WO2011111332A1 - 高強度鋼板の製造方法 - Google Patents
高強度鋼板の製造方法 Download PDFInfo
- Publication number
- WO2011111332A1 WO2011111332A1 PCT/JP2011/001163 JP2011001163W WO2011111332A1 WO 2011111332 A1 WO2011111332 A1 WO 2011111332A1 JP 2011001163 W JP2011001163 W JP 2011001163W WO 2011111332 A1 WO2011111332 A1 WO 2011111332A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel sheet
- less
- temperature
- austenite
- strength steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/19—Hardening; Quenching with or without subsequent tempering by interrupted quenching
- C21D1/22—Martempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/001—Heat treatment of ferrous alloys containing Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0224—Two or more thermal pretreatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/024—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
- C23C2/29—Cooling or quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Definitions
- the present invention relates to a method for producing a high-strength steel sheet having a tensile strength (TS) of 980 MPa or more excellent in workability, particularly ductility and stretch flangeability, used in industrial fields such as automobiles and electricity.
- TS tensile strength
- the workability of the steel plate is strongly influenced by the workability of the hard phase. That is, when the ratio of the hard phase is small and the amount of soft polygonal ferrite is large, the deformability of the polygonal ferrite becomes dominant with respect to the workability of the steel sheet, and even when the hard phase has insufficient workability. Workability such as ductility is ensured. However, if the ratio of the hard phase is large, the deformability of the hard phase itself, not the deformation of polygonal ferrite, directly affects the workability of the steel sheet. The performance will be greatly degraded.
- steel plates having a hard phase other than martensite there are steel plates in which the main phase is polygonal ferrite, the hard phase is bainite or pearlite, and carbide is generated in the hard phase bainite or pearlite.
- This steel sheet is not intended to improve workability with polygonal ferrite alone, but to improve the workability of the hard phase itself by generating carbides in the hard phase, and in particular to improve stretch flangeability. It is a steel plate.
- Patent Document 1 proposes a high-tensile steel plate that is excellent in bending workability and impact properties by defining alloy components and making the steel structure fine and uniform bainite having retained austenite.
- Patent Document 2 proposes a composite structure steel plate having excellent bake hardenability by defining a predetermined alloy component, defining a steel structure mainly of bainite and a retained austenite amount.
- Patent Document 3 defines a predetermined alloy component, the steel structure is 90% or more in area ratio of bainite having retained austenite, the amount of retained austenite in bainite is 1% or more and 15% or less, and bainite.
- Hv hardness
- JP-A-4-235253 JP 2004-76114 A Japanese Patent Laid-Open No. 11-256273
- each of the above-described steel plates has the following problems.
- the steel sheet described in Patent Document 2 has bake hardenability, it has a structure in which martensite mainly composed of bainite or ferrite is suppressed as much as possible even if the tensile strength (TS) is increased to 980 MPa or more or 1050 MPa or more. It is. Therefore, it is difficult to ensure workability such as ductility and stretch flangeability when the strength is secured or the strength is increased.
- the steel sheet described in Patent Document 3 is mainly intended to improve impact resistance, and has a bainite having a hardness of Hv: 250 or less as a main phase, specifically, a structure containing bainite in a proportion of more than 90%. Therefore, it is difficult to ensure the strength of 980 MPa or more.
- TS tensile strength
- a steel plate used as a material for parts particularly required for strength such as a door impact beam and a bumper reinforcement that suppresses deformation at the time of a car collision, is required to have a tensile strength of 1180 MPa class or higher. It is considered that a tensile strength of 1470 MPa class or higher is required.
- the plate temperature in the steel sheet is likely to vary. Therefore, even if the steel sheet is rapidly cooled to the target temperature to generate a predetermined amount of martensite thereafter, the same ratio of martensite is obtained throughout the steel sheet due to the above-described variation in the sheet temperature. Instead, the martensite production ratio varies. As a result, the mechanical properties of the steel plate varied.
- the present invention advantageously solves the above-described problems, and is a high-strength steel sheet having excellent workability, particularly ductility and stretch flangeability, and excellent tensile strength (TS) of 980 MPa or more, which is excellent in stability of such mechanical properties. It aims at providing the manufacturing method of. Specifically, a part of untransformed austenite is tempered martensite, and the remaining untransformed austenite is made into a structure such as bainite or retained austenite to produce a high-strength steel sheet that achieves both high strength and workability. It is.
- the high-strength steel sheet of the present invention includes a steel sheet obtained by subjecting the surface of the steel sheet to hot dip galvanization or galvannealing.
- excellent workability means that the product of tensile strength and total elongation, that is, TS ⁇ T.
- the EL value satisfies 20000 MPa ⁇ % or more
- the product of tensile strength and critical hole expansion rate that is, the value of TS ⁇ ⁇ satisfies 25000 MPa ⁇ % or more.
- excellent stability of mechanical properties means that TS and T. It means that the standard deviation ⁇ of EL is 10 MPa or less and 2.0% or less, respectively.
- the inventors cool the coldest part to the target temperature with reference to the coldest part as the heat treatment condition at the target temperature as shown in FIG. Thereafter, it was found that by holding the steel plate for a certain period of time in the region immediately above the target temperature, the structure of the steel plate becomes uniform, and as a result, variations in mechanical properties such as strength of the steel plate can be reduced.
- the present invention is based on the above findings.
- the gist configuration of the present invention is as follows. 1. A steel sheet containing 0.10% by mass or more of C is heated to an austenite single-phase region or (austenite + ferrite) two-phase region, and the temperature is less than Ms and Ms-150 ° C. or higher with the martensite transformation start temperature Ms as an index.
