WO2011111813A1 - 走行体の駆動装置 - Google Patents

走行体の駆動装置 Download PDF

Info

Publication number
WO2011111813A1
WO2011111813A1 PCT/JP2011/055742 JP2011055742W WO2011111813A1 WO 2011111813 A1 WO2011111813 A1 WO 2011111813A1 JP 2011055742 W JP2011055742 W JP 2011055742W WO 2011111813 A1 WO2011111813 A1 WO 2011111813A1
Authority
WO
WIPO (PCT)
Prior art keywords
traveling
detected
bodies
position information
start instruction
Prior art date
Application number
PCT/JP2011/055742
Other languages
English (en)
French (fr)
Inventor
哲夫 石田
淳一 原口
Original Assignee
株式会社コナミデジタルエンタテインメント
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社コナミデジタルエンタテインメント filed Critical 株式会社コナミデジタルエンタテインメント
Priority to CN2011800116676A priority Critical patent/CN102781526B/zh
Priority to AU2011225104A priority patent/AU2011225104B2/en
Priority to US13/582,135 priority patent/US8491367B2/en
Publication of WO2011111813A1 publication Critical patent/WO2011111813A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F9/00Games not otherwise provided for
    • A63F9/14Racing games, traffic games, or obstacle games characterised by figures moved by action of the players
    • A63F9/143Racing games, traffic games, or obstacle games characterised by figures moved by action of the players electric

