WO2011114574A1 - 永久磁石式同期モータ - Google Patents

永久磁石式同期モータ Download PDF

Info

Publication number
WO2011114574A1
WO2011114574A1 PCT/JP2010/069679 JP2010069679W WO2011114574A1 WO 2011114574 A1 WO2011114574 A1 WO 2011114574A1 JP 2010069679 W JP2010069679 W JP 2010069679W WO 2011114574 A1 WO2011114574 A1 WO 2011114574A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
permanent magnet
skew
synchronous motor
status
Prior art date
Application number
PCT/JP2010/069679
Other languages
English (en)
French (fr)
Inventor
敏則 田中
信一 山口
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201090001411.8U priority Critical patent/CN203027042U/zh
Priority to JP2012505446A priority patent/JP5414887B2/ja
Publication of WO2011114574A1 publication Critical patent/WO2011114574A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/06Magnetic cores, or permanent magnets characterised by their skew

Definitions

  • the present invention relates to a permanent magnet type synchronous motor driven by a three-phase power source, and more particularly to a new and improved technique for reliably suppressing cogging torque.
  • cogging torque is generated between a stator core (stator core) and a rotor when a rotor magnet (rotor) is rotated by external drive when no winding is energized.
  • This type of cogging torque is caused by the pulsation of the least common multiple of the number of slots of the stator and the number of magnetic poles of the permanent magnet per one mechanical rotation of the rotor. Inversely proportional to the number.
  • Z status lots (Z is a natural number) formed in an annular shape and wound (coil) are used. And having a 2P pole (P is a natural number) permanent magnet, the value of Z / ⁇ 3 (phase) ⁇ 2P ⁇ is “2/5” or “2/7”.
  • cogging torque generated due to a working error or magnetic anisotropy of an electromagnetic steel sheet also exists, and a fundamental wave of an energized current waveform (that is, an electrical angle of 360 degrees) is expressed as “1f.
  • a cogging torque of 2f component (1 cycle at an electrical angle of 180 degrees) and 4f component (1 cycle at an electrical angle of 90 degrees) is generated due to a working error of the stator.
  • stator core when the stator core is manufactured by shrink-fitting the stator core within the frame having a circular inner diameter and a rectangular outer shape, or by stacking the rolling directions of the electromagnetic steel sheets in the same direction, the 4f component of cogging torque Occurs greatly.
  • the present invention has been made to solve the above-described problems, and an object thereof is to obtain a permanent magnet type synchronous motor capable of sufficiently suppressing the cogging torque of the 2f component and the 4f component.
  • a permanent magnet type synchronous motor includes a Z-shaped (Z is a natural number) status lot formed in an annular shape and wound, a rotor disposed in the annular shape of the status lot, a rotor, It has a 2P pole (P is a natural number) permanent magnet arranged so as to be opposed to the status lot, and the value of Z / ⁇ 3 (phase) ⁇ 2P ⁇ is 2/5 or 2/7
  • Z is a natural number
  • P is a natural number
  • a continuous skew with an electrical angle of 42 degrees to 128 degrees with respect to the axial direction of the rotor is provided on the surface of the permanent magnet facing the status lot.
  • the permanent magnet (rotor) with a continuous skew with an electrical angle of 42 to 128 degrees, the 4f component of the cogging torque generated due to the stator variation can be reliably suppressed.
  • Example 1 It is sectional drawing which shows a cross section perpendicular
  • Example 1 It is sectional drawing which shows a cross section perpendicular
  • Example 1 It is explanatory drawing which shows the cogging torque which arises by magnetic asymmetry, such as shrink fitting in the flame
  • Example 1 It is explanatory drawing which shows the result of having analyzed the frequency of the cogging torque of FIG.
  • Example 1 It is explanatory drawing which shows the rolling direction of a general electromagnetic steel sheet with sectional drawing of a stator.
  • Example 1 It is a perspective view which shows the state which does not provide a skew in the ring magnet (rotor) in FIG.
  • Example 1 It is a perspective view which shows the ring magnet and rotor which provided the continuous skew by Embodiment 1 of this invention.
  • Example 1 It is explanatory drawing which shows the relationship between the skew angle and cogging torque (4f component) of the permanent magnet type synchronous motor using the rotor of FIG.
  • Example 1 It is explanatory drawing which shows the relationship between the skew angle of a permanent magnet type synchronous motor using the rotor of FIG. 7, and a motor output.
  • Example 1 It is a perspective view which shows the ring magnet and rotor which provided the continuous skew by Embodiment 2 of this invention.
  • Example 2 It is an expanded view for demonstrating the manufacturing method of the ring magnet of FIG. (Example 2) It is an expanded view which shows the state which combined the two ring magnets in FIG. (Example 2) It is an expanded view at the time of comprising the two-stage ring magnet of FIG. 11 with one ring magnet.
  • Example 2 It is a perspective view which shows the ring magnet and rotor which provided the step skew by Embodiment 3 of this invention.
  • Example 3 It is an expanded view for demonstrating the manufacturing method of the ring magnet of FIG.
  • Example 3 It is explanatory drawing which shows the relationship between the skew angle of a permanent magnet type synchronous motor using the rotor of FIG. 14, and a motor output. (Example 3) It is sectional drawing which shows a cross section perpendicular
  • Example 3 It is a perspective view which shows the ring magnet and rotor which provided the step skew by Embodiment 4 of this invention.
  • Example 4 It is a perspective view of the rotor at the time of using the segment magnet by Embodiment 4 of this invention.
  • Example 4 It is sectional drawing which shows the cross-sectional shape of the axial direction upper end part of 1 teeth of the status lot by Embodiment 5 of this invention.
  • Example 5 It is sectional drawing which shows the cross-sectional shape of the axial direction lower end part of 1 teeth of the status lot by Embodiment 5 of this invention.
  • FIG. 25 is a perspective view showing an internal configuration of a part of a stator created by arranging a plurality of teeth of FIG. 24.
  • FIG. 26 is a development view illustrating a tooth end surface shape of the status lot of FIG. 25 in a plan view.
  • Example 5) It is a perspective view which shows the other structural example of the status lot which provided the continuous skew by Embodiment 5 of this invention.
  • FIG. 28 is a development view illustrating a tooth end surface shape of the status lot of FIG.
  • FIG. 30 is a perspective view showing an internal configuration of a part of a stator formed by arranging a plurality of teeth of FIG. 29.
  • FIG. 31 is a development view illustrating a tooth end surface shape of the status lot in FIG. 30 in a plan view.
  • FIG. 33 is a development view illustrating a tooth end surface shape of the status lot of FIG. 32 in a plan view.
  • Example 1 1 is a cross-sectional view showing a basic structure of a permanent magnet type synchronous motor according to Embodiment 1 of the present invention, and shows a cross section perpendicular to the rotor axial direction.
  • a ring magnet (permanent magnet) 11 having a plurality of poles (here, 10 poles) is integrally formed on the outer peripheral portion of a rotor 1 composed of a rotating shaft.
  • the ring magnet 11 Since the ring magnet 11 has a plurality of magnetic poles formed in a single permanent magnet, the boundary between the magnetic poles cannot be visually observed. However, in FIG. The boundary line between magnetic poles is shown.
  • a stator 2 having a plurality of poles (here, 12 poles) status lots 21 facing the ring magnet 11 is disposed on the outer periphery of the rotor 1. Although not shown here, a winding is wound around each status lot 21.
  • the value of Z / ⁇ 3 (phase) ⁇ 2P ⁇ is 2
  • FIG. 2 is a cross-sectional view showing a frame 3 for fixing the stator 2 in FIG. 1 by shrink fitting or the like, and shows a cross section perpendicular to the axial direction of the frame.
  • the shape of the frame 3 is sometimes processed such that the inner diameter portion 31 into which the stator 2 is shrink-fitted is processed into a circular shape, and the outer side is processed into a rectangular shape.
  • the stress applied to the stator 2 is different when the stator 2 is shrink-fitted to the inner diameter portion 31.