- a method for producing a high-strength steel sheet characterized in that the coldest part in the sheet width direction is maintained in a temperature range from a target cooling stop temperature to (cooling stop temperature + 15 ° C) for a period of 15 seconds to 100 seconds.
- the steel sheet is in mass%, C: 0.10% to 0.73%, Si: 3.0% or less, Mn: 0.5% to 3.0%, P: 0.1% or less, S: 0.07% or less, 3.
- the steel sheet is further in mass%, Cr: 0.05% to 5.0%, 4.
- the steel sheet is further in mass%, 5.
- the above 3 or 4 characterized by containing one or two selected from Ti: 0.01% to 0.1% and Nb: 0.01% to 0.1% Manufacturing method of high strength steel sheet.
- the steel sheet is further in mass%
- B The method for producing a high-strength steel sheet according to any one of 3 to 5 above, which contains 0.0003% or more and 0.0050% or less.
- the steel sheet is further in mass%, Any one of 3 to 6 above, which contains one or two selected from Ni: 0.05% to 2.0% and Cu: 0.05% to 2.0%
- the component composition is further in mass%, Any one of 3 to 7 above, which contains one or two selected from Ca: 0.001% to 0.005% and REM: 0.001% to 0.005%.
- the present invention it is possible to provide a high-strength steel sheet that is excellent in workability and excellent in mechanical properties, and thus can be reduced in weight by suppressing the thickness of the steel sheet. As a result, the automobile body can be effectively reduced in weight.
- (a) to (c) are diagrams showing temperature patterns of heat treatment in which a steel sheet is heated and quenched to generate martensite at a certain ratio. It is the figure which showed the temperature pattern of the heat processing of the manufacturing method according to this invention.
- the high-strength steel plate according to the present invention is hot-rolled after the steel slab adjusted to the component composition containing C in an amount of 0.10% by mass (hereinafter referred to as “%” when the steel plate component is expressed) is necessary.
- the steel sheet is produced by a cold rolling process, but there is no particular limitation in these processes, and it may be performed according to a conventional method.
- C needs to be at least 0.10%. This is because it is an indispensable element for increasing the strength of the steel sheet, and is an element necessary for securing the amount of martensite and for retaining austenite at room temperature.
- typical production conditions are as follows. First, after the steel slab is heated to a temperature range of 1000 ° C. or higher and 1300 ° C. or lower, hot rolling is finished in a temperature range of 870 ° C. or higher and 950 ° C. or lower, and the obtained hot rolled steel sheet is 350 ° C. or higher and 720 ° C. or lower. Wind in the temperature range. Next, after pickling the hot-rolled steel sheet, cold rolling is performed at a reduction rate in the range of 40% to 90% to obtain a cold-rolled steel sheet (raw steel sheet).
- the raw material steel plate used for this invention a part or all of a hot rolling process can be abbreviate
- the raw steel plate thus obtained is made into a high-strength steel plate in the following steps according to the present invention.
- FIG. 2 an example of the temperature pattern of the heat processing of the manufacturing method according to this invention is shown.
- the steel sheet is heated and annealed in the austenite single-phase region or (austenite + ferrite) two-phase region.
- the annealing temperature is not particularly limited as long as the temperature reaches the (austenite + ferrite) two-phase region, but when the annealing temperature exceeds 1000 ° C., the austenite grain grows significantly and constitutes a steel sheet produced by subsequent cooling. Cause coarsening of the grain size of each structure to deteriorate toughness and the like. Therefore, the annealing temperature is preferably set to 1000 ° C. or lower.
- the annealing time is less than 15 seconds, the dissolution of carbides present in the steel plate before annealing and the reverse transformation of the steel plate structure to austenite may not proceed sufficiently.
- the annealing time exceeds 600 seconds, the processing cost increases due to excessive energy consumption. Therefore, the annealing time is preferably in the range of 15 seconds to 600 seconds.
- the annealed steel sheet is cooled to a first temperature range of less than Ms and Ms ⁇ 150 ° C. or more.
- a target cooling stop temperature: T1 (hereinafter referred to as T1) is set within the range of the first temperature range.
- T1 target cooling stop temperature
- a part of austenite is martensitic transformed by cooling the steel sheet to less than Ms.
- the lower limit of the first temperature range is less than Ms-150 ° C.
- almost all of the untransformed austenite is martensite at this point. Therefore, it becomes impossible to utilize a structure effective for improving workability such as retained austenite.
- the temperature range of the first temperature range for setting T1 is set to a range of less than Ms and Ms ⁇ 150 ° C. or more.
- the cooling rate of the steel sheet until reaching the first temperature range is not particularly specified, but if the average cooling rate is less than 3 ° C./s, excessive formation and growth of polygonal ferrite, Further, pearlite or the like may precipitate, and a desired steel sheet structure may not be obtained. Therefore, the average cooling rate from the annealing temperature to the first temperature range is preferably 3 ° C./s or more.
- the temperature of the coldest part in the plate width direction is set to the first temperature. Further, the temperature is maintained within a temperature range of T1 to T1 + 15 ° C. with respect to the target cooling stop temperature T1. This is because when the temperature of the coldest part is lower than T1 ° C., there occurs a place where the untransformed austenite becomes excessively martensite with respect to the amount of martensite commensurate with the target temperature T1.
- the present invention it is necessary to maintain the temperature of the coldest part in the temperature range of T1 to T1 + 15 ° C. for a period of 15 seconds to 100 seconds. This is because, when the holding time is less than 15 seconds, the follow-up of the plate temperature other than the coldest portion becomes insufficient, and a portion that does not become a desired steel plate structure is generated, and the workability of the obtained steel plate varies. Because. On the other hand, if the holding time exceeds 100 seconds, the effect of following the plate temperature is saturated and only the processing time is extended.
