WO2011111547A1 - ポリブチレンテレフタレート樹脂組成物 - Google Patents
ポリブチレンテレフタレート樹脂組成物 Download PDFInfo
- Publication number
- WO2011111547A1 WO2011111547A1 PCT/JP2011/054165 JP2011054165W WO2011111547A1 WO 2011111547 A1 WO2011111547 A1 WO 2011111547A1 JP 2011054165 W JP2011054165 W JP 2011054165W WO 2011111547 A1 WO2011111547 A1 WO 2011111547A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polybutylene terephthalate
- terephthalate resin
- resin composition
- acid
- mass
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K3/2279—Oxides; Hydroxides of metals of antimony
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/0066—Flame-proofing or flame-retarding additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0846—Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
- C08L23/0869—Acids or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
- C08L67/025—Polyesters derived from dicarboxylic acids and dihydroxy compounds containing polyether sequences
Definitions
- the present invention relates to a polybutylene terephthalate resin composition.
- Polybutylene terephthalate resin is excellent in mechanical properties, electrical properties, physical properties, chemical properties, and other properties, and has good workability, so as an engineering plastic, automotive parts, electrical / electronic components, It is used for a wide range of applications such as OA equipment parts.
- a method of blending at least one modified olefin polymer, an aliphatic polyester having a molecular weight of 400 to 1000, and a phosphorus-containing compound (Patent Document 1), a crystalline thermoplastic polyester resin, an olefin polymer and A method of blending a graft or block copolymer obtained from a vinyl polymer, a fatty acid ester obtained from a fatty acid having 12 or more carbon atoms, a flame retardant, and an inorganic flame retardant aid (Patent Document 2), a thermoplastic polyester The resin is modified with at least one selected from unsaturated carboxylic acids and derivatives thereof. Fin polymers, aliphatic esters having a molecular weight of 400-1000, a method of blending a flame retardant, and auxiliary flame retardant (Patent Document 3) are proposed.
- the bending elastic modulus of the polyoxymethylene resin composition is set to 1000 MPa or more and 2000 MPa or less to reduce the sliding noise generated by the gear (Patent Literature).
- Patent Literature 4 A method for reducing noise generated by sliding between a toothed cable and a conduit by using a resin coating material on the outer periphery of the toothed cable as a material having a bending elastic modulus of 150 to 1300 MPa (patent)
- a method using a material having a low bending elastic modulus as a material for a sliding part has been proposed, such as in literature 5).
- an elastomer having a low elastic modulus is blended, and the flexural modulus of the polybutylene terephthalate resin composition is increased. It can be reduced.
- the elastomer is generally inferior in flame retardancy. The flame retardancy of the resulting polybutylene terephthalate resin composition is impaired.
- the elastic modulus of the polybutylene terephthalate resin composition is not sufficiently reduced when the amount of the elastomer is small.
- a polybutylene terephthalate resin composition is not yet known.
- the present invention has been made in order to solve the above problems, and provides a polybutylene terephthalate resin composition that is excellent in slidability and flame retardancy, and that has low elastic modulus to suppress the generation of sliding noise.
- the purpose is to provide.
- the present inventors blended a poly (butylene terephthalate) resin composition with a polyester elastomer, an unsaturated carboxylic acid-modified olefin polymer, an organic halogen flame retardant, an antimony compound, and an ester derivative of a fatty acid having 12 or more carbon atoms.
- the polyester elastomer content is 25 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the total amount of the polybutylene terephthalate resin and the polyester elastomer, and the polyester elastomer content is based on the total amount of the polybutylene terephthalate resin composition.
- a polybutylene terephthalate resin (B) polyester elastomer, (C) unsaturated carboxylic acid-modified olefin polymer, (D) organic halogen flame retardant, (E) antimony compound, and (F) carbon
- a polybutylene terephthalate resin composition containing an ester derivative of a fatty acid having 12 or more atoms and satisfying the following conditions (I) and (II).
- (I) Content of the said (B) polyester elastomer is 25 mass parts or more and 50 mass parts or less with respect to 100 mass parts of total amounts of the said (A) polybutylene terephthalate resin and the said (B) polyester elastomer.
- (II) Content of the said (B) polyester elastomer is 27 mass% or less with respect to the said polybutylene terephthalate resin composition whole quantity.
- a polybutylene terephthalate resin composition which is excellent in slidability and flame retardancy and has reduced generation of sliding noise due to low elastic modulus.
- A polybutylene terephthalate resin
- B polyester elastomer
- C unsaturated carboxylic acid-modified olefin polymer
- D organic halogen flame retardant
- E antimony compound
- F carbon atom number
- the (A) polybutylene terephthalate resin used in the polybutylene terephthalate resin composition of the present invention includes a dicarboxylic acid component containing at least terephthalic acid or an ester-forming derivative thereof (C 1-6 alkyl ester, acid halide, etc.), A polybutylene terephthalate resin obtained by polycondensation with a glycol component containing at least an alkylene glycol (1,4-butanediol) having 4 carbon atoms or an ester-forming derivative thereof.
- the polybutylene terephthalate resin is not limited to a homopolybutylene terephthalate resin, and may be a copolymer containing 60 mol% or more (particularly 75 mol% or more and 95 mol% or less) of a butylene terephthalate unit.
- the amount of terminal carboxyl groups of the (A) polybutylene terephthalate resin used in the present invention is not particularly limited as long as the object of the present invention is not impaired.
- the amount of terminal carboxyl groups of the polybutylene terephthalate resin used in the present invention is preferably 30 meq / kg or less, and more preferably 25 meq / kg or less.
- the resulting polybutylene terephthalate resin composition is particularly excellent in heat shock resistance, and the strength is reduced by hydrolysis in a humid heat environment. It becomes difficult to receive.
- the lower limit value of the terminal carboxyl group amount of the polybutylene terephthalate resin is not particularly limited, but is preferably 5 meq / kg or more, and more preferably 10 meq / kg or more. In general, it is difficult to produce a polybutylene terephthalate resin having a terminal carboxyl group of less than 5 meq / kg. Moreover, when using the polybutylene terephthalate resin of this amount of terminal carboxyl groups, it is easy to prepare a polybutylene terephthalate resin composition having excellent heat shock resistance.