  • the BH curve of the core portion of the stator 2 changes.
  • the stress applied to the core portion of the stator 2 is different between a portion where the thickness of the frame 3 is large and a portion where the thickness is small. There is also a difference in the shrinkage stress applied to the stator 2.
  • stator 2 after shrinkage fitting, a difference occurs in the BH curve particularly in the core back portion of the stator 2, so that the rotor 1 depends on the combination of the number of magnetic poles of the ring magnet 11 and the number of slots of the status lot 21. 10 and 20 torque pulsations occur during one rotation of the.
  • FIG. 3 is an explanatory view showing the cogging torque of a permanent magnet type synchronous motor having the number of magnetic poles “10 poles” and the number of slots “12 slots”.
  • the rotor 1 is rotated once (0 degree to 1 degree). 360 °) shows a cogging torque waveform actually generated.
  • the amplitude of the cogging torque fluctuates several times due to shrinkage fitting of the stator 2 into the rectangular frame 3 and magnetic asymmetry such as the rolling direction of the stator 2 (described later with reference to FIG. 5). To do.
  • FIG. 4 is an explanatory diagram showing the result of frequency analysis of the cogging torque waveform of FIG. 3, wherein the horizontal axis indicates the order of the cogging torque in one rotation of the rotor 1, and the vertical axis indicates the magnitude of the cogging torque.
  • the permanent magnet type synchronous motor has a combination of the number of magnetic poles “10 poles” and the number of slots “12 slots”, the rotor 1 is mechanically moved in FIG. During one rotation, “12” and “24” pulsations occur.
  • the magnetic imbalance of the permanent magnet type synchronous motor also occurs depending on the rolling direction of the electromagnetic steel sheet.
  • electromagnetic steel plates are stacked and manufactured.
  • the electromagnetic steel plates include directional electromagnetic steel plates and non-oriented electromagnetic steel plates. .
  • the “magnetic directionality due to the difference in crystal form” that is considered to be caused by the rolling direction and the non-rolling direction is Appearance, iron loss and magnetic flux density are different between the rolling direction and the non-rolling direction.
  • FIG. 6 is a perspective view of a general ring magnet 11 viewed from the axial direction, and shows a state where the skew angle ⁇ is 0 degree (no skew).
  • FIG. 7 is a perspective view showing ring magnet 11 and rotor 1 provided with a skew according to the first embodiment of the present invention. 7 can be realized by providing a skew angle ⁇ in advance in the shape of a magnetizing yoke (not shown) when the ring magnet 11 is magnetized.
  • FIG. 7 is an explanatory diagram showing the cogging torque characteristics when the rotor 1 of FIG. 7 is used, and the relationship between the skew angle ⁇ (horizontal axis) and the magnitude of the cogging torque of 20 pulsating components (vertical axis). Is shown.
  • the skew angle ⁇ shown in FIG. 7 is shown as a mechanical angle, but the skew angle shown in FIG. 8 is shown as an electrical angle.
  • FIG. 9 is an explanatory diagram showing the relationship between the skew angle ⁇ (horizontal axis) and the output (vertical axis) of the permanent magnet type synchronous motor. As can be seen from FIG. 9, the motor output decreases as the skew angle ⁇ increases from 0 degree, and setting the skew angle ⁇ excessively increases the motor output.
  • the skew angle ⁇ is an electrical angle of 42 degrees or more in which the 4f component is reduced by 2/3 or more (the effect becomes obvious), and is suppressed without significantly reducing the motor output. It is desirable to set the electrical angle to 128 degrees or less so that the effect is sufficiently obtained. As a result, the 4f component of the cogging torque can be sufficiently reduced without greatly reducing the motor output.
  • the permanent magnet type synchronous motor according to the first embodiment (FIGS. 1 and 7) of the present invention has Z status rings (Z is a natural number) formed in an annular shape and wound. 21, the rotor 1 disposed in the annular shape of the status lot 21, and the 2P pole (P is a natural number) ring magnet (permanent magnet) that is integrated with the rotor 1 and disposed so as to face the status lot 21. 11 and is configured such that the value of Z / ⁇ 3 (phase) ⁇ 2P ⁇ is 2/5 or 2/7.
  • a continuous skew with an electrical angle of 42 degrees to 128 degrees with respect to the axial direction of the rotor 1 is provided on the surface of the ring magnet 11 facing the status lot 21, a continuous skew with an electrical angle of 42 degrees to 128 degrees with respect to the axial direction of the rotor 1 is provided.
  • Example 2 In the first embodiment (FIG. 7), continuous skew in a single direction is provided. However, as shown in FIG. 10, the skew angle with respect to the rotation direction of the rotor 1 is obtained by symmetrically folding back the continuous skew at the center. A continuous skew may be provided so that the starting position and the ending position of ⁇ are equal.
  • FIG. 10 is a perspective view showing the rotor 1 and the ring magnet 11 of the permanent magnet type synchronous motor according to the second embodiment of the present invention. Omitted.
  • the overall configuration of the second embodiment of the present invention is as shown in FIG.
  • the axial direction (thrust) of the rotor 1 is applied in a state where the permanent magnet type synchronous motor is energized and loaded. Force in the direction) may damage the bearing (not shown) of the bearing portion. Such damage to the bearing leads to abnormal noise and increased mechanical loss.
  • the ring magnet 11 (rotor 1) of FIG. 10 When the ring magnet 11 (rotor 1) of FIG. 10 is manufactured, first, as shown in the developed view of FIG. 11, two ring magnets 11 having a half length in the axial direction of the rotor 1 are prepared. Magnetization is performed at a skew angle ⁇ (42 ° to 128 °) shown in FIG. 8 so that the inclination is in the opposite direction. Subsequently, as shown in the development view of FIG. 12, the two ring magnets 11 after magnetization are combined and integrated in the axial direction, whereby the ring magnet 11 of FIG. 10 can be manufactured.
  • 42 ° to 128 °
  • a single ring magnet 11 having the same length as the axial direction of the rotor 1 is prepared, and magnetization between the magnetic poles at the end portions in the axial direction is set to be the same.
  • the ring magnet 11 shown in FIG. 10 can also be manufactured by magnetizing using a yoke (not shown).
  • the present invention is not limited to this, and the rotors 1 and 12 having 14 poles are not limited thereto.
  • the continuous skew is such that the starting position and the ending position of the skew angle ⁇ in the axial direction of the rotor 1 are equal. Since it is provided, the thrust force generated by the skew can be canceled out while reducing the 4f component of the cogging torque, and damage to the bearing can be avoided.
  • FIG. 14 is a perspective view showing the rotor 1 and the ring magnet 11 of the permanent magnet type synchronous motor according to the third embodiment of the present invention. Omitted.
  • the overall configuration of the third embodiment of the present invention is as shown in FIG.
  • FIG. 14 the ring magnet 11 is divided in the axial direction of the rotor 1 to have a two-stage configuration, and each magnetic pole position is shifted by a skew angle ⁇ with respect to the rotation direction of the rotor 1.
  • FIG. 15 is a development view for explaining a method of manufacturing the ring magnet 11 (rotor 1) in FIG.
  • FIG. 16 is an explanatory diagram showing the relationship between the skew angle ⁇ of the permanent magnet synchronous motor using the ring magnet 11 (rotor 1) of FIG. 14 and the motor output.
  • the motor output characteristic with respect to the skew angle ⁇ is improved as compared with the case of the first embodiment (FIG. 9).
  • the skew angle ⁇ that satisfies the motor output ⁇ 0.8 is 0 degree to about 130 degrees, but in the case of FIG. 16, the skew angle ⁇ that satisfies the motor output ⁇ 0.8. Is between 0 degrees and about 150 degrees. Therefore, by providing a step skew as in the third embodiment (FIG. 14) of the present invention, it is possible to reduce the 4f component of the cogging torque without reducing the motor output.
  • FIG. 14 the integrated ring magnet 11 is used.
  • a segment magnet 12 divided for each magnetic pole may be used.