- the coldest part in the present invention is a part having the lowest plate temperature in the plate width direction of the steel plate. Further, the coldest part is usually the edge of a steel plate in many cases. However, depending on the characteristics of the production line, it may be another part. In this case, it is only necessary to examine the location of the coldest part in advance by passing the steel plate through a test and control the plate temperature at that location. In addition, in order to measure the actual temperature of the coldest part, the equipment provided with the thermometer which can confirm temperature distribution over the whole plate width direction of steel plate temperature is desirable. However, even in equipment that is not equipped, as described above, it is possible to control the heat treatment conditions according to the present invention by measuring and controlling the temperature of the coldest part obtained when the test threading is performed. . Further, in the present invention, in order to keep the plate temperature during holding in the temperature range of T1 to T1 + 15 ° C., for example, it is effective to divide the plate width direction into several blocks and feedback control the plate temperature in each block. It is.
- the present invention by setting the coldest part of the steel plate to a predetermined temperature for a predetermined time, variation in mechanical properties such as tensile strength in the steel plate in the high-strength steel plate can be greatly reduced.
- the temperature in the steel sheet is supercooled from the Ms point due to temperature variations in the sheet thickness direction and the plate feed speed width direction, and the amount of martensite generated in the steel sheet varies. Even if it occurs, the amount of martensite produced in the steel sheet can be stabilized by performing the above-described treatment. As a result, the inventors consider that the martensitic transformation amount becomes uniform throughout the steel sheet and the mechanical properties of the steel sheet can be stabilized.
- the temperature is raised according to a conventional method to perform a tempering treatment of martensite.
- the temperature range of this process when considering the tempering efficiency of martensite, it is desirable that the temperature is 200 ° C. or higher. Further, when the cooling stop temperature is 200 ° C. or higher, it is possible to omit the above-described temperature rise by holding in that temperature range. Moreover, when the upper limit of temperature rising temperature exceeds 570 degreeC, a carbide
- the holding time after the temperature rise is not particularly limited, but when the holding time is less than 5 seconds, tempering of martensite becomes insufficient, and a desired steel sheet structure cannot be obtained. The workability of the obtained steel sheet may be inferior.
- the holding time exceeds 1000 seconds, for example, carbide is precipitated from untransformed austenite which becomes residual austenite as the final structure of the steel sheet, and stable retained austenite concentrated by C cannot be obtained. Or you may not get both. Therefore, the holding time is preferably 5 seconds or more and 1000 seconds or less.
- the holding temperature does not need to be fixed at one point as long as it is within a predetermined temperature range. There is no loss of purpose. Similarly, the cooling rate may vary. Moreover, as long as the above-described heat history can be satisfied, the heat treatment may be performed by any equipment. Furthermore, in the present invention, after the heat treatment, the surface of the steel sheet can be subjected to temper rolling or surface treatment such as electroplating for shape correction.
- the method for producing a high-strength steel sheet of the present invention can be further subjected to hot dip galvanizing treatment or galvannealing treatment in which alloying treatment is further added to hot dip galvanizing treatment.
- hot dip galvanizing or galvannealed hot dip galvanizing in the temperature range of the tempering treatment of martensite, the holding time in the tempered galvanizing treatment or hot galvanizing treatment In addition, it is desirable to set it in the range of 5 seconds to 1000 seconds.
- the hot dip galvanizing treatment or alloying hot dip galvanizing treatment is preferably performed in a continuous hot dip galvanizing line.
- the high strength steel sheet that has been subjected to the heat treatment can be subjected to hot dip galvanizing treatment or further alloying treatment.
- the procedure for performing hot dip galvanizing treatment or alloying hot dip galvanizing treatment on the steel sheet in the present invention is as follows. First, the steel sheet is infiltrated into the plating bath, and the amount of adhesion is adjusted by gas wiping or the like. At this time, the amount of dissolved Al in the plating bath is in the range of 0.12% or more and 0.22% or less in the hot dip galvanizing treatment, and 0.08% or more in the alloying hot dip galvanizing treatment. A range of 18% or less is preferable. In the case of hot dip galvanizing treatment, the temperature of the plating bath may be in the range of the usual 450 ° C. or more and 500 ° C. or less.
- the temperature during alloying shall be 570 ° C. or less. Is preferred.
- carbides are precipitated from untransformed austenite or pearlite is generated in some cases, so that strength and workability or both cannot be obtained. There is also a possibility that the ring property may deteriorate.
- the temperature during alloying is less than 450 ° C., alloying may not proceed.
- the alloying degree (Fe% (Fe content)) of the plating layer is preferably in the range of 7% to 15%.
- the degree of alloying of the plating layer is less than 7%, unevenness in alloying occurs and the appearance quality deteriorates, or the so-called ⁇ phase is generated in the plating layer and the slidability of the steel sheet deteriorates.
- the degree of alloying of the plating layer exceeds 15%, a large amount of hard and brittle ⁇ phase is formed, and the plating adhesion deteriorates.
- the upper limit value is preferably 0.73%. More preferably, it is in the range of more than 0.15% and not more than 0.48%.
- Si 3.0% or less (including 0%) Si is a useful element that contributes to improving the strength of steel by solid solution strengthening. However, if the amount of Si exceeds 3.0%, the amount of solid solution in polygonal ferrite and bainitic ferrite increases, resulting in deterioration of workability and toughness. In addition, in the case of performing hot dipping, if the Si content exceeds 3.0%, the plating adhesion and adhesion are deteriorated. Accordingly, the Si content is preferably 3.0% or less. More preferably, it is 2.6% or less. More preferably, it is 2.2% or less. Si is an element useful for suppressing the formation of carbides and promoting the formation of retained austenite. Therefore, the Si content is preferably 0.5% or more, but the formation of carbides is only Al. In the case of suppressing by Si, Si does not need to be added, and the Si amount may be 0%.
