in Example 4, even if the effective diameter of the lens 3 is as small as 15 mm, the illuminance distribution on the irradiated surface can be made similar in the X direction and the Y direction.
  • the distance R from the light source A is normalized by the maximum diameter DY of the incident surface 31 in the Y direction, and the sag difference sagD having the standard distance of 0.5 or more is obtained.
  • a curve as shown in FIG. 17 can be drawn.
  • these curves are approximated to a straight line by the method of least squares, an approximate straight line represented by the equation described in FIG. 17 is obtained.
  • the slopes of these approximate lines are plotted in FIG. 18, it can be seen that the above-described conditional expressions are satisfied in Examples 1 to 4.
  • Reference Example 1 and Reference Example 2 that do not satisfy the conditional expressions described above are shown in FIG.
  • the entire surface of the entrance surface 31 is an anamorphic curved surface, and the lens 3 whose exit surface 32 is rotationally symmetric is employed.
  • the anamorphic level is large as shown in FIG. 19A, and in Reference Example 2, the anamorphic level is low as shown in FIG. 20A.
  • the light emitting surface length / shortness ratio of the light source 2 is set to 2.0
  • Reference Example 2 the light emitting surface length / shortness ratio of the light source 2 is set to 2.8.
  • the effective diameter of the lens 3 is 11 mm.
  • the illuminance distribution of the light emitting device of Reference Example 1 is as shown in FIG. 19B, and the illuminance distribution of the light emitting device of Reference Example 2 is as shown in FIG. 20B. From these figures, it can be seen that the distribution shape of light on the irradiated surface collapses at an anamorphic level where the above-described conditional expression is not satisfied.
  • Example 5 employs a general-purpose LED in which the length of the light emitting surface 21 in the direction is 2.20 mm and the width of the light emitting surface 21 in the Y direction is 1.10 mm as the light source 2, and the directionality of light from the light source 2. This is a design example for the purpose of expanding the range.
  • the effective diameter of the lens 3 is 11 mm. Specific numerical values of Example 5 are shown in Table 2.
  • FIG. 22A is a graph of R and sagA in Table 2
  • FIG. 22B is a graph of R, sagBX and sagBY in Table 2.
  • FIG. 23 shows the illuminance distribution on the irradiated surface obtained by calculation when the irradiated surface is arranged at a position 23 mm away from the light emitting surface 21 of the light source 2 using the light emitting device of Example 5.
  • FIG. 24 shows a case where a light emitting device having the same configuration as in Example 5 is used except that the exit surface of the lens is rotationally symmetric, and the irradiated surface is arranged at a position 23 mm away from the light emitting surface 21 of the light source 2.
  • the illuminance distribution on the irradiated surface obtained by calculation is represented.
  • Example 25 shows a light emitting device having the same configuration as in Example 5 except that the exit surface of the lens is rotationally symmetric and the lens is enlarged to an effective diameter of 18 mm, and is covered at a position 23 mm away from the light emitting surface 21 of the light source 2. It represents the illuminance distribution on the irradiated surface obtained by calculation when the irradiated surface is arranged.
  • Example 5 since the lens 3 having a refractive power in the Y direction larger than that in the X direction is used, even if the effective diameter of the lens 3 is as small as 11 mm as shown in FIG.
  • the illuminance distribution on the irradiation surface can be made similar in the X direction and the Y direction.
  • FIG. 26 is a configuration diagram of the surface light source 7 according to Embodiment 2 of the present invention.
  • the surface light source 7 includes a plurality of light emitting devices 1 described in the first embodiment, which are arranged in a plane, and a diffusion plate 4 arranged so as to cover these light emitting devices 1. Note that the light emitting devices 1 may be arranged in a matrix as shown in FIG. 26, or may be arranged in a staggered manner.
  • the surface light source 7 includes a substrate 5 facing the diffusion plate 4 with the light emitting device 1 interposed therebetween.
  • a light source 2 of each light emitting device 1 is mounted on the substrate 5.
  • the bottom surface 33 of the lens 3 is joined to the substrate 5 via a support 55, and the reflection plate 6 is disposed on the substrate 5 so as to cover the substrate 5 while avoiding the light source 2.
  • the bottom surface 33 of the lens 3 is not necessarily bonded to the substrate 5 via the support column 55, and may be directly bonded to the substrate 5.
  • the support column 55 may be formed integrally with the lens 3.
  • the light emitting device 1 irradiates one surface 4a of the diffusion plate 4 with light. That is, the one surface 4a of the diffusion plate 4 is the irradiated surface described in the first embodiment.
  • the diffusing plate 4 radiates light irradiated on the one surface 4a in a state of being diffused from the other surface 4b.
  • Each light emitting device 1 irradiates light having a uniform illuminance in a wide range on one surface 4a of the diffusion plate 4, and the light is diffused by the diffusion plate 4 so that there is little luminance unevenness in the surface.
  • a surface light source is created.
  • the light from the light emitting device 1 is scattered by the diffusion plate 4 and returns to the light emitting device side or passes through the diffusion plate 4.
  • the light that returns to the light emitting device side and enters the reflection plate 6 is reflected by the reflection plate 6 and then enters the diffusion plate 4 again.
  • Example 1 Five light emitting devices of Example 1 employing the lens 3 whose entire incident surface is an anamorphic curved surface are arranged on a straight line at a pitch of 60 mm and diffused to a position 23 mm away from the light emitting surface 21 of the light source 2.
  • the illuminance distribution on the diffusion plate incident surface (one surface on the light emitting device side) obtained by calculation when the plate is arranged is shown. This is because fine waves are seen in the illuminance distribution, but the number of light rays to be evaluated is insufficient in executing the illuminance calculation.
  • FIG. 29 shows the illuminance distribution on the entrance surface of the diffuser plate obtained by calculation when only 5 LEDs are arranged on a straight line at a pitch of 60 mm and the diffuser plate is placed 23 mm away from the surface of the LED.
  • FIG. 30 is a configuration diagram of a liquid crystal display device according to Embodiment 3 of the present invention.
  • This liquid crystal display device includes a liquid crystal panel 8 and the surface light source 7 described in the third embodiment, which is disposed on the back side of the liquid crystal panel 8.
  • a plurality of light emitting devices 1 are arranged in a plane, and the light diffusing plate 4 is illuminated by these light emitting devices 1.
  • the back surface (one surface) of the diffusion plate 4 is irradiated with light with uniform illuminance, and this light is diffused by the diffusion plate 4 to illuminate the liquid crystal panel 8.
  • an optical sheet such as a diffusion sheet or a prism sheet is preferably disposed between the liquid crystal panel 8 and the surface light source 7. In this case, the light transmitted through the diffusion plate 4 is further diffused by the optical sheet to illuminate the liquid crystal panel 8.

