WO2011108697A1 - 車両の旋回制御装置 - Google Patents

車両の旋回制御装置 Download PDF

Info

Publication number
WO2011108697A1
WO2011108697A1 PCT/JP2011/055047 JP2011055047W WO2011108697A1 WO 2011108697 A1 WO2011108697 A1 WO 2011108697A1 JP 2011055047 W JP2011055047 W JP 2011055047W WO 2011108697 A1 WO2011108697 A1 WO 2011108697A1
Authority
WO
WIPO (PCT)
Prior art keywords
control amount
yaw rate
braking force
vehicle
force control
Prior art date
Application number
PCT/JP2011/055047
Other languages
English (en)
French (fr)
Inventor
知幸 二村
武志 小島
一剛 大村
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to US13/582,137 priority Critical patent/US20120330526A1/en
Priority to JP2012503281A priority patent/JP5277346B2/ja
Priority to CN201180011617.8A priority patent/CN102781742B/zh
Priority to EP11750806.9A priority patent/EP2543565B1/en
Publication of WO2011108697A1 publication Critical patent/WO2011108697A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve

Definitions

  • the present invention relates to a vehicle turning control device that controls turning of a vehicle using braking.
  • This application claims priority on March 4, 2010 based on Japanese Patent Application No. 2010-047832 for which it applied to Japan, and uses the content here.
  • the deviation between the lateral G standard yaw rate calculated based on the lateral acceleration of the vehicle (hereinafter referred to as lateral acceleration) and the vehicle speed and the actual yaw rate of the vehicle is brought close to zero. It is known to stabilize vehicle behavior by controlling braking of specific wheels.
  • the left and right braking forces of the front wheels are made different according to the turning state (for example, the change rate of the steering angle and the steering angle) and the left and right braking forces of the rear wheels are changed. It is known to assist the yaw moment and improve the turning ability by controlling the difference (for example, see Patent Document 1).
  • a corrected yaw moment is calculated by adding the first yaw moment calculated based on the steering angular velocity or the steering angular acceleration and the second yaw moment calculated based on the steering angle, the vehicle speed, and the yaw rate. It is known to improve the turning performance by controlling the left and right braking forces of the front wheels to be different and the left and right braking forces of the rear wheels to be different (see, for example, Patent Document 2). .
  • the first yaw moment is greatly reflected at the time of sudden turning (when the steering angular velocity and the steering angular acceleration are large). Although improved, it is not effective during normal turning. Further, the response during normal turning cannot be improved.
  • an object of the present invention is to provide a vehicle turning control device capable of improving the response during normal turning.
  • An apparatus according to an aspect of the present invention is a vehicle turning control device capable of generating a yaw moment on a vehicle body by applying a braking force to left and right wheels based on a traveling state of the vehicle.
  • a second braking force control amount calculation unit for determining a braking force control amount; and the first braking force control amount and the second braking force control amount calculation unit determined by the first braking force control amount calculation unit
  • a braking control unit that controls the braking force based on a total braking force control amount obtained by adding or multiplying the second braking force control amount.
  • the first braking force control amount calculation unit may set the first braking force control amount to be smaller as the vehicle speed is higher.
  • the apparatus of (1) or (2) further includes a required torque detector that detects the magnitude of the required torque based on the accelerator opening or the accelerator pedal operation amount,
  • the first braking force control amount calculation unit may increase the first braking force control amount as the vehicle speed decreases when the detection signal of the required torque detection unit is smaller than a predetermined value.
  • the first braking force control amount calculation unit increases as the turning speed or the turning amount calculated based on the detection signal of the steering amount detection unit increases.
  • the first braking force control amount may be increased.
  • the first braking force control amount calculation unit may decrease the first braking force control amount as the lateral acceleration increases.
  • the braking force is controlled based on the control amount. For this reason, the response of steering can be improved while ensuring the stability of the vehicle behavior.
  • the followability of steering is improved. For example, in the process of steering holding after steering input, such as during steady circle turning, fluctuations in the control amount are suppressed and followability is improved.
  • the above invention (2) it is possible to prevent the stability of the vehicle behavior from being lowered in the high speed range.
  • the invention of (3) above for example, the turning ability at the time of tuck-in at low to medium vehicle speed is improved.
  • the steering responsiveness during an avoidance operation from a front obstacle or a lane change is improved.
  • FIG. 1 is a control block diagram in an embodiment of a vehicle turning control device according to the present invention.
  • FIG. It is a block diagram of the correction
  • FIG. 1 is a control block diagram in the vehicle turning control device of the embodiment.
  • the vehicle turning control device 1 includes a brake control unit 2 and a brake device 10 (braking control unit).
  • the brake control unit 2 determines the braking force control amount for the front, rear, left and right wheels according to the traveling state of the vehicle.
  • the brake device 10 controls the braking force of each wheel based on the braking force control amount of each wheel determined by the brake control unit 2.
  • the brake control unit 2 includes a rudder angle reference yaw rate calculation unit 11, a steady state reference yaw rate calculation unit 12, a correction unit 13, a lateral G reference yaw rate calculation unit 14, a yaw rate deviation calculation unit 16, and a control amount calculation unit 17.
  • the control amount calculation unit 17 includes a feedforward control amount calculation unit (hereinafter abbreviated as FF control amount calculation unit) 18 and a feedback control amount calculation unit (hereinafter abbreviated as FB control amount calculation unit) 19. Yes.
  • the steering angle reference yaw rate calculation unit 11 (first braking force control amount calculation unit) is configured to detect the steering angle detected by the steering angle sensor 3 (steering amount detection unit) and the vehicle speed detected by the vehicle speed sensor 4 (vehicle speed detection unit). Based on the above, the rudder angle reference yaw rate is calculated. Since the steering angle is increased when the driver wants to bend the vehicle positively, the steering angle standard yaw rate is increased. That is, when the rudder angle standard yaw rate calculated based on the rudder angle is large, it can be estimated that the driver's steering intention to bend the vehicle is large.
  • the steady state reference yaw rate calculation unit 12 calculates a steady state reference yaw rate gain Kv corresponding to the vehicle speed with reference to the steady state reference yaw rate gain table 21, and adds the steady state reference yaw rate gain to the steering angle reference yaw rate.
  • the steady standard yaw rate ⁇ _high is calculated by multiplying by Kv.
  • the normal reference yaw rate gain table 21 has a vehicle speed on the horizontal axis and a steady reference yaw rate gain Kv on the vertical axis.
  • the steady reference yaw rate gain Kv converges to 1 as the vehicle speed increases, and the steady reference yaw rate as the vehicle speed decreases.
  • the gain Kv is set to be large.
  • the steady state reference yaw rate ⁇ _high becomes higher as the vehicle speed is lower.
  • the correction unit 13 receives the normal reference yaw rate ⁇ _high from which noise has been removed by performing a time variation smoothing process or a peak hold process on the normal reference yaw rate ⁇ _high. .
  • the correction unit 13 calculates a feedforward yaw rate control amount (hereinafter referred to as an FF yaw rate control amount) ⁇ ff by adjusting the steady-state standard yaw rate ⁇ _high from which noise has been removed according to the running state.
  • FF yaw rate control amount feedforward yaw rate control amount
  • the lateral G standard yaw rate calculation unit 14 (second braking force control amount calculation unit) is configured to detect the lateral G (lateral acceleration) detected by the lateral G sensor 5 (lateral acceleration detection unit) and the vehicle speed detected by the vehicle speed sensor 4.
  • the lateral G standard yaw rate ⁇ _low is calculated based on
  • Gy is a lateral acceleration detection value detected by the lateral G sensor 5
  • V is a vehicle body speed detected by the vehicle speed sensor 4.
  • the control amount calculation unit 17 calculates a feedforward control amount (hereinafter abbreviated as FF control amount) based on the FF yaw rate control amount ⁇ ff in the FF control amount calculation unit 18 (first braking force control amount calculation unit), and FB A control amount calculation unit 19 (second braking force control amount calculation unit) calculates a feedback control amount (abbreviated as FB control amount) based on the yaw rate deviation ⁇ fb. Then, the control amount calculation unit 17 calculates the total control amount by adding the FF control amount and the FB control amount, and outputs this total control amount to the brake device 10 as a command value. A method of calculating the total control amount in the control amount calculation unit 17 will be described in detail later.
  • the correction unit 13 includes a gain G calculation unit 31, a steady-state normative yaw rate gain adjustment unit 32, a correction coefficient HS1 calculation unit 33, a correction coefficient HS2 calculation unit 34, and a correction coefficient HS3 calculation unit 35.
  • the normal normative yaw rate gain adjusting unit 32 of the correcting unit 13 multiplies the gain G calculated by the gain G calculating unit 31 by the normal normative yaw rate ⁇ _high to calculate a gain-adjusted normal normative yaw rate ⁇ _t1.
  • the steady-state normative yaw rate ⁇ _t1 after gain adjustment is multiplied by the correction coefficients HS1 and HS2 calculated by the correction coefficient HS1 calculation unit 33 and the correction coefficient HS2 calculation unit 34, and further the correction coefficient HS3 calculated by the correction coefficient HS3 calculation unit 35 Is added to calculate the FF yaw rate control amount ⁇ ff.
  • ⁇ ff ⁇ _high ⁇ G ⁇ HS1 ⁇ HS2 + HS3 (1)
  • the gain G is calculated according to the gain Ga calculated according to the vehicle speed, the gain Gb calculated according to the yaw rate change rate, the gain Gc calculated according to the integral value of the yaw rate deviation, and the turning speed. It is calculated by multiplying the gain Gd.
  • G Ga ⁇ Gb ⁇ Gc ⁇ Gd (2)
  • Each gain Ga, Gb, Gc, Gd is calculated with reference to gain tables 40, 41, 42, 43 shown in FIG.
  • the gain tables 40, 41, 42, and 43 in this embodiment will be described.
  • the horizontal axis is the vehicle speed
  • the vertical axis is the gain Ga.
  • the gain Ga gradually decreases as the vehicle speed increases in the vehicle speed range
  • Ga 0 in the high vehicle speed range. It becomes constant.
  • the FF yaw rate control amount ⁇ ff is increased to improve responsiveness and followability
