WO2011111742A1 - ブロー成形体及びブロー成形体の製造方法 - Google Patents

ブロー成形体及びブロー成形体の製造方法 Download PDF

Info

Publication number
WO2011111742A1
WO2011111742A1 PCT/JP2011/055507 JP2011055507W WO2011111742A1 WO 2011111742 A1 WO2011111742 A1 WO 2011111742A1 JP 2011055507 W JP2011055507 W JP 2011055507W WO 2011111742 A1 WO2011111742 A1 WO 2011111742A1
Authority
WO
WIPO (PCT)
Prior art keywords
density polyethylene
cyclic olefin
polyethylene resin
linear low
resin
Prior art date
Application number
PCT/JP2011/055507
Other languages
English (en)
French (fr)
Inventor
茂 根津
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Priority to CN2011800127223A priority Critical patent/CN102782019A/zh
Priority to KR1020127023338A priority patent/KR20120128666A/ko
Publication of WO2011111742A1 publication Critical patent/WO2011111742A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/06Injection blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/0005Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor characterised by the material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L45/00Compositions of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C2049/023Combined blow-moulding and manufacture of the preform or the parison using inherent heat of the preform, i.e. 1 step blow moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/08Biaxial stretching during blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0608PE, i.e. polyethylene characterised by its density
    • B29K2023/0633LDPE, i.e. low density polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/38Polymers of cycloalkenes, e.g. norbornene or cyclopentene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0068Permeability to liquids; Adsorption
    • B29K2995/0069Permeability to liquids; Adsorption non-permeable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • C08L23/0823Copolymers of ethene with aliphatic cyclic olefins