Abstract

 発光装置(1)は、光軸Aを中心として光を放射するものであり、光源(2)と、光源(2)からの光を放射状に拡張するレンズ(3)とを備えている。光源(2)は、光軸Aと直交するX方向に延びる発光面(21)を有している。レンズ(3)は、X方向と直交するY方向の屈折力がX方向の屈折力よりも大きくなるように構成されている。例えば、レンズ(3)の入射面(31)が、X方向とY方向とで湾曲態様が異なるアナモフィックな曲面を含む。

Description

発光装置、面光源および液晶ディスプレイ装置
 本発明は、例えば発光ダイオード(以下単に「LED」という。)等の光源からの光の方向性をレンズで広げる発光装置に関する。また、本発明は、複数の発光装置を備える面光源、およびこの面光源がバックライトとして液晶パネル後方に配置された液晶ディスプレイ装置に関する。
 従来の大型の液晶ディスプレイ装置のバックライトでは、冷陰極管が液晶パネル直下に多数配置され、これらの冷陰極管が拡散板や反射板等の部材と共に使われていた。近年では、バックライトの光源としてLEDが使用されるようになっている。LEDは近年効率が向上し、蛍光灯に変わる消費電力の少ない光源として期待されている。また液晶ディスプレイ装置用の光源としては映像に応じてLEDの明暗を制御することで液晶ディスプレイ装置の消費電力を下げることができる。
 液晶ディスプレイ装置のLEDを光源とするバックライトでは、冷陰極管の代わりに多数のLEDを配置することとなる。多数のLEDを用いることでバックライト表面に均一な明るさを得ることができるが、LEDが多数必要で安価にできない問題があった。1個のLEDの出力を大きくし、LEDの使用する個数を減らす取り組みがなされており、例えば特許文献1では、少ない個数のLEDでも均一な面光源が得られるようにする発光装置が提案されている。
 少ない個数のLEDで均一な面光源を得るためには、1個のLEDで照明可能な照明領域を大きくする必要がある。このために特許文献1の発光装置では、LEDからの光をレンズで放射状に拡張している。これにより、LEDからの光の方向性が広げられ、被照射面における光軸を中心とする広い範囲を照明することができる。具体的に、特許文献1の発光装置に用いられるレンズは、平面視で円形状をなしており、凹面である入射面、および光軸近傍部分が凹面、その外側部分が凸面の出射面が共に光軸に対して回転対称となっている。
 一方、特許文献2には、出射面の中央に、光軸と直交する方向に延びるV溝が形成されたレンズを用いた発光装置が開示されている。この発光装置のレンズによれば、LEDからの光は、V溝が延びる方向(縦方向)には正規分布の角度分布を保ったまま拡張されるが、V溝が延びる方向と直交する方向(横方向)には角度分布が光軸近傍では大きく窪み、その両側では急峻に立ち上がるように拡張される。
特許第3875247号公報 特開2008-10693号公報
 発光効率を向上させた近年のLEDには、発光面が特定方向に延びているものが多くある。このように発光面が非対称なLEDでは、発光面の長さ方向(以下本段落では「縦方向」という。)と幅方向(以下本段落では「横方向」という。)とで輝度分布が異なっている。このため、そのようなLEDを、入射面および出射面が回転対称なレンズを用いた特許文献1の発光装置で採用すると、相対的に大きなレンズを用いた場合には、LEDから入射面までの距離が長くなるために被照射面における照度分布は縦方向と横方向とでそれほど大きな差はできないが、相対的に小さなレンズを用いた場合には、LEDから入射面までの距離が短くなるために被照射面における照度分布が縦方向と横方向とで大きくずれてしまう。
 発光装置としては、発光面が非対称な光源を用いたとしても、光軸に対してどの方向にも対称な光、すなわち異方性のない光を放射することが望まれる。また、バックライトの低背化および発光装置のコスト低減の観点からは、相対的に小さなレンズを用いながらも、周方向に均一化された光を放射できるようにすることが望まれる。
 なお、特許文献2の発光装置は、放射する光に意図的に異方性を作り出すものであるため、上記の要望を満たすものではない。
 本発明は、上記の要望に鑑み、相対的に小さなレンズを用いながらも発光面が非対称な光源からの光を周方向に均一化して放射することができる発光装置を提供するとともに、この発光装置を含む面光源および液晶ディスプレイ装置を提供することを目的とする。
 前記課題を解決するために、本発明は、光軸を中心として光を放射する発光装置であって、前記光軸と直交する第1方向に延びる発光面を有する光源と、前記光源からの光を放射状に拡張するレンズであって、前記光軸および前記第1方向と直交する第2方向の屈折力が前記第1方向の屈折力よりも大きなレンズと、を備える、発光装置を提供する。
 また、本発明は、平面的に配置された複数の発光装置と、前記複数の発光装置を覆うように配置され、前記複数の発光装置から一方面に照射された光を他方面から拡散した状態で放射する拡散板と、を備える面光源であって、前記複数の発光装置のそれぞれは、上記の発光装置である、面光源を提供する。
 さらに、本発明は、液晶パネルと、前記液晶パネルの裏側に配置された上記の面光源と、を備える液晶ディスプレイ装置を提供する。
 上記の構成によれば、光源の発光面の長さ方向でのレンズの屈折力がそれと直交する方向での屈折力よりも大きくなっているので、光源からの光の異方性がレンズによって低減される。従って、本発明によれば、相対的に小さなレンズを用いながらも発光面が非対称な光源からの光を周方向に均一化して放射することができる。
本発明の実施の形態1に係る発光装置の平面図 図2Aは図1のIIA-IIA線断面図、図2Bは図1のIIB-IIB線断面図 図3A~3Cは光源の具体例を示す斜視図 図1の発光装置に用いられる光源の発光面の輝度分布 図5Aおよび5Bは変形例の発光装置の平面図 実施例1~4の発光装置を説明するための図 図7Aは実施例1の発光装置に用いられるレンズの入射面形状を表す、RとsagAX,sagAYの関係を示すグラフ、図7Bは同レンズの出射面形状を表す、RとsagBの関係を示すグラフ(共に表1をグラフ化) 実施例1の発光装置の照度分布 レンズの入射面が回転対称となった以外は実施例1と同様の構成の発光装置の照度分布 レンズの入射面が回転対称となりかつレンズが拡大された以外は実施例1と同様の構成の発光装置の照度分布 図11Aは実施例2の発光装置に用いられるレンズの入射面形状を表す、RとsagAX,sagAYの関係を示すグラフ、図11Bは同レンズの出射面形状を表す、RとsagBの関係を示すグラフ 実施例2の発光装置の照度分布 図13Aは実施例3の発光装置に用いられるレンズの入射面形状を表す、RとsagAX,sagAYの関係を示すグラフ、図13Bは同レンズの出射面形状を表す、RとsagBの関係を示すグラフ 実施例3の発光装置の照度分布 図15Aは実施例4の発光装置に用いられるレンズの入射面形状を表す、RとsagAX,sagAYの関係を示すグラフ、図15Bは同レンズの出射面形状を表す、RとsagBの関係を示すグラフ 