Definitions

  • the present invention relates to a driving device for a traveling body that drives a plurality of traveling bodies.
  • An example of a driving device for a traveling body is a horse racing game device.
  • a horse model on which a jockey rides is arranged in a plate-like stadium.
  • a plate-like base that faces the stadium is disposed below the stadium.
  • a traveling body (self-propelled vehicle) capable of traveling on the base is disposed between the stadium and the base.
  • a magnet is provided on the upper surface of the traveling body.
  • a magnet having a polarity different from the magnet of the traveling body is provided at a position corresponding to the magnet of the traveling body on the bottom surface of the model.
  • a light emitter is provided on the bottom surface of the traveling body.
  • the luminous body is photographed by a predetermined number of cameras provided below the base, and the position data of the traveling body is detected from the photographed image.
  • the lighting body is controlled so that the lighting operation of each light emitting body is sequentially performed (individually). The correspondence is specified.
  • the control means for detecting the position of each traveling body gives an instruction to turn off the light emitters to all the traveling bodies, and then first instructs to turn on the light bodies only on the first traveling body.
  • the position data of the luminous body acquired at that time is associated with the first traveling body. That is, it is specified that the light-emitting body that is turned on at that time corresponds to the first traveling body.
  • a control means gives the instruction
  • a driving device for a traveling body is a driving device for a traveling body that causes a plurality of traveling bodies to travel on a traveling surface, and each of the plurality of traveling bodies is disposed at a predetermined interval.
  • a travel control unit that is provided with a detected body and controls the traveling of each of the plurality of traveling bodies, a position information output unit that outputs position information of each of the plurality of detected bodies on the traveling surface, and a position information output unit
  • a specific unit that identifies two detected objects corresponding to each of the plurality of traveling bodies based on the position information of each detected body that is output, and the traveling control unit includes each of the plurality of traveling bodies.
  • the driving start instruction is sequentially output to each of the plurality of traveling bodies. Every time Before and after each travel start instruction is output, a comparison process is performed to compare the position information of each detected object output from the position information output unit, and two detected objects whose position information has changed are responded to the travel start instruction. Then, it is specified as two detected bodies corresponding to the traveling body that has traveled.
  • the specifying unit compares the position information of each detected object output from the position information output unit before and after the output of each travel start instruction. Since the two detected objects whose position information has been changed are identified as the two detected objects corresponding to the traveling object that has traveled in response to the travel start instruction, the position information of each detected object is individually Even if it is an aspect which cannot be acquired in two, the to-be-detected object corresponding to each traveling body can be specified correctly and easily.
  • the specifying unit determines whether or not there are two detected objects whose position information has changed, whether or not the vectors of the respective moving directions of the two detected objects whose position information has changed match each other.
  • the two objects to be detected whose position information has changed traveled in response to the travel start instruction It is preferable to specify two detected objects corresponding to the body. Thereby, the two detected bodies corresponding to the traveling body that has traveled in response to the travel start instruction can be identified more accurately.
  • the result of the determination process combining other determination processes may be employed.
  • the specifying unit is a detected body that is not specified to which traveling body and corresponds to two detected bodies whose position information has changed. It identifies as two to-be-detected bodies corresponding to the traveling body which ran in response to the start instruction.
  • the traveling start instruction is output to the next traveling body while the traveling body that has identified the two corresponding detected bodies is continuously traveled, and the next traveling body is handled.
  • Two objects to be detected can also be specified. For example, the first second traveling body is allowed to continue to travel after the two detected bodies corresponding to the traveling body that traveled in response to the first travel start instruction have been specified. It is assumed that a travel start instruction is output to the traveling body.
  • the position information of each detected body output from the position information output unit and the travel start instruction to the second traveling body are output.
  • the position information of each detected object output from the position information output unit immediately before the operation is compared, the number of detected objects whose position information has changed is four (the first traveling object continues to travel). Therefore, two of the detected bodies have already been identified as corresponding to the first traveling body, and the remaining two detected bodies are identified as “Which traveling body corresponds to?” Corresponding to “Two detected bodies that have not been identified and whose positional information has changed”, and are identified as two detected bodies corresponding to the second traveling body.
  • a driving device for a traveling body is a driving device for a traveling body that travels a plurality of traveling bodies on a traveling surface, and each detected body has one detected body.
  • a traveling control unit for controlling the traveling of each of the plurality of traveling bodies, a positional information output unit for outputting the positional information of each of the plurality of detected bodies on the traveling surface, and each output from the positional information output unit
  • a identifying unit that identifies a detected object corresponding to each of the plurality of traveling objects based on the positional information of the detected object, and the traveling control unit includes one object corresponding to each of the plurality of traveling objects.
  • a travel start instruction is sequentially output to each of the plurality of travel bodies, and each time the specific control unit outputs a travel start instruction in the specific period, Before and after outputting the start instruction A comparison process for comparing the position information of each detected object output from the position information output unit is performed, and one detected object whose position information has changed corresponds to the traveling object that has traveled in response to the travel start instruction. To be detected as one object to be detected.
  • the driving device for the traveling body described above it is preferable to further include a tracking section that tracks position information of one or two detected bodies corresponding to each of the plurality of traveling bodies specified by the specifying section. Thereby, the position information of each traveling body can be tracked (tracked).
  • the position information output unit in the driving device for the traveling body described above may be any unit that outputs the position information of each detected body, and the mode is arbitrary.
  • the object to be detected is made of a conductor
  • the driving surface is provided with a plurality of drive lines and a plurality of lines to be detected that are orthogonal to each other and electromagnetically coupled at each intersection.
  • the driving current may be sequentially output to each of the lines, and the position information of each detected object may be acquired and output based on the value of the induced current flowing through each detected line.
  • the position information output unit scans the traveling surface at a predetermined interval to simultaneously acquire and output the position information of each detected object on the traveling surface. It cannot be output individually.
  • the specifying unit compares the position information of each detected object output from the position information output unit before and after the output of each travel start instruction. Since the two detected objects whose position information has changed are specified as the two detected objects corresponding to the traveling object that has traveled in response to the traveling start instruction, even in this aspect, It is possible to accurately specify which two detected bodies correspond to which traveling body.
  • the present invention is also specified as a method for specifying two detected bodies corresponding to each of a plurality of traveling bodies.
  • the identification method according to the present invention is a driving device for a traveling body that travels on a traveling surface with a plurality of traveling bodies each provided with two detected bodies that are spaced apart by a predetermined interval.
  • a traveling start instruction is sequentially output, and each time the traveling start instruction is output, the position information of each detected body before and after the output of each traveling start instruction is obtained.
  • two detected objects whose position information has changed are specified as two detected objects corresponding to the traveling object that has traveled in response to the travel start instruction.
  • the present invention can also be understood as a program invention. That is, a program included in a driving device for a traveling body that causes a plurality of traveling bodies, each of which is provided with two detected objects arranged at a predetermined interval, to travel on a traveling surface, In a specific period for specifying two corresponding detected bodies, a travel start instruction is sequentially output to each of the plurality of travel bodies, and each time the travel start instruction is output, the output of each travel start instruction is output. Comparing the positional information of each detected object on the traveling surface before and after, the two detected objects corresponding to the traveling object that has traveled in response to the traveling start instruction are detected for the two detected objects whose positional information has changed.
  • a driving device (game device) 1 for a traveling body includes a plurality of pillars 2, a floor board 3 horizontally supported by the pillars 2, and a floor board 3.
  • a plurality of (three in the illustrated embodiment) horse models 4 are provided.
  • each of the horse models 4 runs on the floor board 3 while being pulled by a self-propelled vehicle (running body) under the floor board 3 by a magnetic force.
  • a horse racing game is executed.
  • the horse model 4 runs so as to draw an ellipse or a substantially quadrangle as shown by the phantom line in FIG.
  • the horse model 4 may be run so as to draw lines that cross each other.
  • FIG. 2 is a perspective view of the game apparatus 1 with the floor board 3 and the horse model 4 removed.
  • a second floor plate 6 on which the traveling body travels is supported horizontally on a frame 2 a fixed to the column 2.
  • a charging device 5 for charging the traveling body is attached to the frame 2a.
  • Two rectangular parallelepiped blocks 7 are placed on the second floor board 6.
  • the floor board 3 is supported by a plurality of brackets 8 and blocks 7 at the upper end of the pillar 2.
  • a traveling body 10 is arranged in the space between the floor board 3 and the second floor board 6.
  • the game apparatus 1 of the embodiment is provided with three traveling bodies 10 corresponding to three horse models 4 and two traveling bodies 10 corresponding to start gates (not shown).
  • FIG. 3 shows only one traveling body 10 corresponding to one horse model 4.
  • the travelable traveling body 10 includes an upper portion 14, a lower portion 16, and a power supply assembly 30.
  • the upper part 14 and the lower part 16 are connected by a suspension 18.
  • a pair of casters 20 are attached to both ends in the longitudinal direction of the lower portion 16, and a pair of wheels 22 are attached to both ends in the transverse direction of the lower portion 16. It is attached.
  • the traveling body 10 can travel on the second floor board 6 by the casters 20 and the wheels 22.
  • a pair of casters 24 are attached to both ends of the upper portion 14 in the longitudinal direction, and a pair of drive wheels 26 are attached to both ends of the upper portion 14 in the transverse direction. Is attached.
  • These drive wheels 26 are each rotated by a separate wheel motor 28 fixed to the upper part 14. The rotation of the wheel motor 28 is transmitted to the drive wheel 26 corresponding to the wheel motor 28 by a gear train (not shown).
  • a gear train (not shown).
  • another appropriate power transmission mechanism for example, a mechanism using a belt and a pulley, or a mechanism using a chain and a sprocket may be used.
  • the upper part 14 of the traveling body 10 holds a power supply assembly 30 in which one or more rechargeable power supply devices are arranged.
  • a drive circuit board 32 on which a drive circuit 150 that drives the wheel motor 28 and rotates the drive wheel 26 is supplied with power from the power supply device of the power supply assembly 30 is fixed inside the upper portion 14.
  • the whole traveling body 10 is attracted upward, that is, toward the floor plate 3 by a magnetic force acting between model towing parts 34 and 36 described later and the towed parts 52 and 54 of the model assembly 40. For this reason, the wheel of the caster 24 and the drive wheel 26 are in contact with the upper floor board 3.
  • the traveling body 10 travels in the direction indicated by the arrow in FIG. 3 due to frictional contact between the drive wheel 26 and the floor board 3.
  • the wheel motor 28 and the drive wheel 26 are travel mechanisms that can travel by the power supply assembly 30.
  • other suitable traveling means such as a caterpillar, an arm having a link mechanism, or a leg having a link mechanism may be used.
  • both the drive wheels 26 can be rotated at different rotational speeds, and the traveling body 10 bends due to the speed difference of the drive wheels 26. be able to.
  • the casters 20 and 24 facilitate the direction change of the traveling body 10.
  • the shaft of the wheel motor 28 can rotate in both directions, and the traveling body 10 can move forward and backward. By rotating both drive wheels 26 in opposite directions, the traveling body 10 can rotate around the vertical axis on the spot.
  • a model assembly 40 is disposed on the floor board 3.
  • the model assembly 40 includes a carriage 42, a pair of wheels 44 that are rotatably attached to the carriage 42, a caster 46 that is rotatably attached to the carriage 42, a column 48 that stands on the carriage 42, and a column And a horse model 4 attached to 48. Further, a jockey model 50 is on the horse model 4.
  • Two towed parts 52 and 54 are arranged inside the carriage 42.
  • the to-be-towed parts 52 and 54 are ferromagnetic bodies or magnets, preferably permanent magnets.
  • model towing parts 34 and 36 are attached to the upper part 14 of the traveling body 10.
  • the model pulling portions 34 and 36 are ferromagnetic materials or magnets, and are preferably permanent magnets.
  • the floor board 3 is formed of a non-magnetic material, and the model towing part 34 of the traveling body 10 and the towed part 52 of the model assembly 40 are attracted by a magnetic force so that the model towing part 36 of the traveling body 10 and the model assembly 40 are covered.
  • the traction part 54 is attracted by the magnetic force. Therefore, when the traveling body 10 travels, the model pulling portions 34 and 36 attract the model assembly 40 so that the model assembly 40 travels together with the traveling body 10.
  • the model tow portions 34, 36 and the towed portions 52, 54 are permanent magnets, but other options can be employed.
  • the traveling body 10 travels under the floor board 3, and the model assembly 40 corresponding to the traveling body 10 is pulled by the traveling body 10, and travels on the floor board 3 as shown by the arrows in FIG. .
  • the direction of the arrow in FIG. 3 is the forward direction of the traveling body 10, and the direction opposite to the arrow in FIG.
  • the control system of the game device includes an overall control device 100 (running control unit), a position information output unit 102, a first light emitting device 104, and a second light emitting device 106.
  • the overall control device 100 is a computer and controls the entire game device including the plurality of traveling bodies 10 and the charging device 5.