Definitions

  • the present invention relates to a blow molded article and a method for producing a blow molded article.
  • Polyethylene resin is used as various container materials because it is inexpensive and has excellent mechanical strength.
  • a polyethylene resin is used as a raw material for the injection stretch blow molded article, there has been a problem that it is difficult to perform high temperature release of the bottomed preform formed in the injection stretch blow molding process.
  • Patent Documents 1 and 2 disclose high-density polyethylene resins for injection stretch blow molding that solve the above problems. If the high-density polyethylene resin described in Patent Documents 1 and 2 is used, an injection stretch blow molded article using the polyethylene resin can be produced.
  • the injection stretch blow-molded body is produced by first molding a preform and then blow-molding the preform.
  • the polyethylene resin contained in the preform is crystallized, blow molding becomes difficult.
  • blow molding needs to be performed in a state where the temperature of the preform is adjusted to be equal to or higher than the melting point of the polyethylene resin.
  • the productivity of the injection stretch blow molded article is low.
  • the injection stretch blow-molded body is often a container or the like, and is often required to have a water vapor barrier property, transparency, and the like. Therefore, there is a demand for a technique for obtaining a blow molded article having high water vapor barrier properties and excellent transparency with high productivity while utilizing the properties of polyethylene resin such as chemical resistance, flexibility, and impact strength.
  • the present invention has been made in order to solve the above-mentioned problems, and its purpose is to provide a technique for obtaining a blow molded article using a polyethylene resin with high productivity with high water vapor barrier properties and excellent transparency. It is to provide.
  • the inventors of the present invention have made extensive studies to solve the above problems.
  • a blow molded article using a resin composition comprising as a main component a linear low-density polyethylene resin and a cyclic olefin-based resin having a glass transition point lower than the melting point of the linear low-density polyethylene resin.
  • the present invention provides the following.
  • Blow molding including a linear low density polyethylene resin and a cyclic olefin resin as main components, and the melting point (Tm) of the linear low density polyethylene resin being higher than the glass transition point of the cyclic olefin resin. body.
  • the blow molding step is a step of blow molding in a state where the temperature of the preform is not lower than the Tg and not higher than the crystallization temperature (Tc) of the linear low density polyethylene resin.
  • Tc crystallization temperature
  • the glass transition point is Tm-60 ° C. or higher and 100 ° C. or lower
  • the blow molding step is a step of blow molding in a state where the preform temperature is Tg or higher and Tm-20 ° C. or lower (4 )
  • the method for producing an injection stretch blow molded article according to (5) is also known as the glass transition point.
  • an injection stretch blow molded article is produced using a resin composition comprising a linear low density polyethylene resin and a cyclic olefin resin having a glass transition point lower than the melting point of the linear low density polyethylene resin. Therefore, a blow molded article having high water vapor barrier properties and excellent transparency can be obtained with high productivity while utilizing the properties of polyethylene resin such as chemical resistance, flexibility and impact strength.
  • the blow molded article of the present invention contains a cyclic olefin resin and a linear low density polyethylene resin as main components.
  • a cyclic olefin resin and a linear low density polyethylene resin as main components.
  • Linear low density polyethylene resin The linear low density polyethylene resin used for this invention will not be specifically limited if melting
  • Tm melting
  • Tg glass transition point
  • the linear low density polyethylene resin is a copolymer of an ⁇ -olefin having 3 or more carbon atoms and ethylene, and has a density of about 0.890 to 0.945 g / cm 3 .
  • the carbon number of the ⁇ -olefin as the copolymer component is generally about 3 to 20. Specific examples include propylene, butene-1, methylpentene-1, hexene-1, octene-1.
  • the density of the linear low density polyethylene resin is approximately within the above range, but in the present invention, the linear low density polyethylene resin having a density of about 0.910 g / cm 3 or more and 0.938 g / cm 3 or less. Is preferably used. If the density of the linear low-density polyethylene resin is 0.910 g / cm 3 or more, it is preferable because the influence of a decrease in heat resistance, water vapor barrier properties, and strength (rigidity) due to a decrease in density tends to be small. 0.938 g / cm 3 or less is preferable because it is easy to achieve both physical properties such as heat resistance, water vapor barrier properties, strength (rigidity) and blow moldability.
  • linear low-density polyethylene resin those produced by a conventionally known general production method using a conventionally known general catalyst can be used.
  • conventionally known catalysts include Ziegler catalysts, metallocene catalysts, vanadium catalysts, and the like.
  • conventionally known production methods include production methods such as a gas phase polymerization method, a solution polymerization method, a slurry polymerization method, and a high-pressure ion polymerization method. In this invention, it is preferable to use the same kind of catalyst as the catalyst used for manufacture of cyclic olefin resin as mentioned later.
  • the melting point (Tm) of the linear low density polyethylene resin may be higher than the glass transition point (Tg) of the cyclic olefin resin described later.
  • the melting point (Tm) of the linear low density polyethylene resin means a melting peak temperature when measured at a heating rate of 10 ° C./min according to the method specified in JIS K7121 using a differential scanning calorimeter (DSC). .
  • DSC differential scanning calorimeter
  • the crystallization temperature (Tc) of the linear low-density polyethylene resin is not particularly limited, but the preferred crystallization temperature range is related to the glass transition point (Tg) of the cyclic olefin resin used as described later. Determined.
  • required with the following method is employ
  • DSC differential thermal scanning calorimeter
  • approximately 10 mg of the resin to be measured is precisely weighed in an aluminum pan for DSC measurement, and heated at a heating rate of 10 ° C./min from room temperature. The temperature was raised to 200 ° C. and kept isothermal for 2 minutes, and then cooled to 0 ° C. at a cooling rate of 10 ° C./min.
  • the crystallization peak temperature (Tc) is determined from the thermogram in this cooling process.
  • the melt flow rate (MFR) of the linear low density polyethylene resin is not particularly limited, but the preferable range of the melt flow rate (MFR) is determined by the relationship with the MFR of the cyclic olefin resin to be used, as will be described later.
  • the MFR adopts a value measured under conditions of a temperature of 190 ° C. and a load of 2.16 kg according to the method defined in JIS K7210.
  • the content of the linear low density polyethylene resin in the blow molded article is not particularly limited, but is preferably 40% by mass or more and 80% by mass or less.
  • the content of the linear low-density polyethylene resin is 40% by mass or more, physical properties such as chemical resistance, flexibility, and impact strength can be imparted to the blow molded article.
  • the content of the linear low-density polyethylene resin is 80% by mass or less, the problems due to the use of the linear low-density polyethylene resin by containing a cyclic olefin-based resin or the like described later can be suppressed.
  • a cyclic olefin-based resin which will be described later, as described later, the productivity of the blow molded article can be improved and the water vapor barrier property can also be improved.
  • a linear low-density polyethylene resin having higher heat resistance than a cyclic olefin-based resin is used, and therefore blow molding is performed by increasing the content of the linear low-density polyethylene resin. Heat resistance can be imparted to the body.
  • the content of the linear low density polyethylene resin in the blow molded product is 50% by mass or more, the heat resistance of the linear low density polyethylene resin is likely to appear in the blow molded product.
  • Cyclic olefin resin imparts firmness to the blow molded product. For this reason, even if it uses a linear low density polyethylene resin for the raw material of a blow molded object, the moldability deterioration of a blow molded object can be suppressed by using cyclic olefin resin together.
  • the cyclic olefin-based resin has high transparency and high water vapor barrier property, when a blow molded product is produced using a linear low density polyethylene resin, a blow molded product having high transparency and excellent water vapor barrier property is obtained. can get.
  • the cyclic olefin-based resin used in the present invention includes a cyclic olefin component as a copolymer component, includes a cyclic olefin component in the main chain, and has a glass transition point lower than the melting point of the above-described linear low-density polyethylene resin.
  • the polyolefin resin is not particularly limited as long as it has a polyolefin resin. Examples thereof include addition polymers of cyclic olefins or hydrogenated products thereof, addition copolymers of cyclic olefins and ⁇ -olefins or hydrogenated products thereof.
  • the cyclic olefin-based resin containing the cyclic olefin component used in the present invention as a copolymerization component includes those obtained by grafting and / or copolymerizing an unsaturated compound having a polar group to the above polymer.
  • Examples of the polar group include a carboxyl group, an acid anhydride group, an epoxy group, an amide group, an ester group, and a hydroxyl group.
  • Examples of the unsaturated compound having a polar group include (meth) acrylic acid and maleic acid. Acid, maleic anhydride, itaconic anhydride, glycidyl (meth) acrylate, alkyl (meth) acrylate (carbon number 1-10) ester, alkyl maleate (carbon number 1-10) ester, (meth) acrylamide, (meta And 2-hydroxyethyl acrylate.
  • an addition copolymer of a cyclic olefin and an ⁇ -olefin or a hydrogenated product thereof can be preferably used.
  • cyclic olefin resin containing the cyclic olefin component used in the present invention as a copolymerization component a commercially available resin can also be used.
  • commercially available cyclic olefin-based resins include TOPAS (registered trademark) (Topas Advanced Polymers), Apel (registered trademark) (Mitsui Chemicals), Zeonex (registered trademark) (manufactured by Nippon Zeon), Examples include ZEONOR (registered trademark) (manufactured by ZEON Corporation), ARTON (registered trademark) (manufactured by JSR Corporation), and the like.
  • the addition copolymer of cyclic olefin and ⁇ -olefin preferably used in the composition of the present invention is not particularly limited. Particularly preferred examples include a copolymer comprising [1] an ⁇ -olefin component having 2 to 20 carbon atoms and [2] a cyclic olefin component represented by the following general formula (I). ... (I) (Wherein R 1 to R 12 may be the same or different and are each selected from the group consisting of a hydrogen atom, a halogen atom, and a hydrocarbon group; R 9 and R 10 , R 11 and R 12 may be integrated to form a divalent hydrocarbon group, R 9 or R 10 and R 11 or R 12 may form a ring with each other. N represents 0 or a positive integer; When n is 2 or more, R 5 to R 8 may be the same or different in each repeating unit. )
  • ⁇ -olefin component having 2 to 20 carbon atoms which is a copolymer component of an addition polymer of a cyclic olefin component preferably used in the present invention and another copolymer component such as ethylene, is not particularly limited.
  • ethylene is most preferably used alone.
  • R 1 to R 12 in the general formula (I) may be the same or different and are selected from the group consisting of a hydrogen atom, a halogen atom, and a hydrocarbon group.
  • R 1 to R 8 include, for example, a hydrogen atom; a halogen atom such as fluorine, chlorine and bromine; a lower alkyl group such as a methyl group, an ethyl group, a propyl group and a butyl group. May be different from each other, may be partially different, or all may be the same.
  • R 9 to R 12 include, for example, hydrogen atom; halogen atom such as fluorine, chlorine, bromine; methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, hexyl group, stearyl.
  • An alkyl group such as a cyclohexyl group; a cycloalkyl group such as a cyclohexyl group; a substituted or unsubstituted aromatic hydrocarbon group such as a phenyl group, a street group, an ethylphenyl group, an isopropylphenyl group, a naphthyl group, an anthru group; Groups, phenethyl groups, and other aralkyl groups in which an alkyl group is substituted with an aryl group. These may be different, may be partially different, or all may be the same. Good.
  • R 9 and R 10 or R 11 and R 12 are integrated to form a divalent hydrocarbon group
  • alkylidene groups such as an ethylidene group, a propylidene group, and an isopropylidene group. Can be mentioned.
  • the formed ring may be monocyclic or polycyclic, or may be a polycyclic ring having a bridge.
  • a ring having a double bond, or a ring composed of a combination of these rings may be used.
  • these rings may have a substituent such as a methyl group.
  • cyclic olefin component represented by the general formula (I) include those similar to those described in JP-A-2007-302722.
  • cyclic olefin components may be used singly or in combination of two or more.