実施例4の発光装置の照度分布 実施例1~4について、規格距離が0.5以上の領域のサグ差の曲線およびこの曲線の近似直線を示すグラフ 条件式で規定される範囲、および実施例1~4がその範囲内にあることを示すグラフ 図19Aは参照例1の発光装置に用いられるレンズの入射面形状を表す、RとsagAX,sagAYの関係を示すグラフ、図19Bは参照例1の発光装置の照度分布 図20Aは参照例2の発光装置に用いられるレンズの入射面形状を表す、RとsagAX,sagAYの関係を示すグラフ、図20Bは参照例2の発光装置の照度分布 実施例5の発光装置を説明するための図 図22Aは実施例5の発光装置に用いられるレンズの入射面形状を表す、RとsagAの関係を示すグラフ、図22Bは同レンズの出射面形状を表す、RとsagBX,sagBYの関係を示すグラフ(共に表2をグラフ化) 実施例5の発光装置の照度分布 レンズの出射面が回転対称となった以外は実施例5と同様の構成の発光装置の照度分布 レンズの出射面が回転対称となりかつレンズが拡大された以外は実施例5と同様の構成の発光装置の照度分布 本発明の実施の形態2に係る面光源の構成図 図26の面光源の部分的な断面図 図26の面光源で実施例1の発光装置を用いたときの照度分布 実施例1の発光装置の効果を確認するための、LEDのみで面光源を構成したときの照度分布 本発明の実施の形態3に係る液晶ディスプレイ装置の構成図
 以下、本発明の実施の形態について、図面を参照しつつ説明する。
 (実施の形態1)
 図1ならびに図2Aおよび2Bに、本発明の実施の形態1に係る発光装置1を示す。この発光装置1は、例えば被照射面に、光軸Aを中心として略円形状に光を放射するものであり、光源2と、光源2からの光を放射状に拡張するレンズ3とを備えている。すなわち、光源2からの光の方向性がレンズ3で広げられ、これにより被照射面における光軸Aを中心とする広い範囲が照明される。被照射面の照度分布は、光軸A上が最大で周囲に行くほど略単調に減少する。
 光源2は、光軸Aと直交する第1方向に延びる発光面21を有している。このため、光源2からは異方性のある光が放射される。なお、本明細書では、説明の便宜のために、第1方向をX方向、第1方向および光軸Aと直交する第2方向をY方向という。
 本実施形態では、光源2として発光素子であるチップ状のLEDが採用されており、LEDのフラットな表面で発光面21が構成されている。発光面21は、X方向に延びていればその形状は特に限定されない。例えば、発光面21は、図3Aに示すように長方形状であってもよいし、図3Bに示すように長円状であってもよい。また、光源2は、LEDのみで構成されている必要はなく、例えば図3Cに示すように、LEDと、LED上にドーム状に形成された蛍光体層とで構成されていて、蛍光体層の三次元的な表面で発光面21が構成されていてもよい。
 LED内での発光は指向性を持たない発光であるが、発光領域の屈折率は2.0以上であり、屈折率が低い領域に光が侵入すると、界面の屈折の影響で、界面の法線方向に最大の強度を持ち、法線方向から角度が大きくなるほど、光の強度は小さくなる。このようにLEDは指向性を持っており、被照射面における広い範囲を照明するためにはレンズ3でLEDからの光の方向性を広くすることが必要である。
 図4に、光源2の発光面21における光軸Aを通ってX方向に延びる線上での輝度分布と光軸Aを通ってY方向に延びる線上での輝度分布を示す。図4に示すように、発光面21は、X方向に延びる形状のために、X方向とY方向とで輝度分布が異なっている。具体的には、X方向の輝度分布がY方向の輝度分布よりも広がっている。このように、光源2からは光軸Aに対して非対称な光、すなわち異方性のある光が放射される。
 レンズ3は、所定の屈折率を有する透明材料で構成される。透明材料の屈折率は、例えば1.4から2.0程度である。このような透明材料としては、エポキシ樹脂、シリコン樹脂、アクリル樹脂、ポリカーボネイト等の樹脂、硝子、またはシリコンゴム等のゴムを用いることができる。中でも、従来からLEDの封止樹脂として用いられているエポキシ樹脂またはシリコンゴム等を用いることが好ましい。
 具体的に、レンズ3は、図2Aおよび2Bに示すように、光源2からの光を該レンズ3内に入射させる入射面31と、該レンズ3内に入射した光を出射させる出射面32とを有している。出射面32の最外径は、レンズ3の有効径を規定する。また、レンズ3は、入射面31の周囲で出射面32と反対側を向く底面33を有している。さらに、本実施形態では、出射面32と底面33との間に径方向外側に張り出すリング部35が設けられており、このリング部35の断面略コ字状の外面で出射面32の周縁と底面33の外周縁とがつながれている。ただし、リング部35は省略可能であり、出射面32の周縁と底面33の外周縁とが断面直線状または円弧状の端面でつながれていてもよい。
 入射面31は、本実施形態では連続する凹面である。そして、光源2は、レンズ3の入射面31と離れて配置されている。出射面32は、本実施形態では光軸Aに対して回転対称な連続する凸面である。入射面31を取り巻く環状の底面33は、フラットであることが好ましい。本実施形態では、光源2の発光面21が、フラットな底面33と光軸Aが延びる光軸方向において同程度の位置にある。
 光源2からの光は、入射面31からレンズ3内に入射した後に出射面32から出射されて、図略の被照射面に到達する。光源2から放射される光は、入射面31と出射面32の屈折作用で拡張され、被照射面の広い範囲に到達するようになる。
 さらに、レンズ3は、光源2から放射された異方性のある光を周方向に均一化する役割も果たす。これを実現するために、レンズ3は、Y方向の屈折力がX方向の屈折力よりも大きくなるように構成されている。本実施形態では、入射面31がX方向とY方向とで湾曲態様が異なるアナモフィックな曲面を含むことにより、Y方向の屈折力がX方向の屈折力よりも大きくなっている。さらに、本実施形態では、入射面31の全面がそのような曲面となっている。
 詳細には、入射面31は、光軸A上に頂点Qを有している。そして、入射面31は、頂点Qから入射面31上の点Pまでの光軸Aに沿った距離(すなわち、光軸方向の距離)をサグ量(符号は頂点Qから光源2側が負、頂点Qから光源2と反対側が正)としたときに、光軸Aから径方向に同じ距離Rだけ離れた位置(すなわち、光軸Aを中心とする同一円周上)では、X方向におけるサグ量sagAXがY方向におけるサグ量sagAYよりも大きい形状を有している。なお、入射面31は、サグ量が光軸A近傍でプラスとなるように頂点Qからいったん光源2と反対側に後退した後に光源2側に延びていてもよいが、サグ量が全域に亘ってマイナスとなるように頂点Qから光源2側のみに延びていることが好ましい。
 また、入射面31が頂点Qから光源2側のみに延びている場合には、入射面31の形状は、X方向の断面における光軸Aと交差する部分の曲率(曲率半径分の1)CxがY方向の断面における光軸Aと交差する部分の曲率Cyよりも小さいと表現することもできる。