  • FIG. 17 is a cross-sectional view showing another configuration example according to Embodiment 3 of the present invention, and shows a cross section perpendicular to the axial direction of a permanent magnet type synchronous motor using segment magnets 12.
  • FIG. 18 is a perspective view showing a state in which no step skew is provided in the segment magnet 12.
  • FIG. 19 is a perspective view showing a state in which a step skew is provided in the segment magnet 12 according to the third embodiment of the present invention (the position between the magnetic poles is shifted).
  • the segment magnet 12 is divided into two or more stages in the axial direction, and the affixing position between the magnetic poles in the axial direction is shifted. As in 1, the 4f component of the cogging torque can be sufficiently suppressed.
  • the motor output characteristic with respect to the skew angle ⁇ of the permanent magnet type synchronous motor is as shown in FIG. 16, and the motor output characteristic is improved as in the case of the ring magnet 11.
  • 14 to 19 show the case where the number of magnetic poles of the ring magnet 11 or the segment magnet 12 (rotor 1) is 10, but the present invention is not limited to this.
  • a 14-pole 12-slot motor configuration may be combined with the 14-pole rotor 1 in which the value of / ⁇ 3 (phase) ⁇ 2P ⁇ is 2/7.
  • the permanent magnet type synchronous motor according to the third embodiment (FIGS. 1, 14, and 19) of the present invention has Z pieces (Z is a natural number) formed in an annular shape and provided with windings.
  • the segment magnet 12 (permanent magnet) is included, and the value of Z / ⁇ 3 (phase) ⁇ 2P ⁇ is 2/5 or 2/7.
  • step skews are provided so that the electrical angle is 42 to 128 degrees with respect to the axial direction of the rotor 1. Yes.
  • the 4f component of the cogging torque is sufficiently suppressed, and the above-described continuous skew is provided as in the case of the motor output characteristic in the step skew (FIG. 16). Since the reduction of the fundamental wave can be reduced, the output characteristics can be improved.
  • Example 4 In the third embodiment (FIGS. 14 and 19), the step skew is formed using the two-stage ring magnet 11 or the segment magnet 12. However, as shown in FIGS. 20 and 21, the three-stage ring magnet is used. Using 11a to 11c or segment magnets 12a to 12c, a step skew is formed so as to have a symmetrical relationship at the center, and the skew angle ⁇ with respect to the rotation direction of the rotor 1 is started as in the second embodiment. You may comprise so that a position and an end position may become equal.
  • FIG. 20 (FIG. 21) is a perspective view showing the rotor 1 and the ring magnet 11 (segment magnet 12) of the permanent magnet type synchronous motor according to the fourth embodiment of the present invention.
  • the same reference numerals are attached and detailed description is omitted.
  • the overall configuration of the fourth embodiment of the present invention is as shown in FIG.
  • the rotational direction positions of the ring magnets 11a and 11c (segment magnets 12a and 12c) at both ends in the axial direction are set to be the same. Further, the rotational direction position of the ring magnet 11b (segment magnet 12b) at the center in the axial direction is shifted by a skew angle ⁇ with respect to the magnets at both ends.
  • the axial lengths Ha and Hc of the ring magnets 11a and 11c (segment magnets 12a and 12c) at both ends are set to the same value, and the sum of the magnet lengths at both ends (Ha + Hc) is It is set to the same value as the magnet length Hb of the center ring magnet 11b (segment magnet 12b).
  • the thrust force generated in the axial direction due to the skew is eliminated in the state where the motor current is applied and the load is applied, as in the second embodiment. Is possible.
  • the thrust force can be reliably canceled by setting the sum of the magnet lengths at both ends (Ha + Hc) and the magnet length Hb at the center to the same value.
  • a 14-pole 12-slot motor configuration may be combined with the 14-pole rotor 1 in which the value of / ⁇ 3 (phase) ⁇ 2P ⁇ is 2/7.
  • the three-stage skew is configured here, it is only necessary that the start position and the end position of the skew angle are equal, and any number of (2n + 1) stages (n is a natural number) can be configured. It is.
  • a skew is provided on the rotor 1 side in order to suppress the 4f component of the cogging torque.
  • a skew may be provided on the stator 2 side (status lot 21).
  • the rotor 1 for example, a configuration in which no skew is provided (see FIGS. 6 and 18) can be applied.
  • the overall configuration of the fifth embodiment of the present invention is as shown in FIG.
  • FIG. 22 to 33 show a status lot 21 according to Embodiment 5 of the present invention
  • FIG. 22 is a cross-sectional view showing a cross-sectional shape of an axial upper end portion of one tooth of the status lot 21 when a continuous skew is provided. It is.
  • FIG. 23 is a cross-sectional view showing the cross-sectional shape of the lower end portion in the axial direction of one tooth of the status lot 21 when a continuous skew is provided.
  • FIG. 24 is a perspective view showing one tooth of the status lot 21 having the vertical sectional shape of FIGS. 22 and 23 (front side and back side in the axial direction).
  • the 1-tooth shape of the status lot 21 forms a continuous skew by changing only the tooth end face in the axial direction, and has the same skew angle ⁇ as described above.
  • FIG. 25 is a perspective view showing an inner surface structure when the stator 2 is manufactured by arranging a plurality of teeth of FIG. 24, and FIG. 26 is a development view showing the shape of the tooth end surface of the status lot 21 of FIG. is there.
  • the relationship of the cogging torque to the skew angle ⁇ is as shown in FIG.
  • FIG. 27 is a developed view showing the end face shape of the status lot 21 of FIG. 27 in a plan view.
  • FIG. 29 is a perspective view showing one tooth of the status lot 21 when a step skew is provided, and shows a state where the shape of the tooth end face is changed at the center portion of the tooth.
  • the tooth end surface of the status lot 21 has a point-symmetric shape after the center portion of the tooth with respect to the axial direction.
  • FIG. 30 is a perspective view showing the internal structure of the status lot 21 in which a plurality of teeth of FIG. 29 are arranged
  • FIG. 31 is a development view showing the end surface shape of the status lot 21 of FIG.
  • each tooth of the status lot 21 has the same shape up to the central portion in the axial direction, so that it is not necessary to have many dies.
  • FIGS. 30 and 31 even when the end face shape is switched at the center portion of each tooth, the 4f component of the cogging torque with respect to the skew angle ⁇ can be sufficiently suppressed as described above.
  • FIGS. 29 to 31 even when the status lot 21 is provided with a step skew, as shown in FIG. 32, the positional relationship between the front side and the back side in the axial direction of the teeth does not change, and the central portion It can be made into the shape from which only the positional relationship of changes.
  • the end face of each tooth of the status lot 21 is in the same position on the upper side and the lower side in the axial direction, and the center part of the teeth is in a different positional relationship.
  • FIG. 33 is a development view showing the end face formation of the status lot 21 of FIG. 32 in a plan view.
  • the permanent magnet type synchronous motor according to Embodiment 5 (FIGS. 1, 6, 18, and 22 to 33) of the present invention is formed in an annular shape with a winding applied thereto.
  • Individual status lots 21 (Z is a natural number)
  • the rotor 1 arranged in the annular shape of the status lot 21, and the 2P pole (P is Natural number) ring magnet 11 or segment magnet 12 (permanent magnet), and the value of Z / ⁇ 3 (phase) ⁇ 2P ⁇ is 2/5 or 2/7.
  • the tip shape of the status lot 21 facing the ring magnet 11 or the segment magnet 12 is provided with a continuous skew or step skew with an electrical angle of 42 degrees to 128 degrees with respect to the axial direction of the rotor 1.
  • the 4f component of the cogging torque can be sufficiently suppressed as described above.
  • a skew is also provided on the rotor 1 side, another cogging torque component can be suppressed, and the cogging torque can be further reduced.
  • the start position and the end position of the skew angle are set to be equal with respect to the rotation direction of the rotor 1, thereby suppressing the generation of thrust force. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