  • a single overall control device 100 is used, but a control device that receives a signal from the position information output unit 102 and controls the first light-emitting device 104 and the second light-emitting device 106.
  • the control apparatus which controls the charging device 5 while receiving the signal from the charging device 5 may be provided separately.
  • the first light emitting device 104 emits light in a certain wavelength region (for example, visible light) for simultaneously starting the operations of all the traveling bodies 10.
  • the overall control device 100 causes the first light emitting device 104 to emit light according to the computer program.
  • the second light emitting device 106 transmits a traveling control signal for controlling the traveling of each traveling body 10 after the traveling body 10 is activated by light (for example, infrared rays) having a wavelength region different from that of the light emitted by the first light emitting device 104.
  • the overall control device 100 supplies a traveling control signal for controlling the plurality of traveling bodies 10 to the second light emitting device 106 according to the computer program, and the second light emitting device 106 emits light according to these traveling control signals.
  • Each traveling control signal is provided with identification information for identifying the traveling body 10 to be controlled, and the traveling body 10 can recognize a traveling control signal that is addressed to itself.
  • a communication device using a wireless communication method using other radio waves can be used.
  • the second floor plate 6 (see FIGS. 1 to 3) having high light transmittance is used, and the first light emitting device 104 and the second light emitting device 106 are disposed below the second floor plate 6. May be. However, when the light transmittance of the second floor board 6 is low, the first light emitting device 104 and the second light emitting device 106 may be arranged between the floor board 3 and the second floor board 6.
  • the first optical sensor 110 is, for example, a visible light sensor, and outputs a light reception signal when receiving light emitted from the first light emitting device 104.
  • the second optical sensor 112 is, for example, an infrared sensor, and outputs a travel control signal transmitted by light emitted from the second light emitting device 106.
  • two first light sensors 110 and two second lights are provided so that other sensors can receive light even if the light reaches one sensor.
  • a sensor 112 is provided. However, a single first photosensor 110 and a single second photosensor 112 may be provided. Three or more first photosensors 110 and three or more second photosensors 112 may be provided.
  • each traveling body 10 further includes a CPU (central processing unit) 114, a power supply control circuit 116, and a coin battery 118.
  • the CPU 114 is attached to the drive circuit board 32 shown in FIG. 3, and the power supply control circuit 116 is attached to the power supply control circuit board 120 shown in FIG.
  • the coin battery 118 can be attached to and detached from the traveling body 10.
  • the coin battery 118 always supplies power to the first photosensor 110 so that the first photosensor 110 can output a light reception signal.
  • the power supply control circuit 116 receives the light reception signal from the first optical sensor 110 by the light emission of the first light emitting device 104, the CPU 114, the second optical sensor 112, and both of the CPU 114 from the power supply device 60 of the power supply assembly 30. Power supply to the wheel motor 28 is made possible.
  • the second optical sensor 112 transmits the travel control signal transmitted from the second light emitting device 106 to the CPU 114.
  • the CPU 114 selects a traveling control signal for the traveling body 10 to which the CPU 114 belongs from among traveling control signals for the plurality of traveling bodies 10, and controls both wheel motors 28 according to the traveling control signal.
  • the traveling control signal designates the rotational speed or rotational angle of each wheel motor 28. As a result, the rotational speed of each drive wheel 26 per one traveling body 10 is controlled. If the rotational speeds of both the drive wheels 26 are the same, the traveling body 10 goes straight, and if not, the traveling body 10 turns and advances.
  • the position information output unit 102 will be described with reference to FIG.
  • the surface of the second floor board 6 (the surface on which the traveling body 10 travels) is covered with the position detection sheet Lds that is a sheet-like member.
  • the position detection sheet Lds On the surface of the position detection sheet Lds (the surface opposite to the side in contact with the second floor plate 6), m drive coils 130 (drive lines) extending in the X direction and in the X direction N detected coils 132 (detected lines) extending in the intersecting Y direction are formed.
  • the number of drive coils 130 is 150
  • the number of detected coils 132 is 300.
  • the interval between the drive coils 130 adjacent to each other and the interval between the detected coils 132 adjacent to each other are set to 10 mm, respectively. However, these values can be set arbitrarily.
  • the parallel conductor portion of the coil 132 to be detected is orthogonal to the parallel conductor portion of the drive coil 130.
  • the layer in which the coil 132 to be detected is arranged is different from the layer in which the drive coil 130 is arranged, and these layers are arranged in parallel. There are layers.
  • the plurality of drive coils 130 and the plurality of detected coils 132 are electromagnetically coupled at each intersection.
  • a portion where the drive coil 130 and the detected coil 132 intersect is called a cell P. That is, on the surface of the position detection sheet Lds, a plurality of cells P are arranged in a matrix of m rows ⁇ n columns.
  • the surface of the position detection sheet Lds in which a plurality of cells P are formed in a matrix is covered with a transparent acrylic substrate.
  • the traveling body 10 travels on the acrylic substrate.
  • the position information output unit 102 supervises the operations of the cell unit 140 in which a plurality of cells P are arranged, the drive circuit 150, the detection circuit 160, and the position information output unit 102 as well as various types. And a processing circuit 170 that executes the above processing.
  • the drive circuit 150 sequentially outputs a drive current Id to each of the plurality of drive coils 130 based on the timing signal VSYNC supplied from the processing circuit 170.
  • the drive current output to the drive coil 130 in the i-th row (1 ⁇ i ⁇ m) is denoted as Id [i].
  • the n cells P arranged at the intersections of the i-th row drive coil 130 and the n detected coils 132 are supplied to the n cells P.
  • Inductive electromotive force due to mutual induction occurs, and induced currents It (It [1] to It [n]) flow through the n detected coils 132.
  • the induced current flowing through the detected coil 132 in the j-th column (1 ⁇ j ⁇ n) is denoted as It [j].
  • a pair of disc-shaped detection pieces 108 (108F, 108R) formed of a conductor are separated from each other by a predetermined distance. Is fixed.
  • the pair of detected pieces (detected bodies) 108 the detected piece provided on the forward direction side of the traveling body 10 is denoted as 108F, and the detected piece provided on the backward direction side of the traveling body 10 is denoted as 108R. write.
  • one of the two detected pieces 108 provided in a certain traveling body 10 is a cell P [i arranged at the intersection of the i-th row driving coil 130 and the j-th column detected coil 132.
  • FIG. 8 is a timing chart showing a specific operation of the position information output unit 102.
  • the drive circuit 150 sequentially drives the drive currents Id [1] to Id [m] with respect to the drive coil 130 in each of the m unit periods T (T [1] to T [m]) in one cycle period. Is output. In this embodiment, one cycle period is set to 10 milliseconds.
  • the drive current Id [i] when the drive current Id [i] is at a high level, it means that the drive current Id [i] is output to the i-th row drive coil 130, and the drive current Id [i] is at a low level. When it is, it means that the output of the drive current Id [i] to the drive coil 130 in the i-th row is stopped. As shown in FIG. 8, the drive current Id [i] output to the drive coil 130 in the i-th row is set to a high level in the i-th unit period T [i] in each cycle period.
  • a switch SW is provided between each of the n detected coils 132 and the detection circuit 160.
  • the switch SW is composed of an N-channel transistor.
  • Each of the n switches SW is turned on when the operation signal SEL supplied from the processing circuit 170 transitions to an active level (high level).
  • the operation signal SEL supplied to the switch SW corresponding to the detected coil 132 in the j-th column is denoted as SEL [j].
  • the operation signals SEL [1] to SEL [n] sequentially transition to the active level.
  • each of the n switches SW is sequentially turned on, so that the induced currents It [1] to It [1] to It flowing through each detected coil 132 in the unit period T [i].
  • [n] (analog value) is sequentially output to the detection circuit 160 via the switch SW.
  • the detection circuit 160 amplifies the induced currents It [1] to It [n] with an amplifier (not shown) and outputs the amplified currents to the processing circuit 170.
  • the processing circuit 170 generates sensing data for each cycle period based on the induced current It sequentially output from the detection circuit 160. More specifically, the processing circuit 170 sequentially converts the induced current output from the detection circuit 160 into a binary detection value d (digital value), and classifies the converted detection value d for each cycle period. To generate sensing data. That is, the sensing data for each cycle period is a set of m ⁇ n detection values d. In the present embodiment, the processing circuit 170 sets the detected value d to “1” when the induced current It sequentially outputs from the detecting circuit 160 exceeds the predetermined threshold value, and sets the detected value d below the predetermined threshold value. Is “0”. Therefore, as shown in FIG.
  • the detection value of the cell P corresponding to the position where the detected piece 108 exists is “1”, and the detection value of the cell P corresponding to the position where the detected piece 108 does not exist is “0”.
  • a coordinate system of 10 is provided per coil, and the X coordinate of each detection value d (sensing data) is 0 to 2999, and the Y coordinate is 0 to 1499.
  • the processing circuit 170 calculates the center coordinates of each detected piece 108 in each cycle period based on the sensing data for each cycle period. Thereby, the processing circuit 170 acquires the position information (information indicating the position of each detected piece 108 on the second floor board 6) of each detected piece 108 in each cycle period.
  • the processing circuit 170 outputs the position information of each detected piece 108 acquired in this way to the overall control device 100.
  • the overall control device 100 holds the position information of each detected piece 108 for each cycle period output from the processing circuit 170 in a memory (not shown).
  • the overall control apparatus 100 Based on the position information of each detected piece 108 output from the position information output unit 102, the overall control apparatus 100 specifies two detected pieces 108 corresponding to each of the plurality of traveling bodies 10 (“specification” Process). More specifically, the overall control device 100 instructs each of the plurality of traveling bodies 10 to start traveling in a specific period for specifying two detected pieces 108 corresponding to each of the plurality of traveling bodies 10. Are output in order.
  • the specific period is set during an initialization process that is executed each time the game apparatus 1 is turned on, or the power is turned on for the first time after the game apparatus 1 is installed in the game facility, and the specific process is executed once.
  • the overall control apparatus 100 performs a comparison process for comparing the position information of each detected piece 108 output from the position information output unit 102 before and after the output of each travel start instruction.
  • the two detected pieces 108 whose position information has changed are specified as the two detected pieces 108 corresponding to the traveling body 10 that has traveled in response to the travel start instruction. The detailed contents will be described below.
  • FIG. 10 is a flowchart showing details of the specific process executed by the overall control apparatus 100 during the specific period.
  • the overall control apparatus 100 first instructs the position information output unit 102 to start outputting the position information of each detected piece 108 (step S1).
  • This process includes various setting processes for the position information output unit 102.
  • a travel start instruction to the first traveling body 10 (referred to as a “preparation period”).
  • the three traveling bodies 10 (10A, 10B, 10C) corresponding to the three horse models 4 are in a stopped state.
  • the length of the preparation period is set to a value sufficiently longer than 10 milliseconds, which is the scan period (cycle period) of the position information output unit 102.
  • the position information output unit 102 since the position information output unit 102 acquires the position information of each detected piece 108 and outputs it to the overall control device 100 every 10 milliseconds, the time length of the preparation period is less than 10 milliseconds. If the value is set to a sufficiently long value, the position information output unit 102 detects the position information of each detected piece 108 during the preparation period, that is, each detected object in a state where each traveling body (10A, 10B, 10C) is stopped. The position information of the piece 108 can be acquired with certainty. Then, the position information output unit 102 outputs the acquired position information of each detected piece 108 to the overall control device 100. The position information of each detected piece 108 output from the position information output unit 102 is held in a memory (not shown).
  • FIG. 11 is a diagram showing the arrangement of the traveling bodies (10A, 10B, 10C) during the preparation period.
  • the black circles shown in FIG. 11 indicate the center coordinates (corresponding to position information) of each detected piece 108.
  • Each square in FIG. 11 represents a cell P.
  • the lower left square in FIG. 11 is a cell P [1 arranged at the intersection of the drive coil 130 in the first row and the detected coil 132 in the first column. , 1].
  • the detected piece on the forward direction side is denoted as 108Fa
  • the detected piece on the reverse direction side is denoted as 108Ra.
  • the detected piece on the forward direction side is denoted as 108Fb
  • the detected piece on the reverse direction side is denoted as 108Rb
  • the detected piece on the forward direction side is denoted as 108Fc
  • the detected piece on the reverse direction side is denoted as 108Rc.
  • the scan direction is the direction toward the positive side in the Y direction (see also FIGS. 7 and 8) once.
  • the detected values d are obtained in the order of the detected piece 108Rb ⁇ the detected piece 108Ra ⁇ the detected piece 108Fb ⁇ the detected piece 108Fa ⁇ the detected piece 108Fc ⁇ the detected piece 108Rc. That is, the position information output unit 102 continuously outputs the position information of each detected piece 108 to the overall control apparatus 100 for each scan.
  • step S ⁇ b> 1 the overall control device 100 sequentially issues a traveling control signal instructing each traveling body (10 ⁇ / b> A, 10 ⁇ / b> B, 10 ⁇ / b> C) to move forward for a predetermined period (or movement amount) (in this embodiment).
  • the traveling body 10A ⁇ the traveling body 10B ⁇ the traveling body 10C in this order) is caused to travel individually (step S2).
  • the overall control device 100 outputs a traveling control signal that instructs the traveling body 10A to move forward for a predetermined period.
  • the CPU 114 of the traveling body 10A controls both the wheel motors 28 in accordance with the traveling control signal transmitted from the second light emitting device 106.
  • FIGS. 11 and 12 are diagram illustrating an arrangement of the traveling bodies (10A, 10B, 10C) when the traveling body 10A moves forward and stops for a predetermined period.
  • two of the six detected pieces (108Fa, 108Ra, 108Fb, 108Rb, 108Fc, 108Rc) are detected pieces (108Fa and 108Ra).
  • the position information (center coordinate) changes.
  • step S2 the overall control device 100 outputs the above-described travel control signal and outputs the position information of each detected piece 108 output from the position information output unit 102 and the position immediately before outputting the above-described travel control signal.