- the intrinsic viscosity of the (A) polybutylene terephthalate resin used in the present invention is not particularly limited as long as the object of the present invention is not impaired.
- the intrinsic viscosity (IV) of the polybutylene terephthalate resin is preferably 0.60 dL / g or more and 1.2 dL / g or less. More preferably, it is 0.65 dL / g or more and 0.9 dL / g or less.
- the resulting polybutylene terephthalate resin composition has particularly excellent moldability.
- the intrinsic viscosity can be adjusted by blending polybutylene terephthalate resins having different intrinsic viscosities.
- a polybutylene terephthalate resin having an intrinsic viscosity of 0.9 dL / g is prepared by blending a polybutylene terephthalate resin having an intrinsic viscosity of 1.0 dL / g and a polybutylene terephthalate resin having an intrinsic viscosity of 0.7 dL / g. Can do.
- the intrinsic viscosity (IV) of the polybutylene terephthalate resin can be measured, for example, in o-chlorophenol at a temperature of 35 ° C.
- examples of dicarboxylic acid components (comonomer components) other than terephthalic acid and its ester-forming derivatives include, for example, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 4 C 8-14 aromatic dicarboxylic acids such as 4,4'-dicarboxydiphenyl ether; C 4-16 alkanedicarboxylic acids such as succinic acid, adipic acid, azelaic acid and sebacic acid; C 5-10 such as cyclohexanedicarboxylic acid And cycloalkane dicarboxylic acids of the above; ester-forming derivatives of these dicarboxylic acid components (C 1-6 alkyl ester derivatives, acid halides, etc.). These dicarboxylic acid components can be used alone or in combination of two or more.
- C 8-12 aromatic dicarboxylic acids such as isophthalic acid
- C 6-12 alkanedicarboxylic acids such as adipic acid, azelaic acid, and sebacic acid are more preferable.
- glycol components (comonomer components) other than 1,4-butanediol for example, ethylene glycol, propylene glycol, trimethylene glycol, 1,3-butylene glycol, hexamethylene glycol, C 2-10 alkylene glycol such as neopentyl glycol and 1,3-octanediol; polyoxyalkylene glycol such as diethylene glycol, triethylene glycol and dipropylene glycol; alicyclic diol such as cyclohexanedimethanol and hydrogenated bisphenol A Aromatic diols such as bisphenol A and 4,4′-dihydroxybiphenyl; ethylene oxide 2-mol adduct of bisphenol A, propylene of bisphenol A Kisaido such as a three molar adduct, alkylene oxide adducts of C 2-4 of bisphenol A; or ester-forming derivatives of these glycols
- C 2-6 alkylene glycol such as ethylene glycol and trimethylene glycol
- polyoxyalkylene glycol such as diethylene glycol
- alicyclic diol such as cyclohexanedimethanol
- Examples of the comonomer component that can be used in addition to the dicarboxylic acid component and the glycol component include 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, 4-carboxy-4′-hydroxybiphenyl, and the like.
- any of the polybutylene terephthalate copolymers obtained by copolymerizing the comonomer components described above can be suitably used as the (A) polybutylene terephthalate resin. Moreover, you may use combining a homopolybutylene terephthalate polymer and a polybutylene terephthalate copolymer as (A) polybutylene terephthalate resin.
- the (B) polyester elastomer used in the present invention is generally a block copolymer having a structure in which a hard polyester block (hard segment made of aromatic polyester or the like) and a soft polyester block (soft segment) are bonded by an ester bond. is there.
- (B) Polyester elastomers can be classified into polyester-type polyester elastomers and polyether-type polyester elastomers depending on the type of soft polyester block, and any of them can be used preferably in the present invention.
- polyester elastomer will be described in the order of hard segment, soft segment, and polyester elastomer.
- the hard segment will be described below.
- the hard segment is made of hard polyester such as aromatic polyester.
- the hard polyester can be obtained by polycondensation of dicarboxylic acid and diol, polycondensation of oxycarboxylic acid, or the like.
- the hard polyester is preferably an aromatic polyester obtained by polycondensation of a monomer containing at least one aromatic monomer.
- aromatic monomers used for the production of aromatic polyesters include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-dicarboxydiphenyl ether; hydroquinone , Aromatic diols such as resorcin, 4,4′-dihydroxybiphenyl, bisphenol A; 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, 4-carboxy-4′-hydroxybiphenyl, etc.
- aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-dicarboxydiphenyl ether
- hydroquinone Aromatic diols such as resorcin, 4,4′-dihydroxybiphenyl, bisphenol A; 4-hydroxybenzoic acid, 3-hydroxybenz
- the aromatic polyester constituting the hard segment is not particularly limited as long as it is obtained using an aromatic monomer.
- Suitable aromatic polyester constituting the hard segment is, for example, all obtained by polycondensation of one or more monomers selected from the group consisting of aromatic dicarboxylic acids, aromatic diols, and aromatic hydroxycarboxylic acids.
- Aromatic polyester aromatic polyester obtained by polycondensation of aromatic dicarboxylic acid and non-aromatic diol (aliphatic diol, alicyclic diol, etc.); non-aromatic dicarboxylic acid (alkane dicarboxylic acid, cycloalkane dicarboxylic acid) Etc.) and an aromatic diol, and an aromatic polyester obtained by copolymerizing an aromatic hydroxycarboxylic acid and an aliphatic hydroxycarboxylic acid.
- aromatic polyester which comprises a hard segment
- crystalline aromatic polyester or liquid crystal polyester is preferable, and crystalline aromatic polyester is more preferable.
- Suitable crystalline aromatic polyesters constituting the hard segment include, for example, C 2-4 alkylene arylates such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate; 1 mol% or more based on the total amount of monomers
- Examples thereof include a modified C 2-4 alkylene arylate modified with a comonomer component of 30 mol% or less (more preferably 3 mol% or more and 25 mol% or less, particularly preferably 5 mol% or more and 20 mol% or less).
- polyester elastomer As the polyester elastomer, it is preferable to use a polyester elastomer having a polybutylene terephthalate segment as a hard segment because the resulting polybutylene terephthalate resin composition is easy to mold and has high mechanical properties.
