WO2011108691A1 - 鉛ガラス組成物及びそれを含む導体形成用組成物 - Google Patents

鉛ガラス組成物及びそれを含む導体形成用組成物 Download PDF

Info

Publication number
WO2011108691A1
WO2011108691A1 PCT/JP2011/055034 JP2011055034W WO2011108691A1 WO 2011108691 A1 WO2011108691 A1 WO 2011108691A1 JP 2011055034 W JP2011055034 W JP 2011055034W WO 2011108691 A1 WO2011108691 A1 WO 2011108691A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass composition
conductor
composition
lead glass
glass
Prior art date
Application number
PCT/JP2011/055034
Other languages
English (en)
French (fr)
Inventor
亮 山口
寿文 山元
卓也 高山
一郎 内山
Original Assignee
日本山村硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本山村硝子株式会社 filed Critical 日本山村硝子株式会社
Priority to JP2012503277A priority Critical patent/JP5784004B2/ja
Publication of WO2011108691A1 publication Critical patent/WO2011108691A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/08Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances quartz; glass; glass wool; slag wool; vitreous enamels
    • H01B3/087Chemical composition of glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/07Glass compositions containing silica with less than 40% silica by weight containing lead
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/10Frit compositions, i.e. in a powdered or comminuted form containing lead
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/10Frit compositions, i.e. in a powdered or comminuted form containing lead
    • C03C8/12Frit compositions, i.e. in a powdered or comminuted form containing lead containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/18Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing free metals

Definitions

  • the present invention relates to a novel lead glass composition and a conductor-forming composition containing the same.
  • a novel lead glass composition and a conductor-forming composition containing the same.
  • it is related with the composition for conductor formation used in order to form the conductor (electrical conductor) etc. of a solar cell.
  • Silicon crystal type solar cells are one of the most popular solar cell types at present because of their high conversion efficiency and relatively low cost.
  • This silicon crystal type solar cell is formed by laminating and connecting conductors using Ag, Al or the like. Powder glass is added to these Ag conductor paste or Al conductor paste, and the powder glass plays a role as a firing aid.
  • Patent Document 4 SiO 2 -B 2 O 3 -ZnO -Al 2 O 3 - Method of using the crystallized glass of the alkaline earth metal oxide has been disclosed (Patent Document 4).
  • blisters may occur during sintering. This is the phenomenon that even if the undecomposed component of the glass component or resin binder is generated as a gas during firing, it cannot escape through the metal particles and remains in the film, leaving large bubbles and the film blowing up. is there. About this, when crystallized glass is used, metal particles can be firmly fixed and the generation of blisters can be suppressed (Patent Document 5). Similarly, a low-melting glass frit capable of precipitating crystals during firing and maintaining the adhesive strength of the conductive paste is disclosed (Patent Document 6).
  • Patent Documents 2 to 3 do not disclose crystallized glass, and Patent Document 2 has a softening point of 550 ° C. or higher. Then, the softening point is high and it is difficult to fire.
  • the SiO 2 —B 2 O 3 —ZnO-based glass of Patent Document 4 also has a problem that its softening point is a high value of 600 ° C. or more and is difficult to be fired.
  • Patent Document 4 When lead-free crystallized glass is used as in Patent Document 4 or Patent Document 5, it is generally difficult to obtain battery characteristics (conversion efficiency) superior to lead-containing glass in solar cells.
  • the PbO—B 2 O 3 glass of Patent Document 6 has a possibility that water resistance is lowered and pulverization processing becomes difficult particularly when the B 2 O 3 content is 5% or more by weight%. is there.
  • the light receiving area can be increased by thinning the electrode, and the amount of power generation can be increased.
  • thinning the electrode it is effective to use crystallized glass capable of enhancing shape retention.
  • a main object of the present invention is to provide a glass composition having a relatively low softening point and capable of being crystallized in a predetermined temperature range.
  • this invention concerns on the following lead glass composition and the composition for conductor formation containing the same.