 以上のような発光装置1であれば、光源2からの光の異方性がレンズ3によって低減される。従って、相対的に小さなレンズ3を用いながらも発光面21が非対称な光源2からの光を周方向に均一化して放射することができる。
 ところで、X方向におけるサグ量sagAXからY方向におけるサグ量sagAYを引いたサグ差sagDは、光軸Aから離れるにつれて大きくなることが好ましい。このようになっていれば、光源2とレンズ3との間で光軸Aを中心とした回転方向の位置ズレが生じた場合でも輝度ムラを小さく抑えられるからである。
 また、そのときのサグ差sagDは、次の条件式が満たされるように径方向外側に向かって増大することが好ましい。
  0.12(F-1)2≦S≦3log10
式中、Fは、Y方向における発光面21の幅Wに対するX方向における発光面21の長さLの比(L/W)である発光面長短比であり、Sは、光軸Aからの距離RをY方向における入射面31の最大径DYで規格化し、この規格距離(R/DY)が0.5以上の領域のサグ差sagDの曲線を最小二乗法にて直線に近似したときの近似直線の傾きである(図17参照)。
 図18に示すように、発光面長短比をx軸にとり、近似直線の傾きをy軸にとると、上記の条件式で規定される範囲は、図18中のハッチング領域のように示される。近似直線の傾きがこのハッチング領域の下側または上側にあると、光の分布形状が崩れて輝度の均一性が乱れる。このため、上記の条件式が満たされることが好ましい。
 <変形例>
 なお、光軸Aに対して回転対称な出射面32は、必ずしも全体的に凸面となっている必要はなく、例えば光軸近傍部分が凹面、その外側部分が凸面になっていてもよい。あるいは、出射面32における光軸近傍部分はフラットになっていてもよい。
 また、本実施形態では、入射面31のみがアナモフィックな非球面の曲面を含んでいたが、Y方向の屈折力がX方向の屈折力よりも大きなレンズを得るには、入射面31および出射面32の少なくとも一方がアナモフィックな非球面の曲面を含んでいればよい。
 例えば、図5Aに示すように、入射面31が光軸Aに対して回転対称な連続する凹面であり、出射面32がアナモフィックな非球面の曲面を含む凸面となっていてもよい。この場合、入射面31がフラットになっていて、この入射面31に光源2の発光面21が接合材を介して光学的に接合されていてもよい。また、入射面31をフラットにする場合は、入射面31を回転対称でなく発光面21と同じ形状にしてもよい。
 あるいは、図5Bに示すように、入射面31および出射面32の双方がアナモフィックな非球面の曲面を含んでいてもよい。
 また、光源2に用いられる発光素子は、必ずしもLEDである必要はなく、例えば有機ELであってもよい。
 <実施例>
 以下、本発明の具体的な数値例として、発光装置1の実施例1~5を示す。
 図6は、実施例1~4の発光装置を説明するための図であり、図21は、実施例5の発光装置を説明するための図である。実施例1~4では、入射面31の全面がアナモフィックな曲面であり、出射面32が回転対称なレンズ3が採用されている。実施例5では、出射面32の全面がアナモフィックな曲面であり、入射面31が回転対称なレンズ3が採用されている。
 なお、図6中のQ、P、sagAXおよびsagAYは、図2Aおよび2B中に示したものと同じである。また、図6中のsagBは、光軸Aから距離R離れた位置での出射面32のサグ量である。図21中、Qは出射面32の光軸A上の頂点、Pは光軸Aから距離R離れた位置での出射面32上の点、sagBXはX方向における出射面32のサグ量(頂点Qから点Pまでの光軸Aに沿った距離)、sagBYはY方向における出射面32のサグ量である。また、図21中のsagAは、光軸Aから距離R離れた位置での入射面31のサグ量である。
 ・実施例1
 実施例1は、光源2としてX方向における発光面21の長さが2.60mm、Y方向における発光面21の幅が1.00mmの汎用品のLEDを採用し、光源2からの光の方向性を広げることを目的とした設計例である。実施例1では、レンズ3の有効径が15mmとなっている。実施例1の具体的な数値を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 図7Aは、表1のRとsagAXおよびsagAYについてグラフ化したものであり、図7Bは、表1のRとsagBについてグラフ化したものである。
 図8は、実施例1の発光装置を用い、光源2の発光面21から23mm離れた位置に被照射面を配置したときの、計算で求めた被照射面での照度分布を表す。図9は、レンズの入射面が回転対称となった以外は実施例1と同様の構成の発光装置を用い、光源2の発光面21から23mm離れた位置に被照射面を配置したときの、計算で求めた被照射面での照度分布を表す。図10は、レンズの入射面が回転対称となりかつレンズが有効径20mmに拡大された以外は実施例1と同様の構成の発光装置を用い、光源2の発光面21から23mm離れた位置に被照射面を配置したときの、計算で求めた被照射面での照度分布を表す。
 図10に示すように、発光面21が非対称な光源2に対して入射面および出射面が回転対称なレンズを用いた場合は、レンズの有効径が20mmと大きいと、被照射面における照度分布はX方向とY方向とでそれほど大きな差はできない。しかし、レンズの有効径を15mmと小さくすると、図9に示すように被照射面における照度分布がX方向とY方向とで大きくずれてしまう。これに対し、本実施例1では、Y方向の屈折力がX方向の屈折力よりも大きなレンズ3を用いているので、図8に示すようにレンズ3の有効径が15mmと小さくても、照射面における照度分布をX方向とY方向とで類似させることができる。
 ・実施例2
 実施例2は、光源2としてX方向における発光面21の長さが2.20mm、Y方向における発光面21の幅が1.10mmの汎用品のLEDを採用し、光源2からの光の方向性を広げることを目的とした設計例である。実施例2では、レンズ3の有効径が15mmとなっている。図11Aおよび11Bは、実施例2の発光装置に用いられるレンズ3の入射面形状および出射面形状をそれぞれ示す。図12は、実施例2の発光装置を用い、光源2の発光面21から23mm離れた位置に被照射面を配置したときの、計算で求めた被照射面での照度分布を表す。
 図12に示すように、実施例2でも実施例1と同様に、レンズ3の有効径が15mmと小さくても、照射面における照度分布をX方向とY方向とで類似させることができる。
 ・実施例3
 実施例3は、光源2としてX方向における発光面21の長さが2.07mm、Y方向における発光面21の幅が1.17mmの汎用品のLEDを採用し、光源2からの光の方向性を広げることを目的とした設計例である。実施例3では、レンズ3の有効径が15mmとなっている。図13Aおよび13Bは、実施例3の発光装置に用いられるレンズ3の入射面形状および出射面形状をそれぞれ示す。図14は、実施例2の発光装置を用い、光源2の発光面21から23mm離れた位置に被照射面を配置したときの、計算で求めた被照射面での照度分布を表す。
 図14に示すように、実施例3でも実施例1と同様に、レンズ3の有効径が15mmと小さくても、照射面における照度分布をX方向とY方向とで類似させることができる。