- the polyester-type polyester elastomer is composed of the aforementioned hard segment and a soft segment made of soft polyester.
- the soft polyester constituting the soft segment can be obtained by polycondensation of dicarboxylic acid and diol, polycondensation of hydroxycarboxylic acid or lactone, and the like.
- the soft polyester is a polyester having a softer structure than the hard polyester constituting the hard segment, and is usually obtained by polycondensing a monomer containing at least one aliphatic monomer component.
- Examples of the aliphatic monomer component used as the monomer for the soft polyester include alkylene glycols such as ethylene glycol, propylene glycol, trimethylene glycol, 1,3-butylene glycol, hexamethylene glycol, neopentyl glycol, and 1,3-octanediol.
- alkylene glycols such as ethylene glycol, propylene glycol, trimethylene glycol, 1,3-butylene glycol, hexamethylene glycol, neopentyl glycol, and 1,3-octanediol.
- Polyoxyalkylene glycols such as polyoxyethylene glycol, polyoxypropylene glycol, and polyoxytetramethylene glycol; alkanedicarboxylic acids such as succinic acid, adipic acid, azelaic acid, and sebacic acid; fats such as glycolic acid and hydroxycaproic acid Hydroxycarboxylic acids; lactones such as propiolactone, butyrolactone, valerolactone, caprolactone ( ⁇ -caprolactone, etc.); these aliphatic monomer components C 1-6 alkyl esters, acid halides, esters forming derivatives such as acetylated. These aliphatic monomer components can be used in an appropriate combination of two or more. These aliphatic monomer components can be used in combination with non-aromatic monomers such as alicyclic diols and cycloalkanedicarboxylic acids, if necessary.
- alkanedicarboxylic acids such as succinic acid,
- the soft polyester constituting the soft segment of the polyester-type polyester elastomer is preferably an aliphatic polyester obtained from an alkanedicarboxylic acid and an aliphatic diol, or a polylactone obtained by ring-opening polymerization of a lactone.
- Polyether units contained in the soft segment of the polyether-type polyester elastomer include aliphatic polyether units containing polyoxy C 2-6 alkylene glycol units such as polyoxyethylene glycol, polyoxypropylene glycol, and polyoxytetramethylene glycol. And polyester units having an aliphatic polyether unit containing a polyoxy C 2-6 alkylene glycol unit.
- polyester unit having an aliphatic polyether unit a polyester unit obtained from polyoxyalkylene glycol and a non-aromatic dicarboxylic acid such as alkanedicarboxylic acid or cycloalkanedicarboxylic acid or an ester-forming derivative of nonaromatic dicarboxylic acid Is preferred.
- a non-aromatic dicarboxylic acid such as alkanedicarboxylic acid or cycloalkanedicarboxylic acid or an ester-forming derivative of nonaromatic dicarboxylic acid
- polyester elastomer used in the present invention can be prepared by copolymerizing the above-described component that gives the hard segment and the component that gives the soft segment according to a known method.
- polyester-type polyester elastomers used in the present invention include polybutylene terephthalate resins, aromatic crystalline polyesters such as copolymers of polybutylene terephthalate resins and copolymerization components (ethylene glycol, isophthalic acid, etc.), or And a block copolymer composed of a hard segment made of a liquid crystal polyester and a soft segment made of an aliphatic polyester obtained by copolymerization of C 2-6 alkylene glycol and C 6-12 alkanedicarboxylic acid.
- the mass ratio between the hard segment and the soft segment is preferably 10/90 or more and 90/10 or less, more preferably 20/80 or more and 80/20 or less, as the ratio of the soft segment / hard segment.
- 30/70 or more and 70/30 or less is particularly preferable, and 40/60 or more and 60/40 or less is most preferable.
- the content of the (B) polyester elastomer is 25 parts by mass or more and 50 parts by mass with respect to 100 parts by mass of the total amount of the (A) polybutylene terephthalate resin and the (B) polyester elastomer. It is more preferably 25 parts by mass or less and 45 parts by mass or less. Within this range, the flexural modulus of the polybutylene terephthalate resin composition can be favorably reduced by blending the (B) polyester elastomer into the polybutylene terephthalate resin composition.
- the content of the (B) polyester elastomer in the polybutylene terephthalate resin composition of the present invention is 27% by mass or less based on the total amount of the polybutylene terephthalate resin composition, and is 15% by mass or more and 27% by mass or less. More preferably, it is 17% by mass or more and 27% by mass or less.
- the (B) polyester elastomer can be used in an appropriate combination of two or more.
- the (C) unsaturated carboxylic acid-modified polyolefin polymer used in the polybutylene terephthalate resin composition of the present invention is the (c-1) olefin polymer modified with (c-2) an unsaturated carboxylic acid or a derivative thereof. It has been done.
- (C-1) As the olefin polymer, a homopolymer of an olefin monomer, a copolymer of an olefin monomer, an olefin monomer and an ⁇ , ⁇ -unsaturated carboxylic acid and / or ⁇ And a copolymer with ⁇ -unsaturated carboxylic acid ester.
- the homopolymer or copolymer of an olefin monomer is composed of units derived from at least one monomer selected from olefin monomers.
- the copolymer of the olefin monomer and the ⁇ , ⁇ -unsaturated carboxylic acid and / or ⁇ , ⁇ -unsaturated carboxylic acid ester is at least one monomer selected from olefin monomers.
- the olefin polymer is a copolymer of olefin monomers, it may be a random copolymer, a block copolymer, or a graft copolymer.
- olefin-based monomer examples include ⁇ -olefins, and the number of carbon atoms of the ⁇ -olefin is preferably 2 to 20, more preferably 2 to 16, and particularly preferably 2 to 10.
- ⁇ -olefins suitable as olefinic monomers used in the production of olefinic polymers include ethylene, propylene, 1-butene, 2-butene, isobutene, and 3-methyl-1 -Butene, 2-methyl-2-butene, 1-hexene, 2,3-dimethyl-2-butene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-dodecene and the like. These monomers can be used alone or in combination of two or more.