 2f成分および4f成分のコギングトルクを十分に抑制可能な永久磁石式同期モータを得る。 円環状に形成されて巻線が施されたZ個のステータスロット21と、ステータスロット21の円環状内に配置されたロータ1と、ロータ1と一体構成されてステータスロット21と対向するように配置された2P極のリング磁石11とを備えている。Z/{3(相)×2P}の値は、2/5または2/7となるように構成されている。リング磁石11のステータスロット21との対向面には、ロータ1の軸方向に対して電気角度が42度~128度となる連続スキューが設けられている。

Description

永久磁石式同期モータ
 この発明は、3相電源で駆動する永久磁石式同期モータに関し、特にコギングトルクを確実に抑制するための新規な改良技術に関するものである。
 一般に、永久磁石式同期モータにおいては、巻線無通電時に、外部駆動にてロータ磁石(回転子)を回転したときに、ステータコア(固定子鉄心)とロータとの間でコギングトルクが発生する。
 この種のコギングトルクは、ロータの機械的な1回転につき、ステータのスロット数と永久磁石の磁極数との最小公倍数の脈動が発生することに起因しており、コギングトルクの大きさは、脈動数に反比例する。
 3相交流で駆動される永久磁石式同期モータにおいては、磁極数とスロット数との組み合わせを適切に選択することにより、無通電時に発生するコギングトルクを低減することが可能となる。
 通常、永久磁石式同期モータのコギングトルクを抑制するためには、ステータのスロット数と永久磁石の磁極数との最小公倍数の大きな組み合わせを選ぶ必要がある。
 最小公倍数の大きな組み合わせの例としては、いわゆる3相電源で駆動する永久磁石式同期モータにおいて、円環状に形成されて巻線(コイル)が施されたZ個(Zは自然数)のステータスロットを有し、かつ2P極(Pは自然数)の永久磁石を有する場合に、Z/{3(相)×2P}の値が「2/5」または「2/7」となる構成があげられる。
 たとえば、Z/{3(相)×2P}の値が「2/5」の永久磁石式同期モータにおいて、磁極数が「10」の場合、スロット数は「12」となり、極数とスロット数との組み合わせによって発生するコギングトルクは、ロータが1回転する間に「60山」だけ発生することになる。
 また、一般に、永久磁石式同期モータにおいては、工作誤差や電磁鋼板の磁気異方性などによって発生するコギングトルクも存在し、通電する電流波形の基本波(つまり、電気角360度)を「1f」と称した場合、ステータの工作誤差などによって、2f成分(電気角180度で1周期となる)、4f成分(電気角90度で1周期となる)のコギングトルクが発生する。
 特に、フレーム内径が円形で外側が四角形状のフレームの径内にステータコアの焼嵌すること、または電磁鋼板の圧延方向を同一方向に積上げることによって、ステータコアを作製した場合、コギングトルクの4f成分が大きく発生する。
 一方、従来から、スキュー(Skew:コアまたは着磁を、軸方向に対して斜めに形成すること)を設けることにより、コギングトルクの発生を抑制する技術も提案されている(たとえば、特許文献1参照)。
実用新案第2558514号公報
 従来の永久磁石式同期モータにおいては、脈動に起因したコギングトルクを小さくするために、ステータのスロット数と永久磁石の磁極数との最小公倍数の大きな組み合わせを選んでいたが、磁極数が10極でスロット数が12の場合に発生するコギングトルクは、ロータが1回転する間に60山発生するうえ、工作誤差や電磁鋼板の磁気異方性などに起因して4f成分のコギングトルクが大きく発生するという課題があった。
 また、特許文献1のようにスキューを設けた場合においても、スキューの電気角度が浅い(20度~40度程度)ことから、十分にコギングトルクを抑制することができないという課題があった。
 この発明は、上記のような課題を解決するためになされたものであり、2f成分および4f成分のコギングトルクを十分に抑制することのできる永久磁石式同期モータを得ることを目的とする。
 この発明に係る永久磁石式同期モータは、円環状に形成されて巻線が施されたZ個(Zは自然数)のステータスロットと、ステータスロットの円環状内に配置されたロータと、ロータと一体構成されてステータスロットと対向するように配置された2P極(Pは自然数)の永久磁石とを備え、Z/{3(相)×2P}の値が2/5または2/7となるように構成された永久磁石式同期モータにおいて、永久磁石のステータスロットとの対向面には、ロータの軸方向に対して電気角度が42度~128度となる連続スキューが設けられたものである。
 この発明によれば、永久磁石(ロータ)に電気角度42~128度の連続スキューを設けることにより、ステータばらつきに起因して発生するコギングトルクの4f成分を確実に抑制することができる。
この発明の実施の形態1に係る永久磁石式同期モータの軸方向に垂直な断面を示す断面図である。(実施例1) 図1内のステータが焼嵌されるフレームの軸方向に垂直な断面を示す断面図である。(実施例1) スキューを設けない場合でのステータのフレーム内への焼嵌や圧延方向などの磁気的な非対称性によって生じるコギングトルクを示す説明図である。(実施例1) 図3のコギングトルクを周波数分析した結果を示す説明図である。(実施例1) 一般的な電磁鋼板の圧延方向をステータの断面図とともに示す説明図である。(実施例1) 図1内のリング磁石(ロータ)にスキューを設けない状態を示す斜視図である。(実施例1) この発明の実施の形態1による連続スキューを設けたリング磁石およびロータを示す斜視図である。(実施例1) 図7のロータを用いた永久磁石式同期モータのスキュー角度とコギングトルク(4f成分)との関係を示す説明図である。(実施例1) 図7のロータを用いた永久磁石式同期モータのスキュー角度とモータ出力との関係を示す説明図である。(実施例1) この発明の実施の形態2による連続スキューを設けたリング磁石およびロータを示す斜視図である。(実施例2) 図10のリング磁石の製法を説明するための展開図である。(実施例2) 図11内の2個のリング磁石を組み合わせた状態を示す展開図である。(実施例2) 図11の2段のリング磁石を1つのリング磁石で構成した場合の展開図である。(実施例2) この発明の実施の形態3による段スキューを設けたリング磁石およびロータを示す斜視図である。(実施例3) 図14のリング磁石の製法を説明するための展開図である。(実施例3) 図14のロータを用いた永久磁石式同期モータのスキュー角度とモータ出力との関係を示す説明図である。(実施例3) この発明の実施の形態3によるセグメント磁石を用いた永久磁石式同期モータの軸方向に垂直な断面を示す断面図である。(実施例3) 図17内のリング磁石(ロータ)にスキューを設けない状態を示す斜視図である。(実施例3) この発明の実施の形態3による段スキューを設けたセグメント磁石およびロータを示す斜視図である。(実施例3) この発明の実施の形態4による段スキューを設けたリング磁石およびロータを示す斜視図である。(実施例4) この発明の実施の形態4によるセグメント磁石を用いた場合のロータの斜視図である。(実施例4) この発明の実施の形態5によるステータスロットの1ティースの軸方向上端部の断面形状を示す断面図である。(実施例5) この発明の実施の形態5によるステータスロットの1ティースの軸方向下端部の断面形状を示す断面図である。(実施例5) この発明の実施の形態5による連続スキューを設けたステータスロットの1ティースの外観を示す斜視図である。(実施例5) 図24のティースを複数個配列して作成したステータの一部の内面構成を示す斜視図である。(実施例5) 図25のステータスロットのティース端面形状を平面的に示す展開図である。(実施例5) この発明の実施の形態5による連続スキューを設けたステータスロットの他の構成例を示す斜視図である。(実施例5) 図27のステータスロットのティース端面形状を平面的に示す展開図である。(実施例5) この発明の実施の形態5による段スキューを設けたステータスロットの1ティースの外観を示す斜視図である。(実施例5) 図29のティースを複数個配列して作成したステータの一部の内面構成を示す斜視図である。(実施例5) 図30のステータスロットのティース端面形状を平面的に示す展開図である。(実施例5) この発明の実施の形態5による段スキューを設けたステータスロットの他の構成例を示す斜視図である。(実施例5) 図32のステータスロットのティース端面形状を平面的に示す展開図である。(実施例5)
 (実施例1)
 図1はこの発明の実施の形態1に係る永久磁石式同期モータの基本構造を示す断面図であり、ロータ軸方向に対して垂直な断面を示している。
 図1において、回転シャフトからなるロータ1の外周部には、複数極(ここでは、10極)のリング磁石(永久磁石)11が一体的に形成されている。
 なお、リング磁石11は、単一の永久磁石の中に複数の磁極が形成されているので、各磁極間の境界を目視することはできないが、図1においては、理解しやすいように、各磁極間の境界線を示している。
 ロータ1の外周部には、リング磁石11と対向する複数極(ここでは、12極)のステータスロット21を有するステータ2が配置されている。なお、ここでは図示しないが、各ステータスロット21には、巻線が巻回されている。
 また、図1においては、リング磁石11の磁極数2Pが10極(P=5)で、スロット数Zが12個の場合を例にとり、Z/{3(相)×2P}の値が2/5となる組み合わせに設定したが、この組み合わせに限定されることはなく、14極(P=7)のロータ1と12スロットとを組み合わせて、Z/{3(相)×2P}の値が2/7となるように設定してもよい。
 まず、図2~図6を参照しながら、図1の永久磁石式同期モータにおいて、スキューを設けない場合でのコギングトルクの発生原因について説明する。
 図2は図1内のステータ2を焼嵌などによって固定するためのフレーム3を示す断面図であり、フレームの軸方向に垂直な断面を示している。
 図2において、フレーム3の形状は、ステータ2が焼嵌される内径部31が円形に加工され、外側が四角形状に加工される場合がある。
 図2のように、内側と外側とで形状が異なるフレーム3を用いた場合には、内径部31にステータ2を焼嵌する際に、ステータ2に加わる応力が異なることから、焼嵌応力によってステータ2のコア部のBHカーブが変化する。