  • the FF yaw rate control amount ⁇ ff is not increased to improve the stability of the vehicle behavior. Plan.
  • the horizontal axis is the yaw rate change rate
  • the vertical axis is the gain Gb.
  • the yaw rate change rate is a temporal change in the actual yaw rate detected by the yaw rate sensor 6, and can be calculated by differentiating the actual yaw rate with time.
  • the FF yaw rate control amount ⁇ ff should not be increased. Therefore, when the yaw rate change rate is large, the gain Gb is set to a small value so that the FF yaw rate control amount ⁇ ff is not increased.
  • the horizontal axis is the yaw rate deviation integrated value
  • the vertical axis is the gain Gc.
  • the yaw rate deviation integrated value is a value obtained by integrating the deviation between the lateral G standard yaw rate ⁇ _low and the actual yaw rate detected by the yaw rate sensor 6 from the start of steering. For example, even if the yaw rate deviation is small, if the state continues for a long time, the yaw rate deviation integrated value becomes large. In such a case, although there is a possibility that the vehicle is gradually in a spin state, the FF yaw rate control amount ⁇ ff should not be increased. Therefore, when the yaw rate deviation integrated value is large, the gain Gc is set to a small value so that the FF yaw rate control amount ⁇ ff is not increased.
  • the horizontal axis is the steering speed
  • the vertical axis is the gain Gd.
  • the gain table 43 is set so that the gain Gd increases as the turning speed increases, and the gain Gd increases when the turning speed is positive than when the turning speed is negative.
  • the steering speed is a value determined based on the amount of change in the steering angle detected by the steering angle sensor 3 and the steering angle, and is calculated by differentiating the steering angle with time and comparing it with the steering angle. Can do.
  • the steering wheel When the steering speed is positive, the steering wheel is rotated in a direction away from the neutral position (straight-ahead direction position) when the steering angle changes with time in the same direction and the steering wheel This is a time change amount of the steering angle in the same direction in a state where the wheel is being rotated toward the neutral position (straight forward direction position).
  • the steering speed When the steering speed is negative, when the steering wheel is rotated in a direction away from the neutral position (straight-ahead direction position) and the time change amount of the steering angle is generated in the direction toward the neutral position, and This is when the amount of time change in the steering angle occurs in the direction away from the neutral position while the steering wheel is being rotated in the direction to return to the neutral position.
  • the steering speed is defined as positive when the steering wheel is rotated in a direction away from the neutral position, and the steering speed is defined as negative when the steering wheel is rotated toward the neutral position. May be.
  • the gain Gd of the in-table 43 may be calculated based on the turning angle (steering amount) instead of the turning speed and turning acceleration. This is because it can be estimated that the greater the turning angle, the greater the willingness of the driver to actively bend the vehicle.
  • the correction coefficient HS1 is a correction coefficient that is assumed when the driver performs an operation of bending the vehicle by turning the steering wheel with the vehicle as a preload.
  • the correction coefficient HS1 is calculated by multiplying the correction coefficient HS1a calculated according to the steering speed and the correction coefficient HS1b calculated according to the vehicle front load.
  • HS1 HS1a ⁇ HS1b (3)
  • the vehicle front load is a load moving amount forward of the vehicle, and can be estimated based on, for example, a longitudinal acceleration sensor (not shown) that detects acceleration in the longitudinal direction of the vehicle.
  • the longitudinal acceleration sensor can be said to be a load movement amount estimation unit that estimates the load movement amount in the front-rear direction.
  • the correction coefficients HS1a and HS1b are calculated with reference to the correction coefficient tables 44 and 45 shown in FIG.
  • the correction coefficient tables 44 and 45 in this embodiment will be described.
  • the horizontal axis is the steering speed
  • the vertical axis is the correction coefficient HS1a.
  • HS1a 1 is constant when the steering speed is low, and the correction coefficient HS1a gradually decreases as the steering speed increases when the steering speed is within the predetermined range.
  • HS1a 0 in a region where is large is constant.
  • the horizontal axis represents the front load (the amount of load movement forward of the vehicle), and the vertical axis represents the correction coefficient HS1b.
  • the correction coefficient HS1 is a correction coefficient for adjusting the FF yaw rate control amount ⁇ ff at the time of such steering.
  • the correction coefficient HS1 is 1 in a region where the steering speed is low and the preload is low, the FF yaw rate control amount ⁇ ff can be increased, and the turning performance and responsiveness are improved. it can.
  • the correction coefficient HS1 becomes smaller than 1 as the steering speed and the preload increase, the FF yaw rate control amount ⁇ ff can be reduced, thereby ensuring the stability of the vehicle behavior.
  • This correction coefficient HS2 is a lane change on a road surface (hereinafter abbreviated as a high ⁇ road) having a high coefficient of friction between the wheel and the road surface (hereinafter abbreviated as a ⁇ ) (operation for steering and immediately returning to the original traveling direction). It is a correction coefficient that assumes the case of performing.
  • the correction coefficient HS2 has a maximum value of 1 and subtracts a predetermined decrease count value from the initial value when the following condition is satisfied, and a predetermined increase count value toward 1 when neither of the following conditions is satisfied: Is a gain configured to add As conditions, (a) when it is determined that the friction coefficient ⁇ is high (or when longitudinal or lateral acceleration corresponding to road running with a high friction coefficient is detected), (b) when the steering angle is large. When it is determined, (c) when it is determined that the lateral G decrease rate is large, (d) when it is determined that the yaw rate decrease rate is large, a predetermined decrease count value is subtracted. In addition, the said conditions should just be what combined at least 1 or multiple arbitrarily among (a) to (d).
  • the friction coefficient ⁇ is calculated by the ⁇ calculator 8.
  • the lateral G reduction rate is a lateral G (lateral acceleration) reduction rate and can be calculated based on the lateral G detected by the lateral G sensor 5.
  • the yaw rate reduction rate is detected by the yaw rate sensor 6. This is the rate of decrease of the actual yaw rate.
  • step S01 it is determined whether or not the friction coefficient ⁇ is larger than the threshold value ⁇ th. If the determination result in step S01 is “YES” ( ⁇ > ⁇ th), the process proceeds to step S02, where the steering angle ⁇ is larger than the threshold value ⁇ th ( ⁇ > ⁇ th), or the lateral G reduction rate ⁇ G is the threshold value. It is determined whether it is greater than ⁇ Gth ( ⁇ G> ⁇ Gth) or whether the yaw rate reduction rate ⁇ is greater than the threshold value ⁇ th ( ⁇ > ⁇ th), and at least one is satisfied.
  • step S03 the correction coefficient HS2 is changed by the subtraction process, and the execution of this routine is once ended.
  • a predetermined subtraction count value is subtracted from the initial value of the correction coefficient HS2, so that the correction coefficient HS2 converges to zero.
  • step S04 the determination result in step S01 is “NO” ( ⁇ ⁇ ⁇ th) and if the determination result in step S02 is “NO”, the process proceeds to step S04, and the correction coefficient HS2 is changed by the addition process. Then, the execution of this routine is temporarily terminated.
  • a predetermined increase count value is added so that the correction coefficient HS2 converges to 1.
  • the initial value of the correction coefficient HS2 is a predetermined value between 0 and 1.
  • the correction coefficient HS2 is a coefficient for suppressing this. That is, when the friction coefficient ⁇ , the steering angle, the lateral G reduction rate, and the yaw rate reduction rate are large, the FF yaw rate control amount ⁇ ff is not increased by setting the correction coefficient HS2 to a small value. Improves the convergence of the yaw rate.
  • This correction coefficient HS3 is a correction coefficient that assumes when the driver has tacked in.
  • Tuck-in is a phenomenon in which the vehicle enters the inside of the turn as a preload when the accelerator pedal is suddenly returned during turning, but depending on the driver, there are cases where the turning operation is actively performed using this. .
  • the turning operation using the tuck-in is performed when the required torque to the vehicle is large (in other words, when the accelerator opening is large) or when the accelerator is released or when the vehicle speed is high, the vehicle behavior is not good. It tends to be stable.
  • the correction coefficients HS3a and HS3b are calculated with reference to the correction coefficient tables 51 and 52 shown in FIG.
  • the correction coefficient tables 51 and 52 in this embodiment will be described.
  • the horizontal axis represents the vehicle speed
  • the vertical axis represents the correction coefficient HS3a.
  • HS3a is a positive constant value when the vehicle speed is smaller than the predetermined range
  • the correction coefficient HS3a gradually decreases as the vehicle speed increases within the predetermined range.
  • the HS 3a is a negative constant value.
  • the correction coefficient HS3 is used regardless of the vehicle speed. Becomes 0, so that the FF yaw rate control amount ⁇ ff is not corrected.
  • the correction coefficient HS3 is a positive value when the vehicle speed is lower than V0. ⁇ ff can be increased.
  • the correction coefficient HS3 is a negative value, so the FF yaw rate control amount ⁇ ff can be reduced. Further, when the vehicle speed is lower than V0 and the required torque is the same, the correction coefficient H3 can be set to a larger positive value as the vehicle speed decreases, and the FF yaw rate control amount ⁇ ff can be further increased. Thereby, the turnability at the time of tuck-in when the vehicle speed is low and medium can be improved.
  • the correction coefficient H3 is set to a larger negative value as the vehicle speed increases, and the FF yaw rate control amount ⁇ ff is decreased to stabilize the vehicle behavior.
  • the brake control amount calculation executed in the control amount calculation unit 17 will be described with reference to FIG.
  • the FF control amount calculation unit 18 of the control amount calculation unit 17 calculates the FF control amount based on the FF yaw rate control amount ⁇ ff
  • the FB control amount calculation unit 19 calculates the FB control amount based on the yaw rate deviation ⁇ fb. Calculated.
  • the control amount calculation unit 17 calculates the total control amount for each wheel by adding the FF control amount and the FB control amount.
  • the FF yaw rate control amount ⁇ ff calculated for the FR turning inner wheel is calculated by multiplying the FF yaw rate control amount ⁇ ff calculated by the correction unit 13 by the increase coefficient K1fr.
  • the brake fluid pressure increase amount ⁇ P1ffk of the FR turning inner wheel is calculated according to the FF yaw rate control amount ⁇ 1ff for the FR turning inner wheel.