  • a method for polymerizing an ⁇ -olefin component having 2 to 20 carbon atoms and a [2] cyclic olefin component represented by formula (I) and a method for hydrogenating the obtained polymer are particularly limited. Instead, it can be carried out according to known methods. Random copolymerization or block copolymerization may be used, but random copolymerization is preferred.
  • the polymerization catalyst used is not particularly limited, and a cyclic olefin resin can be obtained by a known method using a conventionally known catalyst such as a Ziegler-Natta, metathesis, or metallocene catalyst.
  • a conventionally known catalyst such as a Ziegler-Natta, metathesis, or metallocene catalyst.
  • the addition copolymer of cyclic olefin and ⁇ -olefin or the hydrogenated product thereof preferably used in the present invention is preferably produced using a metallocene catalyst.
  • a metallocene catalyst for the production of the cyclic olefin resin and also to use the metallocene catalyst for the production of the above-mentioned linear low density polyethylene resin.
  • metathesis catalyst examples include molybdenum or tungsten-based metathesis catalysts known as cycloolefin ring-opening polymerization catalysts (for example, described in JP-A Nos. 58-127728 and 58-129003).
  • the polymer obtained by the metathesis catalyst uses an inorganic carrier-supported transition metal catalyst, etc., and 90% or more of the double bonds in the main chain and 98% or more of the carbon-carbon double bonds in the side chain aromatic ring are hydrogenated. It is preferable to add.
  • the cyclic olefin-based resin (A) does not impair the object of the present invention other than [1] the ⁇ -olefin component having 2 to 20 carbon atoms and [2] the cyclic olefin component represented by the general formula (I). In the range, other copolymerizable unsaturated monomer components may be contained as required.
  • the unsaturated monomer that may be optionally copolymerized is not particularly limited, and examples thereof include hydrocarbon monomers containing two or more carbon-carbon double bonds in one molecule. Can be mentioned. Specific examples of the hydrocarbon monomer having two or more carbon-carbon double bonds in one molecule include those similar to those described in JP-A-2007-302722.
  • the glass transition point (Tg) of the cyclic olefin resin is lower than the melting point (Tm) of the linear low density polyethylene resin. Since the preform temperature during blow molding must be higher than Tg, if Tg is higher than Tm, the preform temperature during blow molding must be set above the melting point of the linear low density polyethylene resin. This is because the effect of improving the productivity of the blow molded product by lowering the temperature of the proform at the time of blow molding cannot be obtained. In addition, even when Tg is higher than Tm, the point which can provide water vapor
  • the glass transition point (Tg) of the cyclic olefin-based resin is usually set to less than 130 ° C. because the melting point (Tm) of the linear low density polyethylene resin is usually about 90 to 130 ° C.
  • the improvement in the productivity of blow molded products which is one of the effects of the present invention, is that the temperature at which the cyclic olefin-based resin crystallizes the linear low density polyethylene resin is lowered, and the temperature of the preform at the time of blow molding is linearized. This is realized by lowering the melting point of the low-density polyethylene resin below the melting point. Therefore, in order to improve the productivity of the blow molded product, it is necessary to set the temperature of the preform at the time of blow molding to Tg or more and less than Tm. Therefore, if the difference between Tg and Tm is small, the temperature of the preform must be adjusted to a value close to Tm, and the effect of improving productivity becomes small.
  • Tg and Tm are necessary to some extent.
  • the difference between Tg and Tm can be determined in consideration of, for example, the crystallization temperature (Tc) of the following linear low density polyethylene resin and the content of the cyclic olefin component in the cyclic olefin resin.
  • the improvement of the productivity of the blow-molded product can be obtained by lowering the temperature at which the cyclic olefin-based resin crystallizes the linear low-density polyethylene resin. Therefore, even if the temperature of the preform at the time of blow molding is set to a condition lower than the crystallization temperature (Tc) of the linear low density polyethylene resin, the linear low density polyethylene resin does not crystallize. Can be molded. Therefore, the glass transition point (Tg) of the cyclic olefin-based resin is preferably less than the crystallization temperature (Tc) of the linear low-density polyethylene resin.
  • the productivity improvement effect of the present invention is obtained because the cyclic olefin component in the cyclic olefin resin inhibits crystallization of the linear low-density polyethylene resin. Therefore, if the content of the cyclic olefin component in the cyclic olefin resin is small, the effect of lowering the crystallization temperature of the linear low density polyethylene resin is considered to be small.
  • cyclic olefin component in cyclic olefin resin decreases, the effect acquired by including cyclic olefin resin, such as a water vapor
  • the glass transition point (Tg) of the cyclic olefin resin is Tm ⁇ 60 ° C. or more and 100 ° C. It is preferable that it is below °C.
  • the melt flow rate of the cyclic olefin resin is not particularly limited, but by combining the fluidity of the cyclic olefin resin and the fluidity of the linear low density polyethylene resin, the cyclic olefin resin and the linear low density polyethylene are combined. It becomes easy to mix with resin. As a result, it is presumed that the effect of lowering the crystallization temperature of the linear low-density polyethylene resin of the cyclic olefin resin is increased. If both the MFR of the linear low-density polyethylene resin and the MFR of the cyclic olefin resin are about 1.5 g / 10 min to 3.0 g / 10 min, these components are preferably mixed easily.
  • the effects obtained by using a cyclic olefin resin improved productivity, improved water vapor barrier properties, high transparency, etc.
  • a linear low-density polyethylene resin chemical resistance
  • Flexibility Flexibility
  • impact strength etc.
  • the mass ratio of the cyclic olefin resin and the linear low density polyethylene resin in the blow molded product Is preferably 4/6 or more and 8/2 or less.
  • the content of the cyclic olefin resin in the blow molded product is not particularly limited, but is preferably 20% by mass or more. If content of cyclic olefin resin is 20 mass% or more, the physical properties which cyclic olefin resin, such as water vapor
  • the blow molded article of the present invention may contain other thermoplastic resins in addition to the above-mentioned linear low density polyethylene resin and cyclic olefin resin, as long as the object of the present invention is not impaired. .
  • the blow molded article of the present invention contains various additives such as an antioxidant, a weather stabilizer, an ultraviolet absorber, an antibacterial agent, a flame retardant, and a colorant as long as the effects of the present invention are not impaired. May be.
  • the method for producing a blow molded product of the present invention includes a preform molding process and a blow molding process.
  • a preform molding process a blow molding process.
  • a hot parison method in which the preform molding step and the blow molding step are performed in a series of steps. It may be.
  • the present invention can perform the blow molding process in a state where the temperature of the preform is low, so that the time for heating the preform during blow molding can be shortened.
  • the present invention blow-molds a low-temperature preform, the time for cooling the blow-molded body immediately after molding can be shortened.
  • the method for producing a blow molded article of the present invention will be described taking the cold parison method as an example.
  • the preform molding step is a step of molding a preform mainly composed of a cyclic olefin resin and a linear low density polyethylene resin.
  • the preform can be manufactured using a conventionally known molding method. Of the conventionally known molding methods, injection molding is preferred.
  • injection molding is preferred.
  • the injection molding conditions for producing the preform can be suitably set appropriately from the type of resin used, the blending ratio of each component, and the like.
  • the pellet of each component as described above may be used as a raw material, or a compound previously compounded may be used.
  • the blow molding step is a step of blow molding the preform in a state where the temperature of the preform is not lower than the glass transition point (Tg) of the cyclic olefin resin and lower than the melting point (Tm) of the linear low density polyethylene resin.
  • the temperature of the preform can be adjusted to a temperature lower than the melting point of the linear low density polyethylene resin because the cyclic olefin resin can lower the temperature at which the linear low density polyethylene resin crystallizes. Even in such a state, blow molding can be performed. Since blow molding is performed by adjusting the temperature of the preform lower than before, the heating time for heating the preform to be blow-molded can be shortened, and the cooling time of the obtained blow-molded product can also be shortened.
  • Tc crystallization temperature
  • the heating method at the time of heating a preform is not specifically limited, A preform can be heated by a conventionally well-known method. Moreover, the value measured with the infrared thermometer is employ
  • Blow molding conditions and the like are not particularly limited, and can be performed by a method similar to that used for manufacturing containers and the like from preforms that have been conventionally performed.
  • the blow molded article of the present invention has properties of polyethylene resin such as chemical resistance, flexibility, impact strength, etc., and also has high water vapor barrier properties and excellent transparency.
  • the blow molded article of the present invention is blow molded by setting the temperature of the preform to a lower temperature than in the prior art. For this reason, compared with the conventional blow molded article, the injection stretch blow molded article obtained by the production method of the present invention has a higher degree of orientation in the TD direction and a degree of orientation in the MD direction. Specifically, when the degree of orientation in the 360 ° C. direction is measured with a molecular orientation meter, the degree of orientation in the MD direction and the degree of orientation in the TD direction are both 1.2 or more.
  • LLDPE1 a linear low density polyethylene resin having a density of 0.926 g / cm 3 and an MFR of 2.1 g / 10 min (temperature 190 ° C., load 2.16 kg), produced using a Ziegler-Natta catalyst, melting point 124 °C, crystallization temperature 108.5 °C (manufactured by Nippon Polyethylene Co., Ltd., trade name "NOVATEC LL”)
  • LLDPE2 a linear low-density polyethylene resin having a density of 0.918 g / cm 3 and an MFR of 2.0 g / 10 minutes (temperature 190 ° C., load 2.16 kg) manufactured using a metallocene catalyst, melting point 121 ° C.
  • Crystallization temperature 99.6 ° C (Nippon Polyethylene Co., Ltd., trade name “Harmolex”)
  • HDPE high density polyethylene resin having a density of 0.953 g / cm 3 and MFR of 5.0 g / 10 min (temperature 190 ° C., load 2.16 kg), melting point 132 ° C., crystallization temperature 118 ° C. (manufactured by Nippon Polyethylene Co., Ltd.)
  • Product name "NOVATEC HD”) COC1: a cyclic olefin resin produced by using a metallocene catalyst and having a glass transition point of 78 ° C.
  • COC2 a cyclic olefin resin produced using a metallocene catalyst, having a glass transition point of 128 ° C. and an MFR of 2.0 g / 10 min (manufactured by TOPAS Advanced Polymers, trade name “TOPAS 7012”)
  • COC3 A cyclic olefin resin produced using a metallocene catalyst, having a glass transition point of 68 ° C. and an MFR of 2.0 g / 10 min (manufactured by TOPAS Advanced Polymers, trade name “TOPAS9506”)
  • Examples and Comparative Examples> The materials shown in Table 1 were melted and mixed with a twin-screw extruder (manufactured by Nippon Steel Tsunasho, product surface “TEX30”) to obtain raw material pellets. This raw material pellet was blow-molded under the conditions shown in Table 2 using an injection stretch blow molding machine (trade name “Model SG3-100LL-20S” manufactured by Aoki Goken Laboratory) to produce a container (longitudinal stretching 1 .4 times, circumferential stretching 1.5 times).
  • TEX30 twin-screw extruder
  • the shape of the container is 68 mm in height of the straight body part, 40 mm in outer diameter of the straight body part, 25 mm in outer diameter of the mouth part, 90 mm in total height, the average thickness of the container is 1.0 mm, the capacity of the container is 75 cc, and the container The surface area of was 100 cm 2 .
  • the preform surface temperature was measured by using a radial non-contact thermometer for the surface temperature of the preform body immediately before blow molding.
  • the blow molded article of the present invention can be obtained by adjusting the temperature of the preform to a temperature lower than the melting point of the linear low density polyethylene resin and performing blow molding. Further, it is possible to obtain a blow molded article having high water vapor barrier properties and excellent transparency while utilizing the properties of polyethylene resin such as chemical resistance, flexibility and impact strength.
  • Comparative Example 2 in order to obtain a blow molded article utilizing the properties of polyethylene resin such as chemical resistance, flexibility, and impact strength, it is necessary to perform blow molding by adjusting the temperature of the preform to a higher temperature. Therefore, productivity is lowered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 水蒸気バリア性が高く、透明性に優れ、ポリエチレン樹脂を使用したブロー成形体を高い生産性で得るための技術を提供する。 直鎖状低密度ポリエチレン樹脂と、上記直鎖状低密度ポリエチレン樹脂の融点よりも低いガラス転移点を持つ環状オレフィン系樹脂とを主成分として含む樹脂組成物を用いて、環状オレフィン系樹脂のガラス転移点(Tg)以上直鎖状低密度ポリエチレン樹脂の融点(Tm)未満の状態で、プリフォームをブロー成形する。