  • the position information of each detected piece 108 output from the information output unit 102 is read from a memory (not shown), and a comparison process between the two is executed (step S3).
  • step S3 the overall control apparatus 100 performs first determination processing for determining whether or not there are two detected pieces 108 whose position information has changed, and each of the two detected pieces 108 whose position information has changed.
  • Second determination processing for determining whether or not the vectors in the moving direction match
  • third determination processing for determining whether or not the interval between the two detected pieces 108 whose position information has changed is a predetermined interval. It is executed (step S4), and it is determined whether or not all the results of the first determination process to the third determination process are affirmative (step S5).
  • step S5 since the position information of the two detected pieces (108Fa, 108Ra) provided on the traveling body 10A changes, the result of the first determination process is affirmative.
  • the result of the second determination process is also affirmative.
  • the interval between the two detected pieces 108Fa and 108Ra whose position information has changed matches the predetermined interval, the result of the third determination process is also affirmative.
  • the results of the determination process to the third determination process are all affirmative.
  • step S6 the overall control apparatus 100 travels the two detected pieces 108 whose position information has changed in response to the travel control signal described above.
  • the two detected pieces 108 corresponding to the body 10 are specified (step S6). That is, from the position information changed before and after the forward instruction, the two detected pieces 108 are respectively identified as the forward direction 108Fa and the reverse direction 108Ra corresponding to the traveling body 10A. Then, the overall control apparatus 100 holds the position information of the two detected pieces (108Fa and 108Ra) and the identification information for identifying the traveling body 10A in association with each other in a memory (not shown). On the other hand, when the result of step S5 is negative, the process returns to step S2.
  • step S5 again outputs a travel control signal instructing traveling body 10A to move forward for a predetermined period, and repeats the processing of steps S3 to S5 described above. If the result of step S5 is not affirmative even after repeating the predetermined number of times, it is determined that the traveling body 10A is out of order, the specific process is interrupted, and a predetermined error process is performed. If the result of step S5 is not affirmative even after repeating a predetermined number of times, the fact that the traveling body 10A is faulty is stored, step S5 is skipped, and there is a faulty traveling body 10A when the specific process is completed Alternatively, predetermined error processing may be performed. In addition, as a case where the traveling body 10A is out of order, a state where the screw fixing the detected piece 108 is loosened and the detected piece 108 is detached can be exemplified.
  • step S6 the overall control device 100 determines whether or not the identification of the two detected pieces 108 corresponding to each traveling body (10A, 10B, 10C) has been completed (step S7). If the result of step S7 is negative, the process returns to step S2 again and the specific process is continued. Here, since the identification of the two detected pieces 108 corresponding to each of the traveling body 10B and the traveling body 10C has not been completed, the result of step S7 is negative and the process returns to step S2.
  • step S2 the overall control apparatus 100 outputs a travel control signal instructing the second traveling body 10B to move forward for a predetermined period.
  • step S3 The subsequent processing after step S3 is the same as that described above, and two detected pieces (108Fb, 108Rb) corresponding to the traveling body 10B are specified. Similarly, two detected bodies (108Fc, 108Rc) corresponding to the traveling body 10C are also specified.
  • the identification of the two detected pieces 108 corresponding to each traveling body (10A, 10B, 10C) is completed and the result of step S7 becomes affirmative, the above-described identification process is terminated.
  • the overall control device 100 performs control so as to track the position information of the two detected pieces 108 corresponding to each of the plurality of traveling bodies (10A, 10B, 10C), and thereby each traveling body (10A, 10B). , 10C).
  • each traveling body 10 since each of the plurality of traveling bodies (10A, 10B, 10C) is provided with two detected pieces 108 that are spaced apart from each other by a predetermined interval, each traveling body 10 has a detected piece 108. Compared with the aspect in which only one is provided, the traveling direction of each traveling body (10A, 10B, 10C) can be specified more accurately.
  • the positional information which does not correspond to any traveling bodies (10A, 10B, 10C) will be output from the positional information output part 102.
  • FIG. If position information that does not correspond to any traveling body is included after the end of the specific process, it is determined that there is a foreign object or the like, and an error notification is made. That is, after the overall control device 100 (identifying unit) has specified two detected bodies corresponding to each of a plurality of self-propelled vehicles (running bodies), the position of the traveling body that does not correspond to the detected body When it is determined that the information is included, an error notification instruction is issued. The error notification is notified to the outside via a display unit or communication provided in the game apparatus 1.
  • the overall control device 100 outputs a traveling control signal instructing each traveling body (10A, 10B, 10C) to move forward for a predetermined period during the specific period ( Each time a travel start instruction is output), a comparison process for comparing the position information of each detected piece 108 output from the position information output unit 102 before and after the output of each travel start instruction is performed, and the first determination process described above is performed. -The third determination process is executed. If the results of the first determination process to the third determination process are all positive, the two detected pieces 108 whose position information has changed correspond to the traveling body 10 that has traveled in response to the travel control signal. Since the two detected pieces 108 are specified, the two detected pieces 108 corresponding to each traveling body 10 can be accurately and easily obtained even if the position information of each detected piece 108 cannot be acquired individually. There is an advantage that it can be identified.
  • each of the plurality of traveling bodies 10 is provided with two detected pieces 108.
  • the present invention is not limited to this, and each of the plurality of traveling bodies 10 includes only one detected piece 108. It can also be set as the aspect provided.
  • the overall control device 100 outputs a traveling control signal instructing each traveling body 10 to move forward for a predetermined period before and after the output of each traveling control signal.
  • the detected piece 108 corresponding to 10 is specified. Thereby, even if it is an aspect which cannot acquire the positional information on each detected piece 108 separately, the detected piece 108 corresponding to each traveling body 10 can be specified accurately.
  • the overall control apparatus 100 executes the specific process while individually traveling each traveling body 10 in the specific period.
  • the present invention is not limited to this, and for example, the overall control apparatus 100 corresponds to 2 It is also possible to specify two detected pieces 108 corresponding to the next traveling body 10 while continuing to travel the traveling body 10 that has finished specifying one detected piece 108. More specifically, it is as follows.
  • FIG. 13 is a flowchart showing details of the specific processing in this aspect.
  • the overall control device 100 sequentially issues a traveling control signal instructing continuous traveling (continuously moving forward) to each traveling body (10A, 10B, 10C) (in this aspect, In the order of traveling body 10A ⁇ running body 10B ⁇ running body 10C).
  • the overall control apparatus 100 outputs a travel control signal that instructs the first travel body 10A to perform continuous travel.
  • the CPU 114 of the traveling body 10A controls both the wheel motors 28 in accordance with the traveling control signal transmitted from the second light emitting device 106. Since the content of the comparison process of step S3 after step S2 is the same as that of the above-mentioned embodiment, description is abbreviate
  • step S ⁇ b> 3 the overall control apparatus 100 determines whether there are two detected pieces 108 that are not specified to which traveling body 10 correspond and whose position information has changed.
  • the fourth determination process is executed (step S4), and it is determined whether the result of the fourth determination process is affirmative (step S5).
  • none of the six detected pieces 108 corresponds to which traveling body 10, and the detected pieces 108 whose position information has changed are the detected pieces 108Fa and 108Ra. Therefore, the result of the fourth determination process is affirmative.
  • the overall control apparatus 100 uses the two detected pieces 108 corresponding to the traveling body 10 that has traveled in response to the traveling control signal described above. 108 (step S6). Therefore, the detected pieces 108Fa and 108Ra are specified as the two detected pieces 108 corresponding to the traveling body 10A that has traveled in response to the travel control signal described above.
  • step S6 the overall control apparatus 100 determines whether or not the identification of the two detected pieces 108 corresponding to each traveling body 10 has been completed (step S7). If the result of step S7 is negative, the process returns to step S2 again and the specific process is continued. Here, since the two detected pieces 108 corresponding to each of the traveling body 10B and the traveling body 10C have not been specified yet, the result of step S7 is negative and the process returns to step S2.
  • step S2 the overall control device 100 outputs a travel control signal for instructing continuous travel to the second traveling body 10B. As a result, the traveling body 10B starts continuous traveling, but the traveling body 10A in which the corresponding two detected pieces 108 have already been identified also continues to travel.
  • step S3 the position information has changed.
  • the number of detection pieces 108 is four (108Fa, 108Ra, 108Fb, 108Rb). However, since the two detected pieces 108Fa and 108Ra of these have already been identified as corresponding to the traveling body 10A, the remaining two detected pieces 108Fb and 108Rb are identified as which traveling body 10 It is the detected piece 108 that is not specified to correspond to the two detected pieces 108 whose position information has changed. Accordingly, the result of the fourth determination process in step S4 is affirmative (step S5), and the two detected pieces 108Fb and 108Rb correspond to the two traveling bodies 10B that have traveled in response to the travel control signal in step S2.
  • step S6 It is specified as the detected piece 108 (step S6). Thereafter, the processes in steps S2 to S6 described above are repeated again, and two detected pieces (108Fc, 108Rc) corresponding to the third traveling body 10C are also specified. Even in this aspect, it is possible to specify the two detected pieces 108 corresponding to each traveling body 10.
  • step S4 there are two detected pieces 108 that are not specified as to which traveling body 10 corresponds, and whose position information has changed.
  • a fifth determination process for determining whether or not there is a detected piece 108 that is not specified to which traveling body 10 corresponds, and each of the two detected pieces 108 whose position information has changed in each moving direction
  • Sixth determination processing for determining whether or not the vectors match, and two detected pieces 108 whose position information has changed and which are the detected pieces 108 for which the traveling body 10 is not specified.
  • a seventh determination process for determining whether or not the interval is a predetermined interval is executed, and when all the results of the fifth determination process to the seventh determination process are affirmative, the two detected pieces 108 are Running that instructs continuous running It can be specified as two detected pieces 108 corresponding to the vehicle 10 which is traveling in response to a control signal. Thereby, the two detected pieces 108 corresponding to the traveling body 10 that has traveled in response to the travel control signal instructing continuous travel can be identified more accurately.
  • the overall control apparatus 100 executes all of the first determination process to the third determination process.
  • the present invention is not limited to this.
  • the overall control apparatus 100 performs the first determination process to the third determination process. It may be an aspect in which only one of the processes is executed.
  • the overall control device 100 executes only the first determination process, and if the result of the first determination process is affirmative, the two detected pieces 108 whose position information has changed are displayed in response to the above-described travel control signal.
  • the aspect specified as the to-be-detected piece 108 corresponding to the traveling body 10 which traveled may be sufficient.
  • the overall control apparatus 100 has two detected pieces 108 whose position information has changed when the result of a determination process obtained by arbitrarily combining the respective determination processes (first determination process to third determination process) is affirmative. Can be specified as the two detected pieces 108 corresponding to the traveling body 10 that has traveled in response to the traveling control signal described above.
  • the overall control apparatus 100 executes the first determination process and the second determination process without executing the third determination process. If these results are positive, the two detected pieces 108 whose position information has changed are detected. Can be specified as two detected pieces corresponding to the traveling body 10 that has traveled in response to the traveling control signal described above. Further, other determination processes may be combined.
  • the horse racing game is executed in the game apparatus 1 according to the above-described embodiment
  • the type of game executed in the game apparatus 1 is arbitrary.
  • a bicycle on which a bicycle racer rides may be adopted as a model to be pulled by the traveling body 10 and a bicycle racing game may be executed, and a racing vehicle may be a model to be pulled by the traveling body 10. It may be adopted and a racing game may be executed.
  • a mode in which the model to be pulled by the traveling body 10 and the floor board 3 are not provided and the traveling body 10 itself is visually recognized by the player may be used.
  • the type of the game executed by the game apparatus 1 of this aspect is also arbitrary.
  • the running body 10 in the shape of a competitive car is adopted, and a racing game can be executed.
  • the present invention is applicable to a driving device for a traveling body that travels a plurality of traveling bodies.
  • the position information output unit 102 outputs the position information of each detected piece 108 using electromagnetic coupling.
  • the position information output unit 102 is not limited to this, and for example, the position information output unit 102 includes each traveling body.
  • the position information of each light emitter may be output on the basis of an image obtained by photographing the light emitter provided in.
  • the position information output unit 102 is a type that can output the position information of the detected bodies provided in each of the plurality of traveling bodies 10 all at once, but cannot output the position information of each detected body individually. I just need it.
  • SYMBOLS 1 Game device (driving body drive device), 2 ... Pillar, 2a ... Frame, 3 ... Floor plate, 4 ... Horse model, 5 ... Charging device, 6 ... 2nd floor plate, 10 ?? Running body, 20 ... Caster, 22 ... Wheel, 26 ... Drive wheel, 28 ... Wheel motor, 30 ... Power supply assembly, 40 ... Model assembly, 100 ... Overall control device (travel control unit) ), 102 ... Position information output unit, 104 ... First light emitting device, 106 ... Second light emitting device, 108 ... Detected piece (detected object), 110 ... First optical sensor, 112 & Second optical sensor, 130... Drive coil (drive line), 132...