 すなわち、図1内のステータ2を図2のフレーム3に焼嵌した場合、フレーム3の肉厚が大きい部分と肉厚が小さい部分とにおいて、ステータ2のコア部がうける応力が異なっており、ステータ2に加わる焼嵌応力にも差異が生じる。
 したがって、焼嵌後のステータ2においては、特に、ステータ2のコアバック部分においてBHカーブに差異が生じるので、リング磁石11の磁極数とステータスロット21のスロット数との組み合わせに応じて、ロータ1が1回転する間に10個および20個のトルク脈動が生じる。
 特に、図2のような四角のフレーム3に焼嵌した場合、磁気的なアンバランスが生じるので、20個の脈動成分が強く生じる。
 ここでは、リング磁石11(ロータ1)の磁極数が10個なので、モータ駆動用の通電電流の周波数を1fとした場合、10個の脈動成分は電気角的にいうと「2f成分」となり、20個の脈動成分は「4f成分」となる。
 図3は磁極数「10極」およびスロット数「12スロット」の永久磁石式同期モータのコギングトルクを示す説明図であり、スキューを設けない場合に、ロータ1が1回転する間(0度~360度)に実際に発生するコギングトルク波形を示している。
 図3において、コギングトルクの振幅は、ステータ2を四角形状のフレーム3内に焼嵌することや、ステータ2の圧延方向(図5とともに後述する)などの磁気的な非対称性によって、複数回変動する。
 図4は図3のコギングトルク波形を周波数分析した結果を示す説明図であり、横軸はロータ1の1回転におけるコギングトルクの次数を示し、縦軸はコギングトルクの大きさを示している。
 ここでは、永久磁石式同期モータが磁極数「10極」とスロット数「12スロット」との組み合わせであることから、図4においては、ロータ1の着磁ばらつきなどによって、ロータ1が機械的に1回転する間に「12個」および「24個」の脈動が生じる。
 また、磁極数「10」およびスロット数「12」の最小公倍数である「60個」の脈動が生じる。
 ただし、図4に示すように、焼嵌応力によって生じた磁気的なアンバランスによって、「20個」の脈動成分(電気的な4f成分)が大きく発生している。
 なお、前述の通り、永久磁石式同期モータの磁気的なアンバランスは、電磁鋼板の圧延方向によっても生じる。
 一般に、電気モータにおいては、ステータ2に発生する渦電流損を低減するために、電磁鋼板を積上げられて製作されるが、電磁鋼板には、方向性電磁鋼板と無方向性電磁鋼板とがある。
 これら電磁鋼板のいずれの場合も、コア組を形成する帯板段階において、その発生量は異なるものの、圧延方向と非圧延方向とに起因すると考えられる「結晶形の差異による磁気的方向性」が現れ、鉄損および磁束密度が、圧延方向と非圧延方向とで異なっている。
 すなわち、図5に示すように、圧延方向(矢印参照)を常に同じ向きとして、ステータ2を積上げて組立てた場合、ステータ2の磁気的方向性の違いによってコギングトルクが生じる。
 このように磁気的方向性の違いによって発生するコギングトルクも、図3および図4に示したように、20個の脈動成分が大きく生じる。
 図6は一般的なリング磁石11を軸方向から見た斜視図であり、スキュー角度θが0度(スキュー無し)の状態を示している。
 次に、図1および図7~図9を参照しながら、この発明の実施の形態1に係る永久磁石式同期モータについて説明する。
 図7はこの発明の実施の形態1によるスキューを設けたリング磁石11およびロータ1を示す斜視図である。
 なお、図7のようなスキュー構成は、リング磁石11を着磁する際に、着磁ヨーク(図示せず)の形状にあらかじめスキュー角度θを設けておくことにより、実現することができる。
 図7のように、リング磁石11(ロータ1)にスキューを設けることにより、図3および図4に示したコギングトルクの20個の脈動成分を低減することが可能となる。
 図8は図7のロータ1を用いた場合のコギングトルク特性を示す説明図であり、スキュー角度θ(横軸)と、20個の脈動成分のコギングトルクの大きさ(縦軸)との関係を示している。
 なお、図7に示すスキュー角度θは機械角度で示しているが、図8に示すスキュー角度は電気角度で示している。
 図8から明らかなように、スキュー角度θを大きい領域(たとえば、42度以上)に設定することにより、20個の脈動成分(4f成分)を抑制することが可能となる。
 一方、前述の特許文献1の場合には、スキュー角度θが小さい領域(20度~40度の電気角度)に設定されているので、4f成分を十分に抑制することはできない。
 また、図9はスキュー角度θ(横軸)と永久磁石式同期モータの出力(縦軸)との関係を示す説明図である。
 図9から明らかなように、スキュー角度θが0度から大きい値になるほど、モータ出力は低下するので、スキュー角度θを過大に大きく設定することはモータ出力の低下につながる。
 したがって、図8および図9に鑑みて、スキュー角度θは、4f成分が2/3以上低減する(効果が明白となる)電気角度42度以上であって、モータ出力が大きく低減することなく抑制効果が十分に得られる電気角度128度以下に設定することが望ましい。
 これにより、モータ出力を大きく低減せずに、コギングトルクの4f成分を十分に低減することが可能となる。
 以上のように、この発明の実施の形態1(図1、図7)に係る永久磁石式同期モータは、円環状に形成されて巻線が施されたZ個(Zは自然数)のステータスロット21と、ステータスロット21の円環状内に配置されたロータ1と、ロータ1と一体構成されてステータスロット21と対向するように配置された2P極(Pは自然数)のリング磁石(永久磁石)11とを備え、Z/{3(相)×2P}の値が2/5または2/7となるように構成されている。
 リング磁石11のステータスロット21との対向面には、ロータ1の軸方向に対して電気角度が42度~128度となる連続スキューが設けられている。
 これにより、コギングトルクの4f成分および2f成分を抑制し、特に、ステータ2のばらつきに起因して発生するコギングトルクの4f成分を確実に抑制することができる。
 (実施例2)
 なお、上記実施の形態1(図7)では、単一方向の連続スキューを設けたが、図10のように、連続スキューを中央部で対称的に折り返して、ロータ1の回転方向に対するスキュー角度θの始まりの位置と終わりの位置とが等しくなるように、連続スキューを設けてもよい。
 図10はこの発明の実施の形態2に係る永久磁石式同期モータのロータ1およびリング磁石11を示す斜視図であり、前述と同様のものについては、前述と同一符号を付して詳述を省略する。また、この発明の実施の形態2の全体構成は、図1に示した通りである。
 前述の実施の形態1(図7)のように、単一方向の連続スキューを設けた場合には、永久磁石式同期モータに通電して負荷をかけた状態において、ロータ1の軸方向(スラスト方向)に力が発生し、軸受部のベアリング(図示せず)を破損する可能性があり、このようなベアリング破損は、異音発生や機械損失の増加につながる。
 これに対し、この発明の実施の形態2(図10)のように、ロータ1の回転方向に対するスキュー角度θの始まりの位置と終わりの位置とが等しくなるようにロータ着磁を行うことにより、スラスト方向への力を相殺することが可能となる。
 すなわち、図10のように、リング磁石11の軸方向の端部の磁極間の位置が同一となり、かつ軸方向の中央部分の磁極間の位置がスキュー角度θだけずれるように、着磁を行うことにより、軸方向にかかるスラスト力を無くすことが可能となる。
 図10のリング磁石11(ロータ1)を製作する際には、まず、図11の展開図のように、ロータ1の軸方向の半分の長さのリング磁石11を2個準備して、それぞれ傾きが反対方向となるように、図8に示したスキュー角度θ(42度~128度)で着磁する。
 続いて、図12の展開図のように、着磁後の2個のリング磁石11を、軸方向に組み合わせて一体化することにより、図10のリング磁石11を製作することが可能となる。
 また、図13の展開図のように、ロータ1の軸方向と同一長さの単一のリング磁石11を準備して、軸方向の端部の磁極間の位置が同一に設定された着磁用ヨーク(図示せず)を用いて着磁しても、図10のリング磁石11の製作が可能である。
 なお、図10においては、磁極数が10極(P=5)のリング磁石11(ロータ1)を示しているが、これに限定されることはなく、磁極数が14極のロータ1と12スロットとを組み合わせて、Z/{3(相)×2P}の値が2/7となるように設定された永久磁石式同期モータに適用してもよい。
 以上のように、この発明の実施の形態2(図1、図10)によれば、連続スキューは、ロータ1の軸方向のスキュー角度θの始まりの位置と終わりの位置とが等しくなるように設けられているので、コギングトルクの4f成分を低減しつつ、スキューによって発生するスラスト力を打ち消すことができ、ベアリング破損を回避することができる。
 (実施例3)
 なお、上記実施の形態1、2(図7、図10)では、連続スキューを設けたが、図14のように、段スキューを設けてもよい。
 図14はこの発明の実施の形態3に係る永久磁石式同期モータのロータ1およびリング磁石11を示す斜視図であり、前述と同様のものについては、前述と同一符号を付して詳述を省略する。また、この発明の実施の形態3の全体構成は、図1に示した通りである。
 図14において、リング磁石11は、ロータ1の軸方向に分割されて2段構成からなり、それぞれの磁極位置が、ロータ1の回転方向に対してスキュー角度θだけシフトされている。
 図15は図14内のリング磁石11(ロータ1)の製法を説明するための展開図である。
 図14および図15のように、スキューが設けられていない2個のリング磁石11を軸方向に2段用い、軸方向の端部の磁極間の位置を、図8に示すスキュー角度θ(42度~128度)だけシフトさせることにより、前述の実施の形態1と同様の効果が得られる。
 図16は図14のリング磁石11(ロータ1)を用いた永久磁石式同期モータのスキュー角度θとモータ出力との関係を示す説明図である。
 図16において、スキュー角度θに対するモータ出力特性は、前述の実施の形態1(図9)の場合よりも向上している。
 すなわち、図9の場合には、モータ出力≧0.8を満たすスキュー角度θは、0度~約130度であるが、図16の場合には、モータ出力≧0.8を満たすスキュー角度θは、0度~約150度となる。