Description

ブロー成形体及びブロー成形体の製造方法
 本発明は、ブロー成形体及びブロー成形体の製造方法に関する。
 ポリエチレン樹脂は安価で機械強度に優れているので各種容器素材として用いられている。しかしながら、射出延伸ブロー成形体の原料としてポリエチレン樹脂を使用した場合、射出延伸ブロー成形工程で成形される有底プリフォームの高温離型が困難であるという問題が存在した。
 上記問題を解決する射出延伸ブロー成形用の高密度ポリエチレン樹脂が、特許文献1、2に開示されている。特許文献1、2に記載の高密度ポリエチレン樹脂を使用すれば、ポリエチレン樹脂を用いた射出延伸ブロー成形体を製造することができる。
特開平09-194534号公報 特開2000-86722号公報
 射出延伸ブロー成形体は、先ず、プリフォームを成形し、次いでこのプリフォームをブロー成形することで作製する。プリフォームに含まれるポリエチレン樹脂が結晶化するとブロー成形をすることが困難になる。このため、ブロー成形は、プリフォームの温度をポリエチレン樹脂の融点以上に調整した状態で行う必要がある。その結果、ポリエチレン樹脂を原料に用いた場合、射出延伸ブロー成形体の生産性が低いという問題がある。
 上記生産性の問題を解決するために、結晶化し難く融点の低い低密度ポリエチレンを使用すると、射出延伸ブロー成形体の成形性が悪く新たな問題を生じる。このため、ポリエチレン樹脂を使用した射出延伸ブロー成形体を高い生産性で得ることはできない。
 ところで、射出延伸ブロー成形体は、容器等である場合が多く、水蒸気バリア性、透明性等も求められる場合が多い。したがって、耐薬品性、柔軟性、衝撃強度等のポリエチレン樹脂の特性を活かしつつ、水蒸気バリア性が高く、透明性に優れるブロー成形体を高い生産性で得る技術が求められている。
 本発明は、上記課題を解決するためになされたものであり、その目的は、水蒸気バリア性が高く、透明性に優れ、ポリエチレン樹脂を使用したブロー成形体を高い生産性で得るための技術を提供することにある。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、直鎖状低密度ポリエチレン樹脂と、上記直鎖状低密度ポリエチレン樹脂の融点よりも低いガラス転移点を持つ環状オレフィン系樹脂とを主成分として含む樹脂組成物を用いてブロー成形体を製造することで、上記課題が解決されることを見出し、本発明を完成するに至った。より具体的には、本発明は以下のものを提供する。
 (1) 直鎖状低密度ポリエチレン樹脂と環状オレフィン系樹脂とを主成分として含み、前記直鎖状低密度ポリエチレン樹脂の融点(Tm)は、前記環状オレフィン系樹脂のガラス転移点より高いブロー成形体。
 (2) 前記直鎖状低密度ポリエチレン樹脂の含有量と、前記環状オレフィン系樹脂の含有量との質量比(直鎖状低密度ポリエチレン樹脂/環状オレフィン系樹脂)が、4/6以上8/2以下である(1)に記載のブロー成形体。
 (3) 前記環状オレフィン系樹脂及び前記直鎖状低密度ポリエチレン樹脂が、それぞれメタロセン系触媒により重合された(1)又は(2)に記載のブロー成形体。
 (4) 環状オレフィン系樹脂と直鎖状低密度ポリエチレン樹脂とを主成分とするプリフォームを成形するプリフォーム成形工程と、前記プリフォームの温度が、前記環状オレフィン系樹脂のガラス転移点(Tg)以上前記直鎖状低密度ポリエチレン樹脂の融点(Tm)未満の状態で、前記プリフォームをブロー成形するブロー成形工程と、を有する射出延伸ブロー成形体の製造方法。
 (5) 前記ブロー成形工程は、前記プリフォームの温度が、前記Tg以上前記直鎖状低密度ポリエチレン樹脂の結晶化温度(Tc)以下の状態でブロー成形する工程である(4)に記載の射出延伸ブロー成形体の製造方法。
 (6) 前記ガラス転移点が、Tm-60℃以上100℃以下であり、前記ブロー成形工程は、前記プリフォームの温度がTg以上Tm-20℃以下の状態でブロー成形する工程である(4)又は(5)に記載の射出延伸ブロー成形体の製造方法。
 (7) 射出延伸ブローしてなり、分子配向計で360℃方向の配向度を測定した場合のMD方向の配向度、TD方向の配向度がともに1.2以上である(1)から(3)のいずれかに記載のブロー成形体。
 本発明によれば、直鎖状低密度ポリエチレン樹脂と直鎖状低密度ポリエチレン樹脂の融点よりも低いガラス転移点を持つ環状オレフィン系樹脂とを含む樹脂組成物を用いて射出延伸ブロー成形体を作製するため、耐薬品性、柔軟性、衝撃強度等のポリエチレン樹脂の特性を活かしつつ、水蒸気バリア性が高く、透明性に優れるブロー成形体を高い生産性で得ることができる。
 以下、本発明の一実施形態について詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。
<ブロー成形体>
 本発明のブロー成形体は、環状オレフィン系樹脂と直鎖状低密度ポリエチレン樹脂とを主成分として含む。先ず、主成分の直鎖状低密度ポリエチレン樹脂、環状オレフィン系樹脂について説明する。
[直鎖状低密度ポリエチレン樹脂]
 本発明に用いられる直鎖状低密度ポリエチレン樹脂は、融点(Tm)が後述する環状オレフィン系樹脂のガラス転移点(Tg)より高いものであれば特に限定されない。直鎖状低密度ポリエチレン樹脂を使用した場合、低密度ポリエチレンを使用した場合よりもブロー成形体の成形性に優れ、高密度ポリエチレン樹脂を使用した場合のように結晶化しやすい問題がほとんど生じない。後述する通り、高密度ポリエチレン樹脂を使用した場合よりも強度が低下し、成形性が悪化する問題は、後述する環状オレフィン系樹脂の使用により改善できる。
 直鎖状低密度ポリエチレン樹脂とは、炭素数が3以上のα-オレフィンとエチレンとの共重合体であり、密度が0.890~0.945g/cm程度のものを指す。共重合成分のα-オレフィンの炭素数は、一般的に3~20程度である。具体的には、プロピレン、ブテン-1、メチルペンテン-1、ヘキセン-1、オクテン-1等を挙げることができる。上記の通り、直鎖状低密度ポリエチレン樹脂は、密度が低いためブロー成形体の透明性をほとんど悪化させない。
 直鎖状低密度ポリエチレン樹脂の密度は、およそ上記の範囲内であるが、本発明においては、密度が0.910g/cm以上0.938g/cm以下程度の直鎖状低密度ポリエチレン樹脂を用いることが好ましい。直鎖状低密度ポリエチレン樹脂の密度が0.910g/cm以上であれば、密度の低下による耐熱性、水蒸気バリア性、強度(剛性)の低下の影響が小さい傾向にあるため好ましく、密度が0.938g/cm以下であれば耐熱性、水蒸気バリア性、強度(剛性)等の物性とブロー成形性との両立を図りやすいため好ましい。
 直鎖状低密度ポリエチレン樹脂としては、従来公知の一般的な触媒を用いて、従来公知の一般的な製造方法で製造したものを使用することができる。従来公知の触媒としては、チーグラ系触媒、メタロセン系触媒、バナジウム系触媒等を挙げることができる。従来公知の製造方法としては、気相重合法、溶液重合法、スラリー重合法、高圧イオン重合法等の製造方法を挙げることができる。本発明においては、後述する通り、環状オレフィン系樹脂の製造に使用する触媒と同じ種類の触媒を使用することが好ましい。
 直鎖状低密度ポリエチレン樹脂の融点(Tm)は、後述する環状オレフィン系樹脂のガラス転移点(Tg)より高ければよい。直鎖状低密度ポリエチレン樹脂の融点(Tm)とは、示差走査熱量計(DSC)を用い、JIS K7121に規定する方法に従って昇温速度10℃/分で測定したときの融解ピーク温度を意味する。上記の方法で測定した場合、一般的な直鎖状低密度ポリエチレン樹脂の融点は90~130℃程度である。
 直鎖状低密度ポリエチレン樹脂の結晶化温度(Tc)は、特に限定されないが、好ましい結晶化温度の範囲は、後述する通り、使用する環状オレフィン系樹脂のガラス転移点(Tg)との関係で決まる。なお、結晶化温度(Tc)は、以下の方法で求めた値を採用する。示差熱走査型熱量計(DSC)を用い、JIS K7121に規定する方法に従って、測定対象となる樹脂をDSC測定用アルミパンに約10mgを精秤し、室温から10℃/minの加熱速度にて200℃まで昇温し、2分間等温にて保持した後、10℃/minの冷却速度にて0℃まで冷却した。この冷却過程におけるサーモグラムから結晶化ピーク温度(Tc)を求める。