- Mn 0.5% to 3.0%
- Mn is an element effective for strengthening steel. If the amount of Mn is less than 0.5%, during the cooling after annealing, carbide precipitates in a temperature range higher than the temperature at which bainite and martensite are generated, so the amount of hard phase that contributes to strengthening of the steel is ensured. I can't. On the other hand, if the amount of Mn exceeds 3.0%, castability may be deteriorated. Therefore, the amount of Mn is preferably in the range of 0.5% to 3.0%. More preferably, the range is 1.5% or more and 2.5% or less.
- P 0.1% or less
- P is an element useful for strengthening steel, but if the P content exceeds 0.1%, it becomes brittle due to grain boundary segregation and deteriorates impact resistance. Moreover, when alloying hot dip galvanizing is applied to a steel sheet, the alloying speed is delayed. Accordingly, the P content is preferably 0.1% or less. More preferably, it is 0.05% or less. The amount of P is preferably reduced as much as possible, but if it is less than 0.005%, it causes a significant increase in refining costs, so the lower limit is about 0.005%.
- S 0.07% or less Since S produces MnS and becomes inclusions, which causes deterioration of impact resistance and cracks along the metal flow of the welded portion, S is preferably reduced as much as possible. However, excessively reducing the amount of S causes an increase in manufacturing cost, so the amount of S is allowed to be about 0.07%. Preferably it is 0.05% or less, More preferably, it is 0.01% or less. In addition, since there is a large increase in cost to make S less than 0.0005%, the lower limit is about 0.0005%.
- Al 3.0% or less
- Al is a useful element added as a deoxidizer in the steel making process.
- the Al content is 3.0% or less.
- it is 2.0% or less.
- Al is an element useful for suppressing the formation of carbides and promoting the formation of retained austenite.
- the Al content is preferably 0.001% or more, more preferably 0.005% or more.
- the amount of Al in the present invention means the amount of Al contained in the steel sheet after deoxidation.
- N 0.010% or less N is an element that most deteriorates the aging resistance of steel, and it is preferable to reduce it as much as possible, but up to about 0.010% is allowed. Note that, if N is less than 0.001%, a large increase in manufacturing cost is caused, so the lower limit is about 0.001%.
- the following components can be appropriately contained.
- Cr 0.05% or more
- Mo 0.005% or more.
- Cr: 0.05% to 5.0%, V: 1.0% and Mo: 0.5% the amount of hard martensite becomes excessive, resulting in high strength and accordingly brittleness. Therefore, when Cr, V and Mo are contained, Cr: 0.05% to 5.0%, V: 0.005% to 1.0% and Mo: 0.005% to 0.5% % Or less.
- Ti and Nb are useful for the precipitation strengthening of steel.
- Each content is obtained at 0.01% or more.
- the workability and the shape freezing property are lowered. Therefore, when Ti and Nb are contained, the range is Ti: 0.01% to 0.1% and Nb: 0.01% to 0.1%.
- B 0.0003% or more and 0.0050% or less B is an element useful for suppressing the formation and growth of ferrite from austenite grain boundaries. The effect is obtained when the content is 0.0003% or more. On the other hand, if the content exceeds 0.0050%, the workability decreases. Therefore, when it contains B, it is set as B: 0.0003% or more and 0.0050% or less of range.
- Ni and Cu are effective elements for strengthening steel. Further, when hot dip galvanizing or galvannealed hot dip galvanizing is applied to the steel sheet, it has an effect of promoting the internal oxidation of the steel sheet surface layer and improving the plating adhesion. These effects are obtained when the respective contents are 0.05% or more. On the other hand, when each content exceeds 2.0%, the workability of the steel sheet is lowered. Therefore, when Ni and Cu are contained, the range is Ni: 0.05% to 2.0% and Cu: 0.05% to 2.0%.
- Ca and REM spheroidize the shape of the sulfide, and stretch flange Useful to improve the negative effects of sulfides on sex.
- the effect is obtained when each content is 0.001% or more.
- the respective contents exceed 0.005%, inclusions and the like increase, causing surface defects and internal defects. Therefore, when Ca and REM are contained, the range is Ca: 0.001% to 0.005% and REM: 0.001% to 0.005%.
- components other than the above are Fe and inevitable impurities. However, as long as the effects of the present invention are not impaired, the inclusion of components other than those described above is not rejected.
- Example 1 EXAMPLES
- Example 1 EXAMPLES
- a following example does not limit this invention. Further, it goes without saying that even if the configuration is changed within the scope of the present invention, the effect of the present invention is exhibited.
- the slab obtained by melting the steel having the composition shown in Table 1 is heated to 1200 ° C, the hot-rolled steel sheet finished by hot rolling at 870 ° C is wound up at 650 ° C, and then the hot-rolled steel sheet is pickled. Thereafter, it was cold-rolled at a rolling rate (rolling rate) of 65% to obtain a cold-rolled steel plate having a thickness of 1.2 mm.
- the obtained cold-rolled steel sheet was heat-treated under the conditions shown in Table 2.
- the heat treatment temperature (annealing treatment temperature) is the same as that of Sample No. Except 4, all temperatures were in the austenite single phase region or (austenite + ferrite) two phase region.
- some cold-rolled steel sheets were subjected to hot dip galvanizing treatment or alloying hot dip galvanizing treatment during or after the tempering treatment.
- hot dip galvanizing treatment double-sided plating was performed so that the plating bath temperature was 463 ° C. and the basis weight (per one side) was 50 g / m 2 .
- alloying hot dip galvanizing treatment is similarly performed so that the plating bath temperature is 463 ° C., the basis weight (per one side) is 50 g / m 2 , and the alloying degree (Fe% (Fe content)) is 9%.