 ・実施例4
 実施例4は、光源2としてX方向における発光面21の長さが1.80mm、Y方向における発光面21の幅が1.35mmの汎用品のLEDを採用し、光源2からの光の方向性を広げることを目的とした設計例である。実施例4では、レンズ3の有効径が15mmとなっている。図15Aおよび15Bは、実施例4の発光装置に用いられるレンズ3の入射面形状および出射面形状をそれぞれ示す。図16は、実施例4の発光装置を用い、光源2の発光面21から23mm離れた位置に被照射面を配置したときの、計算で求めた被照射面での照度分布を表す。
 図16に示すように、実施例4でも実施例1と同様に、レンズ3の有効径が15mmと小さくても、照射面における照度分布をX方向とY方向とで類似させることができる。
 ところで、実施例1~4におけるレンズ3のサグ差sagDに関し、光源Aからの距離RをY方向における入射面31の最大径DYで規格化し、この規格距離が0.5以上のサグ差sagDをプロットすると、図17に示すような曲線が描ける。これらの曲線を最小二乗法にて直線に近似すると、図17中に記載した式で表される近似直線が得られる。これらの近似直線の傾きを図18にプロットすると、実施例1~4では、上述した条件式が満たされることが分かる。
 参考として、図18中に上述した条件式を満たさない参照例1および参照例2を示す。参照例1および参照例2では、入射面31の全面がアナモフィックな曲面であり、出射面32が回転対称なレンズ3が採用されている。ただし、参照例1では図19Aに示すようにアナモフィックのレベルが大きく、参照例2では図20Aに示すようにアナモフィックのレベルが小さい。また、参照例1では光源2の発光面長短比が2.0に設定されており、参照例2では光源2の発光面長短比が2.8に設定されている。なお、参照例1および参照例2ともにレンズ3の有効径は11mmである。
 参照例1の発光装置の照度分布は図19Bに示すとおりであり、参照例2の発光装置の照度分布は図20Bに示すとおりである。これらの図から、上述した条件式が満たされないようなアナモフィックのレベルでは、被照射面上での光の分布形状が崩れることが分かる。
 ・実施例5
 実施例5は、光源2として方向における発光面21の長さが2.20mm、Y方向における発光面21の幅が1.10mmの汎用品のLEDを採用し、光源2からの光の方向性を広げることを目的とした設計例である。実施例5では、レンズ3の有効径が11mmとなっている。実施例5の具体的な数値を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 図22Aは、表2のRとsagAについてグラフ化したものであり、図22Bは、表2のRとsagBXおよびsagBYについてグラフ化したものである。
 図23は、実施例5の発光装置を用い、光源2の発光面21から23mm離れた位置に被照射面を配置したときの、計算で求めた被照射面での照度分布を表す。図24は、レンズの出射面が回転対称となった以外は実施例5と同様の構成の発光装置を用い、光源2の発光面21から23mm離れた位置に被照射面を配置したときの、計算で求めた被照射面での照度分布を表す。図25は、レンズの出射面が回転対称となりかつレンズが有効径18mmに拡大された以外は実施例5と同様の構成の発光装置を用い、光源2の発光面21から23mm離れた位置に被照射面を配置したときの、計算で求めた被照射面での照度分布を表す。
 図25に示すように、発光面21が非対称な光源2に対して入射面および出射面が回転対称なレンズを用いた場合は、レンズの有効径が18mmと大きいと、被照射面における照度分布はX方向とY方向とでそれほど大きな差はできない。しかし、レンズの有効径を11mmと小さくすると、図24に示すように被照射面における照度分布がX方向とY方向とで大きくずれてしまう。これに対し、本実施例5では、Y方向の屈折力がX方向の屈折力よりも大きなレンズ3を用いているので、図23に示すようにレンズ3の有効径が11mmと小さくても、照射面における照度分布をX方向とY方向とで類似させることができる。
 (実施の形態2)
 図26は、本発明の実施の形態2に係る面光源7の構成図である。この面光源7は、平面的に配置された、実施の形態1で説明した複数の発光装置1と、これらの発光装置1を覆うように配置された拡散板4とを備えている。なお、発光装置1は、図26に示すようにマトリクス状に配置されていてもよいし、千鳥状に配置されていてもよい。
 また、面光源7は、図27に示すように、発光装置1を挟んで拡散板4と対向する基板5を備えている。基板5には、各発光装置1の光源2が実装されている。本実施形態では、レンズ3の底面33が基板5に支柱55を介して接合されており、基板5上に、光源2を避けながら基板5を覆うように反射板6が配置されている。ただし、レンズ3の底面33は、必ずしも基板5に支柱55を介して接合されている必要はなく、基板5に直接的に接合されていてもよい。また、支柱55が、レンズ3と一体で形成されていてもよい。
 発光装置1は、拡散板4の一方面4aに光を照射する。すなわち、拡散板4の一方面4aは、実施の形態1で説明した被照射面である。拡散板4は、一方面4aに照射された光を他方面4bから拡散された状態で放射する。個々の発光装置1からは拡散板4の一方面4aに広い範囲で均一化された照度の光が照射され、この光が拡散板4で拡散されることにより、面内での輝度ムラが少ない面光源ができる。
 発光装置1からの光は、拡散板4で散乱されて、発光装置側へ戻ったり拡散板4を透過したりする。発光装置側へ戻って反射板6に入射する光は、反射板6で反射されて、拡散板4に再度入射する。
 図28は、入射面の全面がアナモフィックな曲面であるレンズ3を採用した実施例1の発光装置を60mmピッチで一直線上に5つ配置し、光源2の発光面21から23mm離れた位置に拡散板を配置したときの計算で求めた拡散板入射面(発光装置側の一方面)での照度分布を表す。照度分布に細かな波が見られるが照度計算を実行する上で、評価する光線数が不足しているためである。
 図29は、LEDのみを60mmピッチで一直線上に5つ配置し、LEDの表面から23mm離れた位置に拡散板を配置したときの計算で求めた拡散板入射面での照度分布を表す。
 図28と図29を比較すると、レンズ3の効果で拡散板入射面を均一に照明できていることがわかる。
 (実施の形態3)
 図30は、本発明の実施の形態3に係る液晶ディスプレイ装置の構成図である。この液晶ディスプレイ装置は、液晶パネル8と、液晶パネル8の裏側に配置された、実施の形態3で説明した面光源7とを備えている。
 発光装置1が平面的に複数配置され、これらの発光装置1によって拡散板4が照明される。拡散板4の裏面(一方面)は、照度が均一化された光が照射され、この光が拡散板4によって拡散されて液晶パネル8が照明される。
 なお、液晶パネル8と面光源7との間には拡散シート、プリズムシート等の光学シートが配置されていることが好ましい。この場合、拡散板4を透過した光は、光学シートでさらに拡散されて、液晶パネル8を照明する。