  • PbO 46 to 63%
  • SiO 2 34 to 45%
  • Bi 2 O 3 0.5 to 25%
  • ZnO 2 to 13%
  • B 2 O 3 0 to 3%
  • Al 2 O 3 A lead glass composition comprising 0 to 1.5% and ZrO 2 : 0 to 1.4%.
  • Characterized in that it does not contain B 2 O 3 lead glass composition according to the claim 1.
  • Item 3 The lead glass composition according to Item 1, wherein the molar ratio (PbO + Bi 2 O 3 ) / (SiO 2 + ZnO) is 1 or more.
  • the lead glass composition according to Item 1 wherein an exothermic peak due to crystallization exists within a temperature range of 800 ° C or lower. 5.
  • Item 2. The lead glass composition according to Item 1, wherein when the lead glass composition is crystallized by heating, a PbO—SiO 2 based crystal and / or a PbO—ZnO—SiO 2 based crystal phase is developed. 6).
  • Item 2. The lead glass composition according to Item 1, wherein the softening point is 500 ° C or lower. 7).
  • a conductor-forming composition comprising the lead glass composition according to any one of items 1 to 6 and conductive particles. 8).
  • Item 8. The conductor-forming composition according to Item 7, comprising at least one of a solvent and a binder. 9.
  • Item 8. The conductor-forming composition according to Item 7, which is used for forming a conductor of a solar cell.
  • the present invention it is possible to provide a glass composition that has a relatively low softening point and can be crystallized in a predetermined temperature range (particularly 800 ° C. or less). That is, since the lead glass composition of the present invention has a low softening point, it can be fired at a relatively low temperature. Moreover, since it can crystallize, since the shape retention property of the molded object formed using it is excellent, a fine shape or a complicated shape can also be created.
  • the lead glass composition of the present invention having such characteristics is useful, for example, as a conductor forming agent and a sintering aid.
  • it can be suitably used for conductor formation (for electrical conductor formation).
  • it can be suitably used as a conductor-forming composition containing the powdery glass composition and conductive particles (conductive powder).
  • the conductor-forming composition can be suitably used for forming a conductor of a solar cell, for example.
  • this invention composition for conductor formation of a solar cell flow property can be suppressed, the fluidization of glass can be reduced, and the seepage of glass can be suppressed. Moreover, the generation of blisters during sintering can be suppressed or prevented.
  • the shape retainability is excellent, it is possible to reduce the thickness of the Ag electrode wired on the surface of the solar cell (light receiving surface). That is, since thin and thick wiring or electrodes can be formed, the light receiving area of the solar cell can be further increased while maintaining good conductivity, and the amount of power generation can be increased.
  • the lead glass composition of the present invention comprises PbO: 46 to 63%, SiO 2 : 34 to 45%, Bi 2 O 3 : 0.5 to 25%, ZnO: 2 to 13% in mol%, B 2 O 3 : 0 to 3%, Al 2 O 3 : 0 to 1.5% and ZrO 2 : 0 to 1.4%.
  • PbO 46 to 63%
  • SiO 2 34 to 45%
  • Bi 2 O 3 0.5 to 25%
  • B 2 O 3 0 to 3%
  • Al 2 O 3 0 to 1.5%
  • ZrO 2 0 to 1.4%.
  • PbO PbO is a component mainly for adjusting the softening point, and unlike an alkali metal oxide which is the same softening point adjusting element, PbO has little influence on water resistance. Further, in the baking after powdering, the flowability is suppressed by reducing the flowability of the glass, particularly by precipitating the crystal phase of PbO—SiO 2 system crystal and / or PbO—ZnO—SiO 2 system. It is an effective component for effectively suppressing the seepage of glass. More specifically, it is preferable to deposit at least one crystal phase of Pb 2 SiO 4 crystal, Pb 3 Si 2 O 7 crystal and PbZnSiO 4 crystal.
  • the PbO content is 46 to 63% in mol%, preferably 49 to 60%.