  • the horizontal axis represents the FF yaw rate control amount ⁇ 1ff
  • the vertical axis represents the brake fluid pressure increase amount ⁇ P1ffk.
  • the brake fluid pressure increase amount ⁇ P1ffk is 0, and when the FF yaw rate control amount ⁇ 1ff for the FR turning inner wheel is 0 or more, the FF yaw rate control amount. As ⁇ 1ff increases, the brake fluid pressure increase amount ⁇ P1ffk increases.
  • the limit processing unit 61 performs limit processing so that the brake fluid pressure increase amount ⁇ P1ffk of the FR turning inner wheel does not exceed the upper limit value.
  • the upper limit value is an arbitrary value calculated by the upper limit value calculation unit 62, and by setting the upper limit value so as not to exceed this value, a sudden change in the hydraulic pressure increase amount ⁇ P1ffk is suppressed.
  • the brake fluid pressure increase amount ⁇ P1ffk of the FR turning inner wheel subjected to the limit processing is multiplied by a gain corresponding to the vehicle speed to calculate the FF pressure increase amount ⁇ P1ff for the FR turning inner wheel.
  • the gain corresponding to the vehicle speed is calculated based on the gain table 63.
  • the horizontal axis is the vehicle speed
  • the vertical axis is the gain.
  • the FF pressure increase amount ⁇ P1ff of the FR turning inner wheel becomes 0 when the vehicle speed is high.
  • the FF pressure increase amount ⁇ P1ff of the FR turning inner wheel is invalidated at a high vehicle speed. This can prevent the vehicle behavior from becoming unstable due to the steering assist brake at high vehicle speeds.
  • the gain table 63 constitutes an invalidation unit.
  • a limit value that decreases as the vehicle speed increases may be given, and this limit value may be set so that ⁇ Plff does not exceed.
  • the calculation of the FF pressure increase amount ⁇ P2ff for the RR turning inner wheel is the same as the calculation of the FF pressure increase amount ⁇ P1ff for the FR turning inner wheel, and will be briefly described.
  • the FF yaw rate control amount ⁇ ff calculated for the RR turning inner wheel is calculated by multiplying the FF yaw rate control amount ⁇ ff calculated by the correction unit 13 by the increase coefficient K1rr for the RR turning inner wheel.
  • the brake hydraulic pressure increase amount ⁇ P2ffk for the RR turning inner wheel is calculated according to the FF yaw rate control amount ⁇ 2ff for the RR turning inner wheel.
  • the limit processing unit 65 performs limit processing so that the brake fluid pressure increase amount ⁇ P2ffk of the RR turning inner wheel does not exceed the upper limit value.
  • the upper limit value is calculated by the upper limit value calculation unit 66.
  • the upper limit calculator 66 is the same as the upper limit calculator 62.
  • the brake fluid pressure increase amount ⁇ P2ffk of the RR turning inner wheel subjected to the limit process is multiplied by the gain calculated by the gain table 67 to calculate the FF pressure increase amount ⁇ P2ff for the RR turning inner wheel. Since the gain table 67 is the same as the gain table 63, description thereof is omitted. In this embodiment, the gain table 67 constitutes an invalidation unit.
  • the FF control amount calculation unit 18 includes an inner ring pressure reduction amount calculation unit 70.
  • the inner wheel pressure reduction amount calculation unit 70 restricts the brake fluid pressure of the turning inner wheel in advance on the premise that the vehicle behavior becomes unstable due to braking at high speed or high lateral G.
  • the inner ring pressure reduction amount calculation unit 70 calculates the pressure reduction rate according to the vehicle speed with reference to the first pressure reduction rate table 71, calculates the pressure reduction rate according to the lateral G with reference to the second pressure reduction rate table 72, The total decompression rate is calculated by multiplying these decompression rates.
  • the horizontal axis is the vehicle speed
  • the vertical axis is the decompression rate.
  • the horizontal axis is the lateral G
  • the vertical axis is the decompression rate.
  • the total decompression rate is set to a value between 0 and 1 according to the vehicle speed and the lateral G during traveling. Then, the total pressure reduction rate obtained in this way is multiplied by the master cylinder pressure of the brake device 10 and further multiplied by minus 1 to obtain the inner ring pressure reduction amount ⁇ Pd.
  • the FB control amount calculation unit 19 based on the yaw rate deviation ⁇ fb calculated by the yaw rate deviation calculation unit 16, the FB pressure increase amount ⁇ P1fb of the FR turning inner wheel, the FB of the turning outer wheel on the front wheel side (hereinafter abbreviated as FR turning outer wheel).
  • the pressure increase amount ⁇ P3fb, the FB pressure increase amount ⁇ P2fb of the RR turning inner wheel, and the FB pressure increase amount ⁇ P4fb of the rear wheel side turning outer wheel (hereinafter referred to as RR turning outer wheel) are calculated.
  • RR turning outer wheel an example will be described in which the sign of the deviation ⁇ fb is positive and both the standard yaw rate and the actual yaw rate are positive.
  • the FB pressure increase amount ⁇ P1fb of the FR turning inner wheel is calculated by referring to the pressure increase amount table 80 based on the yaw rate deviation ⁇ fb.
  • the horizontal axis is the yaw rate deviation ⁇ fb
  • the vertical axis is the FB pressure increase amount ⁇ P1fb.
  • the FB pressure increase amount ⁇ P1fb is 0.
  • the FB pressure increase amount ⁇ P1fb increases as the yaw rate deviation ⁇ fb increases. .
  • the FB pressure increase amount ⁇ P2fb of the RR turning inner wheel is calculated with reference to the pressure increase amount table 81 based on the yaw rate deviation ⁇ fb.
  • the horizontal axis is the yaw rate deviation ⁇ fb
  • the vertical axis is the FB pressure increase amount ⁇ P2fb.
  • the FB pressure increase amount ⁇ P2fb is 0.
  • the FB pressure increase amount ⁇ P2fb increases as the yaw rate deviation ⁇ fb increases. .
  • the FB pressure increase amount ⁇ P3fb of the FR turning outer wheel is calculated with reference to the pressure increase amount table 82 based on the yaw rate deviation ⁇ fb.
  • the horizontal axis represents the yaw rate deviation ⁇ fb
  • the vertical axis represents the FB pressure increase amount ⁇ P3fb.
  • the FB pressure increase amount ⁇ P3fb is 0.
  • the FB pressure increase amount ⁇ P3fb increases as the absolute value of the yaw rate deviation ⁇ fb increases. I will do it.
  • the FB pressure increase amount ⁇ P4fb of the RR turning outer wheel is calculated with reference to the pressure increase amount table 83 based on the yaw rate deviation ⁇ fb.
  • the horizontal axis is the yaw rate deviation ⁇ fb
  • the vertical axis is the FB pressure increase amount ⁇ P4fb.
  • the FB pressure increase amount ⁇ P4fb is 0.
  • the FB pressure increase amount ⁇ P4fb increases as the absolute value of the yaw rate deviation ⁇ fb increases. I will do it.
  • the FB control amount of each wheel is set in the direction in which the yaw rate is increased (in other words, the direction in which the yaw rate deviation ⁇ fb is canceled).
  • the FB pressure increase amount is set in a direction to increase the brake fluid pressure of the FR turning inner wheel and the RR turning inner wheel
  • the FB pressure increasing amount is set so as not to increase the brake fluid pressure of the FR turning outer wheel and the RR turning outer wheel.
  • the FB control amount of each wheel is set in the direction in which the yaw rate is decreased (in other words, the direction in which the yaw rate deviation ⁇ fb is canceled).
  • the FB pressure increase amount is set in a direction to increase the brake fluid pressure of the FR turning outer wheel and the RR turning outer wheel, and the FB pressure increasing amount is set so as not to increase the brake fluid pressure of the FR turning inner wheel and the RR turning inner wheel.
  • the control amount calculation unit 17 calculates the total control amount of each wheel as follows and outputs it to the brake device 10.
  • a value obtained by adding the FF pressure increase amount ⁇ P1ff of the FR turning inner wheel, the FB pressure increase amount ⁇ P1fb of the FR turning inner wheel, and the inner wheel pressure reduction amount ⁇ Pd is defined as a total control amount for the FR turning inner wheel.
  • a value obtained by adding the FF pressure increase amount ⁇ P2ff of the RR turning inner wheel, the FB pressure increase amount ⁇ P2fb of the RR turning inner wheel, and the inner wheel pressure reduction amount ⁇ Pd is defined as a total control amount for the RR turning inner wheel.
  • the total control is obtained by adding the FF control amount calculated based on the steering input (steering angle) to the FB control amount calculated based on the vehicle body behavior (lateral G and yaw rate).
  • the brake pressure is controlled based on the amount. Therefore, it is possible to improve the steering response while ensuring the stability of the vehicle behavior.
  • the followability of steering is improved. For example, in the process of steering holding after steering input, such as during steady circle turning, fluctuations in the control amount are suppressed and followability is improved.
  • the present invention is not limited to the embodiment described above.
  • the total control amount is calculated by adding the FF control amount and the FB control amount.
  • the total control amount can be calculated by multiplying the FF control amount and the FB control amount.
  • an estimated vehicle speed estimated based on the detection value of the wheel speed sensor may be used instead of the detection value of the vehicle speed sensor.
  • the FF control amount calculation unit 18 invalidates the FF pressure increase amount ⁇ P1ff of the FR turning inner wheel at the high vehicle speed and the FF pressure increase amount ⁇ P2ff of the RR turning inner wheel to invalidate the steering assist at the high vehicle speed. Prevents vehicle behavior from becoming unstable due to braking. On the other hand, the FF pressure increase amount of the turning inner wheel may be invalidated even when the steering speed is extremely high or the ABS is operated.
  • this vehicle turning control device By installing this vehicle turning control device, it is possible to improve steering response while ensuring stability of vehicle behavior.
  • the followability of steering is improved. For example, in the process of steering holding after steering input, such as during steady circle turning, fluctuations in the control amount are suppressed and followability is improved.
  • Vehicle turning control device 3 Steering angle sensor (steering amount detector) 4 Vehicle speed sensor (vehicle speed detector) 5 Lateral G sensor (lateral acceleration detector) 6 Yaw rate sensor (yaw rate detector) 7 Accelerator opening sensor (required torque detector) 10 Brake device (braking control unit) 11 Rudder angle reference yaw rate calculation unit (first braking force control amount calculation unit) 12 Steady state yaw rate calculation unit (first braking force control amount calculation unit) 13 Correction unit (first braking force control amount calculation unit) 14 Lateral G standard yaw rate calculation unit (second braking force control amount calculation unit) 16 Yaw rate deviation calculation unit (second braking force control amount calculation unit) 18 FF control amount calculation unit (first braking force control amount calculation unit) 19 FB control amount calculation unit (second braking force control amount calculation unit) 63, 67 Gain table (invalidation section)