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Toys (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

複数の走行体のそれぞれに2つの被検出体が配置されている。走行体の駆動装置は、複数の走行体の被検出体の位置情報に基づいて、どの被検出体がどの走行体に対応するのかを特定する。この特定では、走行体の駆動装置は、特定のための特定期間において、走行体のそれぞれに対する走行開始指示を順番に出力し、各走行開始指示の出力の前後において位置情報が変化した2つの被検出体を、その走行開始指示に応答して走行した走行体に対応すると判断する。

Description

走行体の駆動装置
 本発明は、複数の走行体を駆動する走行体の駆動装置に関する。
 走行体の駆動装置の一例として、例えば競馬ゲーム装置が挙げられる。特許文献1に開示された競馬ゲーム装置では、騎手が乗った馬の模型が、板状の競技場に配置される。その競技場の下方には、競技場と対向する板状の基台が配置される。競技場と基台との間には、基台を走行可能な走行体(自走車)が配置される。走行体の上面には磁石が設けられる。また、模型の底面のうち走行体の磁石に対応する位置には、走行体の磁石とは異なる極性の磁石が設けられる。これによって、模型は、走行体の走行に追従して競技場を移動するようになっている。
 特許文献1に開示された競馬ゲーム装置では、走行体の底面に発光体が設けられる。当該発光体は、基台の下方に設けられた所定台数のカメラで撮影され、その撮影画像から、走行体の位置データが検出される。ここで、走行体は複数存在するので、最初に、どの発光体がどの走行体に対応しているのかを特定する特定処理を行う必要がある。特許文献1に開示された競馬ゲーム装置では、最初に、各走行体における発光体の点灯動作が順次に(個別に)行われるように制御されることで、点灯した発光体がどの走行体に対応するのかが特定される。具体的には、各走行体の位置検出を行う制御手段は、全ての走行体に対して発光体を消灯する指示を与えた後、まず第1番目の走行体のみに発光体を点灯する指示を与え、そのときに取得した発光体の位置データを当該第1番目の走行体に対応付ける。つまり、そのときに点灯した発光体は第1番目の走行体に対応するものであることが特定される。次に、制御手段は、第2番目の走行体のみに発光体を点灯する指示を与え、そのときに取得した発光体の位置データを当該第2番目の走行体に対応付ける。これを繰り返すことで、各走行体に対応する発光体が特定される。
特開平9-47573号公報
 しかしながら、各走行体の発光体(検出体)の点灯動作を個別に制御することができず、各走行体の発光体を一斉にオンオフするのみしかできない若しくは常にオンのままの態様、または、検出体が金属片のように各走行体に設けられた検出体のうち位置情報を取得したい検出体のみを有効にすることで位置情報を個別に(排他的に)取得することができない態様においては、上述したような特定処理を採用することができない。したがって、どの検出体がどの走行体に対応しているのかを特定することが困難である。
 本発明は上述の事情に鑑みてなされたものであり、各走行体に設けられた検出体の位置情報を個別に取得することができない態様においても、どの検出体がどの走行体に対応しているのかを特定可能な走行体の駆動装置を提供することを解決課題とする。
 以上の課題を解決するために本発明が採用する手段を以下に説明する。
 本発明に係る走行体の駆動装置は、走行面において複数の走行体を走行させる走行体の駆動装置であって、複数の走行体のそれぞれには、所定の間隔だけ離れて配置される2つの被検出体が設けられ、複数の走行体のそれぞれの走行を制御する走行制御部と、走行面における複数の被検出体のそれぞれの位置情報を出力する位置情報出力部と、位置情報出力部から出力される各被検出体の位置情報に基づいて、複数の走行体のそれぞれに対応する2つの被検出体を特定する特定部と、を具備し、走行制御部は、複数の走行体のそれぞれに対応する2つの被検出体を特定するための特定期間において、複数の走行体のそれぞれに対して走行開始指示を順番に出力し、特定部は、特定期間において、走行制御部が走行開始指示を出力するたびに、各走行開始指示の出力の前後において位置情報出力部から出力された各被検出体の位置情報を比較する比較処理を行い、位置情報が変化した2つの被検出体を、当該走行開始指示に応答して走行した走行体に対応する2つの被検出体として特定することを特徴とする。
 本発明においては、特定部は、走行制御部が走行開始指示を出力するたびに、各走行開始指示の出力の前後において位置情報出力部から出力された各被検出体の位置情報を比較する比較処理を行い、位置情報が変化した2つの被検出体を、当該走行開始指示に応答して走行した走行体に対応する2つの被検出体として特定するので、各被検出体の位置情報を個別に取得することができない態様であっても、各走行体に対応する2つの被検出体を正確かつ容易に特定することができる。
 特定部は、位置情報が変化した被検出体が2つであるか否かを判断する第1判断、位置情報が変化した2つの被検出体のそれぞれの移動方向のベクトルが合致するか否かを判断する第2判断、もしくは位置情報が変化した2つの被検出体の間隔が所定の間隔に合致するか否かを判断する第3判断のうちの何れかの判断を用いた判断処理の結果が肯定である場合、または、各判断を任意に組み合わせた判断処理の結果が肯定である場合に、その位置情報が変化した2つの被検出体を、当該走行開始指示に応答して走行した走行体に対応する2つの被検出体として特定することが好ましい。これにより、走行開始指示に応答して走行した走行体に対応する2つの被検出体をより正確に特定できる。また、他の判断処理を組み合わせた判断処理の結果を採用し得る。
 本発明に係る走行体の駆動装置の態様として、特定部は、どの走行体に対応するのか特定されていない被検出体であって、且つ位置情報が変化した2つの被検出体を、当該走行開始指示に応答して走行した走行体に対応する2つの被検出体として特定する。この態様によれば、対応する2つの被検出体を特定し終えた走行体を走行させ続けたまま、次の走行体に対して走行開始指示を出力して、当該次の走行体に対応する2つの被検出体を特定することもできる。例えば、第1番目に走行開始指示に応答して走行した走行体に対応する2つの被検出体を特定し終えた後も当該第1番目の走行体を走行させ続けたまま、第2番目の走行体に対して走行開始指示を出力する場合を想定する。この場合、第2番目の走行体に対して走行開始指示を出力した後に位置情報出力部から出力された各被検出体の位置情報と、第2番目の走行体に対して走行開始指示を出力する直前に位置情報出力部から出力された各被検出体の位置情報とを比較すると、位置情報が変化した被検出体の数は4つとなるが(第1番目の走行体は走行し続けているため)、そのうちの2つの被検出体については第1番目の走行体に対応するものであることが既に特定されており、残りの2つの被検出体が、「どの走行体に対応するのか特定されていない被検出体であって、且つ位置情報が変化した2つの被検出体」に該当し、第2番目の走行体に対応する2つの被検出体として特定される。
 また、複数の走行体のそれぞれに設けられる被検出体の数は1つであってもよい。具体的には、本発明に係る走行体の駆動装置は、走行面において複数の走行体を走行させる走行体の駆動装置であって、複数の走行体のそれぞれには、1つの被検出体が設けられ、複数の走行体のそれぞれの走行を制御する走行制御部と、走行面における複数の被検出体のそれぞれの位置情報を出力する位置情報出力部と、位置情報出力部から出力される各被検出体の位置情報に基づいて、複数の走行体のそれぞれに対応する被検出体を特定する特定部と、を具備し、走行制御部は、複数の走行体のそれぞれに対応する1つの被検出体を特定する特定期間において、複数の走行体のそれぞれに対して走行開始指示を順番に出力し、特定部は、特定期間において、走行制御部が走行開始指示を出力するたびに、各走行開始指示の出力の前後において位置情報出力部から出力された各被検出体の位置情報を比較する比較処理を行い、位置情報が変化した1つの被検出体を、当該走行開始指示に応答して走行した走行体に対応する1つの被検出体として特定する。
 以上の走行体の駆動装置の態様として、特定部で特定された、複数の走行体のそれぞれに対応する1つまたは2つの被検出体の位置情報を追尾する追尾部をさらに備えることが好ましい。これにより、各走行体の位置情報を追尾(トラッキング)することができる。
 以上の走行体の駆動装置における位置情報出力部は、各被検出体の位置情報を出力するものであればよく、その態様は任意である。例えば、被検出体は導電体で構成され、走行面には、互いに直交するとともに各交差で電磁結合する複数の駆動線および複数の被検出線が設けられ、位置情報出力部は、複数の駆動線の各々に対して駆動電流)を順番に出力し、各被検出線を流れる誘導電流の値に基づいて、各被検出体の位置情報を取得して出力する態様であってもよい。この態様では、位置情報出力部は、所定の間隔で走行面をスキャンすることで、走行面における各被検出体の位置情報を一斉に取得して出力するが、各被検出体の位置情報を個別に出力することはできない。しかしながら、前述したように、特定部は、走行制御部が走行開始指示を出力するたびに、各走行開始指示の出力の前後において位置情報出力部から出力された各被検出体の位置情報を比較する比較処理を行い、位置情報が変化した2つの被検出体を、当該走行開始指示に応答して走行した走行体に対応する2つの被検出体として特定するので、この態様であっても、どの2つの被検出体がどの走行体に対応しているのかを正確に特定することができる。
 本発明は、複数の走行体のそれぞれに対応する2つの被検出体を特定する方法としても特定される。本発明に係る特定方法は、所定の間隔だけ離れて配置される2つの被検出体がそれぞれに設けられる複数の走行体を走行面で走行させる走行体の駆動装置において、走行面における複数の被検出体のそれぞれの位置情報に基づいて、複数の走行体のそれぞれに対応する2つの被検出体を特定する方法であって、複数の走行体のそれぞれに対応する2つの被検出体を特定するための特定期間において、複数の走行体のそれぞれに対して走行開始指示を順番に出力し、走行開始指示を出力するたびに、各走行開始指示の出力の前後における各被検出体の位置情報を比較して、位置情報が変化した2つの被検出体を、当該走行開始指示に応答して走行した走行体に対応する2つの被検出体として特定することを特徴とする。以上の方法によっても本発明に係る走行体の駆動装置と同様の効果が得られる。
 また、本発明は、プログラムの発明として捉えることもできる。すなわち、所定の間隔だけ離れて配置される2つの被検出体がそれぞれに設けられる複数の走行体を走行面で走行させる走行体の駆動装置が有するプログラムであって、複数の走行体のそれぞれに対応する2つの被検出体を特定するための特定期間において、複数の走行体のそれぞれに対して走行開始指示を順番に出力し、走行開始指示を出力するたびに、各走行開始指示の出力の前後での、走行面における各被検出体の位置情報を比較して、位置情報が変化した2つの被検出体を、当該走行開始指示に応答して走行した走行体に対応する2つの被検出体として特定する処理を走行体の駆動装置に実行させることを特徴とするプログラムである。
本発明の実施形態に係るゲーム装置を示す斜視図である。 床板と馬の模型を取り外した状態のゲーム装置の斜視図である。 前記ゲーム装置における馬の模型と走行体とを示す正面図である。 前記走行体の平面図である。 前記走行体の底面図である。 前記ゲーム装置の制御系統の概略を示すブロック図である。 前記ゲーム装置の位置情報出力部の概略を示すブロック図である。 前記ゲーム装置の位置情報出力部の具体的な動作を示すタイミングチャートである。 センシングデータを説明するための図である。 前記ゲーム装置で実行される特定処理の詳細を示すフローチャートである。 前記特定処理での準備期間における各自走車の配置を示す図である。 1台の走行体が所定の期間だけ前進した後に停止したときの各走行体の配置を示す図である。 本発明の変形例に係るゲーム装置で実行される特定処理の詳細を示すフローチャートである。
 以下、添付の図面を参照しながら本発明に係る実施の形態を説明する。
<1.ゲーム装置全体>
 図1に示すように、本発明の実施の形態に係る走行体の駆動装置(ゲーム装置)1は、複数の柱2と、柱2に水平に支持された床板3と、床板3の上を走行する複数の(図の実施の形態では3つの)馬の模型4を備える。図1には示されていないが、馬の模型4の各々は、床板3の下にある自走車(走行体)に磁力で牽引されて、床板3の上を走行する。このゲーム装置1では競馬ゲームが実行される。競馬ゲーム装置においては、図1の仮想線で示すように馬の模型4は楕円またはほぼ四角形を描くように走行する。また、図示はされていないが、互いに交差するような線を描くように馬の模型4を走行させても良い。
 図2は、床板3と馬の模型4を取り外した状態のゲーム装置1の斜視図である。柱2に固定された枠2aに、走行体が走行する第2の床板6が水平に支持されている。この枠2aには、走行体に充電するための充電装置5が取り付けられている。第2の床板6には、2つの直方体状のブロック7が載せられている。柱2の上端にある複数のブラケット8とブロック7によって、床板3は支持されている。
 図3に示すように、床板3と第2の床板6の間の空間には、走行体10が配置されている。実施の形態のゲーム装置1には、3つの馬の模型4に対応する3つの走行体10と、スタートゲート(不図示)に対応する2つの走行体10とが設けられているが、説明の簡略化のため、1つの馬の模型4に対応する1つの走行体10のみを図3は示す。
 図3ないし図5を参照し、走行体10の詳細を説明する。走行可能な走行体10は、上部14と下部16と電源アセンブリ30とを備える。上部14と下部16はサスペンション18によって連結されている。図5の下面図に最も良好に示すように、下部16の長手方向の両端部には、一対のキャスタ20が取り付けられており、下部16の横断方向の両端部には、一対の車輪22が取り付けられている。キャスタ20および車輪22によって、走行体10は第2の床板6の上を走行可能である。
 図4の平面図に最も良好に示すように、上部14の長手方向の両端部には、一対のキャスタ24が取り付けられており、上部14の横断方向の両端部には、一対の駆動車輪26が取り付けられている。これらの駆動車輪26は、上部14に固定された別個の車輪用モータ28によってそれぞれ回転させられる。車輪用モータ28の回転は、図示しない歯車列によって、その車輪用モータ28に対応する駆動車輪26に伝達される。歯車列の代わりに、他の適切な動力伝達機構、例えば、ベルトとプーリを利用した機構、チェーンとスプロケットを利用した機構を用いてもよい。
 図3に示すように、走行体10の上部14には、充電可能な1つ以上の電源装置が内部に配置された電源アセンブリ30が保持される。上部14の内部には、電源アセンブリ30の電源装置から給電されて、車輪用モータ28を駆動して、駆動車輪26を回転させる駆動回路150が形成された駆動回路基板32が固定されている。
 後述する模型牽引部34,36と模型アセンブリ40の被牽引部52,54の間に作用する磁力によって、走行体10全体が上向きすなわち床板3に向けて引き付けられている。このため、キャスタ24の車輪および駆動車輪26は、上方の床板3に接触する。駆動車輪26が回転すると、駆動車輪26と床板3の摩擦接触により、走行体10が図3の矢印で示す方向に走行する。このように、車輪用モータ28および駆動車輪26は、電源アセンブリ30によって走行可能な走行機構である。但し、駆動車輪26の代わりに、他の適切な走行手段、例えばキャタピラ、リンク機構を持つアームまたはリンク機構を持つレッグを使用してもよい。
 別個の車輪用モータ28が両方の駆動車輪26をそれぞれ回転させるので、両方の駆動車輪26を異なる回転速度で回転させることが可能であり、駆動車輪26の速度差によって走行体10は曲がって進むことができる。キャスタ20,24は、走行体10の方向転換を容易にする。車輪用モータ28のシャフトは両方向に回転可能であって、走行体10は前進も後退も可能である。両方の駆動車輪26を互いに逆方向に回転させることによって、走行体10はその場で垂直軸の周りを回転することができる。