 したがって、この発明の実施の形態3(図14)のような段スキューを設けることにより、モータ出力を低下させることなく、コギングトルクの4f成分を低減することが可能となる。
 なお、図14においては、一体形式のリング磁石11を用いたが、図17および図19のように、磁極ごとに分割されたセグメント磁石12を用いてもよい。
 図17はこの発明の実施の形態3による他の構成例を示す断面図であり、セグメント磁石12を用いた永久磁石式同期モータの軸方向に垂直な断面を示している。
 図18はセグメント磁石12に段スキューを設けない状態を示す斜視図である。
 図19はこの発明の実施の形態3によるセグメント磁石12に段スキューを設けた(磁極間の位置をシフトした)状態を示す斜視図である。
 図19のようにセグメント磁石12を用いた場合においても、セグメント磁石12を軸方向に2段以上に分割して、軸方向の磁極間の貼り付け位置をシフトすることにより、前述の実施の形態1と同様に、コギングトルクの4f成分を十分に抑制することが可能となる。
 また、この場合も、永久磁石式同期モータのスキュー角度θに対するモータ出力特性は図16に示した通りであり、リング磁石11の場合と同様にモータ出力特性が向上する。
 なお、図14~図19においては、リング磁石11またはセグメント磁石12(ロータ1)の磁極数が10極の場合を示しているが、これに限定されることはなく、前述と同様に、Z/{3(相)×2P}の値が2/7となる14極のロータ1と組み合わせて、14極12スロットのモータ構成であってもよい。
 以上のように、この発明の実施の形態3(図1、図14、図19)に係る永久磁石式同期モータは、円環状に形成されて巻線が施されたZ個(Zは自然数)のステータスロット21と、ステータスロット21の円環状内に配置されたロータ1と、ロータと一体構成されてステータスロット21と対向するように配置された2P極(Pは自然数)のリング磁石11またはセグメント磁石12(永久磁石)とを備え、Z/{3(相)×2P}の値が2/5または2/7となるように構成されている。
 リング磁石11またはセグメント磁石12のステータスロット21との対向面には、ロータ1の軸方向に対して電気角度が42度~128度となるように、少なくとも2段以上の段スキューが設けられている。
 これにより、前述の実施の形態1、2と同様に、コギングトルクの4f成分を十分に抑制するとともに、段スキューにおけるモータ出力特性(図16)のように、前述の連続スキューを設けた場合よりも基本波の低減を小さくできるので、出力特性を向上させることも可能となる。
 (実施例4)
 なお、上記実施の形態3(図14、図19)では、2段のリング磁石11またはセグメント磁石12を用いて段スキューを形成したが、図20、図21のように、3段のリング磁石11a~11cまたはセグメント磁石12a~12cを用いて、中央部で対称関係となるように段スキューを形成し、前述の実施の形態2と同様に、ロータ1の回転方向に対するスキュー角度θの始まりの位置と終わりの位置とが等しくなるように構成してもよい。
 図20(図21)はこの発明の実施の形態4に係る永久磁石式同期モータのロータ1およびリング磁石11(セグメント磁石12)を示す斜視図であり、前述と同様のものについては、前述と同一符号を付して詳述を省略する。また、この発明の実施の形態4の全体構成は、図1に示した通りである。
 図20(図21)において、リング磁石11(セグメント磁石12)のうち、軸方向の両端部のリング磁石11a、11c(セグメント磁石12a、12c)の回転方向位置は同一に設定されている。
 また、軸方向の中央部のリング磁石11b(セグメント磁石12b)の回転方向位置は、両端部の磁石に対してスキュー角度θだけシフトされている。
 さらに、両端部のリング磁石11a、11c(セグメント磁石12a、12c)の各軸方向の長さHa、Hcは同一値に設定されており、これら両端部の磁石長さの和(Ha+Hc)は、中央部のリング磁石11b(セグメント磁石12b)の磁石長さHbと同一値に設定されている。
 これにより、コギングトルクの4f成分を確実に抑制しつつ、前述の実施の形態2と同様に、モータ電流を通電して負荷をかけた状態において、スキューによって軸方向に発生するスラスト力を無くすことが可能となる。
 特に、両端部の磁石長さの和(Ha+Hc)と、中央部の磁石長さHbとを同一値に設定することにより、スラスト力を確実に相殺することができる。
 なお、図20、図21においては、リング磁石11またはセグメント磁石12(ロータ1)の磁極数が10極の場合を示しているが、これに限定されることはなく、前述と同様に、Z/{3(相)×2P}の値が2/7となる14極のロータ1と組み合わせて、14極12スロットのモータ構成であってもよい。
 また、ここでは、3段の段スキューを構成したが、スキュー角度の始まりの位置と終わりの位置とが等しくなればよく、任意数の(2n+1)段(nは自然数)で構成することが可能である。
 (実施例5)
 なお、上記実施の形態1~4(図7~図21)においては、コギングトルクの4f成分を抑制するために、ロータ1側にスキューを設けたが、図22~図33に示すように、ステータ2側(ステータスロット21)にスキューを設けてもよい。
 この場合、ロータ1としては、たとえば、スキューが設けられていない構成(図6、図18参照)も適用可能となる。また、この発明の実施の形態5の全体構成は、図1に示した通りである。
 図22~図33はこの発明の実施の形態5によるステータスロット21を示しており、図22は連続スキューを設けた場合のステータスロット21の1ティースの軸方向上端部の断面形状を示す断面図である。
 また、図23は連続スキューを設けた場合のステータスロット21の1ティースの軸方向下端部の断面形状を示す断面図である。
 図24は図22および図23(軸方向の手前側および奥側)の上下断面形状を有するステータスロット21の1ティースを示す斜視図である。
 図24において、ステータスロット21の1ティース形状は、ティース端面のみが軸方向に変化することにより連続スキューを形成しており、前述と同様のスキュー角度θを有している。
 図25は図24のティースを複数個配列してステータ2を製作した場合の内面構造を示す斜視図であり、図26は図25のステータスロット21のティース端面形状を平面的に示す展開図である。
 図22~図26に示すステータスロット21を用いた永久磁石式同期モータにおいて、スキュー角度θに対するコギングトルクの関係は、前述の図8に示した通りである。
 なお、図22~図26のようにステータスロット21(ステータ2)に連続スキューを設けた場合においても、図27に示すように、回転方向に関するティース位置を、軸方向の上面(手前)側と下面(奥)側とで同一位置に設定し、中央部分のティース位置をシフトした形状とすることにより、スキューによってロータ1に発生するスラスト力を無くすことが可能となる。
 図27において、ティース端面は、軸方向の上端側と下端側とで同一位置にあり、ティース中央部分が異なる位置関係にある。
 図28は図27のステータスロット21の端面形状を平面的に示す展開図である。
 なお、図22~図28では、ステータスロット21に連続スキューを設けたが、図29~図33に示すように、ステータスロット21に段スキューを設けてもよい。
 図29は段スキューを設けた場合のステータスロット21の1ティースを示す斜視図であり、ティースの中央部分でティース端面形状が変化した状態を示している。
 図29において、ステータスロット21のティース端面は、軸方向に対してティース中央部分以降で点対称形状となっている。
 図30は図29のティースを複数個配列したステータスロット21の内面構造を示す斜視図であり、図31は図30のステータスロット21の端面形状を平面的に示す展開図である。
 図30において、ステータスロット21の各ティースは、軸方向の中心部分まで同一形状となるので、多くの金型を持つ必要がなくなる。
 図30、図31のように、各ティースの中央部分で端面形状が切り替わる場合においても、前述と同様に、スキュー角度θに対するコギングトルクの4f成分を十分に抑制することができる。
 また、図29~図31のように、ステータスロット21に段スキューを設けた場合も、図32に示すように、ティースの軸方向の手前側と奥側との位置関係は変わらず、中央部の位置関係のみが変化する形状とすることができる。
 図32において、ステータスロット21の各ティースの端面は、軸方向の上側と下側とで同一位置にあり、ティース中央部分は異なる位置関係にある。
 図33は図32のステータスロット21の端面形成を平面的に示す展開図である。
 図31~図33のステータ2を用いた永久磁石式同期モータにおいても、前述と同様にコギングトルクの4f成分に対する抑制効果を達成することができる。
 また、図32のステータ形状とすることのより、スキューによってロータ1に発生するスラスト力を無くすことが可能となる。
 以上のように、この発明の実施の形態5(図1、図6、図18、図22~図33)に係る永久磁石式同期モータは、円環状に形成されて巻線が施されたZ個(Zは自然数)のステータスロット21と、ステータスロット21の円環状内に配置されたロータ1と、ロータ1と一体構成されてステータスロット21と対向するように配置された2P極(Pは自然数)のリング磁石11またはセグメント磁石12(永久磁石)とを備え、Z/{3(相)×2P}の値が2/5または2/7となるように構成されている。
 リング磁石11またはセグメント磁石12に対向するステータスロット21の先端形状には、ロータ1の軸方向に対して電気角度が42度~128度となる連続スキューまたは段スキューが設けられている。
 このように、ステータスロット21の端面にスキュー構造を設けることにより、前述と同様に、コギングトルクの4f成分を十分に抑制することができる。
 また、ロータ1側にもスキューを設けた場合には、別のコギングトルクの成分を抑制することができ、さらにコギングトルクを低減することが可能となる。
 さらに、図32のように、連続スキューまたは段スキューにおいて、スキュー角度の始まりの位置と終わりの位置とを、ロータ1の回転方向に関して等しくなるように設定することにより、スラスト力の発生を抑制することができる。
 1 ロータ、2 ステータ、3 フレーム、11、11a~11c リング磁石、12、12a~12c セグメント磁石、21 ステータスロット、31 内径部、θ スキュー角度。