- (C-1) ⁇ , ⁇ -unsaturated carboxylic acid or ⁇ , ⁇ -unsaturated carboxylic acid ester used in the production of the olefin polymer includes (meth) acrylic acid, (meth) acrylic acid alkyl ester, ( And (meth) acrylic acid hydroxyalkyl ester.
- ⁇ , ⁇ -unsaturated carboxylic acid ester is a (meth) acrylic acid alkyl ester, a C 1-10 alkyl ester is preferable, and a C 1-6 alkyl ester is more preferable.
- ⁇ , ⁇ -unsaturated carboxylic acid ester is a (meth) acrylic acid hydroxyalkyl ester
- a C 2-6 hydroxyalkyl ester is preferable
- a C 2-4 hydroxyalkyl ester is more preferable.
- (C-1) Specific examples of compounds suitable as ⁇ , ⁇ -unsaturated carboxylic acid or ⁇ , ⁇ -unsaturated carboxylic acid ester used for the production of olefin polymers include methyl (meth) acrylate, ( Examples include ethyl (meth) acrylate, propyl (meth) acrylate, and butyl (meth) acrylate. Among these compounds, methyl acrylate, ethyl acrylate, propyl acrylate, and butyl acrylate are more preferable.
- the monomer used for the production of the olefin polymer preferably contains ethylene and / or propylene, and more preferably contains ethylene.
- (C-1) Modification component for modifying olefin polymer (c-2) Unsaturated carboxylic acid or derivatives thereof include maleic acid, citraconic acid, itaconic acid, tetrahydrophthalic acid, nadic acid, methyl Examples thereof include unsaturated carboxylic acids such as nadic acid, allyl succinic acid and (meth) acrylic acid, and derivatives of unsaturated carboxylic acids such as maleic anhydride. Of these modifying components, maleic anhydride is more preferably used. These modifying components may be used in combination of two or more.
- the amount of modification by (c-2) the unsaturated carboxylic acid or derivative thereof is 0 with respect to the mass of the (C) unsaturated carboxylic acid-modified olefin polymer. 1 mass% or more and 5 mass% or less are preferable, and 0.5 mass% or more and 3 mass% or less are more preferable.
- the amount of modification of the unsaturated carboxylic acid-modified olefin polymer is too small, (C) the unsaturated carboxylic acid-modified olefin polymer is easily separated in the polybutylene terephthalate resin composition, and peeling or molding during molding Problems such as deposit may occur.
- the method i) is more preferable because the ratio of the repeating units constituting the unsaturated carboxylic acid-modified olefin polymer can be easily controlled.
- the content of the (C) unsaturated carboxylic acid-modified polyolefin polymer is 100 parts by mass with respect to the total amount of (A) the polybutylene terephthalate resin and (B) the polyester elastomer. It is preferably 1 part by mass or more and 15 parts by mass or less, more preferably 1 part by mass or more and 12 parts by mass or less, and particularly preferably 1 part by mass or more and 10 parts by mass or less.
- the halogen contained in the organic halogen flame retardant is preferably bromine.
- the amount of halogen contained in the organic halogen flame retardant is preferably 20% by mass or more. If the amount of halogen is too small, it may be necessary to add a large amount of flame retardant to the polybutylene terephthalate resin composition in order to obtain the desired flame retardancy, and the mechanical properties of the polybutylene terephthalate resin composition may be impaired. is there.
- the content of (D) the organic halogen-based flame retardant is 5 to 5 parts by mass with respect to 100 parts by mass of the total amount of (A) polybutylene terephthalate resin and (B) polyester elastomer. 50 parts by mass is preferable, and 10 to 40 parts by mass is more preferable. (D) By setting the content of the organic halogen flame retardant within such a range, a polybutylene terephthalate resin composition having good flame retardancy can be prepared.
- the (E) antimony compound used in the polybutylene terephthalate resin composition of the present invention is used as a flame retardant aid.
- the (E) antimony compound used in the present invention is not particularly limited as long as the object of the present invention is not inhibited.
- Specific examples of the suitable (E) antimony compound include antimony trioxide, antimony tetraoxide, antimony pentoxide, antimony. Examples thereof include sodium acid and antimony halide.
- These antimony compounds may be used in combination of two or more, and may be used in combination with other flame retardant aids such as aluminum hydroxide, magnesium hydroxide, zinc sulfide and the like.
- the form of the (E) antimony compound is not particularly limited as long as the polyester resin composition of the present invention has good flame retardancy, but is preferably in the form of particles, preferably in the form of particles having an average particle diameter of 0.1 to 10 ⁇ m. More preferably.
- the content of the (E) antimony compound is 1 part by mass or more with respect to 100 parts by mass of the total amount of (A) polybutylene terephthalate resin and (B) polyester elastomer. It is preferably 25 parts by mass or less, and more preferably 5 parts by mass or more and 20 parts by mass or less.
- the polybutylene terephthalate resin composition contains the (E) antimony compound in such an amount, good flame retardancy can be obtained.
- the ester derivative of (F) a fatty acid having 12 or more carbon atoms used in the polybutylene terephthalate resin composition of the present invention is a fatty acid having 12 or more carbon atoms or an ester-forming derivative thereof, more preferably a fatty acid having 16 or more carbon atoms.
- the molecular weight of the fatty acid constituting the ester derivative of a fatty acid having 12 or more carbon atoms is not particularly limited as long as the object of the present invention is not impaired, but is preferably 400 or more and 2000 or less, preferably 600 or more and 1700 or less, 1000 Above 1500 is particularly preferable. If the molecular weight is too large, the abrasion resistance of the polybutylene terephthalate resin composition is likely to decrease, and if the molecular weight is too small, the desired slidability is caused by the effect of volatilization when preparing the polybutylene terephthalate resin composition by melting and kneading. It is difficult to obtain the improvement effect.
- the fatty acid constituting the ester derivative of a fatty acid having 12 or more carbon atoms is not particularly limited as long as the object of the present invention is not inhibited.
- Examples include acids, montanic acid, mellic acid, laccellic acid, cetreic acid, and erucic acid.
- the alcohol as the raw material of the ester derivative of a fatty acid having 12 or more carbon atoms is not particularly limited as long as the object of the present invention is not impaired. It may be.