 直鎖状低密度ポリエチレン樹脂のメルトフローレート(MFR)は、特に限定されないが、好ましいメルトフローレート(MFR)の範囲は、後述する通り、使用する環状オレフィン系樹脂のMFRとの関係で決まる。なお、MFRは、JIS K7210に規定する方法に従って、温度190℃、荷重2.16kgの条件で測定した値を採用する。
 ブロー成形体中の直鎖状低密度ポリエチレン樹脂の含有量は、特に限定されないが、40質量%以上80質量%以下であることが好ましい。直鎖状低密度ポリエチレン樹脂の含有量が40質量%以上であれば、耐薬品性、柔軟性、衝撃強度等の物性をブロー成形体に付与することができる。直鎖状低密度ポリエチレン樹脂の含有量が80質量%以下であれば、後述する環状オレフィン系樹脂等を含有させ、直鎖状低密度ポリエチレン樹脂を使用することによる問題点を抑えることができる。例えば、後述する環状オレフィン系樹脂を用いることで、後述する通り、ブロー成形体の生産性が改善し、水蒸気バリア性も改善することができる。
 また、本発明の場合、直鎖状低密度ポリエチレン樹脂は、環状オレフィン系樹脂よりも耐熱性の高いものが使用されるため、直鎖状低密度ポリエチレン樹脂の含有量を多くすることでブロー成形体に耐熱性を付与することができる。使用する樹脂にもよるが、ブロー成形体中の直鎖状低密度ポリエチレン樹脂の含有量が50質量%以上であれば、直鎖状低密度ポリエチレン樹脂の耐熱性がブロー成形体に表れやすい。
[環状オレフィン系樹脂]
 環状オレフィン系樹脂は、直鎖状低密度ポリエチレン樹脂の結晶化を阻害するため、環状オレフィン系樹脂と直鎖状低密度ポリエチレン樹脂とを併用してブロー成形体を作成すると、プリフォームの温度をより抑えた条件でブロー成形することができる。その結果、ブロー成形体の冷却時間等の短縮ができ、ブロー成形体の生産性が高まる。
 環状オレフィン系樹脂は、ブロー成形体に堅さを付与する。このため、直鎖状低密度ポリエチレン樹脂をブロー成形体の原料に用いても、環状オレフィン系樹脂を併せて用いることで、ブロー成形体の成形性悪化を抑えることができる。
 また、環状オレフィン系樹脂は高い透明性、高い水蒸気バリア性を有するため、直鎖状低密度ポリエチレン樹脂を併用してブロー成形体を作製すると透明性が高く、水蒸気バリア性に優れるブロー成形体が得られる。
 本発明に用いられる環状オレフィン系樹脂は、環状オレフィン成分を共重合成分として含むものであり、環状オレフィン成分を主鎖に含み、上述の直鎖状低密度ポリエチレン樹脂の融点より低いガラス転移点を持つポリオレフィン系樹脂であれば、特に限定されるものではない。例えば、環状オレフィンの付加重合体又はその水素添加物、環状オレフィンとα-オレフィンの付加共重合体又はその水素添加物等を挙げることができる。
 また、本発明に用いられる環状オレフィン成分を共重合成分として含む環状オレフィン系樹脂としては、上記重合体に、さらに極性基を有する不飽和化合物をグラフト及び/又は共重合したもの、を含む。
 極性基としては、例えば、カルボキシル基、酸無水物基、エポキシ基、アミド基、エステル基、ヒドロキシル基等を挙げることができ、極性基を有する不飽和化合物としては、(メタ)アクリル酸、マレイン酸、無水マレイン酸、無水イタコン酸、グリシジル(メタ)アクリレート、(メタ)アクリル酸アルキル(炭素数1~10)エステル、マレイン酸アルキル(炭素数1~10)エステル、(メタ)アクリルアミド、(メタ)アクリル酸-2-ヒドロキシエチル等を挙げることができる。
 本発明においては、環状オレフィンとα-オレフィンの付加共重合体又はその水素添加物を好ましく用いることができる。
 また、本発明に用いられる環状オレフィン成分を共重合成分として含む環状オレフィン系樹脂としては、市販の樹脂を用いることも可能である。市販されている環状オレフィン系樹脂としては、例えば、TOPAS(登録商標)(Topas Advanced Polymers社製)、アペル(登録商標)(三井化学社製)、ゼオネックス(登録商標)(日本ゼオン社製)、ゼオノア(登録商標)(日本ゼオン社製)、アートン(登録商標)(JSR社製)等を挙げることができる。
 本発明の組成物に好ましく用いられる環状オレフィンとα-オレフィンの付加共重合体としては、特に限定されるものではない。特に好ましい例としては、〔1〕炭素数2~20のα-オレフィン成分と、〔2〕下記一般式(I)で示される環状オレフィン成分と、を含む共重合体を挙げることができる。
Figure JPOXMLDOC01-appb-C000001
・・・(I)
(式中、R~R12は、それぞれ同一でも異なっていてもよく、水素原子、ハロゲン原子、及び、炭化水素基からなる群より選ばれるものであり、
 RとR10、R11とR12は、一体化して2価の炭化水素基を形成してもよく、
 R又はR10と、R11又はR12とは、互いに環を形成していてもよい。
 また、nは、0又は正の整数を示し、
 nが2以上の場合には、R~Rは、それぞれの繰り返し単位の中で、それぞれ同一でも異なっていてもよい。)
〔〔1〕炭素数2~20のα-オレフィン成分〕
 本発明に好ましく用いられる環状オレフィン成分とエチレン等の他の共重合成分との付加重合体の共重合成分となる炭素数2~20のα-オレフィンは、特に限定されるものではない。例えば、特開2007-302722と同様のものを挙げることができる。また、これらのα-オレフィン成分は、1種単独でも2種以上を同時に使用してもよい。これらの中では、エチレンの単独使用が最も好ましい。
〔〔2〕一般式(I)で示される環状オレフィン成分〕
 本発明に好ましく用いられる環状オレフィン成分とエチレン等の他の共重合成分との付加重合体において、共重合成分となる一般式(I)で示される環状オレフィン成分について説明する。
 一般式(I)におけるR~R12は、それぞれ同一でも異なっていてもよく、水素原子、ハロゲン原子、及び、炭化水素基からなる群より選ばれるものである。
 R~Rの具体例としては、例えば、水素原子;フッ素、塩素、臭素等のハロゲン原子;メチル基、エチル基、プロピル基、ブチル基等の低級アルキル基等を挙げることができ、これらはそれぞれ異なっていてもよく、部分的に異なっていてもよく、また、全部が同一であってもよい。
 また、R~R12の具体例としては、例えば、水素原子;フッ素、塩素、臭素等のハロゲン原子;メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ヘキシル基、ステアリル基等のアルキル基;シクロヘキシル基等のシクロアルキル基;フェニル基、通りル基、エチルフェニル基、イソプロピルフェニル基、ナフチル基、アン通りル基等の置換又は無置換の芳香族炭化水素基;ベンジル基、フェネチル基、その他アルキル基にアリール基が置換したアラルキル基等を挙げることができ、これらはそれぞれ異なっていてもよく、部分的に異なっていてもよく、また、全部が同一であってもよい。
 RとR10、又はR11とR12とが一体化して2価の炭化水素基を形成する場合の具体例としては、例えば、エチリデン基、プロピリデン基、イソプロピリデン基等のアルキリデン基等を挙げることができる。
 R又はR10と、R11又はR12とが、互いに環を形成する場合には、形成される環は単環でも多環であってもよく、架橋を有する多環であってもよく、二重結合を有する環であってもよく、またこれらの環の組み合わせからなる環であってもよい。また、これらの環はメチル基等の置換基を有していてもよい。
 一般式(I)で示される環状オレフィン成分の具体例としては、特開2007-302722と同様のものを挙げることができる。
 これらの環状オレフィン成分は、1種単独でも、また2種以上を組み合わせて使用してもよい。これらの中では、ビシクロ[2.2.1]ヘプタ-2-エン(慣用名:ノルボルネン)を単独使用することが好ましい。
 〔1〕炭素数2~20のα-オレフィン成分と〔2〕一般式(I)で表される環状オレフィン成分との重合方法及び得られた重合体の水素添加方法は、特に限定されるものではなく、公知の方法に従って行うことができる。ランダム共重合であっても、ブロック共重合であってもよいが、ランダム共重合であることが好ましい。