Claims (6)

  1.  円環状に形成されて巻線が施されたZ個(Zは自然数)のステータスロットと、
     前記ステータスロットの円環状内に配置されたロータと、
     前記ロータと一体構成されて前記ステータスロットと対向するように配置された2P極(Pは自然数)の永久磁石と
     を備え、Z/{3(相)×2P}の値が2/5または2/7となるように構成された永久磁石式同期モータにおいて、
     前記永久磁石の前記ステータスロットとの対向面には、前記ロータの軸方向に対して電気角度が42度~128度となる連続スキューが設けられたことを特徴とする永久磁石式同期モータ。
  2.  前記連続スキューは、前記ロータの軸方向のスキュー角度の始まりの位置と終わりの位置とが、前記ロータの回転方向に関して等しくなるように設けられたことを特徴とする請求項1に記載の永久磁石式同期モータ。
  3.  円環状に形成されて巻線が施されたZ個(Zは自然数)のステータスロットと、
     前記Z個のステータスロットの円環状内に配置されたロータと、
     前記ロータと一体構成されて前記ステータスロットと対向するように配置された2P極(Pは自然数)の永久磁石と
     を備え、Z/{3(相)×2P}の値が2/5または2/7となるように構成された永久磁石式同期モータにおいて、
     前記永久磁石の前記ステータスロットとの対向面には、前記ロータの軸方向に対して電気角度が42度~128度となるように、少なくとも2段以上の段スキューが設けられたことを特徴とする永久磁石式同期モータ。
  4.  前記段スキューは、2n+1段(nは自然数)で構成され、スキュー角度の始まりの位置と終わりの位置とが、前記ロータの回転方向に関して等しくなるように設けられたことを特徴とする請求項3に記載の永久磁石式同期モータ。
  5.  円環状に形成されて巻線が施されたZ個(Zは自然数)のステータスロットと、
     前記Z個のステータスロットの円環状内に配置されたロータと、
     前記ロータと一体構成されて前記ステータスロットと対向するように配置された2P極(Pは自然数)の永久磁石と
     を備え、Z/{3(相)×2P}の値が2/5または2/7となるように構成された永久磁石式同期モータにおいて、
     前記永久磁石に対向する前記ステータスロットの先端形状には、前記ロータの軸方向に対して電気角度が42度~128度となる連続スキューまたは段スキューが設けられたことを特徴とする永久磁石式同期モータ。
  6.  前記連続スキューまたは前記段スキューは、スキュー角度の始まりの位置と終わりの位置とが、前記ロータの回転方向に関して等しくなるように設けられたことを特徴とする請求項5に記載の永久磁石式同期モータ。
PCT/JP2010/069679 2010-03-19 2010-11-05 永久磁石式同期モータ WO2011114574A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201090001411.8U CN203027042U (zh) 2010-03-19 2010-11-05 永磁式同步电动机
JP2012505446A JP5414887B2 (ja) 2010-03-19 2010-11-05 永久磁石式同期モータ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010065119 2010-03-19
JP2010-065119 2010-03-19