- suitable alcohol constituting the ester derivative of a fatty acid having 12 or more carbon atoms for example, lauryl alcohol, isotridecyl alcohol, myristyl alcohol, cetyl alcohol, stearyl alcohol, behenyl alcohol, hexyldecyl alcohol, octyldodecyl alcohol , Ethylene glycol, polyethylene glycol, propylene glycol, butanediol, glycerin, erythritol, pentaerythritol and the like.
- the starting alcohol of the fatty acid ester derivative having 12 or more carbon atoms is a dihydric or higher polyhydric alcohol
- the fatty acid ester derivative having 12 or more carbon atoms has an unreacted hydroxyl group. It is preferable that it is not.
- Examples of compounds suitable as ester derivatives of fatty acids having 12 or more carbon atoms include stearyl stearate, stearyl behenate, behenyl behenate, ethylene glycol distearate, ethylene glycol dibehenate, glycerin tri Examples thereof include stearate, glycerol tribehenate, trimethylolpropane tristearate, trimethylolpropane triisostearate, pentaerythritol tetrastearate, pentaerythritol tetraisostearate and the like.
- an ester derivative of a fatty acid having 12 or more carbon atoms may be used in combination of two or more compounds.
- the content of the (F) fatty acid ester derivative having 12 or more carbon atoms in the polybutylene terephthalate resin composition of the present invention is 0 with respect to 100 parts by mass of the total amount of (A) polybutylene terephthalate resin and (B) polyester elastomer. It is preferably from 0.05 parts by weight to 10 parts by weight, and more preferably from 0.05 parts by weight to 8 parts by weight.
- fluorine-based resin suitable as an anti-drip agent examples include homo- or copolymers of fluorine-containing monomers such as tetrafluoroethylene, chlorotrifluoroethylene, vinylidene fluoride, hexafluoropropylene, perfluoroalkyl vinyl ether, and the fluorine-containing monomers. And a copolymer of a copolymerizable monomer such as ethylene, propylene, and (meth) acrylate. These fluororesins can be used alone or in combination of two or more.
- fluororesins examples include homopolymers such as polytetrafluoroethylene, polychlorotrifluoroethylene, and polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymers, and tetrafluoroethylene-perfluoro.
- copolymers such as alkyl vinyl ether copolymers, ethylene-tetrafluoroethylene copolymers, and ethylene-chlorotrifluoroethylene copolymers.
- the addition amount of the fluororesin is preferably 10 parts by mass or less, more preferably 0.1 part by mass or more and 5 parts by mass or less, and more preferably 0.2 part by mass or more and 1. part by mass with respect to 100 parts by mass of the (A) polybutylene terephthalate resin. 5 parts by mass or more is more preferable.
- the polybutylene terephthalate resin composition of the present invention further comprises an antioxidant, a heat stabilizer, an ultraviolet absorber, an antistatic agent, a dye, a pigment, a lubricant, a plasticizer, a release agent, and crystallization promotion depending on the purpose.
- an antioxidant e.g., a heat stabilizer, an ultraviolet absorber, an antistatic agent, a dye, a pigment, a lubricant, a plasticizer, a release agent, and crystallization promotion depending on the purpose.
- Various additives such as an agent, a crystal nucleating agent, and an epoxy compound may be included.
- the polybutylene terephthalate resin composition of the present invention is excellent in slidability and flame retardancy, and has a low flexural modulus and can reduce the generation of sliding noise. Therefore, it is used in various electrical / electronic products, OA equipment, and the like. It is suitably used as a material for sliding parts such as rollers, gears, cams, guides, pistons, bushings, bearings, bearings, sleeves, carriages, switch parts, stoppers, arms, shutter parts, pins, holders, levers, shafts, etc. .
- Examples 1 to 3 and Comparative Examples 1 to 3 In Examples 1 to 3 and Comparative Examples 1 to 3, the following materials were used as components of the polybutylene terephthalate resin composition.
- A1 Polybutylene terephthalate resin having an intrinsic viscosity of 0.875 (manufactured by Wintech Polymer Co., Ltd.)
- A2 Polybutylene terephthalate resin having an intrinsic viscosity of 1.1 (manufactured by Wintech Polymer Co., Ltd.)
- B1 Polyester elastomer
- B1 Ether-based polybutylene terephthalate elastomer (Toyobo Co., Ltd., Perprene GP400)
- C1 Unsaturated carboxylic acid-modified olefin polymer
- C1 Maleic anhydride modified polyethylene (Mitsui Chemicals, Tuffmer MM6850)
- D1 Organic halogen flame retardant]
- D1 Pentabromopolybenzyl acrylate (ICL-IP JAPAN Co., Ltd., FR-1025)
- E1 antimony compound
- the components shown in Table 1 were dry blended in the proportions (parts by mass) shown in Table 1, and using a twin screw extruder (TEX-30 manufactured by Nippon Steel), the cylinder temperature was 260 ° C. and the discharge amount Pellets of polybutylene terephthalate resin composition were prepared by melt-kneading under conditions of 15 kg / hr and screw rotation speed 150 rpm. A test piece was prepared using the obtained pellet, and the melt viscosity, tensile strength, tensile elongation, bending stress, bending elastic modulus, Charpy impact strength, flame retardancy, and friction coefficient of the polybutylene terephthalate resin composition was measured.
- Table 1 shows the mass ratio of (B) polyester elastomer to (B) / (A + B) as a total amount of (A) polybutylene terephthalate resin and (B) polyester elastomer.
- each physical property of the polybutylene terephthalate resin composition was measured according to the following method.
- Charpy impact strength was measured according to ISO179 / 1eA.
- Example 1 whose content of (B) polyester elastomer is 25 mass parts or more and 50 mass parts with respect to 100 mass parts of total amounts of (A) polybutylene terephthalate resin and (B) polyester elastomer.
- the flexural modulus is satisfactorily lowered to a range of 1000 MPa to 1500 MPa.
- the content of (B) polyester elastomer is less than 25 parts by mass with respect to 100 parts by mass of the total amount of (A) polybutylene terephthalate resin and (B) polyester elastomer.
- the elastic modulus is a high value of 1600 MPa or more.