  • the content of PbO exceeds 63%, crystallization becomes too strong.
  • the PbO content is less than 46%, the conversion efficiency of the solar cell may be reduced.
  • SiO 2 SiO 2 is an effective component mainly for preventing devitrification of glass and improving moisture resistance. Further, in the case where the adherend is a silicon semiconductor, there is an advantage that it is easier to adjust because it is the same element as silicon. From such a viewpoint, the content of SiO 2 is 34 to 45% in mol%, preferably 37 to 45%. When the SiO 2 content is less than 34%, devitrification easily occurs. On the other hand, when the SiO 2 content exceeds 45%, the softening point becomes high and does not become 500 ° C. or lower.
  • Bi 2 O 3 is a component mainly for lowering the softening point of glass, and unlike an alkali metal oxide which is the same softening point adjusting element, Bi 2 O 3 has little influence on water resistance.
  • the content of Bi 2 O 3 is 0.5 to 10% in mol%, preferably 1 to 6%. When the content of Bi 2 O 3 exceeds 10%, the conversion efficiency of the solar cell may be reduced. In addition, when the content of Bi 2 O 3 is less than 0.5%, the softening point becomes high, the softening point may not be 500 ° C. or less, and crystallization may be too strong.
  • ZnO ZnO particularly has a function of promoting crystallization of glass.
  • the ZnO content is 2 to 13%, preferably 3 to 10% in terms of mol%.
  • the content of ZnO exceeds 13%, crystallization becomes too strong. As a result, there is no flow at the time of firing, and the glass does not wet and spread on the metal particles. Further, when the ZnO content is less than 2%, crystallization is difficult.
  • B 2 O 3 is allowed to be contained in a molar ratio in the range of 0 to 3%, but from the viewpoint of promoting crystallization, it is preferably 0 to 2%, more preferably 0 to 1%. And most preferably not containing B 2 O 3 . That is, it is most desirable not to contain B 2 O 3 from the viewpoint that crystallization can be promoted as the content of B 2 O 3 is smaller.
  • Al 2 O 3 Al 2 O 3 functions to prevent devitrification of the glass with a small amount of addition.
  • the content of Al 2 O 3 is 0 to 1.5% in mol%, preferably 0 to 1%, more preferably 0.1 to 0.1%. 1%. When the content exceeds 1.5%, the softening point becomes high and the softening point may not be 500 ° C. or lower.
  • ZrO 2 ZrO 2 has a function of promoting crystallization of glass when added in a small amount. However, when added in a large amount, it tends to devitrify and the softening point becomes high, so the content of ZrO 2 is 0 to 1.4% in mol%, preferably 0 to 1%, more preferably. 0.1 to 1%. When the content exceeds 1.4%, the softening point becomes high and the softening point may not be 500 ° C. or lower.
  • the molar ratio (PbO + Bi 2 O 3 ) / (SiO 2 + ZnO) is 1 or more, and preferably 1 or more and 2 or less.
  • the softening point becomes high and it may be difficult to make the softening point 500 ° C. or less.
  • composition of the lead glass composition of the present invention examples include, for example, mol%, PbO: 48 to 52%, SiO 2 : 37 to 42%, Bi 2 O 3 : 0.8 to 2%, ZnO: 5 to A composition containing 10%, B 2 O 3 : 0 to 1%, Al 2 O 3 : 0 to 1.5%, and ZrO 2 : 0 to 1.4% can be preferably used.
  • composition of the present invention other components may be contained within a range not impeding the effects of the present invention.
  • Li 2 O, Na 2 O, K 2 O, MgO, CaO, BaO, SrO, P 2 O 5 , TiO 2, etc. may be contained in a molar amount of up to 3%.
  • the lead glass composition of the present invention desirably has an exothermic peak due to crystallization (that is, crystallization peak temperature Tp) within a temperature range of 800 ° C. or lower. That is, the composition of the present invention is preferably a composition that provides crystallized glass more reliably. Thereby, since the electrode shape can be more effectively maintained by crystallization, the effect as a solar cell conductor can be further exhibited.