Claims (11)

  1.  光軸を中心として光を放射する発光装置であって、
     前記光軸と直交する第1方向に延びる発光面を有する光源と、
     前記光源からの光を放射状に拡張するレンズであって、前記光軸および前記第1方向と直交する第2方向の屈折力が前記第1方向の屈折力よりも大きなレンズと、
    を備える、発光装置。
  2.  前記レンズは、前記光源からの光を該レンズ内に入射させる入射面と、該レンズ内に入射した光を出射させる出射面とを有し、
     前記入射面と前記出射面の少なくとも一方がアナモフィックな非球面の曲面を含む、請求項1に記載の発光装置。
  3.  前記曲面は、前記光軸上に頂点を有しており、
     前記頂点から前記曲面上の点までの前記光軸に沿った距離をサグ量(符号は前記頂点から前記光源側が負、前記頂点から前記光源と反対側が正)としたときに、
     前記光軸から径方向に同じ距離だけ離れた位置では、前記第1方向におけるサグ量が前記第2方向におけるサグ量よりも大きい、請求項2に記載の発光装置。
  4.  前記出射面は、前記曲面を含む凸面であり、前記入射面は、前記光軸に対して回転対称な凹面である、請求項3に記載の発光装置。
  5.  前記入射面は、前記曲面を含む凹面であり、前記出射面は、前記光軸に対して回転対称な凸面である、請求項3に記載の発光装置。
  6.  前記第1方向におけるサグ量から前記第2方向におけるサグ量を引いたサグ差は、前記光軸から離れるにつれて大きくなる、請求項5に記載の発光装置。
  7.  前記第2方向における前記発光面の幅に対する前記第1方向における前記発光面の長さの比である発光面長短比をFとし、
     さらに、前記光軸からの距離を前記第2方向における前記曲面の最大径で規格化し、この規格距離が0.5以上の領域の前記サグ差の曲線を最小二乗法にて直線に近似したときの近似直線の傾きをSとしたときに、
     次の条件式
      0.12(F-1)2≦S≦3log10
    が満たされる、請求項6に記載の発光装置。
  8.  前記光源は、発光素子と、この発光素子上にドーム状に形成された蛍光体層とを含み、前記蛍光体層の表面で前記発光面が構成されている、請求項1に記載の発光装置。
  9.  平面的に配置された複数の発光装置と、前記複数の発光装置を覆うように配置され、前記複数の発光装置から一方面に照射された光を他方面から拡散した状態で放射する拡散板と、を備える面光源であって、
     前記複数の発光装置のそれぞれは、請求項1に記載の発光装置である、面光源。
  10.  前記複数の発光装置を挟んで前記拡散板と対向する基板であって前記複数の発光装置のそれぞれの前記光源が実装された基板と、前記光源を避けながら前記基板を覆うように前記基板上に配置された反射板と、をさらに備える、請求項9に記載の面光源。
  11.  液晶パネルと、前記液晶パネルの裏側に配置された請求項9に記載の面光源と、を備える液晶ディスプレイ装置。
PCT/JP2011/000326 2010-03-15 2011-01-21 発光装置、面光源および液晶ディスプレイ装置 WO2011114608A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/202,958 US8845119B2 (en) 2010-03-15 2011-01-21 Light emitting device, surface light source, and liquid crystal display apparatus
JP2011532452A JP5518881B2 (ja) 2010-03-15 2011-01-21 発光装置、面光源および液晶ディスプレイ装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010057719 2010-03-15
JP2010-057719 2010-03-15