- the polyester resin composition was prepared from (A) polybutylene terephthalate resin, (B) polyester elastomer, (C) unsaturated carboxylic acid-modified olefin polymer, and (D) organic halogen.
- the content of (B) the polyester elastomer is (A) a polybutylene terephthalate resin and (B) a polyester.
- the total amount with the elastomer is 100 parts by mass and the amount is 25 parts by mass or more and 50 parts by mass or less and 27% by mass or less with respect to the total amount of the polybutylene terephthalate resin composition, sliding characteristics and flame retardancy are achieved.
- Polybuty with excellent bending resistance and sufficiently low bending elastic modulus to prevent sliding noise It can be seen that can be prepared terephthalate resin composition.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
(I)前記(B)ポリエステルエラストマーの含有量が、前記(A)ポリブチレンテレフタレート樹脂と前記(B)ポリエステルエラストマーとの合計量100質量部に対して25質量部以上50質量部以下である。
(II)前記(B)ポリエステルエラストマーの含有量が、前記ポリブチレンテレフタレート樹脂組成物全量に対して27質量%以下である。
本発明のポリブチレンテレフタレート樹脂組成物において用いる(A)ポリブチレンテレフタレート樹脂は、少なくともテレフタル酸又はそのエステル形成性誘導体(C1-6のアルキルエステルや酸ハロゲン化物等)を含むジカルボン酸成分と、少なくとも炭素原子数4のアルキレングリコール(1,4-ブタンジオール)又はそのエステル形成性誘導体を含むグリコール成分とを重縮合して得られるポリブチレンテレフタレート系樹脂である。ポリブチレンテレフタレート樹脂はホモポリブチレンテレフタレート樹脂に限らず、ブチレンテレフタレート単位を60モル%以上(特に75モル%以上95モル%以下)含有する共重合体であってもよい。
本発明において用いる(B)ポリエステルエラストマーは、一般に、硬質ポリエステルブロック(芳香族ポリエステル等からなるハードセグメント)と、軟質ポリエステルブロック(ソフトセグメント)とがエステル結合により結合した構造を有するブロック共重合体である。(B)ポリエステルエラストマーは軟質ポリエステルブロックの種類によってポリエステル型ポリエステルエラストマーとポリエーテル型ポリエステルエラストマーとに分類でき、いずれも本発明において好適に使用できる。
以下ハードセグメントについて説明する。ハードセグメントは芳香族ポリエステル等の硬質ポリエステルにより構成される。硬質ポリエステルは、ジカルボン酸及びジオールの重縮合、オキシカルボン酸の重縮合等により得ることができる。硬質ポリエステルとしては、少なくとも1種の芳香族モノマーを含むモノマーを重縮合して得られる芳香族ポリエステルが好ましい。
以下ソフトセグメントについて説明する。(B)ポリエステルエラストマーのうちポリエステル型ポリエステルエラストマーは、前述のハードセグメントと軟質ポリエステルからなるソフトセグメントとから構成される。ソフトセグメントを構成する軟質ポリエステルは、ジカルボン酸とジオールとの重縮合、ヒドロキシカルボン酸やラクトンの重縮合等により得ることができる。軟質ポリエステルは、ハードセグメントを構成する硬質ポリエステルよりも柔軟な構造のポリエステルが使用され、通常、少なくとも1種の脂肪族モノマー成分を含むモノマーを重縮合して得られる。
本発明において用いる(B)ポリエステルエラストマーは、以上説明したハードセグメントを与える成分と、ソフトセグメントを与える成分とを、公知の方法に従い共重合することによって調製することができる。
本発明のポリブチレンテレフタレート樹脂組成物において用いる(C)不飽和カルボン酸変性ポリオレフィン系重合体は、(c-1)オレフィン系重合体が、(c-2)不飽和カルボン酸又はその誘導体によって変性されたものである。
ii)少なくともオレフィン系単量体を含む単量体と、(c-2)不飽和カルボン酸及び/又はその誘導体とを共重合する方法。
本発明のポリブチレンテレフタレート樹脂組成物において用いる(D)有機ハロゲン系難燃剤は、ハロゲンを含有する有機化合物であって、高分子材料を難燃化できるものであれば特に限定されず、高分子材料用に市販されている種々の難燃剤を使用することができる。
本発明のポリブチレンテレフタレート樹脂組成物において用いる(E)アンチモン化合物は難燃助剤として用いるものである。本発明において用いる(E)アンチモン化合物は、本発明の目的を阻害しない範囲で特に限定されず、好適な(E)アンチモン化合物の具体例として、三酸化アンチモン、四酸化アンチモン、五酸化アンチモン、アンチモン酸ナトリウム、ハロゲン化アンチモン等が挙げられる。これらのアンチモン化合物は2種以上を組み合わせて用いてもよく、水酸化アルミニウム、水酸化マグネシウム、硫化亜鉛等の他の難燃助剤と組み合わせて用いてもよい。
本発明のポリブチレンテレフタレート樹脂組成物において用いる(F)炭素原子数12以上の脂肪酸のエステル誘導体は、炭素原子数12以上の脂肪酸又はそのエステル形成性誘導体、より好ましくは炭素原子数16以上の脂肪酸又はそのエステル形成性誘導体と、種々のアルコール又はそのエステル形成性誘導体とを、酸触媒によるエステル合成、カルボン酸ハライドとアルコールとの反応、アルコールアセテート等と脂肪酸とのエステル交換反応等の公知の方法により反応されることにより製造することができる。
成形品の用途によっては、UL規格94の難燃区分「V-0」であることを要求される場合がある。その場合には、本発明のポリブチレンテレフタレート樹脂組成物にフッ素系樹脂等の滴下防止剤を難燃剤とともに用いることが好ましい。
本発明のポリブチレンテレフタレート樹脂組成物は、従来、熱可塑性樹脂組成物の製造方法として知られる種々の方法によって製造することができる。本発明のポリブチレンテレフタレート樹脂組成物の製造方法として好適な方法としては、例えば、1軸又は2軸押出機等の溶融混練装置を用いて、各成分を溶融混練して押出しペレットとする方法が挙げられる。
実施例1~3、及び比較例1~3において、ポリブチレンテレフタレート樹脂組成物の成分として、以下の材料を用いた。
A1:固有粘度0.875のポリブチレンテレフタレート樹脂(ウィンテックポリマー株式会社製)
A2:固有粘度1.1のポリブチレンテレフタレート樹脂(ウィンテックポリマー株式会社製)
〔(B)ポリエステルエラストマー〕
B1:エーテル系ポリブチレンテレフタレートエラストマー(東洋紡績株式会社製、ペルプレンGP400)
〔(C)不飽和カルボン酸変性オレフィン系重合体〕
C1:無水マレイン酸変性ポリエチレン(三井化学株式社製、タフマーMM6850)
〔(D)有機ハロゲン系難燃剤〕
D1:ペンタブロモポリベンジルアクリレート(ICL-IP JAPAN株式会社製、FR-1025)