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

 この車両の旋回制御装置は、操舵量検知部および検知部の検知信号に基づいて第1の制動力制御量を決定する第1制動力制御量演算部と;規範ヨーレートとヨーレート検知部により検知された実ヨーレートとの偏差であるヨーレート偏差を算出し、前記ヨーレート偏差を打ち消すように第2の制動力制御量を決定する第2制動力制御量演算部と;前記第1の制動力制御量と前記第2の制動力制御量とを加算または乗算することにより得られる総制動力制御量に基づいて制動力を制御する制動制御部とを備える。

Description

車両の旋回制御装置
 この発明は、制動を利用して車両の旋回を制御する車両の旋回制御装置に関する。
 本願は、2010年3月4日に、日本に出願された特願2010-047832号に基づき優先権を主張し、その内容をここに援用する。
 この種の旋回制御装置の一例として、車両の左右方向の加速度(以下、横加速度という)と車速に基づいて算出される横G規範ヨーレートと車両の実ヨーレートとの偏差を0に近づける方向に、特定の車輪を制動制御することにより、車両挙動の安定化を図るものが知られている。
 また、別の旋回制御装置の例として、制動時に、旋回状態(例えば、操舵角や操舵角の変化率)に応じて、前輪の左右の制動力を異ならせるとともに後輪の左右の制動力を異ならせるように制御することにより、ヨーモーメントをアシストし、回頭性の向上を図るものが知られている(例えば、特許文献1参照)。
 また、操舵角速度または操舵角加速度に基づき算出した第1ヨーモーメントと、操舵角と車速とヨーレートに基づき算出した第2ヨーモーメントと、を加算して修正ヨーモーメントを算出し、この修正ヨーモーメントを発生するように前輪の左右の制動力を異ならせるとともに後輪の左右の制動力を異ならせるように制御して、回頭性の向上を図るものが知られている(例えば、特許文献2参照)。
日本国特許第2572860号公報 日本国特開2005-153716号公報
 しかしながら、前記特許文献1に記載の旋回制御装置では、制動時の旋回時に常にヨーモーメントをアシストするので、ヨーモーメントが過大となって安定性が低減する場合が考えられ、現実的ではない。また、通常旋回時の応答性を向上させることはできない。
 一方、前記特許文献2に記載の旋回制御装置は、急旋回時(操舵角速度や操舵角加速度が大きいとき)に前記第1ヨーモーメントが大きく反映されるようになっており、このときには回頭性が向上するが、通常旋回時には効果的でない。また、通常旋回時の応答性を向上させることはできない。
 そこで、この発明の課題は、通常旋回時の応答性を向上させることができる車両の旋回制御装置を提供することである。
 この発明に係る車両の旋回制御装置では、上記課題を解決するために以下の手段を採用した。
(1) 本発明の一態様に係る装置は、前記車両の走行状態に基づいて左右車輪に制動力を付与することにより車体にヨーモーメントを発生可能な車両の旋回制御装置であって、車両の操舵量を検知する操舵量検知部と;前記車両の車速を検知または推定する車速検知部と;前記車両の左右方向の加速度を検知する横加速度検知部と;前記車両のヨーレートを検知するヨーレート検知部と;前記操舵量検知部および前記車速検知部の検知信号に基づいて第1の制動力制御量を決定する第1制動力制御量演算部と;前記横加速度検知部および前記車速検知部の検知信号に基づいて算出した規範ヨーレートと前記ヨーレート検知部により検知された実ヨーレートとの偏差であるヨーレート偏差を算出し、前記ヨーレート偏差を打ち消すように第2の制動力制御量を決定する第2制動力制御量演算部と;前記第1制動力制御量演算部が決定した前記第1の制動力制御量と前記第2制動力制御量演算部が決定した前記第2の制動力制御量とを加算または乗算することにより得られる総制動力制御量に基づいて前記制動力を制御する制動制御部と;を備える。
(2) 上記(1)の装置で、前記第1制動力制御量演算部は、前記車速が大きいほど前記第1の制動力制御量を小さく設定してもよい。
(3) 上記(1)または(2)の装置で、アクセル開度またはアクセルペダル操作量に基づいて要求トルクの大きさを検知する要求トルク検知部を更に備え、
 前記第1制動力制御量演算部は、前記要求トルク検知部の検知信号が所定値よりも小さいときに、車速が小さいほど前記第1の制動力制御量を大きくしてもよい。
(4) 上記(1)~(3)の装置で、前記第1制動力制御量演算部は、前記操舵量検知部の検知信号に基づいて算出される転舵速度または転舵量が大きいほど前記第1の制動力制御量を大きくしてもよい。
(5) 上記(1)の装置で、前記第1制動力制御量演算部は、横加速度が大きいほど前記第1の制動力制御量を小さくしてもよい。
 上記(1)の発明では、車体挙動(横Gおよびヨーレート)に基づき算出されたフィードバック制御量に、操舵入力(操舵角)に基づき算出されたフィードフォワード制御量を加算または乗算して得られる総制御量に基づいて制動力を制御する。このため、車両挙動の安定性を確保しつつ、操舵の応答性を向上させることができる。また、操舵の追従性も向上する。例えば、定常円旋回時などのように、操舵入力後に操舵保持という過程において、制御量の変動が抑制されて追従性が向上する。
 上記(2)の発明によれば、高速域において車両挙動の安定性が低下するのを防止できる。
 上記(3)の発明によれば、例えば、低中車速のタックイン時の回頭性が向上する。
 上記(4)の発明によれば、前方障害物からの回避操作やレーンチェンジなどのときの操舵の応答性が向上する。
 上記(5)の発明によれば、制動により車両挙動が不安定となるのを防止できる。
この発明に係る車両の旋回制御装置の実施形態における制御ブロック図である。 実施形態における補正部のブロック図である。 ゲインGの算出方法を説明する図である。 補正係数HS1の算出方法を説明する図である。 補正係数HS2決定処理を示すフローチャートである。 補正係数HS3の算出方法を説明する図である。 実施形態における制動力制御量算出のブロック図である。
 以下、この発明に係る車両の旋回制御装置の実施形態を図1から図7の図面を参照して説明する。
 図1は、実施形態の車両の旋回制御装置における制御ブロック図である。
 車両の旋回制御装置1は、ブレーキ制御部2と、ブレーキ装置10(制動制御部)とを備えている。
 ブレーキ制御部2は車両の走行状態に応じて前後左右輪の制動力制御量を決定する。ブレーキ装置10は、ブレーキ制御部2によって決定された各輪の制動力制御量に基づいて、各輪の制動力を制御する。
 ブレーキ制御部2には、車両のステアリングホイールの操舵角(操舵量)を検知する操舵角センサ3、車速を検知する車速センサ4、車両の左右方向(車幅方向)の加速度すなわち横加速度(以下、横Gと略す)を検知する横加速度センサ(以下、横Gセンサと略す)5、車両のヨーレートを検知するヨーレートセンサ6、車両のアクセル開度を検知するアクセル開度センサ7から、それぞれ検出値に応じた検知信号が入力される。また、ブレーキ制御部2には、車両の車輪と路面との摩擦係数を算出するμ算出部8から、算出した摩擦係数に応じた電気信号が入力される。
 ブレーキ制御部2は、舵角規範ヨーレート演算部11、定常規範ヨーレート演算部12、補正部13、横G規範ヨーレート演算部14、ヨーレート偏差演算部16、制御量演算部17とを備えている。この制御量演算部17は、フィードフォワード制御量演算部(以下、FF制御量演算部と略す)18と、フィードバック制御量演算部(以下、FB制御量演算部と略す)19と、を備えている。
 舵角規範ヨーレート演算部11(第1制動力制御量演算部)は、操舵角センサ3(操舵量検知部)により検知された舵角と、車速センサ4(車速検知部)により検知された車速とに基づいて、舵角規範ヨーレートを算出する。運転者が車両を積極的に曲げたいときには操舵角を大きくするので、舵角規範ヨーレートは大きくなる。つまり、舵角に基づいて算出される舵角規範ヨーレートが大きいときは、車両を曲げたいという運転者の操舵意志が大きいと推定できる。
 定常規範ヨーレート演算部12(第1制動力制御量演算部)は、定常規範ヨーレートゲインテーブル21を参照して車速に応じた定常規範ヨーレートゲインKvを算出し、舵角規範ヨーレートに定常規範ヨーレートゲインKvを乗じて定常規範ヨーレートω_highを算出する。この実施形態における定常規範ヨーレートゲインテーブル21は、横軸が車速、縦軸が定常規範ヨーレートゲインKvであり、車速が大きくなるほど定常規範ヨーレートゲインKvは1に収束し、車速が小さくなるほど定常規範ヨーレートゲインKvが大きくなるように設定されている。この実施形態において、定常規範ヨーレートω_highは車速が低いほど高ゲインとなる。
 補正部13(第1制動力制御量演算部)には、定常規範ヨーレートω_highに対して時間変化量平滑化処理あるいはピークホールド処理などを行ってノイズが除去された定常規範ヨーレートω_highが入力される。
 補正部13は、ノイズ除去された定常規範ヨーレートω_highに対して、走行状態に応じた調整を行うことにより、フィードフォワードヨーレート制御量(以下、FFヨーレート制御量という)ωffを算出する。補正部13におけるFFヨーレート制御量ωffの算出方法については後で詳述する。
 横G規範ヨーレート演算部14(第2制動力制御量演算部)は、横Gセンサ5(横加速度検知部)により検知された横G(横加速度)と、車速センサ4により検知された車速とに基づいて、横G規範ヨーレートω_lowを算出する。横G規範ヨーレートω_lowは、現在の横Gで発生することができるヨーレートであり、例えばω_low=Gy/Vで表される。ここでGyは横Gセンサ5により検知された横加速度検出値、Vは車速センサ4により検知された車体速である。
 ヨーレート偏差演算部16(第2制動力制御量演算部)は、横G規範ヨーレートω_lowからヨーレートセンサ6(ヨーレート検知部)により検知されたヨーレート(実ヨーレート)を減算し、ヨーレート偏差Δωfbを算出する。
 制御量演算部17は、FF制御量演算部18(第1制動力制御量演算部)においてFFヨーレート制御量ωffに基づいてフィードフォワード制御量(以下、FF制御量と略す)を算出し、FB制御量演算部19(第2制動力制御量演算部)においてヨーレート偏差Δωfbに基づいてフィードバック制御量(FB制御量と略す)を算出する。そして、制御量演算部17は、FF制御量とFB制御量を加算して総制御量を算出し、この総制御量をブレーキ装置10に指令値として出力する。制御量演算部17における総制御量の算出方法については後で詳述する。
 次に、図2から図6の図面を参照して、補正部13におけるFFヨーレート制御量ωffの算出方法を説明する。
 図2に示すように、補正部13は、ゲインG演算部31、定常規範ヨーレートゲイン調整部32、補正係数HS1演算部33、補正係数HS2演算部34、補正係数HS3演算部35を備えている。
 補正部13の定常規範ヨーレートゲイン調整部32において、ゲインG演算部31で算出したゲインGと定常規範ヨーレートω_highとを乗算して、ゲイン調整された定常規範ヨーレートω_t1が算出される。さらに、このゲイン調整後の定常規範ヨーレートω_t1に、補正係数HS1演算部33および補正係数HS2演算部34で算出した補正係数HS1,HS2を乗じ、さらに補正係数HS3演算部35で算出した補正係数HS3を加算することにより、FFヨーレート制御量ωffが算出される。
ωff=ω_high×G×HS1×HS2+HS3 ・・・ 式(1)
 次に、図3を参照して、ゲインG演算部31において算出されるゲインGについて説明する。
 ゲインGは、車速に応じて算出されるゲインGaと、ヨーレート変化率に応じて算出されるゲインGbと、ヨーレート偏差の積分値に応じて算出されるゲインGcと、転舵速度に応じて算出されるゲインGdとを乗算して算出される。
G=Ga×Gb×Gc×Gd ・・・ 式(2)
 各ゲインGa,Gb,Gc,Gdは、それぞれ図3に示すゲインテーブル40,41,42,43を参照して算出される。以下、この実施形態における各ゲインテーブル40,41,42,43を説明する。
 ゲインGaを算出するゲインテーブル40において、横軸は車速であり、縦軸はゲインGaである。このゲインテーブル40中で、低車速域ではGa=1で一定で、車速が所定範囲内の領域では車速が高くなるにしたがってゲインGaが徐々に小さくなっていき、高車速域ではGa=0で一定となる。これにより、車速が低いときには、FFヨーレート制御量ωffを大きくして、応答性および追従性を向上させ、車速が高いときには、FFヨーレート制御量ωffを大きくしないようにして、車両挙動の安定性を図る。