Publications (1)

Publication Number Publication Date
WO2011114608A1 true WO2011114608A1 (ja) 2011-09-22

Family

ID=44648724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000326 WO2011114608A1 (ja) 2010-03-15 2011-01-21 発光装置、面光源および液晶ディスプレイ装置

Country Status (3)

Country Link
US (1) US8845119B2 (ja)
JP (1) JP5518881B2 (ja)
WO (1) WO2011114608A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013061509A1 (ja) * 2011-10-28 2013-05-02 株式会社エンプラス 光束制御部材、発光装置および照明装置
US20130120689A1 (en) * 2011-05-31 2013-05-16 Panasonic Corporation Surface light source and liquid crystal display device
JP2014013688A (ja) * 2012-07-04 2014-01-23 Enplas Corp 光束制御部材、発光装置、面光源装置および表示装置
JP2015507350A (ja) * 2011-12-02 2015-03-05 ソウル セミコンダクター カンパニー リミテッド 発光モジュール及びレンズ
KR20150046786A (ko) * 2012-08-22 2015-04-30 서울반도체 주식회사 Led 백라이트용 조명 렌즈
JPWO2015005424A1 (ja) * 2013-07-10 2017-03-02 ナルックス株式会社 光学素子及び該光学素子を含む照明装置
JP2017120687A (ja) * 2015-12-28 2017-07-06 東芝ライテック株式会社 照明装置
JP2017147227A (ja) * 2016-02-16 2017-08-24 エルジー イノテック カンパニー リミテッド 光学レンズ、光源モジュールおよびこれを備えたライトユニット
JPWO2016158243A1 (ja) * 2015-03-31 2018-01-25 ソニー株式会社 光源用レンズ、照明装置および表示装置
US10503010B2 (en) 2012-08-22 2019-12-10 Seoul Semiconductor Co., Ltd. Thin direct-view LED backlights
JP2020057006A (ja) * 2016-02-23 2020-04-09 株式会社デンソー ヘッドアップディスプレイ装置
US10663120B2 (en) 2018-04-20 2020-05-26 Nichia Corporation Light source module
US11287622B2 (en) 2018-05-31 2022-03-29 Nichia Corporation Light source module

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5176750B2 (ja) * 2008-07-24 2013-04-03 ソニー株式会社 発光素子組立体、面状光源装置、及び、液晶表示装置組立体
CN101598307A (zh) * 2009-06-24 2009-12-09 郑榕彬 Led照明灯及其制造方法
CN102818215A (zh) * 2011-06-07 2012-12-12 富准精密工业(深圳)有限公司 透镜及照明装置
US10047930B2 (en) * 2011-12-02 2018-08-14 Seoul Semiconductor Co., Ltd. Light emitting module and lens
CN103062705B (zh) * 2012-12-19 2015-04-08 冠捷显示科技(厦门)有限公司 大角度扩散的光学透镜
TWI572952B (zh) * 2013-08-22 2017-03-01 鴻海精密工業股份有限公司 發光二極體元件及應用該發光二極體元件的背光模組
CN106842703B (zh) * 2017-01-25 2019-11-15 宁波正特光学电器有限公司 一种非对称透镜及其背光模组
JP6910158B2 (ja) * 2017-02-24 2021-07-28 三菱電機株式会社 面光源装置
WO2018159977A1 (ko) * 2017-02-28 2018-09-07 서울반도체주식회사 디스플레이 장치, 백라이트 유닛, 발광모듈 및 렌즈
WO2023243735A1 (ko) * 2022-06-13 2023-12-21 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258899A (ja) * 2005-03-15 2006-09-28 Sanyo Electric Co Ltd 集光素子及び照明装置及び投写型映像表示装置
JP2009123803A (ja) * 2007-11-13 2009-06-04 Sanyo Electric Co Ltd 発光ダイオード装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3370612B2 (ja) * 1998-09-14 2003-01-27 富士通株式会社 光強度変換素子、コリメートレンズ、対物レンズ及び光学装置
US7597459B2 (en) 2005-03-07 2009-10-06 Sanyo Electric Co., Ltd. Converging element and illuminating device
JP2002042368A (ja) 2000-07-21 2002-02-08 Ricoh Co Ltd 光ピックアップ及び光ディスク装置
US6637905B1 (en) * 2002-09-26 2003-10-28 Agilent Technologies, Inc. Method and system for providing backlighting utilizing a luminescent impregnated material
JP3875247B2 (ja) 2004-09-27 2007-01-31 株式会社エンプラス 発光装置、面光源装置、表示装置及び光束制御部材
KR101080355B1 (ko) * 2004-10-18 2011-11-04 삼성전자주식회사 발광다이오드와 그 렌즈
EP1693904B1 (en) 2005-02-18 2020-03-25 Nichia Corporation Light emitting device provided with lens for controlling light distribution characteristic
JP2008010693A (ja) 2006-06-30 2008-01-17 Hitachi Displays Ltd 液晶表示装置
KR100809263B1 (ko) * 2006-07-10 2008-02-29 삼성전기주식회사 직하 방식 백라이트 장치
KR101329413B1 (ko) * 2006-12-19 2013-11-14 엘지디스플레이 주식회사 광학 렌즈, 이를 구비하는 광학 모듈 및 이를 구비하는백라이트 유닛
US7618163B2 (en) * 2007-04-02 2009-11-17 Ruud Lighting, Inc. Light-directing LED apparatus
TW200921007A (en) 2007-11-15 2009-05-16 Prodisc Technology Inc An optics for reshaping the light shape and a light module for the same
TW201033537A (en) * 2009-03-13 2010-09-16 Genius Electronic Optical Co Ltd Lens for LED illumination