〔(E)アンチモン化合物〕
E1:三酸化アンチモン(日本精鉱株式社製、PATOX-M)
〔(F)炭素原子数12以上の脂肪酸のエステル誘導体〕
F1:ペンタエリスリトールテトラステアレート(日油株式会社製、ユニスターH476、分子量1174)
〔その他の成分〕
G1:テトラキス[メチレン-3(3,5-ジ-tert-ブチル4-ヒドロキシフェニル)プロピオネート]メタン(酸化防止剤、チバ・ジャパン株式会社製、IRGANOX1010)
G2:ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト(酸化防止剤、株式会社アデカ製、PEP-36)
G3:ポリテトラフルオロエチレン(旭硝子株式会社製、フルオンCD-076)
ISO1143に準拠しシリンダー温度260℃、剪断速度1000sec-1で測定した。
ISO527-1,2に準拠し、引張り強さ、及び引張り伸びの測定を行った。
ISO178に準拠し、曲げ強さ、及び曲げ弾性率の測定を行った。
ISO179/1eAに準拠し、シャルピー衝撃強さの測定を行った。
試験片(0.8mm厚み)について、アンダーライターズ・ラボラトリーズのUL-94規格垂直燃焼試験により実施した。
鈴木式摩擦摩耗試験機を用い加圧0.9kg/cm2、線速度300mm/sec、接触面積2.0cm2、相手材として#600の研磨紙で表面粗さRzの範囲が0.5~0.7μmとなるように表面を平滑に研磨したSUS304を用い、24時間摺動させた後の動摩擦係数を測定した。また、この摺動条件下で摺動音の発生の有無を確認した。
Claims (5)
- (A)ポリブチレンテレフタレート樹脂、(B)ポリエステルエラストマー、(C)不飽和カルボン酸変性オレフィン系重合体、(D)有機ハロゲン系難燃剤、(E)アンチモン化合物、及び(F)炭素原子数12以上の脂肪酸のエステル誘導体を含み、下記(I)及び(II)の条件を満たすポリブチレンテレフタレート樹脂組成物。
(I)前記(B)ポリエステルエラストマーの含有量が、前記(A)ポリブチレンテレフタレート樹脂と前記(B)ポリエステルエラストマーとの合計量100質量部に対して25質量部以上50質量部以下である。
(II)前記(B)ポリエステルエラストマーの含有量が、前記ポリブチレンテレフタレート樹脂組成物全量に対して27質量%以下である。 - 前記(B)ポリエステルエラストマーが、ハードセグメントとしてポリブチレンテレフタレートセグメントを有するものである、請求項1記載のポリブチレンテレフタレート樹脂組成物。
- 前記(C)不飽和カルボン酸変性オレフィン系重合体が、無水マレイン酸変性ポリエチレンである、請求項1又は2記載のポリブチレンテレフタレート樹脂組成物。
- 前記(D)有機ハロゲン系難燃剤が、ペンタブロモポリベンジルアクリレートである、請求項1から3いずれかに記載のポリブチレンテレフタレート樹脂組成物。
- ISO178に準拠して測定される曲げ弾性率が1500MPa以下である、請求項1から4いずれかに記載のポリブチレンテレフタレート樹脂組成物。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012504405A JP5778659B2 (ja) | 2010-03-10 | 2011-02-24 | ポリブチレンテレフタレート樹脂組成物 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-052860 | 2010-03-10 | ||
JP2010052860 | 2010-03-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011111547A1 true WO2011111547A1 (ja) | 2011-09-15 |
Family
ID=44563355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/054165 WO2011111547A1 (ja) | 2010-03-10 | 2011-02-24 | ポリブチレンテレフタレート樹脂組成物 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5778659B2 (ja) |
WO (1) | WO2011111547A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013234326A (ja) * | 2012-05-10 | 2013-11-21 | E I Du Pont De Nemours & Co | ポリエステル組成物 |
WO2014185324A1 (ja) * | 2013-05-16 | 2014-11-20 | 東洋紡株式会社 | 樹脂組成物、および該樹脂組成物を用いた成形体ならびに成形体の製造方法 |
WO2015115425A1 (ja) * | 2014-01-31 | 2015-08-06 | ウィンテックポリマー株式会社 | ポリブチレンテレフタレート樹脂組成物 |
WO2016076135A1 (ja) * | 2014-11-14 | 2016-05-19 | 東洋紡株式会社 | 柔軟で接着力に優れたポリエステル樹脂組成物 |
WO2016076136A1 (ja) * | 2014-11-14 | 2016-05-19 | 東洋紡株式会社 | 柔軟で高流動性のポリエステル樹脂組成物 |
WO2016104083A1 (ja) * | 2014-12-26 | 2016-06-30 | ウィンテックポリマー株式会社 | インサート成形用樹脂組成物及びインサート成形品 |
WO2020166444A1 (ja) * | 2019-02-12 | 2020-08-20 | 東洋紡株式会社 | ポリブチレンテレフタレート樹脂組成物 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51106858A (ja) * | 1975-03-17 | 1976-09-22 | Teijin Ltd | Muongiaa |
JPS5356252A (en) * | 1976-11-01 | 1978-05-22 | Toray Ind Inc | Thermoplastic resin composition |
JPS606746A (ja) * | 1983-06-06 | 1985-01-14 | ヘキスト・セラニーズ・コーポレーション | 成形組成物 |
JPH11310692A (ja) * | 1998-04-30 | 1999-11-09 | Toray Ind Inc | コネクター成形用樹脂材料 |
WO2000055256A1 (fr) * | 1999-03-12 | 2000-09-21 | Polyplastics Co., Ltd. | Composition de resine de polyester |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW350854B (en) * | 1995-11-21 | 1999-01-21 | Teijin Ltd | Blocked copolyester, preparation thereof and composition containing thereof |
-
2011
- 2011-02-24 JP JP2012504405A patent/JP5778659B2/ja not_active Expired - Fee Related
- 2011-02-24 WO PCT/JP2011/054165 patent/WO2011111547A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51106858A (ja) * | 1975-03-17 | 1976-09-22 | Teijin Ltd | Muongiaa |