  • crystallization peak temperature Tp crystallization peak temperature
  • the temperature at the peak of the DTA peak before and after crystallization was defined as “crystallization peak temperature Tp” by differential thermal analysis (DTA) and powder X-ray diffraction analysis.
  • the temperature at the rising point of the DTA peak was defined as “crystallization start temperature Tx”.
  • the difference (Tx ⁇ Ts) between the start temperature (Tx) and the softening point (Ts) of the crystallization peak is 50 ° C. or more. That is, by controlling so that a crystallization peak exists within a temperature range of 800 ° C. or less and (Tx ⁇ Ts) is 50 ° C. or more, the glass wets and spreads between the metal powders at the time of firing, and is crystallized. By maintaining the shape of the electrode, the effect as a highly efficient solar cell conductor can be further exhibited.
  • the softening point of the glass composition of the present invention is not particularly limited, it is generally preferably 500 ° C. or lower. By controlling the softening point to 500 ° C. or lower, it is possible to obtain effects such as firing in a short time.
  • the lead glass composition of the present invention exhibits a PbO—SiO 2 crystal and / or a PbO—ZnO—SiO 2 crystal phase when crystallized by heating. It is desirable to be. More specifically, it is preferable to deposit at least one crystal phase of Pb 2 SiO 4 crystal, Pb 3 Si 2 O 7 crystal and PbZnSiO 4 crystal. Thereby, the flow property can be suppressed, the fluidization of the glass can be reduced, and the seepage of the glass can be suppressed more effectively.
  • the form of the lead glass composition of the present invention is not limited, but usually it is preferably in the form of powder (powdered glass composition).
  • the particle size in this case can be appropriately set according to the use and usage method of the lead glass composition.
  • the maximum particle size (Dmax) is particularly preferably 10 ⁇ m or less. By setting to this range, it is possible to reliably cope with the thinning of the conductor having a line width of about 20 ⁇ m. When the maximum particle diameter (Dmax) exceeds 10 ⁇ m, it may not be possible to cope with the thinning of the conductor.
  • the lead glass composition (particularly powdered glass composition) of the present invention can be used for the same applications as conventional glass compositions.
  • sintering aids and the like can be mentioned.
  • conductor formation for electrical conductor formation
  • it can be suitably used as a conductor-forming composition containing the powdery glass composition and conductive particles (conductive powder).
  • a compound (raw material compound) that serves as a supply source of the glass component of the glass composition of the present invention may be used as a starting material.
  • a compound (raw material compound) that serves as a supply source of the glass component of the glass composition of the present invention may be used as a starting material.
  • Al (OH) 3, Al 2 O 3 or the like for the Al 2 O 3.
  • various oxides, carbonates may be employed usually starting materials used in nitrates.
  • the glass composition of the present invention can be obtained by using a mixture containing these in a predetermined ratio as a starting material and melting them.
  • the method for producing the glass composition of the present invention includes 1) a first step of obtaining a mixture by mixing raw material compounds, and 2) a second step of obtaining a melt by melting the obtained mixture.
  • the lead glass composition of this invention can be obtained by the manufacturing method including a process.
  • a mixture is obtained by mixing raw material compounds.
  • the mixing order of the raw materials of each component is not particularly limited, and may be blended at the same time or may be blended in order from a predetermined compound. Further, the raw material compound is usually supplied in powder form.
  • a mixture (starting material) can be obtained by pulverizing, mixing, and the like of the raw material compound containing each component by a known method.
  • a melt is obtained by melting the mixture.
  • the glass melting temperature may be set according to the raw material composition and the like, but it is usually performed at about 900 to 1300 ° C. (especially 900 to 1100 ° C.).
  • the obtained melt may be subjected to a process for producing a powder as it is from the melt as necessary.
  • the powder can be obtained by processing such as pulverization and classification as necessary. In this way, the lead glass composition of the present invention can be suitably provided as a powder.