- Alloying temperature Double-sided plating was performed by adjusting the alloying conditions at 550 ° C. or lower.
- the steel sheet not subjected to the plating treatment is directly subjected to the heat treatment, and the steel sheet subjected to the hot dip galvanizing treatment or the alloyed hot dip galvanizing treatment is subjected to the rolling reduction (elongation): 0.3%. Temper rolling was applied.
- TS tensile strength
- T.EL total elongation
- the stretch flangeability was evaluated in accordance with Japan Iron and Steel Federation standard JFST1001. Each obtained steel plate was cut into 100 mm ⁇ 100 mm. After that, punch a hole with a diameter of 10 mm with a clearance of 12% of the thickness of the steel sheet, and using a die with an inner diameter of 75 mm and holding a wrinkle holding force of 88.2 kN into a hole with a 60 ° conical punch. The hole diameter at the crack initiation limit was measured by indentation. And stretch flangeability was evaluated by calculating
- Limit hole expansion rate ⁇ (%) ⁇ (D f ⁇ D 0 ) / D 0 ⁇ ⁇ 100 (1)
- D f is the hole diameter at crack initiation (mm)
- D 0 is the initial hole diameter (mm).
- TS ⁇ ⁇ the product of strength and limit hole expansion rate
- the steel sheets to be produced according to the present invention all have a tensile strength of 980 MPa or more, a TS ⁇ T.EL value of 20000 MPa ⁇ % or more, and a TS ⁇ ⁇ value of 25000 MPa. -Satisfying more than%, it was confirmed that it had high strength and excellent workability, especially excellent stretch flangeability.
- sample no. No. 4 because the annealing temperature is not heated to the (austenite + ferrite) two-phase region, the desired steel sheet structure cannot be obtained, and the value of TS ⁇ ⁇ satisfies 25000 MPa ⁇ % or more and is excellent in stretch flangeability.
- the tensile strength (TS) did not reach 980 MPa, and the value of TS ⁇ T.EL was less than 20000 MPa ⁇ %.
- Example 2 Furthermore, it heat-processed on the conditions shown in Table 4 using the steel type A of Table 1.
- Table 5 shows the results of examining the mechanical characteristics and their variations in each case.
- the variation in the mechanical properties of the steel sheet is as follows: The material cut in the rolling direction length: 1000 mm in the rolling direction length 40 mm ⁇ width 250 mm, the evaluation part in the width direction from the two most edge parts to the steel sheet center part. Twenty sheets were collected so as to be evenly dispersed, processed into JIS No. 5 test pieces, and then subjected to a tensile test. A case where the tensile strength and the standard deviation ⁇ of T.EL were 10 MPa or less and 2.0% or less, respectively, was judged good.
- the high-strength steel sheet according to the present invention is excellent in workability and tensile strength (TS), and also has excellent mechanical properties, so the utility value in industrial fields such as automobiles and electricity is very large. In particular, it contributes to weight reduction of automobile bodies.
- TS tensile strength
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Coating With Molten Metal (AREA)
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020127024188A KR101422556B1 (ko) | 2010-03-09 | 2011-02-28 | 고강도 강판의 제조 방법 |
| EP11752998.2A EP2546368B1 (en) | 2010-03-09 | 2011-02-28 | Method for producing high-strength steel sheet |
| CN201180023397.0A CN102884209B (zh) | 2010-03-09 | 2011-02-28 | 高强度钢板的制造方法 |
| US13/583,295 US20130133786A1 (en) | 2010-03-09 | 2011-02-28 | Method for manufacturing high strength steel sheet |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2010-052323 | 2010-03-09 | ||
| JP2010052323A JP5333298B2 (ja) | 2010-03-09 | 2010-03-09 | 高強度鋼板の製造方法 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2011111332A1 true WO2011111332A1 (ja) | 2011-09-15 |
Family
ID=44563168
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2011/001163 Ceased WO2011111332A1 (ja) | 2010-03-09 | 2011-02-28 | 高強度鋼板の製造方法 |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US20130133786A1 (enExample) |
| EP (1) | EP2546368B1 (enExample) |
| JP (1) | JP5333298B2 (enExample) |
| KR (1) | KR101422556B1 (enExample) |
| CN (1) | CN102884209B (enExample) |