JPS5356252A (en) * | 1976-11-01 | 1978-05-22 | Toray Ind Inc | Thermoplastic resin composition |
JPS606746A (ja) * | 1983-06-06 | 1985-01-14 | ヘキスト・セラニーズ・コーポレーション | 成形組成物 |
JPH11310692A (ja) * | 1998-04-30 | 1999-11-09 | Toray Ind Inc | コネクター成形用樹脂材料 |
WO2000055256A1 (fr) * | 1999-03-12 | 2000-09-21 | Polyplastics Co., Ltd. | Composition de resine de polyester |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013234326A (ja) * | 2012-05-10 | 2013-11-21 | E I Du Pont De Nemours & Co | ポリエステル組成物 |
JPWO2014185324A1 (ja) * | 2013-05-16 | 2017-02-23 | 東洋紡株式会社 | 樹脂組成物、および該樹脂組成物を用いた成形体ならびに成形体の製造方法 |
WO2014185324A1 (ja) * | 2013-05-16 | 2014-11-20 | 東洋紡株式会社 | 樹脂組成物、および該樹脂組成物を用いた成形体ならびに成形体の製造方法 |
WO2015115425A1 (ja) * | 2014-01-31 | 2015-08-06 | ウィンテックポリマー株式会社 | ポリブチレンテレフタレート樹脂組成物 |
JP5789349B1 (ja) * | 2014-01-31 | 2015-10-07 | ウィンテックポリマー株式会社 | ポリブチレンテレフタレート樹脂組成物 |
US9663652B2 (en) | 2014-01-31 | 2017-05-30 | Wintech Polymer Ltd. | Polybutylene terephthalate resin composition |
JPWO2016076136A1 (ja) * | 2014-11-14 | 2017-08-17 | 東洋紡株式会社 | 柔軟で高流動性のポリエステル樹脂組成物 |
WO2016076136A1 (ja) * | 2014-11-14 | 2016-05-19 | 東洋紡株式会社 | 柔軟で高流動性のポリエステル樹脂組成物 |
WO2016076135A1 (ja) * | 2014-11-14 | 2016-05-19 | 東洋紡株式会社 | 柔軟で接着力に優れたポリエステル樹脂組成物 |
JPWO2016076135A1 (ja) * | 2014-11-14 | 2017-08-17 | 東洋紡株式会社 | 柔軟で接着力に優れたポリエステル樹脂組成物 |
WO2016104083A1 (ja) * | 2014-12-26 | 2016-06-30 | ウィンテックポリマー株式会社 | インサート成形用樹脂組成物及びインサート成形品 |
WO2020166444A1 (ja) * | 2019-02-12 | 2020-08-20 | 東洋紡株式会社 | ポリブチレンテレフタレート樹脂組成物 |
JPWO2020166444A1 (ja) * | 2019-02-12 | 2021-12-16 | 東洋紡株式会社 | ポリブチレンテレフタレート樹脂組成物 |
JP7400743B2 (ja) | 2019-02-12 | 2023-12-19 | 東洋紡エムシー株式会社 | ポリブチレンテレフタレート樹脂組成物 |
Also Published As
Publication number | Publication date |
---|---|
JP5778659B2 (ja) | 2015-09-16 |
JPWO2011111547A1 (ja) | 2013-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5778659B2 (ja) | ポリブチレンテレフタレート樹脂組成物 | |
JP5875579B2 (ja) | インサート成形品 | |
JP5758809B2 (ja) | ポリブチレンテレフタレート樹脂組成物 | |
JP5085927B2 (ja) | 難燃性樹脂組成物 | |
EP2377899A1 (en) | Carbonate blend compostion having improved resistance to environmental stress cracking | |
JP6364572B1 (ja) | 繊維強化ポリカーボネート樹脂組成物 | |
JP2017197676A (ja) | ポリブチレンテレフタレート樹脂組成物 | |
JP2019151797A (ja) | 樹脂組成物及び樹脂成形体 | |
JP2009517532A (ja) | 高い衝撃強さおよび良好な外観を有する熱可塑性組成物および物品 | |
WO2011078272A1 (ja) | 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体 | |
JP2011148975A (ja) | 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体 | |
KR20130074607A (ko) | 바이오 플라스틱 조성물 | |
JP2009263648A (ja) | ポリブチレンテレフタレート樹脂組成物及び燃料チューブ | |
JP4959057B2 (ja) | ポリエステル樹脂組成物 | |
EP3728470B1 (en) | Polycarbonate composition | |
JP5894593B2 (ja) | インサート成形体 | |
JP2004204171A (ja) | 被覆電線用難燃性樹脂組成物 | |
JP2020037614A (ja) | 樹脂組成物及び樹脂成形体 | |
WO2019171610A1 (ja) | 樹脂組成物および樹脂成形体 | |
JP2019059830A (ja) | 樹脂組成物および樹脂成形体 | |
JP7075317B2 (ja) | ポリブチレンテレフタレート樹脂組成物及び成形体 | |
JP2009126906A (ja) | ポリエステルエラストマー樹脂組成物 | |
WO2023027069A1 (ja) | ポリブチレンテレフタレート樹脂組成物および成形品 | |
JP2007146076A (ja) | 熱可塑性ポリエステルエラストマー樹脂組成物 | |
JP6159652B2 (ja) | ポリブチレンテレフタレート樹脂組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11753207 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012504405 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1201004582 Country of ref document: TH |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11753207 Country of ref document: EP Kind code of ref document: A1 |