Publications (1)

Publication Number Publication Date
WO2011114574A1 true WO2011114574A1 (ja) 2011-09-22

Family

ID=44648693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069679 WO2011114574A1 (ja) 2010-03-19 2010-11-05 永久磁石式同期モータ

Country Status (4)

Country Link
JP (1) JP5414887B2 (ja)
CN (1) CN203027042U (ja)
TW (1) TWI459686B (ja)
WO (1) WO2011114574A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012205191A1 (de) * 2012-03-30 2013-10-02 Bayerische Motoren Werke Aktiengesellschaft Vibrationsverhinderung bei Synchronmaschinen
JP2014107951A (ja) * 2012-11-28 2014-06-09 Hitachi Automotive Systems Ltd モータ
JP2015126649A (ja) * 2013-12-27 2015-07-06 株式会社日立産機システム サーボ制御装置
JP2016046879A (ja) * 2014-08-21 2016-04-04 三菱電機株式会社 回転電機
WO2017016735A1 (de) * 2015-07-27 2017-02-02 Bayerische Motoren Werke Aktiengesellschaft Verbesserter stator für eine elektrische maschine
US20170282418A1 (en) * 2016-03-31 2017-10-05 Toshiba Kikai Kabushiki Kaisha Sheet/film forming roll apparatus, sheet/film forming method
JP2018511298A (ja) * 2015-04-09 2018-04-19 シェンジェン ギャム シャイン テクノロジー カンパニー リミテッド ロータ及びこのロータを有するモータ
US20180115202A1 (en) * 2015-04-22 2018-04-26 Mitsubishi Electric Corporation Rotary electric machine and electric power steering apparatus
JP2019161782A (ja) * 2018-03-09 2019-09-19 株式会社ミツバ 電動モータ
US11355978B2 (en) 2017-10-06 2022-06-07 Nidec Corporation Rotor, motor, and electric power steering device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105322745B (zh) * 2015-12-01 2018-01-09 中国航空工业集团公司洛阳电光设备研究所 一种永磁电机
CN106208578B (zh) * 2016-08-04 2018-09-04 日本电产凯宇汽车电器(江苏)有限公司 一种永磁同步电动机
JP6819211B2 (ja) * 2016-10-25 2021-01-27 アイシン精機株式会社 回転電機
CN111903040B (zh) 2018-03-30 2022-11-25 日本电产株式会社 转子、马达以及电动助力转向装置
TWI693777B (zh) * 2019-07-02 2020-05-11 東元電機股份有限公司 永磁馬達轉子組裝治具及其方法
DE112021006028T5 (de) 2020-11-19 2023-08-31 Nidec Corporation Elektrische drehvorrichtung und antriebsvorrichtung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086312A1 (ja) * 2006-01-24 2007-08-02 Kabushiki Kaisha Yaskawa Denki モータステータ用の分割コア、そのモータステータ、永久磁石形同期モータ、および分割コア打ち抜き金型による打ち抜き方法
JP2008167565A (ja) * 2006-12-28 2008-07-17 Hitachi Ltd 永久磁石回転電機とその製造方法及び永久磁石式回転電機を備えた自動車
JP2009213286A (ja) * 2008-03-05 2009-09-17 Mitsuba Corp ブラシレスモータ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005278333A (ja) * 2004-03-25 2005-10-06 Mitsubishi Electric Corp 永久磁石型モータ
JP2009095184A (ja) * 2007-10-11 2009-04-30 Asmo Co Ltd 回転電機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086312A1 (ja) * 2006-01-24 2007-08-02 Kabushiki Kaisha Yaskawa Denki モータステータ用の分割コア、そのモータステータ、永久磁石形同期モータ、および分割コア打ち抜き金型による打ち抜き方法
JP2008167565A (ja) * 2006-12-28 2008-07-17 Hitachi Ltd 永久磁石回転電機とその製造方法及び永久磁石式回転電機を備えた自動車
JP2009213286A (ja) * 2008-03-05 2009-09-17 Mitsuba Corp ブラシレスモータ

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9876403B2 (en) 2012-03-30 2018-01-23 Bayerische Motoren Werke Aktiengesellschaft Vibration prevention in synchronous machines
DE102012205191A1 (de) * 2012-03-30 2013-10-02 Bayerische Motoren Werke Aktiengesellschaft Vibrationsverhinderung bei Synchronmaschinen
JP2014107951A (ja) * 2012-11-28 2014-06-09 Hitachi Automotive Systems Ltd モータ
JP2015126649A (ja) * 2013-12-27 2015-07-06 株式会社日立産機システム サーボ制御装置
JP2016046879A (ja) * 2014-08-21 2016-04-04 三菱電機株式会社 回転電機
JP2018511298A (ja) * 2015-04-09 2018-04-19 シェンジェン ギャム シャイン テクノロジー カンパニー リミテッド ロータ及びこのロータを有するモータ
JP2020099199A (ja) * 2015-04-09 2020-06-25 シェンジェン ギャム シャイン テクノロジー カンパニー リミテッド ロータ及びこのロータを有するモータ
US20180115202A1 (en) * 2015-04-22 2018-04-26 Mitsubishi Electric Corporation Rotary electric machine and electric power steering apparatus
EP3288155A4 (en) * 2015-04-22 2019-01-02 Mitsubishi Electric Corporation Rotating electric machine and electric power steering device
US10910892B2 (en) 2015-04-22 2021-02-02 Mitsubishi Electric Corporation Rotary electric machine and electric power steering apparatus
WO2017016735A1 (de) * 2015-07-27 2017-02-02 Bayerische Motoren Werke Aktiengesellschaft Verbesserter stator für eine elektrische maschine
US10424979B2 (en) 2015-07-27 2019-09-24 Bayerische Motoren Werke Aktiengesellschaft Stator for an electric motor having respective angled slots
US20170282418A1 (en) * 2016-03-31 2017-10-05 Toshiba Kikai Kabushiki Kaisha Sheet/film forming roll apparatus, sheet/film forming method
US11355978B2 (en) 2017-10-06 2022-06-07 Nidec Corporation Rotor, motor, and electric power steering device
JP2019161782A (ja) * 2018-03-09 2019-09-19 株式会社ミツバ 電動モータ

Also Published As

Publication number Publication date
JPWO2011114574A1 (ja) 2013-06-27
CN203027042U (zh) 2013-06-26
TWI459686B (zh) 2014-11-01
TW201136105A (en) 2011-10-16
JP5414887B2 (ja) 2014-02-12

Similar Documents

Publication Publication Date Title
JP5414887B2 (ja) 永久磁石式同期モータ
JP4926107B2 (ja) 回転電機
JP5542423B2 (ja) 回転電機の回転子、および回転電機
JP5478136B2 (ja) 永久磁石式同期モータ
JP5589345B2 (ja) 永久磁石式回転電機
JP5813254B2 (ja) 永久磁石式回転電機
WO2009084151A1 (ja) 回転電機
JP2017514453A (ja) 永久磁石同期電動機及びその回転子
WO2004093298A1 (ja) 永久磁石式電動機
JP5876454B2 (ja) 可変磁束モータ
WO2010116921A1 (ja) 磁気回路構造体
JP5609844B2 (ja) 電動機
Ueda et al. Cogging torque reduction on transverse-flux motor with multilevel skew configuration of toothed cores
JP5644880B2 (ja) 回転電機
JP2007151233A (ja) 永久磁石型モータ
JP2011067090A (ja) 永久磁石型モータ及び永久磁石型リニアモータ
JP2021029067A (ja) アキシャルギャップモーター
JP2004274970A (ja) 回転電機
JP2007336624A (ja) 多相クローティース型永久磁石モータ
JP2011055619A (ja) 永久磁石式回転電機
JP5278238B2 (ja) 回転電機
JP2009027849A (ja) 永久磁石式回転電機
JP2007228771A (ja) 永久磁石型モータ
JP2002315237A (ja) 回転電機の積層鉄心
JP2006340556A (ja) 埋め込み磁石型回転電機用永久磁石部材および回転電機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201090001411.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847980

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012505446

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10847980

Country of ref document: EP

Kind code of ref document: A1