| WO (1) | WO2011111332A1 (enExample) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2014186722A3 (en) * | 2013-05-17 | 2015-01-08 | Ak Steel Properties, Inc. | High strength steel exhibiting good ductility and method of production via quenching and partitioning treatment by zinc bath |
| EP2921568A4 (en) * | 2012-11-15 | 2016-08-03 | Baoshan Iron & Steel | HIGH-EVAPORATIVE AND SUPER-RESISTANT COLD-ROLLED STEEL PLATE AND METHOD OF PRODUCTION THEREOF |
| CN109371320A (zh) * | 2013-05-01 | 2019-02-22 | 新日铁住金株式会社 | 镀锌钢板及其制造方法 |
Families Citing this family (50)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2524970A1 (de) | 2011-05-18 | 2012-11-21 | ThyssenKrupp Steel Europe AG | Hochfestes Stahlflachprodukt und Verfahren zu dessen Herstellung |
| JP5910168B2 (ja) * | 2011-09-15 | 2016-04-27 | 臼井国際産業株式会社 | Trip型2相マルテンサイト鋼及びその製造方法とそのtrip型2相マルテンサイト鋼を用いた超高強度鋼製加工品 |
| CN103857819B (zh) * | 2011-10-04 | 2016-01-13 | 杰富意钢铁株式会社 | 高强度钢板及其制造方法 |
| CN103753115A (zh) * | 2011-12-31 | 2014-04-30 | 东莞市飞新达精密机械科技有限公司 | 一种带开口长槽的板类零件的加工方法 |
| JP5900922B2 (ja) * | 2012-03-14 | 2016-04-06 | 国立大学法人大阪大学 | 鉄鋼材の製造方法 |
| JP5632904B2 (ja) | 2012-03-29 | 2014-11-26 | 株式会社神戸製鋼所 | 加工性に優れた高強度冷延鋼板の製造方法 |
| KR20150029736A (ko) * | 2012-07-31 | 2015-03-18 | 제이에프이 스틸 가부시키가이샤 | 성형성 및 형상 동결성이 우수한 고강도 용융 아연 도금 강판, 그리고 그의 제조 방법 |
| JP2014185359A (ja) * | 2013-03-22 | 2014-10-02 | Jfe Steel Corp | 高強度鋼板 |
| WO2015005882A2 (en) * | 2013-06-06 | 2015-01-15 | Asil Çelik Sanayi Ve Ticaret Anonim Şirketi | Alloy steel material |
| DE102013013067A1 (de) * | 2013-07-30 | 2015-02-05 | Salzgitter Flachstahl Gmbh | Siliziumhaltiger, mikrolegierter hochfester Mehrphasenstahl mit einer Mindestzugfestigkeit von 750 MPa und verbesserten Eigenschaften und Verfahren zur Herstellung eines Bandes aus diesem Stahl |
| WO2015015239A1 (en) * | 2013-08-02 | 2015-02-05 | ArcelorMittal Investigación y Desarrollo, S.L. | Cold rolled, coated and post tempered steel sheet and method of manufacturing thereof |
| JP5728115B1 (ja) | 2013-09-27 | 2015-06-03 | 株式会社神戸製鋼所 | 延性および低温靭性に優れた高強度鋼板、並びにその製造方法 |
| CN103484771B (zh) * | 2013-10-18 | 2015-10-28 | 北京科技大学 | 一种海洋平台用高铝低密度中厚钢板及其制备方法 |
| RU2555306C1 (ru) * | 2014-06-27 | 2015-07-10 | Публичное акционерное общество "Северсталь" (ПАО "Северсталь") | Высокопрочная хладостойкая бейнитная сталь |
| CN106661652B (zh) * | 2014-07-03 | 2018-10-12 | 安赛乐米塔尔公司 | 用于制造超高强度涂覆或未涂覆钢板的方法和获得的板 |
| WO2016001703A1 (en) * | 2014-07-03 | 2016-01-07 | Arcelormittal | Method for manufacturing a high strength steel sheet and sheet obtained by the method |
| MX2017011144A (es) | 2015-03-03 | 2017-11-28 | Jfe Steel Corp | Lamina de acero de alta resistencia y metodo para la fabricacion de la misma. |
| DE102015106780A1 (de) * | 2015-04-30 | 2016-11-03 | Salzgitter Flachstahl Gmbh | Verfahren zur Erzeugung eines Warm- oder Kaltbandes aus einem Stahl mit erhöhtem Kupfergehalt |
| DE102015111177A1 (de) * | 2015-07-10 | 2017-01-12 | Salzgitter Flachstahl Gmbh | Höchstfester Mehrphasenstahl und Verfahren zur Herstellung eines kaltgewalzten Stahlbandes hieraus |
| JP2016065319A (ja) * | 2015-11-30 | 2016-04-28 | Jfeスチール株式会社 | 高強度鋼板の表面性状の評価方法および高強度鋼板の製造方法 |
| WO2017109540A1 (en) | 2015-12-21 | 2017-06-29 | Arcelormittal | Method for producing a high strength steel sheet having improved ductility and formability, and obtained steel sheet |
| WO2017109538A1 (en) | 2015-12-21 | 2017-06-29 | Arcelormittal | Method for producing a steel sheet having improved strength, ductility and formability |
| JP6967628B2 (ja) * | 2015-12-29 | 2021-11-17 | アルセロールミタル | 超高強度合金化溶融亜鉛めっき鋼板を製造するための方法、及び得られた合金化溶融亜鉛めっき鋼板 |
| US11035020B2 (en) | 2015-12-29 | 2021-06-15 | Arcelormittal | Galvannealed steel sheet |
| DE102016204194A1 (de) * | 2016-03-15 | 2017-09-21 | Comtes Fht A. S. | Federnde Bauteile aus einer Stahllegierung und Herstellungsverfahren |
| CN105755382A (zh) * | 2016-03-31 | 2016-07-13 | 苏州睿昕汽车配件有限公司 | 一种耐腐蚀汽车配件合金钢材料及其制备方法 |
| CN105755353A (zh) * | 2016-03-31 | 2016-07-13 | 苏州睿昕汽车配件有限公司 | 一种耐腐蚀汽车配件合金钢材料及其制备方法 |
| DE102016113542B3 (de) * | 2016-07-22 | 2017-08-24 | Benteler Defense Gmbh & Co. Kg | Verfahren zur Herstellung eines Panzerbauteils |
| WO2018043456A1 (ja) | 2016-08-31 | 2018-03-08 | Jfeスチール株式会社 | 高強度冷延薄鋼板及びその製造方法 |