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258899A (ja) * 2005-03-15 2006-09-28 Sanyo Electric Co Ltd 集光素子及び照明装置及び投写型映像表示装置
JP2009123803A (ja) * 2007-11-13 2009-06-04 Sanyo Electric Co Ltd 発光ダイオード装置

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130120689A1 (en) * 2011-05-31 2013-05-16 Panasonic Corporation Surface light source and liquid crystal display device
US9222646B2 (en) 2011-10-28 2015-12-29 Enplas Corporation Luminous flux control member, light emitting apparatus, and illuminating apparatus
JP2013110088A (ja) * 2011-10-28 2013-06-06 Enplas Corp 光束制御部材、発光装置および照明装置
WO2013061509A1 (ja) * 2011-10-28 2013-05-02 株式会社エンプラス 光束制御部材、発光装置および照明装置
JP2015507350A (ja) * 2011-12-02 2015-03-05 ソウル セミコンダクター カンパニー リミテッド 発光モジュール及びレンズ
JP2014013688A (ja) * 2012-07-04 2014-01-23 Enplas Corp 光束制御部材、発光装置、面光源装置および表示装置
US9880417B2 (en) 2012-08-22 2018-01-30 Seoul Semiconductor Co., Ltd. Illumination lens for LED backlights
JP2015534101A (ja) * 2012-08-22 2015-11-26 ソウル セミコンダクター カンパニー リミテッド Ledバックライト用照明レンズ
KR20150046786A (ko) * 2012-08-22 2015-04-30 서울반도체 주식회사 Led 백라이트용 조명 렌즈
US10503010B2 (en) 2012-08-22 2019-12-10 Seoul Semiconductor Co., Ltd. Thin direct-view LED backlights
US10983394B2 (en) 2012-08-22 2021-04-20 Seoul Semiconductor Co., Ltd. Thin direct-view LED backlights
KR102132664B1 (ko) * 2012-08-22 2020-08-31 서울반도체 주식회사 Led 백라이트용 조명 렌즈
JPWO2015005424A1 (ja) * 2013-07-10 2017-03-02 ナルックス株式会社 光学素子及び該光学素子を含む照明装置
JPWO2016158243A1 (ja) * 2015-03-31 2018-01-25 ソニー株式会社 光源用レンズ、照明装置および表示装置
JP2021043461A (ja) * 2015-03-31 2021-03-18 ソニー株式会社 光源用レンズ、照明装置および表示装置
JP7138688B2 (ja) 2015-03-31 2022-09-16 ソニーグループ株式会社 光源用レンズ、照明装置および表示装置
JP2017120687A (ja) * 2015-12-28 2017-07-06 東芝ライテック株式会社 照明装置
JP2017147227A (ja) * 2016-02-16 2017-08-24 エルジー イノテック カンパニー リミテッド 光学レンズ、光源モジュールおよびこれを備えたライトユニット
JP2020057006A (ja) * 2016-02-23 2020-04-09 株式会社デンソー ヘッドアップディスプレイ装置
US10663120B2 (en) 2018-04-20 2020-05-26 Nichia Corporation Light source module
US11287622B2 (en) 2018-05-31 2022-03-29 Nichia Corporation Light source module

Also Published As

Publication number Publication date
US20120057101A1 (en) 2012-03-08
US8845119B2 (en) 2014-09-30
JP5518881B2 (ja) 2014-06-11
JPWO2011114608A1 (ja) 2013-06-27

Similar Documents

Publication Publication Date Title
JP5518881B2 (ja) 発光装置、面光源および液晶ディスプレイ装置
JP5416662B2 (ja) 照明用レンズ、発光装置、面光源および液晶ディスプレイ装置
JP5849193B2 (ja) 発光装置、面光源、液晶ディスプレイ装置、およびレンズ
JP4489843B2 (ja) 照明用レンズおよびそれを用いた発光装置、面光源、液晶ディスプレイ装置
JP5081988B2 (ja) 照明用レンズ、発光装置、面光源および液晶ディスプレイ装置
JP5342939B2 (ja) 照明用レンズ、発光装置、面光源および液晶ディスプレイ装置
TWI422861B (zh) 光控制鏡片及其光源裝置
WO2012164790A1 (ja) 面光源および液晶ディスプレイ装置
JP2011014831A (ja) 発光装置、面光源および液晶ディスプレイ装置
JP5118617B2 (ja) 照明用レンズ、発光装置、面光源および液晶ディスプレイ装置
JP2011009052A (ja) 面光源および液晶ディスプレイ装置
JP2010186142A (ja) 照明用レンズ、発光装置、面光源および液晶ディスプレイ装置
JP5849192B2 (ja) 面光源および液晶ディスプレイ装置
JP5342938B2 (ja) 照明用レンズ、発光装置、面光源および液晶ディスプレイ装置
JP2010146986A (ja) 照明用レンズ、発光装置、面光源および液晶ディスプレイ装置
JP2011228226A (ja) 照明用レンズ、発光装置、面光源および液晶ディスプレイ装置
JP5342940B2 (ja) 照明用レンズ、発光装置、面光源および液晶ディスプレイ装置
JP5342941B2 (ja) 照明用レンズ、発光装置、面光源および液晶ディスプレイ装置
JP2010146987A (ja) 照明用レンズ、発光装置、面光源および液晶ディスプレイ装置
KR200478823Y1 (ko) 광학시트를 이용한 조명장치
JP5753004B2 (ja) 光束制御部材、発光装置および照明装置
JP2014035838A (ja) 照明装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011532452

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13202958

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11755801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11755801

Country of ref document: EP

Kind code of ref document: A1