 また、用いられる重合触媒についても特に限定されるものではなく、チーグラー・ナッタ系、メタセシス系、メタロセン系触媒等の従来周知の触媒を用いて周知の方法により環状オレフィン系樹脂を得ることができる。本発明に好ましく用いられる環状オレフィンとα-オレフィンの付加共重合体又はその水素添加物は、メタロセン系触媒を用いて製造されることが好ましい。
 特に環状オレフィン系樹脂の製造にメタロセン系触媒を使用し、上述の直鎖状低密度ポリエチレン樹脂の製造にもメタロセン系触媒を使用することが好ましい。両樹脂ともにメタロセン系触媒を使用して製造することで、これらの樹脂の相溶性がさらに高まり、上記直鎖状低密度ポリエチレン樹脂の結晶化を抑える効果がさらに高まると推測される。
 メタセシス触媒としては、シクロオレフィンの開環重合用触媒として公知のモリブデン又はタングステン系メタセシス触媒(例えば、特開昭58-127728号公報、同58-129013号公報等に記載)が挙げられる。また、メタセシス触媒で得られる重合体は無機担体担持遷移金属触媒等を用い、主鎖の二重結合を90%以上、側鎖の芳香環中の炭素-炭素二重結合の98%以上を水素添加することが好ましい。
〔その他共重合成分〕
 環状オレフィン系樹脂(A)は、上記の〔1〕炭素数2~20のα-オレフィン成分と、〔2〕一般式(I)で示される環状オレフィン成分以外に、本発明の目的を損なわない範囲で、必要に応じて他の共重合可能な不飽和単量体成分を含有していてもよい。
 任意に共重合されていてもよい不飽和単量体としては、特に限定されるものではないが、例えば、炭素-炭素二重結合を1分子内に2個以上含む炭化水素系単量体等を挙げることができる。炭素-炭素二重結合を1分子内に2個以上含む炭化水素系単量体の具体例としては、特開2007-302722と同様のものを挙げることができる。
 環状オレフィン系樹脂のガラス転移点(Tg)は、直鎖状低密度ポリエチレン樹脂の融点(Tm)よりも低い。ブロー成形時のプリフォームの温度はTgより高い必要があるため、TgがTmよりも高い場合には、ブロー成形時のプリフォームの温度を直鎖状低密度ポリエチレン樹脂の融点以上に設定しなければならず、ブロー成形時のプロフォームの温度を下げることによるブロー成形体の生産性向上の効果が得られないからである。なお、TgがTmよりも高い場合であっても、ブロー成形体に水蒸気バリア性を付与できる点、透明性を付与できる点、成形性を向上させられる点については、本発明と同様である。
 環状オレフィン系樹脂のガラス転移点(Tg)は、直鎖状低密度ポリエチレン樹脂の融点(Tm)が通常90~130℃程度のため、通常130℃未満に設定される。なお、環状オレフィン系樹脂のガラス転移点(Tg)は、DSC法(JIS K7121記載の方法)によって昇温速度10℃/分の条件で測定した値を採用する。
 本発明の効果の一つであるブロー成形体の生産性の向上は、環状オレフィン系樹脂が直鎖状低密度ポリエチレン樹脂の結晶化する温度を下げ、ブロー成形時のプリフォームの温度を直鎖状低密度ポリエチレン樹脂の融点以下に下げることで実現される。したがって、ブロー成形体の生産性向上のためには、ブロー成形時のプリフォームの温度をTg以上Tm未満に設定する必要がある。したがって、TgとTmとの差が少なければ、プリフォームの温度をTmに近い値に調整しなければならず、生産性向上の効果は小さくなる。このため、TgとTmとの差は、ある程度必要である。TgとTmとの差は、例えば以下のような直鎖状低密度ポリエチレン樹脂の結晶化温度(Tc)、環状オレフィン系樹脂中の環状オレフィン成分の含有量を考慮して決めることができる。
 上記の通り、ブロー成形体の生産性の向上は、環状オレフィン系樹脂が直鎖状低密度ポリエチレン樹脂の結晶化する温度を下げることにより得られる。したがって、ブロー成形時のプリフォームの温度を、直鎖状低密度ポリエチレン樹脂の結晶化温度(Tc)よりも低い条件に設定しても、直鎖状低密度ポリエチレン樹脂が結晶化しないため、ブロー成形することができる。したがって、環状オレフィン系樹脂のガラス転移点(Tg)は、直鎖状低密度ポリエチレン樹脂の結晶化温度(Tc)未満であることが好ましい。
 環状オレフィン系樹脂中の環状オレフィン成分が少なくなると、環状オレフィン系樹脂のガラス転移点も低くなる傾向がある。ところで、本発明の生産性向上の効果は、環状オレフィン樹脂中の環状オレフィン成分が直鎖状低密度ポリエチレン樹脂の結晶化を阻害するために得られると推測される。したがって、環状オレフィン樹脂中の環状オレフィン成分の含有量が少ないと、直鎖状低密度ポリエチレン樹脂の結晶化する温度を下げる効果が小さくなると考えられる。また、環状オレフィン系樹脂中の環状オレフィン成分が少なくなると、水蒸気バリア性向上等の環状オレフィン系樹脂を含有させることにより得られる効果が小さくなる。この点からも、環状オレフィン系樹脂中の環状オレフィン成分は一定の水準以上必要である。
 上記の点を考慮すると、通常の直鎖状低密度ポリエチレン樹脂(融点90~130℃程度)を使用する場合には、環状オレフィン系樹脂のガラス転移点(Tg)が、Tm-60℃以上100℃以下であることが好ましい。
 環状オレフィン系樹脂のメルトフローレートは、特に限定されないが、環状オレフィン系樹脂の流動性と直鎖状低密度ポリエチレン樹脂の流動性とを合わせることで、環状オレフィン系樹脂と直鎖状低密度ポリエチレン樹脂とが混ざりやすくなる。その結果、環状オレフィン系樹脂の直鎖状低密度ポリエチレン樹脂の結晶化する温度を下げる効果が大きくなると推測される。直鎖状低密度ポリエチレン樹脂のMFR、環状オレフィン系樹脂のMFRともに1.5g/10分以上3.0g/10分以下程度であれば、これらの成分が混ざりやすく好ましい。
 環状オレフィン系樹脂を使用することで得られる上記効果(生産性向上、水蒸気バリア性向上、高い透明性等)と、直鎖状低密度ポリエチレン樹脂を使用することで得られる上記効果(耐薬品性、柔軟性、衝撃強度等)とを共に得るためには、ブロー成形体中の環状オレフィン系樹脂と直鎖状低密度ポリエチレン樹脂との質量比(直鎖状低密度ポリエチレン樹脂/環状オレフィン系樹脂)を4/6以上8/2以下にすることが好ましい。
 ブロー成形体中の環状オレフィン系樹脂の含有量は特に限定されないが、20質量%以上であることが好ましい。環状オレフィン系樹脂の含有量が20質量%以上であれば、水蒸気バリア性、透明性等の環状オレフィン系樹脂の有する物性をブロー成形体に充分に付与することができる。
[その他の成分]
 本発明のブロー成形体には、上記の直鎖状低密度ポリエチレン樹脂、環状オレフィン系樹脂の他に、本発明の目的を阻害しない範囲で、他の熱可塑性樹脂を含むものであってもよい。
 本発明のブロー成形体には、本発明の効果を害さない範囲で、酸化防止剤、耐候安定剤、紫外線吸収剤、抗菌剤、難燃剤、着色剤等の種々の添加剤を含むものであってもよい。
<ブロー成形体の製造方法>
 本発明のブロー成形品の製造方法は、プリフォーム成形工程と、ブロー成形工程とを備える。以下、各工程について説明する。本発明のブロー成形品の製造方法においては、プリフォーム成形工程とブロー成形工程とを分けて行うコールドパリソン方式でも、プリフォーム成形工程とブロー成形工程とを一連の工程で行うホットパリソン方式のいずれであってもよい。特にコールドパリソン方式であれば、本発明はブロー成形工程をプリフォームの温度が低い状態で行えるため、ブロー成形時にプリフォームを加熱する時間を短縮できる。また、本発明は低い温度のプリフォームをブロー成形するため、成形直後のブロー成形体を冷却する時間も短縮できる。以下、コールドパリソン方式を例に本発明のブロー成形体の製造方法について説明する。
[プリフォーム成形工程]
 プリフォーム成形工程は、環状オレフィン系樹脂と直鎖状低密度ポリエチレン樹脂とを主成分とするプリフォームを成形する工程である。プリフォームは従来公知の成形方法を用いて製造することができる。従来公知の成形方法の中でも射出成形が好ましい。射出成形でプリフォームを製造する場合、例えば、直鎖状低密度ポリエチレン樹脂ペレット、環状オレフィン系樹脂ペレット、必要であれば、その他の樹脂の樹脂ペレット及びその他の成分を、射出成形機に投入して、プリフォームを得ることができる。プリフォームを製造する際の射出成形条件は、使用する樹脂の種類、各成分の配合比等から適宜好ましい条件を設定することができる。なお、原料として上記のような各成分のペレットを用いてもよいし、予めコンパウンドしたものを用いてもよい。