| CA3046108A1 (en) | 2016-12-14 | 2018-06-21 | Thyssenkrupp Steel Europe Ag | Hot-rolled flat steel product and method for the production thereof |
| RU2653748C1 (ru) * | 2017-06-01 | 2018-05-14 | Публичное акционерное общество "Северсталь" | Хладостойкая свариваемая сталь и изделие, выполненное из нее (варианты) |
| DE102017130237A1 (de) | 2017-12-15 | 2019-06-19 | Salzgitter Flachstahl Gmbh | Hochfestes, warmgewalztes Stahlflachprodukt mit hohem Kantenrisswiderstand und gleichzeitig hohem Bake-Hardening Potential, ein Verfahren zur Herstellung eines solchen Stahlflachprodukts |
| CN111684091B (zh) | 2018-01-31 | 2021-12-31 | 杰富意钢铁株式会社 | 高强度冷轧钢板、高强度镀敷钢板以及它们的制造方法 |
| JP7267695B2 (ja) | 2018-08-24 | 2023-05-02 | 株式会社小松製作所 | 履帯部品およびその製造方法 |
| WO2020080402A1 (ja) * | 2018-10-17 | 2020-04-23 | Jfeスチール株式会社 | 鋼板およびその製造方法 |
| WO2020080401A1 (ja) * | 2018-10-17 | 2020-04-23 | Jfeスチール株式会社 | 鋼板およびその製造方法 |
| WO2020128574A1 (en) * | 2018-12-18 | 2020-06-25 | Arcelormittal | Cold rolled and heat-treated steel sheet and method of manufacturing the same |
| WO2020162562A1 (ja) | 2019-02-06 | 2020-08-13 | 日本製鉄株式会社 | 溶融亜鉛めっき鋼板およびその製造方法 |
| EP3922739B1 (en) | 2019-02-06 | 2023-05-03 | Nippon Steel Corporation | Hot dip galvanized steel sheet and method for producing same field |
| JP6750772B1 (ja) | 2019-02-06 | 2020-09-02 | 日本製鉄株式会社 | 溶融亜鉛めっき鋼板およびその製造方法 |
| WO2020162560A1 (ja) | 2019-02-06 | 2020-08-13 | 日本製鉄株式会社 | 溶融亜鉛めっき鋼板およびその製造方法 |
| JP7185555B2 (ja) * | 2019-02-18 | 2022-12-07 | 株式会社神戸製鋼所 | 鋼板 |
| JP7276428B2 (ja) | 2019-02-27 | 2023-05-18 | Jfeスチール株式会社 | 冷間プレス用の鋼板の製造方法、及びプレス部品の製造方法 |
| RU2731223C1 (ru) * | 2019-06-26 | 2020-08-31 | Публичное акционерное общество "Магнитогорский металлургический комбинат" | Высокопрочная свариваемая хладостойкая сталь и изделие, выполненное из нее |
| WO2022102218A1 (ja) | 2020-11-11 | 2022-05-19 | 日本製鉄株式会社 | 鋼板およびその製造方法 |
| WO2023135962A1 (ja) | 2022-01-13 | 2023-07-20 | 日本製鉄株式会社 | 溶融亜鉛めっき鋼板およびその製造方法 |
| DE102022125128A1 (de) * | 2022-09-29 | 2024-04-04 | Salzgitter Flachstahl Gmbh | Verfahren zur Herstellung eines Stahlbandes aus einem hochfesten Mehrphasenstahl und entsprechendes Stahlband |
| EP4575013A4 (en) | 2022-09-30 | 2025-12-10 | Jfe Steel Corp | STEEL SHEET, COMPONENT, AND ASSOCIATED MANUFACTURING PROCESSES |
| CN119948191A (zh) | 2022-09-30 | 2025-05-06 | 杰富意钢铁株式会社 | 钢板、构件和它们的制造方法 |
| KR20250138227A (ko) | 2023-02-22 | 2025-09-19 | 닛폰세이테츠 가부시키가이샤 | 강판 및 그 제조 방법 |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH04235253A (ja) | 1990-12-28 | 1992-08-24 | Kawasaki Steel Corp | 曲げ加工性、衝撃特性の良好な超強度冷延鋼板及びその製造方法 |
| JPH11256273A (ja) | 1998-03-12 | 1999-09-21 | Kobe Steel Ltd | 耐衝撃性に優れた高強度鋼板 |
| JP2004076114A (ja) | 2002-08-20 | 2004-03-11 | Kobe Steel Ltd | 焼付硬化性に優れた複合組織鋼板 |
| JP2009209450A (ja) * | 2008-02-08 | 2009-09-17 | Jfe Steel Corp | 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
| JP2010090475A (ja) * | 2008-09-10 | 2010-04-22 | Jfe Steel Corp | 高強度鋼板およびその製造方法 |
Family Cites Families (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4872923A (en) * | 1987-08-03 | 1989-10-10 | U.S. Automation Co. | Die-less drawing method and apparatus |
| JP4314842B2 (ja) * | 2003-02-24 | 2009-08-19 | Jfeスチール株式会社 | 強度−伸びバランスおよび疲労特性に優れる高張力溶融亜鉛めっき鋼板およびその製造方法 |
| JP4547944B2 (ja) * | 2004-03-10 | 2010-09-22 | Jfeスチール株式会社 | 高強度高靭性厚鋼板の製造方法 |
| JP2005336526A (ja) * | 2004-05-25 | 2005-12-08 | Kobe Steel Ltd | 加工性に優れた高強度鋼板及びその製造方法 |
| EP1621645A1 (en) * | 2004-07-28 | 2006-02-01 | Corus Staal BV | Steel sheet with hot dip galvanized zinc alloy coating |
| JP4164537B2 (ja) * | 2006-12-11 | 2008-10-15 | 株式会社神戸製鋼所 | 高強度薄鋼板 |
| CN101121955A (zh) * | 2007-09-13 | 2008-02-13 | 上海交通大学 | 采用碳分配和回火提高淬火钢件机械性能的热处理方法 |
| JP5167487B2 (ja) * | 2008-02-19 | 2013-03-21 | Jfeスチール株式会社 | 延性に優れる高強度鋼板およびその製造方法 |
| US8128762B2 (en) * | 2008-08-12 | 2012-03-06 | Kobe Steel, Ltd. | High-strength steel sheet superior in formability |
| JP5365112B2 (ja) * | 2008-09-10 | 2013-12-11 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
-
2010
- 2010-03-09 JP JP2010052323A patent/JP5333298B2/ja active Active
-
2011
- 2011-02-28 EP EP11752998.2A patent/EP2546368B1/en active Active
- 2011-02-28 US US13/583,295 patent/US20130133786A1/en not_active Abandoned
- 2011-02-28 CN CN201180023397.0A patent/CN102884209B/zh active Active