 床板3の上には、模型アセンブリ40が配置されている。模型アセンブリ40は、台車42と、台車42に回転自在に取り付けられた一対の車輪44と、台車42に回転自在に取り付けられた1つのキャスタ46と、台車42に立てられた支柱48と、支柱48に取り付けられた馬の模型4とを備える。さらに、馬の模型4の上には騎手の模型50が乗っている。台車42の内部には、2つの被牽引部52,54が配置されている。被牽引部52,54は、強磁性体または磁石であり、好ましくは永久磁石である。
 他方、走行体10の上部14には、模型牽引部34,36が取り付けられている。模型牽引部34,36は、強磁性体または磁石であり、好ましくは永久磁石である。床板3は、非磁性体によって形成されており、走行体10の模型牽引部34と模型アセンブリ40の被牽引部52が磁力によって引き付け合い、走行体10の模型牽引部36と模型アセンブリ40の被牽引部54が磁力によって引き付け合う。従って、走行体10が走行するとき、模型牽引部34,36は、走行体10と一緒に模型アセンブリ40が走行するように模型アセンブリ40を引き付ける。好ましい実施の形態では、模型牽引部34,36および被牽引部52,54は永久磁石であるが、他の選択肢も採用可能である。
 以上のように、床板3の下を走行体10が走行し、走行体10に対応する模型アセンブリ40が走行体10に牽引されて、図3の矢印に示すように床板3の上を走行する。本実施形態では、図3の矢印の方向が走行体10の前進方向であり、図3の矢印とは反対の方向が走行体10の後進方向である。
<2.ゲーム装置の制御系統>
 次に、図6を参照し、ゲーム装置の制御系統の概略を説明する。ゲーム装置の制御系統は、全体制御装置100(走行制御部)と、位置情報出力部102と、第1の発光装置104と、第2の発光装置106を備える。全体制御装置100は、コンピュータであって、複数の走行体10と充電装置5を含むゲーム装置全体を制御する。図の実施の形態においては、単一の全体制御装置100が使用されているが、位置情報出力部102から信号を受けるとともに第1の発光装置104および第2の発光装置106を制御する制御装置と、充電装置5から信号を受けるとともに充電装置5を制御する制御装置が個別に設けられていてもよい。
 第1の発光装置104は、すべての走行体10の動作を一斉に起動するためのある波長領域の光(例えば可視光)を発する。全体制御装置100は、コンピュータプログラムに従って、第1の発光装置104を発光させる。
 第2の発光装置106は、走行体10の起動後に各走行体10の走行を制御する走行制御信号を、第1の発光装置104が発する光とは異なる波長領域の光(例えば赤外線)によって送信する。全体制御装置100は、コンピュータプログラムに従って、複数の走行体10を制御する走行制御信号を第2の発光装置106に供給し、第2の発光装置106はそれらの走行制御信号に応じて発光する。各走行制御信号には、制御対象の走行体10を識別する識別情報が付与されており、走行体10は自身を宛先とする走行制御信号を認識することができる。発光装置104,106の代わりに、他の電波を利用した無線通信方式を利用する通信装置を使用することも可能である。
 好ましくは、光透過性が高い第2の床板6(図1ないし図3参照)を使用し、第1の発光装置104および第2の発光装置106は、第2の床板6の下に配置してもよい。但し、第2の床板6の光透過性が低い場合には、第1の発光装置104および第2の発光装置106は、床板3と第2の床板6の間に配置してもよい。
 図5の底面図に示すように、走行体10の下部16の底面には、2つの第1の光センサ110および2つの第2の光センサ112が露出している。第1の光センサ110は、例えば可視光センサであり、第1の発光装置104が発する光を受けると受光信号を出力する。第2の光センサ112は、例えば赤外線センサであり、第2の発光装置106が発する光で送信された走行制御信号を出力する。図の実施の形態では、あるセンサへの光の到達に障害があっても、他のセンサが光を受けることが可能なように、2つの第1の光センサ110および2つの第2の光センサ112が設けられている。但し、単一の第1の光センサ110と単一の第2の光センサ112が設けられていてもよい。3つ以上の第1の光センサ110と3つ以上の第2の光センサ112が設けられていてもよい。
 図6に示すように、各走行体10は、CPU(central processing unit)114と、給電制御回路116と、コイン電池118をさらに備える。CPU114は図3に示す駆動回路基板32に装着されており、給電制御回路116は図3に示す給電制御回路基板120に装着される。コイン電池118は、走行体10に取り付けおよび取り外しが可能である。コイン電池118は、第1の光センサ110が受光信号を出力可能なように常に第1の光センサ110に給電する。給電制御回路116は、第1の発光装置104の発光によって、第1の光センサ110からの受光信号を受けると、電源アセンブリ30の電源装置60からのCPU114、第2の光センサ112および両方の車輪用モータ28への給電を可能にする。
 電源装置60からこれらの要素への給電開始後、第2の光センサ112は、第2の発光装置106から送信された走行制御信号をCPU114に伝達する。CPU114は、複数の走行体10のための走行制御信号のうち、CPU114が属する走行体10のための走行制御信号を選択して、その走行制御信号に従って、両方の車輪用モータ28を制御する。
 走行制御信号は、車輪用モータ28の各々の回転速度または回転角度を指定する。結果的に、1つの走行体10につき駆動車輪26の各々の回転速度が制御される。両方の駆動車輪26の回転速度が同じであれば、走行体10は直進し、そうでなければ、走行体10は曲がって進む。
 次に、図7を参照しながら、位置情報出力部102について説明する。本実施形態では、第2の床板6の表面(走行体10が走行する側の面)は、シート状の部材である位置検出用シートLdsで覆われる。そして、位置検出用シートLdsの表面(第2の床板6と接触する側とは反対側の面)には、X方向に延在するm本の駆動コイル130(駆動線)と、X方向に交差するY方向に延在するn本の被検出コイル132(被検出線)とが形成される。本実施形態では、駆動コイル130の数は150本、被検出コイル132の数は300本である。また、互いに隣接する駆動コイル130の間隔、および、互いに隣接する被検出コイル132の間隔はそれぞれ10mmに設定される。ただし、これらの値は任意に設定可能である。図7の紙面垂直方向から見ると、被検出コイル132の平行な導線部分は、駆動コイル130の平行な導線部分と直交している。但し、図示しないが、被検出コイル132が配置された層は、駆動コイル130が配置された層とは異なり、これらの層は平行に配置されており、これらの層の間には非導電体の層がある。
 複数の駆動コイル130と複数の被検出コイル132とは、各交差で電磁結合する。本実施形態では、駆動コイル130と被検出コイル132との交差する部分をセルPと呼ぶ。すなわち、位置検出用シートLdsの表面には、複数のセルPが縦m行×横n列のマトリクス状に配列される。詳細な図示は省略するが、複数のセルPがマトリクス状に形成された位置検出用シートLdsの表面は、透明なアクリル基板で覆われる。そして、走行体10は、そのアクリル基板上を走行する。
 図7に示すように、位置情報出力部102は、複数のセルPが配列されたセル部140と、駆動回路150と、検出回路160と、位置情報出力部102全体の動作を統括するとともに各種の処理を実行する処理回路170とを含んで構成される。駆動回路150は、処理回路170から供給されるタイミング信号VSYNCに基づいて、複数の駆動コイル130の各々に対して駆動電流Idを順番に出力する。説明の便宜上、第i行(1≦i≦m)の駆動コイル130に出力される駆動電流をId[i]と表記する。例えば第i行の駆動コイル130に駆動電流Id[i]が出力されると、第i行の駆動コイル130とn本の被検出コイル132との各交差に配置されるn個のセルPには相互誘導による誘導起電力が生じて、n本の被検出コイル132には誘導電流It(It[1]~It[n])が流れる。説明の便宜上、第j列目(1≦j≦n)の被検出コイル132を流れる誘導電流をIt[j]と表記する。
 図5に示すように、走行体10の下部16の底面には、導電体から形成された円板状の一対の被検出片108(108F,108R)が、それぞれの中心が所定の間隔だけ離れて固定されている。一対の被検出片(被検出体)108のうち走行体10の前進方向側に設けられた被検出片を108Fと表記し、走行体10の後進方向側に設けられた被検出片を108Rと表記する。例えば、ある走行体10に設けられた2つの被検出片108のうちの一つが、第i行の駆動コイル130と第j列目の被検出コイル132との交差に配置されたセルP[i,j]に対応する位置に存在する場合は、当該セルP[i,j]に対応する位置に被検出片108が存在しない場合に比べて、当該セルP[i,j]を貫く磁束の変化が大きくなる。したがって、この場合の誘導電流It[j]の値は、当該セルP[i,j]に対応する位置に被検出片108が存在しない場合に比べて大きい値を示す。
 図8は、位置情報出力部102の具体的な動作を示すタイミングチャートである。駆動回路150は、1サイクル期間内のm個の単位期間T(T[1]~T[m])の各々において、駆動コイル130に対して順番に駆動電流Id[1]~Id[m]を出力する。本実施形態では、1サイクル期間は、10ミリ秒に設定される。図8において、駆動電流Id[i]がハイレベルであるときは、第i行の駆動コイル130に駆動電流Id[i]が出力されることを意味し、駆動電流Id[i]がローレベルであるときは、第i行の駆動コイル130に対する駆動電流Id[i]の出力は停止されていることを意味する。図8に示すように、第i行の駆動コイル130に出力される駆動電流Id[i]は、各サイクル期間内の第i番目の単位期間T[i]にてハイレベルに設定される。
 図7に示すように、n本の被検出コイル132の各々と検出回路160との間にはスイッチSWが設けられる。本実施形態において、スイッチSWはNチャネル型のトランジスタで構成される。n個のスイッチSWのそれぞれは、処理回路170から供給される動作信号SELがアクティブレベル(ハイレベル)に遷移するとオン状態になる。説明の便宜上、第j列目の被検出コイル132に対応するスイッチSWに供給される動作信号SELをSEL[j]と表記する。図8に示すように、各単位期間T(T[1]~T[m])において、動作信号SEL[1]~SEL[n]は順次にアクティブレベルに遷移する。図8において、第i番目の単位期間T[i]に着目すると、当該単位期間T[i]において、動作信号SEL[1]~SEL[n]は順次にハイレベルに遷移していることが分かる。つまり、単位期間T[i]において、n個のスイッチSWの各々は順次にオン状態に遷移するから、当該単位期間T[i]において各被検出コイル132を流れる誘導電流It[1]~It[n](アナログ値)は、スイッチSWを介して検出回路160に順次出力される。検出回路160は、この誘導電流It[1]~It[n]を図示しないアンプで増幅したうえで、処理回路170へ出力する。
 処理回路170は、検出回路160から順次に出力される誘導電流Itに基づいて、サイクル期間ごとのセンシングデータを生成する。より具体的には、処理回路170は、検出回路160から出力される誘導電流を2値の検出値d(デジタル値)に順次に変換し、その変換した検出値dを1サイクル期間ごとに区分することでセンシングデータを生成する。すなわち、1サイクル期間ごとのセンシングデータは、m×n個の検出値dの集合となる。本実施形態では、処理回路170は、検出回路160から順次に出力される誘導電流Itのうち所定の閾値を超えるものは検出値dを「1」とし、所定の閾値以下のものは検出値dを「0」とする。したがって、図9に示すように、被検出片108が存在する位置に対応するセルPの検出値は「1」となり、被検出片108が存在しない位置に対応するセルPの検出値は「0」となる。なお、本実施形態では、1コイル当たり10とする座標系が付与され、各検出値d(センシングデータ)のX座標は0~2999、Y座標は0~1499となる。処理回路170は、サイクル期間ごとのセンシングデータに基づいて、各サイクル期間における各被検出片108の中心座標を算出する。これにより、処理回路170は、各サイクル期間における各被検出片108の位置情報(第2の床板6における各被検出片108の位置を示す情報)を取得する。処理回路170は、このようにして取得した各被検出片108の位置情報を全体制御装置100へ出力する。全体制御装置100は、処理回路170から出力されるサイクル期間ごとの各被検出片108の位置情報をメモリ(不図示)に保持する。
<3.特定処理>
 全体制御装置100は、位置情報出力部102から出力される各被検出片108の位置情報に基づいて、複数の走行体10のそれぞれに対応する2つの被検出片108を特定する処理(「特定処理」と呼ぶ)を実行する。より具体的には、全体制御装置100は、複数の走行体10のそれぞれに対応する2つの被検出片108を特定するための特定期間において、複数の走行体10のそれぞれに対して走行開始指示を順番に出力する。特定期間は、ゲーム装置1の電源が投入されるたびに実行される初期化処理中に設定されたり、ゲーム装置1が遊技施設に設置されて初めて電源が投入され、特定処理が1度も実行されていない場合の初期化処理中に設定されたり、遊技施設の管理者の操作で任意のタイミングで設定される。そして、全体制御装置100は、走行開始指示を出力するたびに、各走行開始指示の出力の前後において位置情報出力部102から出力された各被検出片108の位置情報を比較する比較処理を行い、位置情報が変化した2つの被検出片108を、当該走行開始指示に応答して走行した走行体10に対応する2つの被検出片108として特定する。以下、その詳細な内容について説明する。
 図10は、特定期間において全体制御装置100が実行する特定処理の詳細を示すフローチャートである。図10に示すように、全体制御装置100は、まず位置情報出力部102に対して、各被検出片108の位置情報の出力を開始するように指示する(ステップS1)。この処理には、位置情報出力部102に対する各種設定の処理が含まれる。全体制御装置100が、位置情報出力部102に対して動作開始指示を出力してから第1番目の走行体10に対して走行開始指示を出力するまでの期間(「準備期間」と呼ぶ)においては、3つの馬の模型4に対応する3台の走行体10(10A,10B,10C)は停止した状態である。この準備期間の時間長は、位置情報出力部102のスキャン期間(サイクル期間)である10ミリ秒よりも十分に長い値に設定される。本実施形態では、位置情報出力部102は、10ミリ秒ごとに、各被検出片108の位置情報を取得して全体制御装置100へ出力するので、準備期間の時間長が10ミリ秒よりも十分に長い値に設定されていれば、位置情報出力部102は、準備期間における各被検出片108の位置情報、すなわち、各走行体(10A,10B,10C)が停止した状態における各被検出片108の位置情報を確実に取得することができる。そして、位置情報出力部102は、その取得した各被検出片108の位置情報を全体制御装置100へ出力する。位置情報出力部102から出力された各被検出片108の位置情報は、図示しないメモリに保持される。
 図11は、準備期間における各走行体(10A,10B,10C)の配置を示す図である。図11に示す黒丸は、各被検出片108の中心座標(位置情報に相当)を示す。図11における各マス目はセルPを示し、例えば図11における左下端のマス目は、第1行の駆動コイル130と第1列の被検出コイル132との交差に配置されるセルP[1,1]を示す。走行体10Aに設けられた一対の被検出片108のうち前進方向側の被検出片を108Faと表記し、後進方向側の被検出片を108Raと表記する。走行体10Bに設けられた一対の被検出片108のうち前進方向側の被検出片を108Fbと表記し、後進方向側の被検出片を108Rbと表記する。さらに、走行体10Cに設けられた一対の被検出片108のうち前進方向側の被検出片を108Fcと表記し、後進方向側の被検出片を108Rcと表記する。図11に示すように、スキャン方向(m本の駆動コイル130を順番に駆動していく方向)は、Y方向の正側に向かう方向なので(併せて図7および図8も参照)、1回のスキャンにおいて、被検出片108Rb→被検出片108Ra→被検出片108Fb→被検出片108Fa→被検出片108Fc→被検出片108Rcの順番で、それぞれの検出値dが求められる。すなわち、位置情報出力部102は、スキャン毎に全体制御装置100に対して各被検出片108の位置情報を繰り返し出力し続ける。