 ゲインGbを算出するゲインテーブル41において、横軸はヨーレート変化率であり、縦軸はゲインGbである。このゲインテーブル41中で、ヨーレート変化率が小さい領域ではGb=1で一定で、ヨーレート変化率が所定範囲内の領域ではヨーレート変化率が大きくなるにしたがってゲインGbが徐々に小さくなっていき、ヨーレート変化率が大きい領域ではGb=0で一定となる。ここで、ヨーレート変化率とは、ヨーレートセンサ6で検知される実ヨーレートの時間的変化であり、実ヨーレートを時間微分することにより算出できる。例えば、激しいスラローム走行をしているときや、車両挙動が不安定であるときなどには、大きなヨーレート変化率が現れる。このようなときには、FFヨーレート制御量ωffを大きくすべきではない。したがって、ヨーレート変化率が大きいときにはゲインGbを小さい値にして、FFヨーレート制御量ωffを大きくしないようにする。
 ゲインGcを算出するゲインテーブル42において、横軸はヨーレート偏差積分値であり、縦軸はゲインGcである。このゲインテーブル42中で、ヨーレート偏差積分値が小さい領域ではGc=1で一定で、ヨーレート偏差積分値が所定範囲内の領域ではヨーレート偏差積分値が大きくなるにしたがってゲインGcが徐々に小さくなっていき、ヨーレート偏差積分値が大きい領域ではGc=0で一定となる。ここで、ヨーレート偏差積分値とは、横G規範ヨーレートω_lowとヨーレートセンサ6で検知される実ヨーレートとの偏差を、操舵を開始したときから積算した値である。例えば、このヨーレート偏差が小さくてもその状態が長時間続いた場合にはヨーレート偏差積分値が大きくなる。このようなときは、ゆっくりではあるが徐々に車がスピン状態になっている可能性があるので、FFヨーレート制御量ωffを大きくすべきではない。そこで、ヨーレート偏差積分値が大きいときにはゲインGcを小さい値にして、FFヨーレート制御量ωffを大きくしないようにする。
 ゲインGdを算出するゲインテーブル43において、横軸は転舵速度であり、縦軸はゲインGdである。
 このゲインテーブル43は、転舵速度が大きいほどゲインGdが大きくなり、且つ、転舵速度が正の場合には転舵速度が負の場合よりもゲインGdが大きくなるように設定されている。ここで、転舵速度は操舵角センサ3で検知される操舵角の時間変化量と舵角に基づき決定される値であり、操舵角を時間微分して舵角と比較することにより算出することができる。転舵速度が正の場合とは、ステアリングホイールを中立位置(直進方向位置)から離間する方向に回転操作している状態で同方向に向けた舵角の時間変化量が生じているときおよびステアリングホイールを中立位置(直進方向位置)に向けて回転操作している状態で同方向への舵角の時間変化量が生じているときである。転舵速度が負の場合とは、ステアリングホイールを中立位置(直進方向位置)から離間する方向に回転操作している状態で中立位置に向く方向に舵角の時間変化量が生じているときおよびステアリングホイールを中立位置に戻す方向に回転操作している状態で中立位置から離間する方向に舵角の時間変化量が生じているときである。
 なお、ステアリングホイールを中立位置から離間する方向に回転操作している状態で転舵速度を正と定義し、ステアリングホイールを中立位置に向けて回転操作している状態で転舵速度を負と定義してもよい。
 転舵速度が正の場合は、運転者が車両を大きく曲げたいという操作意志が大きいと推定できるので、転舵速度が大きくなるほどゲインGdを大きい値にして(最大値はGd=1で一定)、FFヨーレート制御量ωffが大きくなるようにする。これにより、操舵の応答性を向上させる。一方、転舵速度が負の場合は、運転者が操作を収束させたい状態と推定できるので、転舵速度が小さくなるほどゲインGdを小さい値にして(最小値はGd=0で一定)、FFヨーレート制御量ωffを大きくしないようにする。
 これにより、前方障害物からの回避操作やレーンチェンジなどのときの操舵の応答性が向上する。
 なお、インテーブル43のゲインGdは転舵速度、転舵加速度に代えて転舵角(転舵量)に基づいて算出してもよい。転舵角が大きいほど、運転者が車両を積極的に曲げたいという操作意志が大きいと推定できるからである。
 次に、図4を参照して、補正係数HS1演算部33において算出される補正係数HS1について説明する。
 この補正係数HS1は、運転者が車両を前荷重にしてハンドルを切ることにより車両を曲げる操作を行うときなどを想定した補正係数である。
 図4に示すように、補正係数HS1は、操舵速度に応じて算出される補正係数HS1aと、車両の前荷重に応じて算出される補正係数HS1bとを乗算して算出される。
HS1=HS1a×HS1b ・・・ 式(3)
 車両の前荷重とは車両前方への荷重移動量であり、例えば、車両の前後方向の加速度を検知する図示しない前後加速度センサに基づいて推定できる。この場合、前後加速度センサは、前後方向への荷重移動量を推定する荷重移動量推定部と言うことができる。
 各補正係数HS1a,HS1bは、それぞれ図4に示す補正係数テーブル44,45を参照して算出される。この実施形態における補正係数テーブル44,45を説明する。
 補正係数HS1aを算出する補正係数テーブル44において、横軸は操舵速度であり、縦軸は補正係数HS1aである。この補正係数HS1aテーブル44は、操舵速度が小さい領域ではHS1a=1で一定で、操舵速度が所定範囲内の領域では操舵速度が大きくなるにしたがって補正係数HS1aが徐々に小さくなっていき、操舵速度が大きい領域ではHS1a=0で一定となる。
 補正係数HS1bを算出する補正係数テーブル45において、横軸は前荷重(車両前方への荷重移動量)であり、縦軸は補正係数HS1bである。この補正係数HS1bテーブル45は、前荷重が小さい領域ではHS1b=1で一定で、前荷重が所定範囲内の領域では前荷重が大きくなるにしたがって補正係数HS1bが徐々に小さくなっていき、前荷重が大きい領域ではHS1b=0で一定となる。
 前述したように車両を前荷重にしてハンドルを切ると車両を曲げ易くなるが、前荷重が大きくなるにしたがって車両挙動が不安定になり易く、また、操舵速度が大きいほど車両挙動が不安定になり易い。補正係数HS1は、このような操舵時のFFヨーレート制御量ωffを調整するための補正係数である。
 補正係数HS1を上述のように算出する結果、操舵速度が小さい領域で且つ前荷重が小さい領域では補正係数HS1は1となるので、FFヨーレート制御量ωffを大きくでき、回頭性および応答性を向上できる。これに対して、操舵速度および前荷重が大きくなるにしたがって補正係数HS1は1よりも小さくなっていくので、FFヨーレート制御量ωffを小さくでき、これにより車両挙動の安定性を確保できる。
 次に、補正係数HS2演算部34において算出される補正係数HS2について説明する。
 この補正係数HS2は、車輪と路面との摩擦係数(以下μと略す)が高い路面(以下、高μ路と略す)でレーンチェンジ(操舵をして、すぐに元の進行方向に戻す操作)をする場合を想定した補正係数である。
 補正係数HS2は、1を最大値として、下記の条件を満たした場合に所定の減少カウント値を初期値から減算し、下記のいずれの条件も満たさない場合に1に向けて所定の増加カウント値を加算するよう構成されるゲインである。条件としては、(a)摩擦係数μが高いと判断されたとき(または高摩擦係数の路面走行に対応する前後または横方向加速度が検出されているとき)、(b)操舵角が大きいと判断されたとき、(c)横G減少率が大きいと判断されたとき、(d)ヨーレート減少率が大きいと判断されたときに所定の減少カウント値を減算する。なお、上記条件は、(a)から(d)のうち少なくとも1つまたは複数を任意に組合わせたものであればよい。特に高摩擦係数時の車両挙動収束性を考慮すると、上記(a)と、(b)から(d)のいずれかを組合わせて用いることが好ましい。
 なお、摩擦係数μは、μ算出部8により算出される。また、横G減少率とは、横G(横加速度)の減少速度であり、横Gセンサ5で検知される横Gに基づいて算出でき、ヨーレート減少率とは、ヨーレートセンサ6で検知される実ヨーレートの減少速度である。
 図5のフローチャートに従って、補正係数HS2を決定する処理の一例を説明する。
 初めに、ステップS01において、摩擦係数μが閾値μthよりも大きいか否かを判定する。
 ステップS01における判定結果が「YES」(μ>μth)である場合には、ステップS02に進み、操舵角δが閾値δthよりも大きいか(δ>δth)、あるいは、横G減少率ΔGが閾値ΔGthよりも大きいか(ΔG>ΔGth)、あるいは、ヨーレート減少率γが閾値γthよりも大きいか(γ>γth)のうち1つでも満たされるものがあるか否かを判定する。
 ステップS02における判定結果が「YES」である場合には、ステップS03に進み、減算処理により補正係数HS2を変更し、本ルーチンの実行を一旦終了する。この減算処理は、補正係数HS2の初期値から所定の減算カウント値を減算していき、補正係数HS2が0に収束していくようにする。
 一方、ステップS01における判定結果が「NO」(μ≦μth)である場合、および、ステップS02における判定結果が「NO」である場合には、ステップS04に進み、加算処理により補正係数HS2を変更し、本ルーチンの実行を一旦終了する。この加算処理は、所定の増加カウント値を加算していき、補正係数HS2が1に収束していくようにする。
 なお、補正係数HS2の初期値は0から1の間の所定値とする。
 高μ路においてレーンチェンジを行ったときに、ヨーレートおよび横Gが急激に減少する場合には、操舵により進行したい方向と逆の方向へ大きなヨーレートが発生することがある。この時に、FFヨーレート制御量ωffを大きくすると、操舵に対する車両のトレース性が悪化する虞がある。補正係数HS2はこれを抑制するための係数である。つまり、摩擦係数μ、操舵角、横G減少率、ヨーレート減少率が大きい場合には、補正係数HS2を小さい値とすることで、FFヨーレート制御量ωffを大きくしないようにし、これによりレーンチェンジ後のヨーレートの収束性を向上する。
 次に、図6を参照して、補正係数HS3演算部35において算出される補正係数HS3について説明する。
 この補正係数HS3は、運転者がタックインをしたときなどを想定した補正係数である。タックインは、旋回中にアクセルペダルを急に戻したときに車両が前荷重となって旋回内側に入り込む現象であるが、運転者によってはこれを利用して積極的に旋回操作を行う場合がある。しかしながら、このタックインを利用した旋回操作を、車両への要求トルクが大きいとき(換言すると、アクセル開度が大きいとき)からアクセルを開放するときや、車速が大きいときに行うと、車両挙動が不安定になり易い。補正係数HS3は、タックイン時のFFヨーレート制御量ωffを調整するための補正係数である。
 図6に示すように、補正係数HS3は、車速に応じて算出される補正係数HS3aと、車両の要求トルクに応じて算出される補正係数HS3bとを乗算して算出される。
HS3=HS3a×HS3b ・・・ 式(5)
 なお、車両の要求トルクは、アクセル開度センサ7(要求トルク検知部)で検知したアクセル開度から算出できる。
 各補正係数HS3a,HS3bは、それぞれ図6に示す補正係数テーブル51,52を参照して算出される。この実施形態における補正係数テーブル51,52を説明する。
 補正係数HS3aを算出する補正係数テーブル51において、横軸は車速であり、縦軸は補正係数HS3aである。この補正係数HS3aテーブル51中で、車速が所定範囲よりも小さい領域ではHS3aは正の一定値であり、車速が前記所定範囲内では車速が大きくなるにしたがって補正係数HS3aが徐々に小さくなっていき、所定速度V0を越えると負の値となり、車速が前記所定範囲より大きい領域ではHS3aは負の一定値となる。
 補正係数HS3bを算出する補正係数テーブル52において、横軸は車両の要求トルクであり、縦軸は補正係数HS3bである。この補正係数HS3bテーブル52中で、要求トルクが所定値T0よりも小さい領域ではHS3bが正の値で、要求トルクが所定値T0以上の領域では補正係数HS3b=0となる。ここで、前記所定値T0は極めて小さい値であり、例えば、アクセル開度がゼロに近いときに対応した要求トルクに設定される。
 このように補正係数テーブル51,52を設定することにより、要求トルクが所定値T0以上の場合(すなわち、タックイン状態ではないと判断されるとき)には、車速の大きさに関わらず補正係数HS3が0となり、FFヨーレート制御量ωffを補正しないようにできる。