- 2011-02-28 WO PCT/JP2011/001163 patent/WO2011111332A1/ja not_active Ceased
- 2011-02-28 KR KR1020127024188A patent/KR101422556B1/ko active Active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH04235253A (ja) | 1990-12-28 | 1992-08-24 | Kawasaki Steel Corp | 曲げ加工性、衝撃特性の良好な超強度冷延鋼板及びその製造方法 |
| JPH11256273A (ja) | 1998-03-12 | 1999-09-21 | Kobe Steel Ltd | 耐衝撃性に優れた高強度鋼板 |
| JP2004076114A (ja) | 2002-08-20 | 2004-03-11 | Kobe Steel Ltd | 焼付硬化性に優れた複合組織鋼板 |
| JP2009209450A (ja) * | 2008-02-08 | 2009-09-17 | Jfe Steel Corp | 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
| JP2010090475A (ja) * | 2008-09-10 | 2010-04-22 | Jfe Steel Corp | 高強度鋼板およびその製造方法 |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2921568A4 (en) * | 2012-11-15 | 2016-08-03 | Baoshan Iron & Steel | HIGH-EVAPORATIVE AND SUPER-RESISTANT COLD-ROLLED STEEL PLATE AND METHOD OF PRODUCTION THEREOF |
| US10287659B2 (en) | 2012-11-15 | 2019-05-14 | Baoshan Iron & Steel Co., Ltd. | High-formability and super-strength cold-rolled steel sheet |
| CN109371320A (zh) * | 2013-05-01 | 2019-02-22 | 新日铁住金株式会社 | 镀锌钢板及其制造方法 |
| WO2014186722A3 (en) * | 2013-05-17 | 2015-01-08 | Ak Steel Properties, Inc. | High strength steel exhibiting good ductility and method of production via quenching and partitioning treatment by zinc bath |
| CN105247090A (zh) * | 2013-05-17 | 2016-01-13 | Ak钢铁资产公司 | 表现出良好延展性的高强度钢以及通过镀锌槽进行淬火和分配处理的制备方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| KR101422556B1 (ko) | 2014-07-24 |
| CN102884209B (zh) | 2014-04-02 |
| JP5333298B2 (ja) | 2013-11-06 |
| KR20120120440A (ko) | 2012-11-01 |
| JP2011184757A (ja) | 2011-09-22 |
| EP2546368A4 (en) | 2013-11-27 |
| CN102884209A (zh) | 2013-01-16 |
| EP2546368B1 (en) | 2014-10-08 |
| US20130133786A1 (en) | 2013-05-30 |
| EP2546368A1 (en) | 2013-01-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5333298B2 (ja) | 高強度鋼板の製造方法 | |
| JP5365112B2 (ja) | 高強度鋼板およびその製造方法 | |
| JP5418047B2 (ja) | 高強度鋼板およびその製造方法 | |
| CA2767206C (en) | High strength steel sheet and method for manufacturing the same | |
| JP5493986B2 (ja) | 加工性に優れた高強度鋼板および高強度溶融亜鉛めっき鋼板並びにそれらの製造方法 | |
| JP4998756B2 (ja) | 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 | |
| CN102348821B (zh) | 成形性优良的高强度热镀锌钢板及其制造方法 | |
| JP5251208B2 (ja) | 高強度鋼板とその製造方法 | |
| JP4956998B2 (ja) | 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 | |
| JP6304455B2 (ja) | 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法 | |
| JP2010065272A (ja) | 高強度鋼板およびその製造方法 | |
| KR20130083481A (ko) | 가공성 및 내피로 특성이 우수한 고강도 합금화 용융 아연 도금 강판 및 그 제조 방법 | |
| KR20120113806A (ko) | 고강도 강판 및 그 제조 방법 | |
| KR20100046057A (ko) | 가공성이 우수한 고강도 용융 아연 도금 강판 및 그 제조 방법 | |
| WO2013051238A1 (ja) | 高強度鋼板およびその製造方法 | |
| JP5786317B2 (ja) | 材質安定性と加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 | |
| KR20190042022A (ko) | 추가 처리를 위한 향상된 특성을 갖는 고강도 강 스트립을 제조하기 위한 방법 및 이 유형의 강 스트립 | |
| JP2015113504A (ja) | 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 | |
| JP5326362B2 (ja) | 高強度鋼板およびその製造方法 | |
| KR101677398B1 (ko) | 열간성형용 강재 및 이를 이용한 부재 제조방법 | |
| KR20120099517A (ko) | 가공성과 스폿 용접성이 우수한 고강도 용융 아연 도금 강판 및 그 제조 방법 | |
| JP5256690B2 (ja) | 加工性および耐衝撃特性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法 | |
| JP5256689B2 (ja) | 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 | |
| KR20220024957A (ko) | 고강도 강판, 고강도 부재 및 그것들의 제조 방법 | |
| US20210140008A1 (en) | Method for producing a hot or cold strip and/or a flexibly rolled flat steel product made of a high-strength manganese steel and flat steel product produced by said method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 201180023397.0 Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11752998 Country of ref document: EP Kind code of ref document: A1 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2011752998 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2133/MUMNP/2012 Country of ref document: IN |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| ENP | Entry into the national phase |
Ref document number: 20127024188 Country of ref document: KR Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1201002534 Country of ref document: TH |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 13583295 Country of ref document: US |