 再び図10のフローチャートに戻って説明を続ける。ステップS1の後、全体制御装置100は、各走行体(10A,10B,10C)に対して、所定の期間(または移動量)だけ前進することを指示する走行制御信号を順番(本実施形態では、走行体10A→走行体10B→走行体10Cの順番)に出力して、各走行体10を個別に走行させる(ステップS2)。まず、全体制御装置100は、走行体10Aに対して所定の期間だけ前進することを指示する走行制御信号を出力する。走行体10AのCPU114は、第2の発光装置106から送信された走行制御信号にしたがって両方の車輪用モータ28を制御する。図12は、走行体10Aが、所定の期間だけ前進して停止したときの各走行体(10A,10B,10C)の配置を示す図である。図11および図12からも理解されるように、この場合は、6個の被検出片(108Fa,108Ra,108Fb,108Rb,108Fc,108Rc)のうち2個の被検出片(108Faおよび108Ra)の位置情報(中心座標)が変化する。
 ステップS2の後、全体制御装置100は、上述の走行制御信号を出力した後に位置情報出力部102から出力された各被検出片108の位置情報と、上述の走行制御信号を出力する直前に位置情報出力部102から出力された各被検出片108の位置情報とをメモリ(不図示)から読み出し、両者の比較処理を実行する(ステップS3)。
 ステップS3の後、全体制御装置100は、位置情報が変化した被検出片108が2つであるか否かを判断する第1判断処理、位置情報が変化した2つの被検出片108のそれぞれの移動方向のベクトルが合致するか否かを判断する第2判断処理、および、位置情報が変化した2つの被検出片108の間隔が所定の間隔であるか否かを判断する第3判断処理を実行し(ステップS4)、第1判断処理~第3判断処理の結果が全て肯定であるか否かを判定する(ステップS5)。ここでは、走行体10Aに設けられた2個の被検出片(108Fa,108Ra)の位置情報が変化するので、第1判断処理の結果は肯定となる。また、被検出片108Faおよび108Raのそれぞれの移動方向のベクトルは一致するので、第2判断処理の結果も肯定となる。さらに、位置情報が変化した2つの被検出片108Faおよび108Raの間隔(図11および図12のY方向における距離)は所定の間隔に合致するので、第3判断処理の結果も肯定となり、第1判断処理~第3判断処理の結果は全て肯定となる。
 第1判断処理~第3判断処理の結果が全て肯定である場合は、全体制御装置100は、位置情報が変化した2つの被検出片108を、上述の走行制御信号に応答して走行した走行体10に対応する2つの被検出片108として特定する(ステップS6)。すなわち、前進指示の前後で変化した位置情報から、2つの被検出片108が走行体10Aに対応する前進方向側の108Faと後進方向側の108Raとしてそれぞれ特定される。そして、全体制御装置100は、その2つの被検出片(108Faおよび108Ra)のそれぞれの位置情報と、走行体10Aを識別する識別情報とを対応付けてメモリ(不図示)に保持する。一方、ステップS5の結果が否定である場合は、再びステップS2に戻る。この場合、全体制御装置100は、再び、走行体10Aに対して所定の期間だけ前進することを指示する走行制御信号を出力し、上述のステップS3~ステップS5の処理を繰り返す。所定回数繰り返してもステップS5の結果が肯定とならない場合には、走行体10Aが故障であると判断して特定処理を中断し、所定のエラー処理を行う。所定回数繰り返してもステップS5の結果が肯定とならない場合には、走行体10Aが故障であることを記憶してステップS5をスキップさせ、特定処理が終了した時点で故障の走行体10Aが有る場合に所定のエラー処理を行うようにしてもよい。なお、走行体10Aが故障である場合として、被検出片108を固定しているネジがゆるんで被検出片108が外れている状態が例示できる。
 ステップS6の後、全体制御装置100は、各走行体(10A,10B,10C)に対応する2つの被検出片108の特定を終了したか否かを判定する(ステップS7)。ステップS7の結果が否定の場合は、再びステップS2に戻り、特定処理が続けられる。ここでは、走行体10Bおよび走行体10Cのそれぞれに対応する2つの被検出片108の特定が終了していないので、ステップS7の結果は否定となり、ステップS2に戻る。そして、当該ステップS2において、全体制御装置100は、第2番目の走行体10Bに対して所定の期間だけ前進することを指示する走行制御信号を出力する。その後のステップS3以降の処理は、上述した内容と同様であり、走行体10Bに対応する2つの被検出片体(108Fb,108Rb)が特定される。同様にして、走行体10Cに対応する2つの被検出体(108Fc,108Rc)も特定される。各走行体(10A,10B,10C)に対応する2つの被検出片108の特定が終了してステップS7の結果が肯定になると、上述の特定処理は終了する。その後、全体制御装置100は、複数の走行体(10A,10B,10C)のそれぞれに対応する2つの被検出片108の位置情報を追尾するように制御することで、各走行体(10A,10B,10C)の位置情報を追尾する。本実施形態では、複数の走行体(10A,10B,10C)のそれぞれには、所定の間隔だけ離れて配置される2つの被検出片108が設けられるので、各走行体10に被検出片108が1つのみ設けられる態様に比べて、各走行体(10A,10B,10C)の走行方向をより正確に特定できる。
 なお、第2の床板6に金属体の異物が存在している場合には、どの走行体(10A,10B,10C)にも対応しない位置情報が位置情報出力部102から出力されることになる。特定処理の終了後にどの走行体にも対応しない位置情報が含まれる場合には、異物等が存在すると判断してエラー報知を行う。すなわち、全体制御装置100(特定部)は、複数の自走車(走行体)のそれぞれに対応する2つの被検出体を特定し終えた後、どの走行体の被検出体にも対応しない位置情報が含まれていると判断したとき、エラー通知指示を行う。エラー通知は、ゲーム装置1に備えた表示部や通信を介して外部へ通知する。
 以上に説明したように、特定期間において、全体制御装置100は、各走行体(10A,10B,10C)に対して、所定の期間だけ前進することを指示する走行制御信号を出力するたびに(走行開始指示を出力するたびに)、各走行開始指示の出力の前後において位置情報出力部102から出力された各被検出片108の位置情報を比較する比較処理を行い、上述の第1判断処理~第3判断処理を実行する。そして、第1判断処理~第3判断処理の結果が全て肯定であれば、位置情報が変化した2つの被検出片108を、当該走行制御信号に応答して走行した走行体10に対応する2つの被検出片108として特定するので、各被検出片108の位置情報を個別に取得することができない態様であっても、各走行体10に対応する2つの被検出片108を正確かつ容易に特定できるという利点がある。
<4.変形例>
 以上の実施形態には様々な変形が加えられる。具体的な変形の態様を以下に例示する。以下の例示から任意に選択された2以上の態様は併合され得る。
(1)変形例1
 上述の実施形態では、複数の走行体10のそれぞれには2つの被検出片108が設けられているが、これに限らず、複数の走行体10のそれぞれには1つの被検出片108のみが設けられる態様とすることもできる。この態様では、特定期間において、全体制御装置100は、各走行体10に対して、所定の期間だけ前進することを指示する走行制御信号を出力するたびに、各走行制御信号の出力の前後において位置情報出力部102から出力された各被検出片108の位置情報を比較する比較処理を行い、位置情報が変化した1つの被検出片108を、当該走行制御信号に応答して走行した走行体10に対応する被検出片108として特定する。これにより、各被検出片108の位置情報を個別に取得することができない態様であっても、各走行体10に対応する被検出片108を正確に特定できる。
(2)変形例2
 上述の実施形態では、特定期間において、全体制御装置100は、各走行体10を個別に走行させながら特定処理を実行しているが、これに限らず、例えば全体制御装置100は、対応する2つの被検出片108を特定し終えた走行体10を走行させ続けたまま、次の走行体10に対応する2つの被検出片108を特定することもできる。より具体的には以下のとおりである。
 図13は、この態様における特定処理の詳細を示すフローチャートである。以下、上述の実施形態と異なる部分を中心に説明する。図13のステップS2において、全体制御装置100は、各走行体(10A,10B,10C)に対して、連続走行(連続的に前進すること)を指示する走行制御信号を順番(この態様では、走行体10A→走行体10B→走行体10Cの順番)に出力する。まず、全体制御装置100は、第1番目の走行体10Aに対して連続走行を指示する走行制御信号を出力する。走行体10AのCPU114は、第2の発光装置106から送信された走行制御信号にしたがって両方の車輪用モータ28を制御する。ステップS2の後のステップS3の比較処理の内容は上述の実施形態と同様であるから、説明を省略する。
 ステップS3の後、全体制御装置100は、どの走行体10に対応するのか特定されていない被検出片108であって、且つ位置情報が変化した2つの被検出片108があるか否かを判断する第4判断処理を実行し(ステップS4)、第4判断処理の結果が肯定であるか否かを判定する(ステップS5)。ここでは、6個の被検出片108の何れも、どの走行体10に対応するのか特定されておらず、位置情報が変化した被検出片108は、被検出片108Faおよび108Raの2つであるので、第4判断処理の結果は肯定となる。第4判断処理の結果が肯定である場合は、全体制御装置100は、その2つの被検出片108を、上述の走行制御信号に応答して走行した走行体10に対応する2つの被検出片108として特定する(ステップS6)。したがって、被検出片108Faおよび108Raが、上述の走行制御信号に応答して走行した走行体10Aに対応する2つの被検出片108として特定される。
 ステップS6の後、全体制御装置100は、各走行体10に対応する2つの被検出片108の特定を終了したか否かを判定する(ステップS7)。ステップS7の結果が否定の場合は、再びステップS2に戻り、特定処理が続けられる。ここでは、まだ走行体10Bおよび走行体10Cのそれぞれに対応する2つの被検出片108が特定されていないため、ステップS7の結果は否定となり、ステップS2に戻る。そして、当該ステップS2において、全体制御装置100は、第2番目の走行体10Bに対して連続走行を指示する走行制御信号を出力する。これにより、走行体10Bは連続走行を開始するが、対応する2つの被検出片108が既に特定された走行体10Aも走行し続けるので、ステップS3の比較処理の結果、位置情報が変化した被検出片108の数は4つ(108Fa,108Ra,108Fb,108Rb)となる。ただし、このうちの2つの被検出片108Faおよび108Raについては、走行体10Aに対応するものであることが既に特定されているので、残りの2つの被検出片108Fbおよび108Rbが、どの走行体10に対応するのか特定されていない被検出片108であって、且つ位置情報が変化した2つの被検出片108となる。したがって、ステップS4の第4判断処理の結果は肯定となり(ステップS5)、当該2つの被検出片108Fbおよび108Rbが、ステップS2で走行制御信号に応答して走行した走行体10Bに対応する2つの被検出片108として特定される(ステップS6)。その後、再び上述のステップS2~ステップS6の処理が繰り返されて、第3番目の走行体10Cに対応する2つの被検出片(108Fc,108Rc)も特定される。この態様であっても、各走行体10に対応する2つの被検出片108を特定することが可能である。
 なお、図13のステップS4の第4判断処理の代わりに、どの走行体10に対応するのか特定されていない被検出片108であって、且つ位置情報が変化した被検出片108が2つであるか否かを判断する第5判断処理、どの走行体10に対応するのか特定されていない被検出片108であって、且つ位置情報が変化した2つの被検出片108のそれぞれの移動方向のベクトルが合致するか否かを判断する第6判断処理、および、どの走行体10に対応するのか特定されていない被検出片108であって、且つ位置情報が変化した2つの被検出片108の間隔が所定の間隔であるか否かを判断する第7判断処理を実行し、第5判断処理~第7判断処理の結果の全てが肯定である場合に、その2つの被検出片108を、連続走行を指示する走行制御信号に応答して走行した走行体10に対応する2つの被検出片108として特定することもできる。これにより、連続走行を指示する走行制御信号に応答して走行した走行体10に対応する2つの被検出片108をより正確に特定できる。
(3)変形例3
 上述の実施形態では、全体制御装置100は、第1判断処理~第3判断処理の全てを実行しているが、これに限らず、例えば全体制御装置100は、第1判断処理~第3判断処理の何れか1つのみを実行する態様であってもよい。例えば全体制御装置100は、第1判断処理のみを実行し、第1判断処理の結果が肯定であれば、位置情報が変化した2つの被検出片108を、上述の走行制御信号に応答して走行した走行体10に対応する2つの被検出片108として特定する態様であってもよい。
 また、例えば全体制御装置100は、各判断処理(第1判断処理~第3判断処理)を任意に組み合わせた判断処理の結果が肯定である場合に、位置情報が変化した2つの被検出片108を、上述の走行制御信号に応答して走行した走行体10に対応する2つの被検出片108として特定することもできる。例えば全体制御装置100は、第3判断処理を実行せずに、第1判断処理および第2判断処理を実行し、これらの結果が肯定であれば、位置情報が変化した2つの被検出片108を、上述の走行制御信号に応答して走行した走行体10に対応する2つの被検出片として特定することもできる。また、さらに他の判断処理を組み合わせてもよい。
(4)変形例4
 上述の実施形態に係るゲーム装置1では競馬ゲームが実行されているが、これに限らず、ゲーム装置1で実行されるゲームの種類は任意である。例えば走行体10に牽引される模型として競輪選手が乗った自転車が採用され、競輪ゲームが実行される態様であってもよいし、走行体10に牽引される模型として競争車(レーシングカー)が採用され、レーシングゲームが実行される態様であってもよい。さらに、走行体10に牽引される模型や床板3が設けられず、走行体10自体がプレイヤーに視認される態様であってもよい。この態様のゲーム装置1で実行されるゲームの種類も任意であり、例えば競争車の形状の走行体10が採用され、レーシングゲームを実行することもできる。要するに、本発明は、複数の走行体を走行させる走行体の駆動装置に対して適用可能である。
(5)変形例5
 上述の実施形態では、位置情報出力部102は、電磁結合を利用して各被検出片108の位置情報を出力しているが、これに限らず、例えば位置情報出力部102は、各走行体に設けられた発光体を撮影した画像に基づいて、各発光体の位置情報を出力するものであってもよい。ただし、この場合、各走行体の発光体は一斉にオンオフするのみしかできない若しくは常にオンのままであることが前提となる。要するに、位置情報出力部102としては、複数の走行体10のそれぞれに設けられた被検出体の位置情報を一斉に出力できるものの、各被検出体の位置情報を個別に出力できないタイプのものであればよい。
1……ゲーム装置(走行体の駆動装置)、2……柱、2a……枠、3……床板、4……馬の模型、5……充電装置、6……第2の床板、10……走行体、20……キャスタ、22……車輪、26……駆動車輪、28……車輪用モータ、30……電源アセンブリ、40……模型アセンブリ、100……全体制御装置(走行制御部)、102……位置情報出力部、104……第1の発光装置、106……第2の発光装置、108……被検出片(被検出体)、110……第1の光センサ、112……第2の光センサ、130……駆動コイル(駆動線)、132……被検出コイル(被検出線)、140……セル部、150……駆動回路、160……検出回路、170……処理回路、Id……駆動電流、It……誘導電流、Lds…位置検出用シート、…P……セル、SEL……動作信号、SW……スイッチ、T……単位期間、VSYNC……タイミング信号。
 