 また、要求トルクが所定値T0以下の場合(すなわち、タックイン状態であると判断されるとき)には、車速がV0よりも小さいときには、補正係数HS3が正の値となるので、FFヨーレート制御量ωffを大きくできる。一方、車速がV0以上のときには、補正係数HS3が負の値となるので、FFヨーレート制御量ωffを小さくできる。さらに、車速がV0よりも小さい場合、要求トルクが同じときには、車速が小さいほど補正係数H3を正値の大きな値にして、FFヨーレート制御量ωffをより大きくできる。これにより、車速が低中速のタックイン時の回頭性を向上させることができる。一方、車速がV0以上の場合、要求トルクが同じときには、車速が大きいほど補正係数H3を負値の大きな値にして、FFヨーレート制御量ωffを小さくし、車両挙動の安定を図る。
 次に、図7を参照して、制御量演算部17において実行されるブレーキ制御量演算について説明する。
 前述したように、制御量演算部17のFF制御量演算部18においてFFヨーレート制御量ωffに基づいてFF制御量が算出され、FB制御量演算部19においてヨーレート偏差Δωfbに基づいてFB制御量が算出される。制御量演算部17はこれらのFF制御量とFB制御量を加算して各輪に対する総制御量を算出する。
 初めに、FF制御量演算部18におけるFF制御量の算出について説明する。
 まず、操舵角センサ3で検知された操舵角に基づいて、前輪側の旋回内輪(以下、FR旋回内輪と略す)と後輪側の旋回内輪(以下、RR旋回内輪と略す)に対する増圧配分とを決定する。これらの増圧配分に基づいて、FR旋回内輪に対する増圧係数K1frとRR旋回内輪に対する増圧係数K1rrを算出する。ここで、操舵による荷重移動が大きい場合には、操舵角に応じて、FR旋回内輪に対する増圧係数K1frが大きくなるように設定してもよい。
 そして、FR旋回内輪に対する増圧係数K1frとRR旋回内輪に対する増圧係数K1rrとに基づいて、FR旋回内輪に対するFF増圧量ΔP1ffの算出と、RR旋回内輪に対するFF増圧量ΔP2ffの算出とが、並行して実施される。
 まず、FR旋回内輪に対するFF増圧量ΔP1ffの算出を説明する。補正部13で演算されたFFヨーレート制御量ωffに増加係数K1frを乗じて、FR旋回内輪に対するFFヨーレート制御量ω1ffを算出する。
 次に、増圧量テーブル60を参照し、FR旋回内輪に対するFFヨーレート制御量ω1ffに応じて、FR旋回内輪のブレーキ液圧増圧量ΔP1ffkを算出する。増圧量テーブル60において、横軸はFFヨーレート制御量ω1ffであり、縦軸はブレーキ液圧増圧量ΔP1ffkである。この実施形態では、FR旋回内輪に対するFFヨーレート制御量ω1ffが0以下の場合にはブレーキ液圧増圧量ΔP1ffkは0であり、FR旋回内輪に対するFFヨーレート制御量ω1ffが0以上ではFFヨーレート制御量ω1ffが大きくなるにしたがってブレーキ液圧増圧量ΔP1ffkが増大していく。
 次に、リミット処理部61において、FR旋回内輪のブレーキ液圧増圧量ΔP1ffkが上限値を超えないようにリミット処理を行う。この上限値は、上限値算出部62によって算出される任意の値であり、この値を超えないよう設定することで液圧増圧量ΔP1ffkの急変動を抑制する。
 次に、リミット処理されたFR旋回内輪のブレーキ液圧増圧量ΔP1ffkに、車速に応じたゲインを乗じて、FR旋回内輪に対するFF増圧量ΔP1ffを算出する。なお、車速に応じたゲインは、ゲインテーブル63に基づいて算出される。このゲインテーブル63において、横軸は車速であり、縦軸はゲインである。車速が小さい領域ではゲイン=1で一定で、車速が所定範囲内では車速が大きくなるにしたがってゲインが徐々に小さくなっていき、車速が大きい領域ではゲイン=0で一定となる。
 このように車速に応じたゲインを乗じる結果、車速が大きいときには、FR旋回内輪のFF増圧量ΔP1ffは0となる。換言すると、高車速時にはFR旋回内輪のFF増圧量ΔP1ffが無効とされる。これにより、高車速時に操舵アシストブレーキに起因して車両挙動が不安定になるのを防止できる。この実施形態において、ゲインテーブル63は無効化部を構成する。なお、車速に応じたゲインを乗じるのに替えて、高車速ほど低くなる制限値を与え、この制限値をΔPlffが上回らないように設定してもよい。
 RR旋回内輪に対するFF増圧量ΔP2ffの算出は、FR旋回内輪に対するFF増圧量ΔP1ffの算出と同じであるので、簡単に説明する。
 補正部13で演算されたFFヨーレート制御量ωffに、RR旋回内輪に対する増加係数K1rrを乗じて、RR旋回内輪に対するFFヨーレート制御量ω2ffを算出する。
 次に、増圧量テーブル64を参照し、RR旋回内輪に対するFFヨーレート制御量ω2ffに応じて、RR旋回内輪のブレーキ液圧増圧量ΔP2ffkを算出する。増圧量テーブル64は増圧量テーブル60と同じであるので説明を省略する。
 次に、リミット処理部65において、RR旋回内輪のブレーキ液圧増圧量ΔP2ffkが上限値を超えないようにリミット処理を行う。上限値は、上限値算出部66によって算出される。上限値算出部66は上限値算出部62と同じである。
 次に、リミット処理されたRR旋回内輪のブレーキ液圧増圧量ΔP2ffkに、ゲインテーブル67により算出したゲインを乗じて、RR旋回内輪に対するFF増圧量ΔP2ffを算出する。ゲインテーブル67はゲインテーブル63と同じであるので、説明を省略する。この実施形態において、ゲインテーブル67は無効化部を構成する。
 また、FF制御量演算部18は、内輪減圧量算出部70を備えている。内輪減圧量算出部70は、高速時や高横Gの時には制動により車両挙動が不安定となるという前提の下に、予め旋回内輪のブレーキ液圧を制限する。
 内輪減圧量算出部70では、第1減圧率テーブル71を参照して車速に応じた減圧率を算出するとともに、第2減圧率テーブル72を参照して横Gに応じた減圧率を算出し、これら減圧率を乗じることで総減圧率を算出する。
 第1減圧率テーブル71において、横軸は車速であり、縦軸は減圧率である。車速が小さい領域では減圧率=0で一定で、車速が所定範囲内では車速が大きくなるにしたがって減圧率が徐々に大きくなっていき、車速が大きい領域では減圧率=1で一定となる。
 第2減圧率テーブル72において、横軸は横Gであり、縦軸は減圧率である。横Gが小さい領域では減圧率=0で一定で、横Gが所定値以上になると横Gが大きくなるにしたがって減圧率が徐々に大きくなっていき、横Gが大きい領域では減圧率=1で一定となる。
 これにより、総減圧率は、走行時の車速および横Gに応じて、0から1の間の値に設定される。
 そして、このようにして求めた総減圧率にブレーキ装置10のマスタシリンダ圧を乗じ、さらにマイナス1を乗じて内輪減圧量ΔPdを求める。
 次に、FB制御量演算部19におけるFB制御量の算出について説明する。
 FB制御量演算部19では、ヨーレート偏差演算部16で演算されたヨーレート偏差Δωfbに基づいて、FR旋回内輪のFB増圧量ΔP1fb、前輪側の旋回外輪(以下、FR旋回外輪と略す)のFB増圧量ΔP3fb、RR旋回内輪のFB増圧量ΔP2fb、後輪側の旋回外輪(以下、RR旋回外輪と略す)のFB増圧量ΔP4fbを算出する。なお、以降の旋回方向は偏差Δωfbの符号が正で、規範ヨーレートおよび実ヨーレートがともに正の場合を例に説明する。
 FR旋回内輪のFB増圧量ΔP1fbは、ヨーレート偏差Δωfbに基づき、増圧量テーブル80を参照して算出する。増圧量テーブル80において、横軸はヨーレート偏差Δωfbであり、縦軸はFB増圧量ΔP1fbである。この実施形態では、ヨーレート偏差Δωfbが0以下の場合にはFB増圧量ΔP1fbは0であり、ヨーレート偏差Δωfbが0以上ではヨーレート偏差Δωfbが大きくなるにしたがってFB増圧量ΔP1fbが増大していく。
 RR旋回内輪のFB増圧量ΔP2fbは、ヨーレート偏差Δωfbに基づき、増圧量テーブル81を参照して算出する。増圧量テーブル81において、横軸はヨーレート偏差Δωfbであり、縦軸はFB増圧量ΔP2fbである。この実施形態では、ヨーレート偏差Δωfbが0以下の場合にはFB増圧量ΔP2fbは0であり、ヨーレート偏差Δωfbが0以上ではヨーレート偏差Δωfbが大きくなるにしたがってFB増圧量ΔP2fbが増大していく。
 FR旋回外輪のFB増圧量ΔP3fbは、ヨーレート偏差Δωfbに基づき、増圧量テーブル82を参照して算出する。増圧量テーブル82において、横軸はヨーレート偏差Δωfbであり、縦軸はFB増圧量ΔP3fbである。この実施形態では、ヨーレート偏差Δωfbが0以上の場合にはFB増圧量ΔP3fbは0であり、ヨーレート偏差Δωfbが0以下ではヨーレート偏差Δωfbの絶対値が大きくなるにしたがってFB増圧量ΔP3fbが増大していく。
 RR旋回外輪のFB増圧量ΔP4fbは、ヨーレート偏差Δωfbに基づき、増圧量テーブル83を参照して算出する。増圧量テーブル83において、横軸はヨーレート偏差Δωfbであり、縦軸はFB増圧量ΔP4fbである。この実施形態では、ヨーレート偏差Δωfbが0以上の場合にはFB増圧量ΔP4fbは0であり、ヨーレート偏差Δωfbが0以下ではヨーレート偏差Δωfbの絶対値が大きくなるにしたがってFB増圧量ΔP4fbが増大していく。
 つまり、FB制御量演算部19では、ヨーレート偏差Δωfbが0以上の場合は、実ヨーレートが横G規範ヨーレートω_lowよりも小さい。この場合、ヨーレートを増大させる方向(換言すれば、ヨーレート偏差Δωfbを打ち消す方向)に、各輪のFB制御量を設定する。具体的には、FR旋回内輪およびRR旋回内輪のブレーキ液圧を増大させる方向にFB増圧量を設定し、FR旋回外輪およびRR旋回外輪のブレーキ液圧を増大させないようにFB増圧量を設定する。
 一方、ヨーレート偏差Δωfbが0以下の場合は、実ヨーレートが横G規範ヨーレートω_lowよりも大きい。この場合、ヨーレートを減少させる方向(換言すれば、ヨーレート偏差Δωfbを打ち消す方向)に、各輪のFB制御量を設定する。具体的には、FR旋回外輪およびRR旋回外輪のブレーキ液圧を増大させる方向にFB増圧量を設定し、FR旋回内輪およびRR旋回内輪のブレーキ液圧を増大させないようにFB増圧量を設定する。
 そして、制御量演算部17は、各輪の総制御量を以下のように算出して、ブレーキ装置10に出力する。FR旋回内輪のFF増圧量ΔP1ffとFR旋回内輪のFB増圧量ΔP1fbと内輪減圧量ΔPdを加算した値をFR旋回内輪に対する総制御量とする。RR旋回内輪のFF増圧量ΔP2ffとRR旋回内輪のFB増圧量ΔP2fbと内輪減圧量ΔPdを加算した値をRR旋回内輪に対する総制御量とする。FR旋回外輪のFB増圧量ΔP3fbをFR旋回外輪の総制御量とする。RR旋回外輪のFB増圧量ΔP4fbをRR旋回外輪の総制御量とする。
 ブレーキ装置10は、入力した各輪の制御量に応じて、各輪のブレーキ圧を制御する。
 この実施形態の車両の旋回制御装置によれば、車体挙動(横Gとヨーレート)に基づき算出されたFB制御量に、操舵入力(操舵角)に基づき算出されたFF制御量を加えた総制御量に基づいてブレーキ圧を制御する。このため車両挙動の安定性を確保しつつ、操舵の応答性を向上させることができる。また、操舵の追従性も向上する。例えば、定常円旋回時などのように、操舵入力後に操舵保持という過程において、制御量の変動が抑制されて追従性が向上する。
〔他の実施形態〕
 なお、この発明は前述した実施形態に限られるものではない。
 例えば、前述した実施形態では、FF制御量とFB制御量を加算して総制御量を算出したが、FF制御量とFB制御量を乗算して総制御量を算出することも可能である。
 また、車速センサの検出値に替えて、車輪速センサの検出値に基づき推定される推定車速を用いてもよい。
 また、前述した実施形態では、FF制御量演算部18において、高車速時にFR旋回内輪のFF増圧量ΔP1ffおよびRR旋回内輪のFF増圧量ΔP2ffを無効とすることで、高車速時に操舵アシストブレーキに起因して車両挙動が不安定になるのを防止した。一方で、操舵速度が極めて大きいときやABS作動時にも旋回内輪のFF増圧量を無効にしてもよい。
 この車両の旋回制御装置を搭載することで、車両の挙動の安定性を確保しつつ、操舵の応答性を向上させることができる。また、操舵の追従性も向上する。例えば、定常円旋回時などのように、操舵入力後に操舵保持という過程において、制御量の変動が抑制されて追従性が向上する。
1 車両の旋回制御装置
3 操舵角センサ(操舵量検知部)
4 車速センサ(車速検知部)
5 横Gセンサ(横加速度検知部)
6 ヨーレートセンサ(ヨーレート検知部)
7 アクセル開度センサ(要求トルク検知部)
10 ブレーキ装置(制動制御部)
11 舵角規範ヨーレート演算部(第1制動力制御量演算部)
12 定常規範ヨーレート演算部(第1制動力制御量演算部)
13 補正部(第1制動力制御量演算部)
14 横G規範ヨーレート演算部(第2制動力制御量演算部)
16 ヨーレート偏差演算部(第2制動力制御量演算部)
18 FF制御量演算部(第1制動力制御量演算部)
19 FB制御量演算部(第2制動力制御量演算部)
63,67 ゲインテーブル(無効化部)