[ブロー成形工程]
 ブロー成形工程は、プリフォームの温度が環状オレフィン系樹脂のガラス転移点(Tg)以上直鎖状低密度ポリエチレン樹脂の融点(Tm)未満の状態で、プリフォームをブロー成形する工程である。
 上述の通り、本発明では環状オレフィン系樹脂が直鎖状低密度ポリエチレン樹脂の結晶化する温度を下げることができるため、プリフォームの温度を直鎖状低密度ポリエチレン樹脂の融点未満の温度に調整した状態でもブロー成形することができる。プリフォームの温度を従来よりも低く調整してブロー成形するため、プリフォームをブロー成形するために加熱する加熱時間の短縮ができ、得られたブロー成形体の冷却時間も短縮できる。
 特に、環状オレフィン系樹脂を使用することで、直鎖状低密度ポリエチレン樹脂の結晶化温度(Tc)以下であっても、直鎖状低密度ポリエチレン樹脂の結晶化を抑えることができる。このため、本発明のブロー成形体の製造方法であれば、プリフォームの温度をTc以下の状態に調整してもブロー成形体を得ることができる。TcはTmよりも20℃程度低い温度であり、ガラス転移点がTm-60℃以上100℃以下の環状オレフィン系樹脂を用い、プリフォームの温度をTg以上Tm-20℃以下に調整して、ブロー成形を行うことが好ましい。
 なお、プリフォームを加熱する際の加熱方法は特に限定されず、従来公知の方法でプリフォームを加熱することができる。また、上記プリフォームの温度は、赤外線温度計によって測定した値を採用する。
 ブロー成形の条件等は特に限定されず、従来から行われているプリフォームから容器等の製造と同様の方法で行うことができる。
<ブロー成形体>
 本発明のブロー成形体は、耐薬品性、柔軟性、衝撃強度等のポリエチレン樹脂の特性を有しつつ、水蒸気バリア性も高く、透明性にも優れる。本発明のブロー成形体は、製造の際に、プリフォームの温度を従来よりも低い温度に設定してブロー成形する。このため、従来のブロー成形体と比較して、本発明の製法で得られた射出延伸ブロー成形体は、TD方向の配向度、MD方向の配向度が大きくなる。具体的には、分子配向計で360℃方向の配向度を測定した場合のMD方向の配向度、TD方向の配向度がともに1.2以上になる。
 以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
<材料>
 LLDPE1:チーグラー・ナッタ触媒を用いて製造された密度が0.926g/cm、MFRが2.1g/10分(温度190℃、荷重2.16kg)の直鎖状低密度ポリエチレン樹脂、融点124℃、結晶化温度108.5℃(日本ポリエチレン社製、商品名「ノバテックLL」)
 LLDPE2:メタロセン触媒を用いて製造された密度が0.918g/cm、MFRが2.0g/10分(温度190℃、荷重2.16kg)の直鎖状低密度ポリエチレン樹脂、融点121℃、結晶化温度99.6℃(日本ポリエチレン社製、商品名「ハーモレックス」)
 HDPE:密度が0.953g/cm、MFRが5.0g/10分(温度190℃、荷重2.16kg)の高密度ポリエチレン樹脂、融点132℃、結晶化温度118℃(日本ポリエチレン社製、商品名「ノバテックHD」)
 COC1:メタロセン触媒を用いて製造され、ガラス転移点が78℃、MFRが2.0g/10分(温度190℃、荷重2.16kg)の環状オレフィン系樹脂(TOPAS Advanced Polymers社製、商品名「TOPAS8007」)
 COC2:メタロセン触媒を用いて製造され、ガラス転移点が128℃、MFRが2.0g/10分の環状オレフィン系樹脂(TOPAS Advanced Polymers社製、商品名「TOPAS7012」)
 COC3:メタロセン触媒を用いて製造され、ガラス転移点が68℃、MFRが2.0g/10分の環状オレフィン系樹脂(TOPAS Advanced Polymers社製、商品名「TOPAS9506」)
<実施例及び比較例>
 表1に示す材料を、二軸押出機(日本製綱所製、商品面「TEX30」)により溶融混合して原料ペレットを得た。この原料ペレットをインジェクションストレッチブロー成形機(青木固研究所製、商品名「型式SG3-100LL-20S」)を用いて、表2に示す条件でブロー成形を行い、容器を作製した(縦延伸1.4倍、円周方向延伸1.5倍)。容器の形状は、直胴部の高さ68mm、直胴部の外径40mm、口部外径25mm、全高さ90mmであり、容器の平均肉厚は1.0mm、容器の容量は75cc、容器の表面積は100cmであった。なお、プリフォーム表面温度は、ブロー成形直前のプリフォーム直胴部の表面温度を放射式の非接触温度計を用いて測定した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
<評価>
 実施例、比較例の容器について、外観評価、落下衝撃試験、水分透過性、耐熱性、分子配向度の評価を行った。評価方法は下記の通りである。また、評価結果は表3にまとめた。
[外観評価]
 容器の外表面についてその表面状態を観察した。表面状態を以下の三段階で評価した。なお、外観評価が×の容器は、延伸の際に容器の底部が破れたものや、容器の胴部形状が不均一であるもの又は、ブローアップができず所定形状が得られなかったもの等であり、他の評価は行わなかった。
○:鮫肌や細かな凹凸が無く、表面が平滑なもの。
△:わずかに鮫肌や細かな凹凸が見られるもの。
×:鮫肌や凹凸が見られ、表面が平滑ではないもの。
[落下衝撃試験]
 容器に水を70cc入れ、キャップをしたものを容器底部が下になるように高さ1.5mからコンクリート床に落下させた。これを10回繰り返し、容器の破壊、変形状態を調べた。評価は以下の三段階で行った。
○:10回の落下試験後、容器が破壊・変形しなかったもの。
△:容器が破壊しないが、変形したもの。
×:10回を待たず、破壊したもの。
[水分透過性]
 容器に水を60cc充填し、アルミ製キャップにて密封した。この容器を40℃のオーブンにて6週間保存した。保存前後の容器の重量を測定し、1週間(7日)あたりの水の減少量を算出した。
[耐熱性]
 空容器を90℃のオーブンにて3時間保存した後、保存前後の容器直胴部3箇所の外径ならびに胴部4箇所の高さを測定し、変形状態を調べた。評価は以下の二段階で行った。
○:直胴部3箇所の外径寸法変化ならびに胴部4箇所の高さ寸法変化の全てが3%未満のもの。
×:直胴部3箇所の外径寸法変化ならびに胴部4箇所の高さ寸法変化のいずれかが3%以上のもの。
[分子配向度]
 容器の直胴部から試験片(20mm×20mm×20mm)を切り出し、高精度型分子配向計(王子計測機器製、型式:MOA-3012)を用いて、360℃方向の配向度を測定し、MDならびにTDの配向度を求めた。
Figure JPOXMLDOC01-appb-T000004
 実施例2と比較例2の結果から明らかなように、本発明のブロー成形体は、直鎖状低密度ポリエチレン樹脂の融点未満の温度にプリフォームの温度を調整して、ブロー成形しても、耐薬品性、柔軟性、衝撃強度等のポリエチレン樹脂の特性を活かしつつ、水蒸気バリア性が高く、透明性に優れるブロー成形体を得ることができる。比較例2で耐薬品性、柔軟性、衝撃強度等のポリエチレン樹脂の特性を活かしたブロー成形体を得るためには、プリフォームの温度をさらに高い温度に調整してブロー成形を行う必要があるため、生産性が低くなる。
 実施例1、3~7の結果から明らかなように、プリフォームの温度を直鎖状低密度ポリエチレン樹脂の結晶化温度以下に設定してブロー成形しても、耐薬品性、柔軟性、衝撃強度等のポリエチレン樹脂の特性を活かしつつ、水蒸気バリア性が高く、透明性に優れるブロー成形体を得ることができる。
 実施例8の結果から明らかなように、プリフォームの温度を直鎖状低密度ポリエチレン樹脂の結晶化温度を大きく下回る温度に設定してブロー成形しても、耐薬品性、柔軟性、衝撃強度等のポリエチレン樹脂の特性を活かしつつ、水蒸気バリア性が高く、透明性に優れるブロー成形体を得ることができる。