 

Claims (8)

  1.  走行面において複数の走行体を走行させる走行体の駆動装置であって、
     前記複数の走行体のそれぞれには、所定の間隔だけ離れて配置される2つの被検出体が設けられ、
     前記複数の走行体のそれぞれの走行を制御する走行制御部と、
     前記走行面における複数の前記被検出体のそれぞれの位置情報を出力する位置情報出力部と、
     前記位置情報出力部から出力される前記各被検出体の位置情報に基づいて、前記複数の走行体のそれぞれに対応する2つの前記被検出体を特定する特定部と、を具備し、
     前記走行制御部は、前記複数の走行体のそれぞれに対応する2つの前記被検出体を特定するための特定期間において、前記複数の走行体のそれぞれに対して走行開始指示を順番に出力し、
     前記特定部は、前記特定期間において、前記走行制御部が前記走行開始指示を出力するたびに、各走行開始指示の出力の前後において前記位置情報出力部から出力された前記各被検出体の位置情報を比較する比較処理を行い、位置情報が変化した2つの前記被検出体を、当該走行開始指示に応答して走行した走行体に対応する2つの前記被検出体として特定する、
     ことを特徴とする走行体の駆動装置。
  2.  前記特定部は、位置情報が変化した前記被検出体が2つであるか否かを判断する第1判断、位置情報が変化した2つの前記被検出体のそれぞれの移動方向のベクトルが合致するか否かを判断する第2判断、もしくは位置情報が変化した2つの前記被検出体の間隔が前記所定の間隔に合致するか否かを判断する第3判断のうちの何れかの判断を用いた判断処理の結果が肯定である場合、または、各判断を任意に組み合わせた判断処理の結果が肯定である場合に、その位置情報が変化した2つの前記被検出体を、当該走行開始指示に応答して走行した走行体に対応する2つの前記被検出体として特定する、
     ことを特徴とする請求項1に記載の走行体の駆動装置。
  3.  前記特定部は、どの前記走行体に対応するのか特定されていない前記被検出体であって、且つ位置情報が変化した2つの前記被検出体を、当該走行開始指示に応答して走行した走行体に対応する2つの前記被検出体として特定する、
     ことを特徴とする請求項1または請求項2に記載の走行体の駆動装置。
  4.  走行面において複数の走行体を走行させる走行体の駆動装置であって、
     前記複数の走行体のそれぞれには、1つの被検出体が設けられ、
     前記複数の走行体のそれぞれの走行を制御する走行制御部と、
     前記走行面における複数の前記被検出体のそれぞれの位置情報を出力する位置情報出力部と、
     前記位置情報出力部102から出力される前記各被検出体の位置情報に基づいて、前記複数の走行体のそれぞれに対応する前記被検出体を特定する特定部と、を具備し、
     前記走行制御部は、前記複数の走行体のそれぞれに対応する1つの前記被検出体を特定する特定期間において、前記複数の走行体のそれぞれに対して走行開始指示を順番に出力し、
     前記特定部は、前記特定期間において、前記走行制御部が前記走行開始指示を出力するたびに、各走行開始指示の出力の前後において前記位置情報出力部から出力された前記各被検出体の位置情報を比較する比較処理を行い、位置情報が変化した1つの前記被検出体を、当該走行開始指示に応答して走行した走行体に対応する1つの前記被検出体として特定する、
     ことを特徴とする走行体の駆動装置。
  5.  前記特定部で特定された、前記複数の走行体のそれぞれに対応する1つまたは2つの前記被検出体の位置情報を追尾する追尾部をさらに備える、
     ことを特徴とする請求項1から請求項4の何れかに記載の走行体の駆動装置。
  6.  前記被検出体は導電体で構成され、
     前記走行面には、互いに直交するとともに各交差で電磁結合する複数の駆動線および複数の被検出線が設けられ、
     前記位置情報出力部は、前記複数の駆動線の各々に対して駆動電流を順番に出力し、前記各被検出線を流れる誘導電流の値に基づいて、前記各被検出体の位置情報を取得して出力する、
     ことを特徴とする請求項1から請求項5の何れかに記載の走行体の駆動装置。
  7.  所定の間隔だけ離れて配置される2つの被検出体がそれぞれに設けられる複数の走行体を走行面で走行させる走行体の駆動装置において、前記走行面における複数の前記被検出体のそれぞれの位置情報に基づいて、前記複数の走行体のそれぞれに対応する2つの前記被検出体を特定する方法であって、
     前記複数の走行体のそれぞれに対応する2つの前記被検出体を特定するための特定期間において、
     前記複数の走行体のそれぞれに対して走行開始指示を順番に出力し、前記走行開始指示を出力するたびに、各走行開始指示の出力の前後における各被検出体の位置情報を比較して、位置情報が変化した2つの前記被検出体を、当該走行開始指示に応答して走行した走行体に対応する2つの前記被検出体として特定する、
     ことを特徴とする特定方法。
  8.  所定の間隔だけ離れて配置される2つの被検出体がそれぞれに設けられる複数の走行体を走行面で走行させる走行体の駆動装置が有するプログラムであって、
     前記複数の走行体のそれぞれに対応する2つの前記被検出体を特定するための特定期間において、
     前記複数の走行体のそれぞれに対して走行開始指示を順番に出力し、前記走行開始指示を出力するたびに、各走行開始指示の出力の前後での、前記走行面における各被検出体の位置情報を比較して、位置情報が変化した2つの前記被検出体を、当該走行開始指示に応答して走行した走行体に対応する2つの前記被検出体として特定する処理を、前記走行体の駆動装置に実行させる、
     ことを特徴とするプログラム。
     
     
PCT/JP2011/055742 2010-03-12 2011-03-11 走行体の駆動装置 WO2011111813A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2011800116676A CN102781526B (zh) 2010-03-12 2011-03-11 行进物体的驱动设备
AU2011225104A AU2011225104B2 (en) 2010-03-12 2011-03-11 Drive device for moving bodies
US13/582,135 US8491367B2 (en) 2010-03-12 2011-03-11 Driving apparatus for traveling objects

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-055600 2010-03-12
JP2010055600A JP4927965B2 (ja) 2010-03-12 2010-03-12 走行体の走行制御装置

Publications (1)

Publication Number Publication Date
WO2011111813A1 true WO2011111813A1 (ja) 2011-09-15

Family

ID=44563611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055742 WO2011111813A1 (ja) 2010-03-12 2011-03-11 走行体の駆動装置

Country Status (5)

Country Link
US (1) US8491367B2 (ja)
JP (1) JP4927965B2 (ja)
CN (1) CN102781526B (ja)
AU (1) AU2011225104B2 (ja)
WO (1) WO2011111813A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5894504B2 (ja) * 2012-06-06 2016-03-30 株式会社コナミデジタルエンタテインメント ゲーム機
JP5781470B2 (ja) * 2012-06-06 2015-09-24 株式会社コナミデジタルエンタテインメント ゲーム機及びそのセンサ較正データ生成方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0944249A (ja) * 1995-07-31 1997-02-14 Nippon Steel Corp 移動体制御方法
JPH0942910A (ja) * 1995-07-31 1997-02-14 Nippon Steel Corp ゲーム機用位置検出装置
JPH0947573A (ja) * 1995-08-07 1997-02-18 Konami Co Ltd 競争ゲーム装置
JPH09203604A (ja) * 1996-01-26 1997-08-05 Nippon Steel Corp 移動体の位置検出装置
JPH09225138A (ja) * 1996-02-27 1997-09-02 Sega Enterp Ltd 走行体の位置検出装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0242910A (ja) * 1988-08-03 1990-02-13 Kubota Ltd 田植機の苗植付装置
JPH0244249A (ja) * 1988-08-05 1990-02-14 Hitachi Ltd クロマトグラム表示装置
JP2520971B2 (ja) * 1990-05-18 1996-07-31 住友電気工業株式会社 ボンディングツ―ル
JP3035617B2 (ja) * 1990-04-20 2000-04-24 新日本無線株式会社 缶封止型マイクロ波発振器
JP3230779B2 (ja) * 1993-03-29 2001-11-19 江藤電気株式会社 競争ゲーム装置
US5954584A (en) * 1995-11-21 1999-09-21 Sega Enterprises, Ltd. Movable object position detecting apparatus
JP3591772B2 (ja) * 2000-12-08 2004-11-24 コナミ株式会社 自走体によるゲーム装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0944249A (ja) * 1995-07-31 1997-02-14 Nippon Steel Corp 移動体制御方法
JPH0942910A (ja) * 1995-07-31 1997-02-14 Nippon Steel Corp ゲーム機用位置検出装置
JPH0947573A (ja) * 1995-08-07 1997-02-18 Konami Co Ltd 競争ゲーム装置
JPH09203604A (ja) * 1996-01-26 1997-08-05 Nippon Steel Corp 移動体の位置検出装置
JPH09225138A (ja) * 1996-02-27 1997-09-02 Sega Enterp Ltd 走行体の位置検出装置

Also Published As

Publication number Publication date
AU2011225104B2 (en) 2013-08-15
US20120329539A1 (en) 2012-12-27
JP2011188907A (ja) 2011-09-29
US8491367B2 (en) 2013-07-23
CN102781526A (zh) 2012-11-14
JP4927965B2 (ja) 2012-05-09
AU2011225104A1 (en) 2012-08-09
CN102781526B (zh) 2013-12-11

Similar Documents

Publication Publication Date Title
JP4927965B2 (ja) 走行体の走行制御装置
JPH08224373A (ja) 移動体の給電装置
EP0728504B1 (en) A running model for a race game machine
EP0728502B1 (en) A game machine
JPH0728958B2 (ja) 競争ゲーム装置
JP2645851B2 (ja) 競争ゲーム装置及びその制御方法
JP2650643B2 (ja) ゲーム装置
JPH09122352A6 (ja) ゲーム装置
JP5083521B2 (ja) ゲーム装置
JP2003038842A (ja) ゲーム装置用位置検出装置
JP2965035B2 (ja) 競争ゲーム装置及びその制御方法
JP3946856B2 (ja) 競争ゲーム装置
JP3601453B2 (ja) 移動体制御装置及びゲーム装置
JP3593068B2 (ja) ゲーム装置用位置検出装置
JP3084412B2 (ja) 競争ゲーム装置及びその制御方法
JPH0517118Y2 (ja)
JP3752582B2 (ja) 競争ゲーム装置
JP2861978B2 (ja) 競争ゲーム装置及びその制御方法
JP3503892B2 (ja) ゲーム装置用位置検出装置
JPH09192347A (ja) ゲーム装置
JP2694689B2 (ja) ゲーム装置
JPH11244520A (ja) 競馬ゲーム装置
JPH09225138A (ja) 走行体の位置検出装置
JPH0265883A (ja) 競争遊戯装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180011667.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11753471

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011225104

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2011225104

Country of ref document: AU

Date of ref document: 20110311

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13582135

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11753471

Country of ref document: EP

Kind code of ref document: A1