Claims (5)

  1.  車両の走行状態に基づいて左右車輪に制動力を付与することにより車体にヨーモーメントを発生可能に構成された車両の旋回制御装置であって、
     車両の操舵量を検知する操舵量検知部と;
     前記車両の車速を検知または推定する車速検知部と;
     前記車両の左右方向の加速度を検知する横加速度検知部と;
     前記車両のヨーレートを検知するヨーレート検知部と;
     前記操舵量検知部および前記車速検知部の検知信号に基づいて第1の制動力制御量を決定する第1制動力制御量演算部と;
     前記横加速度検知部および前記車速検知部の検知信号に基づいて算出した規範ヨーレートと前記ヨーレート検知部により検知された実ヨーレートとの偏差であるヨーレート偏差を算出し、前記ヨーレート偏差を打ち消すように第2の制動力制御量を決定する第2制動力制御量演算部と;
     前記第1制動力制御量演算部が決定した前記第1の制動力制御量と前記第2制動力制御量演算部が決定した前記第2の制動力制御量とを加算または乗算することにより得られる総制動力制御量に基づいて前記制動力を制御する制動制御部と;
     を備えることを特徴とする車両の旋回制御装置。
  2.  前記第1制動力制御量演算部は、前記車速が大きいほど前記第1の制動力制御量を小さくすることを特徴とする請求項1に記載の車両の旋回制御装置。
  3.  アクセル開度またはアクセルペダル操作量に基づいて要求トルクの大きさを検知する要求トルク検知部を更に備え、
     前記第1制動力制御量演算部は、前記要求トルク検知部の検知信号が所定値よりも小さいときに、車速が小さいほど前記第1の制動力制御量を大きくすることを特徴とする請求項1または請求項2に記載の車両の旋回制御装置。
  4.  前記第1制動力制御量演算部は、前記操舵量検知部の検知信号に基づいて算出される転舵速度または転舵量が大きいほど前記第1の制動力制御量を大きくすることを特徴とする請求項1から請求項3のいずれか1項に記載の車両の旋回制御装置。
  5.  前記第1制動力制御量演算部は、横加速度が大きいほど前記第1の制動力制御量を小さくすることを特徴とする請求項1に記載の車両の旋回制御装置。
PCT/JP2011/055047 2010-03-04 2011-03-04 車両の旋回制御装置 WO2011108697A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/582,137 US20120330526A1 (en) 2010-03-04 2011-03-04 Turning control device for vehicle
JP2012503281A JP5277346B2 (ja) 2010-03-04 2011-03-04 車両の旋回制御装置
CN201180011617.8A CN102781742B (zh) 2010-03-04 2011-03-04 车辆的转弯控制装置
EP11750806.9A EP2543565B1 (en) 2010-03-04 2011-03-04 Turning control device for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010047832 2010-03-04
JP2010-047832 2010-03-04

Publications (1)

Publication Number Publication Date
WO2011108697A1 true WO2011108697A1 (ja) 2011-09-09

Family

ID=44542342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055047 WO2011108697A1 (ja) 2010-03-04 2011-03-04 車両の旋回制御装置

Country Status (5)