Claims (7)

  1.  直鎖状低密度ポリエチレン樹脂と環状オレフィン系樹脂とを主成分として含み、
     前記直鎖状低密度ポリエチレン樹脂の融点(Tm)は、前記環状オレフィン系樹脂のガラス転移点より高いブロー成形体。
  2.  前記直鎖状低密度ポリエチレン樹脂の含有量と、前記環状オレフィン系樹脂の含有量との質量比(直鎖状低密度ポリエチレン樹脂/環状オレフィン系樹脂)が、4/6以上8/2以下である請求項1に記載のブロー成形体。
  3.  前記環状オレフィン系樹脂及び前記直鎖状低密度ポリエチレン樹脂が、それぞれメタロセン系触媒により重合された請求項1又は2に記載のブロー成形体。
  4.  環状オレフィン系樹脂と直鎖状低密度ポリエチレン樹脂とを主成分とするプリフォームを成形するプリフォーム成形工程と、
     前記プリフォームの温度が、前記環状オレフィン系樹脂のガラス転移点(Tg)以上前記直鎖状低密度ポリエチレン樹脂の融点(Tm)未満の状態で、前記プリフォームをブロー成形するブロー成形工程と、を有する射出延伸ブロー成形体の製造方法。
  5.  前記ブロー成形工程は、前記プリフォームの温度が、前記Tg以上前記直鎖状低密度ポリエチレン樹脂の結晶化温度(Tc)以下の状態でブロー成形する工程である請求項4に記載の射出延伸ブロー成形体の製造方法。
  6.  前記ガラス転移点が、Tm-60℃以上100℃以下であり、
     前記ブロー成形工程は、前記プリフォームの温度がTg以上Tm-20℃以下の状態でブロー成形する工程である請求項4又は5に記載の射出延伸ブロー成形体の製造方法。
  7.  射出延伸ブローしてなり、分子配向計で360℃方向の配向度を測定した場合のMD方向の配向度、TD方向の配向度がともに1.2以上である請求項1から3までのいずれか一項に記載のブロー成形体。
PCT/JP2011/055507 2010-03-10 2011-03-09 ブロー成形体及びブロー成形体の製造方法 WO2011111742A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2011800127223A CN102782019A (zh) 2010-03-10 2011-03-09 吹塑成型体及吹塑成型体的制造方法
KR1020127023338A KR20120128666A (ko) 2010-03-10 2011-03-09 블로우 성형체 및 블로우 성형체의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-053545 2010-03-10
JP2010053545A JP2011184636A (ja) 2010-03-10 2010-03-10 ブロー成形体及びブロー成形体の製造方法

Publications (1)

Publication Number Publication Date
WO2011111742A1 true WO2011111742A1 (ja) 2011-09-15

Family

ID=44563543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055507 WO2011111742A1 (ja) 2010-03-10 2011-03-09 ブロー成形体及びブロー成形体の製造方法

Country Status (4)

Country Link
JP (1) JP2011184636A (ja)
KR (1) KR20120128666A (ja)
CN (1) CN102782019A (ja)
WO (1) WO2011111742A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017155712A1 (en) 2016-03-11 2017-09-14 Topas Advanced Polymers, Inc. Injection stretch blow-molding (isbm) enhancement for semi-crystalline polyolefin containers utilizing alicyclic polyolefins

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6085667B2 (ja) * 2013-03-13 2017-02-22 ポリプラスチックス株式会社 溶媒用容器及び溶媒の保存方法
JP6506750B2 (ja) * 2013-06-28 2019-04-24 ダウ グローバル テクノロジーズ エルエルシー プロピレン系ポリマー及びエチレン系ポリマーを含む共押出多層フィルム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1059345A (ja) * 1996-08-12 1998-03-03 Kishimoto Akira 保香性プラスチック多層容器
JP2004254771A (ja) * 2003-02-24 2004-09-16 Kooken Medical Kk 波動式圧迫型循環促進装置用気密袋
JP2008517079A (ja) * 2004-10-18 2008-05-22 トパース・アドヴァンスト・ポリマーズ・ゲーエムベーハー 欠陥数の少ないフィルムを製造するためのポリマーブレンド
WO2008136970A1 (en) * 2007-05-02 2008-11-13 Polyplastics Co., Ltd Thermoformed articles from sheet incorporating cycloolefin copolymer
JP2010031252A (ja) * 2008-06-27 2010-02-12 Polyplastics Co 溶融押出用ポリオレフィン系樹脂組成物及びそれを用いたフィルム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000086722A (ja) * 1998-09-16 2000-03-28 Asahi Chem Ind Co Ltd 射出延伸ブロー成形用高密度ポリエチレン樹脂

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1059345A (ja) * 1996-08-12 1998-03-03 Kishimoto Akira 保香性プラスチック多層容器
JP2004254771A (ja) * 2003-02-24 2004-09-16 Kooken Medical Kk 波動式圧迫型循環促進装置用気密袋
JP2008517079A (ja) * 2004-10-18 2008-05-22 トパース・アドヴァンスト・ポリマーズ・ゲーエムベーハー 欠陥数の少ないフィルムを製造するためのポリマーブレンド
WO2008136970A1 (en) * 2007-05-02 2008-11-13 Polyplastics Co., Ltd Thermoformed articles from sheet incorporating cycloolefin copolymer
JP2010031252A (ja) * 2008-06-27 2010-02-12 Polyplastics Co 溶融押出用ポリオレフィン系樹脂組成物及びそれを用いたフィルム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017155712A1 (en) 2016-03-11 2017-09-14 Topas Advanced Polymers, Inc. Injection stretch blow-molding (isbm) enhancement for semi-crystalline polyolefin containers utilizing alicyclic polyolefins
EP3452263A4 (en) * 2016-03-11 2020-01-15 Polyplastics Usa, Inc. IMPROVEMENT IN BI-STRETCH INJECTION BLOW MOLDING (ISBM) FOR SEMICRYSTALLINE POLYOLEFIN CONTAINERS USING ALICYCLIC POLYOLEFINS
US11577443B2 (en) 2016-03-11 2023-02-14 Polyplastics USA, Inc Injection stretch blow-molding (ISBM) enhancement for semi-crystalline polyolefin containers utilizing alicyclic polyolefins

Also Published As

Publication number Publication date
KR20120128666A (ko) 2012-11-27
JP2011184636A (ja) 2011-09-22
CN102782019A (zh) 2012-11-14

Similar Documents

Publication Publication Date Title
KR102387604B1 (ko) 컬레이션 수축 필름
EP2424729B1 (en) Composition and film comprising a c4-c10 alpha olefin containing polyolefin
JP2006290944A (ja) 容器蓋用ポリオレフィン樹脂材料およびそれからなる容器蓋
JPWO2009063819A1 (ja) 延伸シート用プロピレン系樹脂組成物、並びに該組成物を含む延伸シートおよび熱成形体
US8444908B2 (en) Polyolefin composition for injection stretch blow molding
JP2009040894A (ja) エチレン系重合体およびそれよりなるフィルム
US20230226739A1 (en) Injection Stretch Blow-Molding (ISBM) Enhancement for Semi-Crystalline Polyolefin Containers Utilizing Alicyclic Polyolefins
KR101530799B1 (ko) 사출 연신 취입 성형품
WO2011111742A1 (ja) ブロー成形体及びブロー成形体の製造方法
JP2006307122A (ja) ポリプロピレン系二軸延伸ブロー成形体
JP6569575B2 (ja) 射出成形用ポリエチレン及びそれを用いた成形品
JP5261702B2 (ja) 流れ指数が低い射出−延伸−ブロー成形用樹脂
JP5679572B2 (ja) 樹脂製多層容器
JP2018176424A (ja) ポリプロピレン組成物を含む多層フィルムまたはシート
JP5725730B2 (ja) 多層インジェクションブロー成形品及び多層インジェクションブロー成形品の製造方法。
JP5824244B2 (ja) 回収層を備える樹脂製多層容器
JP2009541083A (ja) 低溶融流動指数の射出−延伸−ブロー成形用樹脂溶融流動樹脂。
JP6289191B2 (ja) 射出ブロー成形体
JP2024002862A (ja) 重合体組成物および成形体
TW201207027A (en) Polypropylene compositions for oriented films
JP2021138870A (ja) 射出延伸ブロー成形体、容器および射出延伸ブロー成形用組成物
JP2013244641A (ja) 射出延伸ブロー成形体の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180012722.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11753400

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127023338

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11753400

Country of ref document: EP

Kind code of ref document: A1