Country Link
US (1) US20120330526A1 (ja)
EP (1) EP2543565B1 (ja)
JP (1) JP5277346B2 (ja)
CN (1) CN102781742B (ja)
WO (1) WO2011108697A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5971417B2 (ja) * 2013-06-28 2016-08-17 日産自動車株式会社 操舵制御装置
KR102137933B1 (ko) * 2013-11-28 2020-07-27 현대모비스 주식회사 차량 코너링 제어 방법 및 그 장치
JP6765908B2 (ja) * 2016-09-07 2020-10-07 Ntn株式会社 車両の旋回制御装置
JP6705778B2 (ja) * 2017-07-19 2020-06-03 トヨタ自動車株式会社 車両用挙動制御装置
DE102019205922B4 (de) * 2019-04-25 2023-11-30 Volkswagen Aktiengesellschaft Kurvenrichtungsermittlung für ein Fahrzeug

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0848226A (ja) * 1994-08-09 1996-02-20 Mitsubishi Motors Corp 左右制動力制御装置
JP2572860B2 (ja) 1989-10-27 1997-01-16 日産自動車株式会社 車両の旋回挙動制御装置
JP2004114794A (ja) * 2002-09-25 2004-04-15 Nissan Motor Co Ltd 車両挙動制御装置
JP2005153716A (ja) 2003-11-26 2005-06-16 Nissan Motor Co Ltd 自動制動制御装置
JP2010047832A (ja) 2008-07-24 2010-03-04 Kobe Steel Ltd 転動疲労寿命に優れた軸受用鋼材

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2756506B2 (ja) * 1989-09-20 1998-05-25 本田技研工業株式会社 車両のトラクション制御方法
US5172610A (en) * 1989-10-31 1992-12-22 Shimadzu Corporation Stepless-speed-changer engine brake controller
JP2762711B2 (ja) * 1990-07-02 1998-06-04 日産自動車株式会社 車両の制動挙動補償装置
JPH0565059A (ja) * 1991-09-09 1993-03-19 Hitachi Ltd アンチスキツドブレーキ制御装置
US5315519A (en) * 1991-10-03 1994-05-24 General Motors Corporation Method of sensing excessive slip in a wheel slip control system
JP3091038B2 (ja) * 1992-12-02 2000-09-25 本田技研工業株式会社 前後輪操舵車両の制御装置
US5431241A (en) * 1994-05-31 1995-07-11 Zexel-Gleason Usa, Inc. Hybrid traction control system
JPH0820323A (ja) * 1994-07-07 1996-01-23 Mazda Motor Corp 車両のアンチスキッドブレーキ装置
JPH09207745A (ja) * 1996-01-30 1997-08-12 Nissan Motor Co Ltd アンチスキッド制御装置
US6212460B1 (en) * 1996-09-06 2001-04-03 General Motors Corporation Brake control system
JP3662747B2 (ja) * 1998-09-01 2005-06-22 住友電気工業株式会社 車両の挙動制御装置
JP3872242B2 (ja) * 1999-09-21 2007-01-24 トヨタ自動車株式会社 ブレーキ制御装置
US6808041B2 (en) * 2000-02-11 2004-10-26 Delphi Technologies, Inc. Method and system for providing secondary vehicle directional control through braking
US6528959B2 (en) * 2000-07-19 2003-03-04 Honda Giken Kogyo Kabushiki Kaisha Driving force control system for front-and-rear wheel drive vehicles
JP3546830B2 (ja) * 2000-10-05 2004-07-28 トヨタ自動車株式会社 車輌のロール挙動制御装置
JP3660865B2 (ja) * 2000-10-24 2005-06-15 住友電気工業株式会社 車両の姿勢制御装置
JP4293734B2 (ja) * 2001-01-17 2009-07-08 三菱電機株式会社 電動式パワーステアリング制御装置
JP2003011805A (ja) * 2001-07-02 2003-01-15 Hitachi Unisia Automotive Ltd アンチスキッド制御装置
US6735510B2 (en) * 2001-10-12 2004-05-11 Delphi Technologies, Inc. Dynamic side to side brake proportioning
JP4208516B2 (ja) * 2002-08-06 2009-01-14 株式会社アドヴィックス 車両の運動制御装置
JP3964771B2 (ja) * 2002-10-11 2007-08-22 株式会社豊田中央研究所 路面状態推定装置、及び該装置を備えた車両の運動制御装置
US6813552B2 (en) * 2002-11-18 2004-11-02 General Motors Corporation Method and apparatus for vehicle stability enhancement system
US6876300B2 (en) * 2002-11-25 2005-04-05 Richard L. Ponziani Electronic intelligent turn signal control system
US6819998B2 (en) * 2002-11-26 2004-11-16 General Motors Corporation Method and apparatus for vehicle stability enhancement system
JP2005047437A (ja) * 2003-07-30 2005-02-24 Advics:Kk 車両の運動制御装置
JP4703953B2 (ja) * 2003-08-26 2011-06-15 富士重工業株式会社 車両の路面摩擦係数推定装置
WO2005042321A1 (de) * 2003-10-28 2005-05-12 Continental Teves Ag & Co.Ohg Verfahren und system zur verbesserung des fahrverhaltens eines fahrzeugs
US6964460B2 (en) * 2003-12-03 2005-11-15 Delphi Technologies, Inc. Brake controller and method for controlling a brake system
US7159954B2 (en) * 2003-12-29 2007-01-09 Bendix Commercial Vehicle Systems, Llc ABS control system for off-road driving conditions
US20050204332A1 (en) * 2004-03-15 2005-09-15 Ramco Systems Limited Method and system for developing large web-based multi-language applications
JP4657622B2 (ja) * 2004-04-27 2011-03-23 株式会社アドヴィックス 旋回制御装置、旋回制御方法および旋回制御プログラム
US7584042B2 (en) * 2004-05-13 2009-09-01 Toyota Jidosha Kabushiki Kaisha Vehicle running control device
JP4042979B2 (ja) * 2004-05-14 2008-02-06 本田技研工業株式会社 車両操作支援装置
DE102004035004A1 (de) * 2004-07-20 2006-02-16 Bayerische Motoren Werke Ag Verfahren zur Erhöhung der Fahrstabilität eines Kraftfahrzeugs
US7188011B2 (en) * 2004-12-01 2007-03-06 International Truck Intellectual Property Company, Llc Automatic braking-enhanced steering system
JP4867313B2 (ja) * 2004-12-27 2012-02-01 日産自動車株式会社 車線逸脱防止装置
JP4654722B2 (ja) * 2005-03-22 2011-03-23 株式会社アドヴィックス 車両用ブレーキ装置
US8849595B2 (en) * 2005-10-27 2014-09-30 Charles L. Manto System and method for providing certifiable electromagnetic pulse and RFI protection through mass-produced shielded containers and rooms
JP4682864B2 (ja) * 2006-02-15 2011-05-11 株式会社アドヴィックス 車両姿勢制御装置
US8386128B2 (en) * 2006-07-13 2013-02-26 Tedrive Holding Bv Method for adapting steering characteristics of a motor vehicle
US7885750B2 (en) * 2006-08-30 2011-02-08 Ford Global Technologies Integrated control system for stability control of yaw, roll and lateral motion of a driving vehicle using an integrated sensing system to determine a sideslip angle
JP4980168B2 (ja) * 2007-08-01 2012-07-18 富士重工業株式会社 車両挙動制御装置
CN101323300A (zh) * 2008-06-25 2008-12-17 吉林大学 提高车辆转弯制动侧向稳定性的增强型汽车abs系统
JP2010225139A (ja) * 2009-02-27 2010-10-07 Toshiba Corp 移動機器
JP5407952B2 (ja) * 2009-06-18 2014-02-05 日産自動車株式会社 車両運転支援装置及び車両運転支援方法
DE102009055059B4 (de) * 2009-12-21 2023-02-02 Robert Bosch Gmbh Reduzieren des Lenkmoments bei Bremsmanövern
DE112011100789T5 (de) * 2010-03-04 2013-01-10 Honda Motor Co., Ltd. Drehsteuerungsvorrichtung für ein Fahrzeug

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2572860B2 (ja) 1989-10-27 1997-01-16 日産自動車株式会社 車両の旋回挙動制御装置
JPH0848226A (ja) * 1994-08-09 1996-02-20 Mitsubishi Motors Corp 左右制動力制御装置
JP2004114794A (ja) * 2002-09-25 2004-04-15 Nissan Motor Co Ltd 車両挙動制御装置
JP2005153716A (ja) 2003-11-26 2005-06-16 Nissan Motor Co Ltd 自動制動制御装置
JP2010047832A (ja) 2008-07-24 2010-03-04 Kobe Steel Ltd 転動疲労寿命に優れた軸受用鋼材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2543565A4

Also Published As

Publication number Publication date
CN102781742B (zh) 2014-12-24
US20120330526A1 (en) 2012-12-27
EP2543565B1 (en) 2017-03-15
JP5277346B2 (ja) 2013-08-28
JPWO2011108697A1 (ja) 2013-06-27
EP2543565A4 (en) 2013-11-06
CN102781742A (zh) 2012-11-14
EP2543565A1 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
JP5245005B2 (ja) 車両の旋回制御装置
JP5277345B2 (ja) 車両の旋回制御装置
JP5265808B2 (ja) 車両の旋回制御装置
JP5431745B2 (ja) 車両の運動制御装置
JP5277346B2 (ja) 車両の旋回制御装置
WO2019130599A1 (ja) 制御装置、および、ステアリング装置
JP2010064720A (ja) 車両の運動制御装置
KR20190105398A (ko) 차량 안정성을 향상시키기 위한 차량 제어 장치 및 방법
JP5358487B2 (ja) 車両の旋回制御装置
JP2007230527A (ja) ステアリング装置、自動車、及びステアリング制御方法
JP5015981B2 (ja) 車両用操舵制御装置
JP2008515709A (ja) 非対称なブレーキのグリップ力状態における自動車の後輪の操舵制御方法
JP2008524061A (ja) 非対称なブレーキングのグリップ力状態における自動車の後輪のブレーキング制御方法
KR101194807B1 (ko) 차량의 감속도를 이용한 비대칭 노면에서의 협조제어제어량 결정 방법
JP4909937B2 (ja) 電動パワーステアリング装置
JP5332700B2 (ja) 車両用転舵制御装置
JP4630039B2 (ja) 車両の操舵制御装置
JP2006123611A (ja) 車両用操舵装置
JP5206990B2 (ja) 車両の旋回挙動制御装置
JP3538356B2 (ja) 車両挙動制御装置
WO2020045566A1 (ja) 車両制御装置
KR101187040B1 (ko) 비대칭 마찰 노면에서의 차량용 협조제어장치 및 그제어방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180011617.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11750806

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012503281

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13582137

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2011750806

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011750806

Country of ref document: EP