  • the average particle diameter (D50) in the case of powder is not limited, but it can be adjusted as appropriate depending on the use form, application, etc. within the range of 50 ⁇ m or less.
  • the fine powder can be adjusted by wet pulverization using water. Moreover, it can also adjust by the dry-type airflow classification which does not use water.
  • the present invention includes a conductive composition comprising the lead glass composition of the present invention and conductive particles.
  • the lead glass composition of the present invention the above-mentioned powdery glass composition can be suitably used.
  • the conductive particles are not particularly limited, and for example, metal can be used.
  • metal for example, silver, copper, gold, nickel, iron and the like, or an alloy or intermetallic compound containing these can be used. These can be appropriately selected according to the application. For example, when forming a conductor to be laminated and connected to a semiconductor (particularly silicon) of a solar cell, silver or aluminum can be suitably used.
  • the average particle diameter of the conductive particles can be changed according to the shape of the conductor to be formed, but is usually about 0.1 to 10 ⁇ m. Further, the shape of the conductive particles is not limited, and may be any shape such as a spherical shape or a flake shape.
  • the content of the conductive particles (powder) in the solid content of the conductor-forming composition of the present invention may be appropriately set according to the desired conductivity, use, etc., but is usually about 70 to 99% by weight. Just do it.
  • the ratio of the conductive particles to the powdery glass composition can be appropriately set according to the desired conductivity and the like, but usually the powdered glass composition 1 with respect to 100 parts by weight of the conductive particles.
  • the amount is preferably 30 parts by weight, particularly 1-10 parts by weight.
  • the conductor-forming composition of the present invention may be in the form of a powder, but can be suitably used particularly in the form of a paste (conductive paste). That is, it can be suitably used as a paste containing 1) at least one of a solvent and a binder, 2) the powdery glass composition of the present invention, and 3) conductive particles (powder).
  • a conductive paste using ethyl cellulose can be suitably prepared as the paste.
  • the powdered glass composition and the conductive particles of the present invention are contained in a vehicle comprising a solution obtained by dissolving ethyl cellulose in a solvent such as terpineol, or in a vehicle comprising other additives in the solution as necessary.
  • the conductor-forming composition When the conductor-forming composition is used in the form of a paste, the solid content is usually about 60 to 90% by weight.
  • the conductor-forming composition of the present invention can also be applied to photosensitive glass pastes and the like.
  • the composition for forming a conductor of the present invention can also be used as a conductive paste, it is suitable for forming various conductors (especially at least one of an electrode and a wiring).
  • various conductors especially at least one of an electrode and a wiring
  • it can be suitably used for forming a conductor of a solar cell (particularly, at least one of an electrode and a wiring).
  • semiconductors used for solar cells there are various types such as polycrystalline silicon, single crystal silicon, amorphous silicon, and compound semiconductors. Among these, polycrystalline silicon solar cells or single crystal silicon solar cells (especially the front surface of the solar cell (light receiving) Surface)), it is suitable for forming an electrode or wiring connected to silicon. That is, the conductor-forming composition of the present invention can be bonded to silicon with higher adhesive strength.
  • a method for forming a conductor using a conductive paste for example, a method including a step of forming a coating film with a conductive paste and a step of baking the coating film can be performed.
  • the method for forming the coating film itself may follow a known method, and for example, it can be carried out by various printing methods such as screen printing, coating, spraying and the like.
  • After forming the coating film it may be dried as necessary before firing.
  • the firing temperature during firing is usually 600 to 800 ° C.
  • the firing atmosphere may be appropriately selected from, for example, the air, an inert gas atmosphere, a reducing atmosphere, or the like according to the type of conductive particles.
  • Examples 1 to 11 and Comparative Examples 1 to 11 Each component was prepared so as to have the composition shown in Tables 1 to 4 (unit: mol%), mixed, and then melted at a temperature of about 900 to 1150 ° C. for 1 to 2 hours. The melt was quenched with a stainless steel cooling roll to prepare glass flakes (samples).
  • Test example 1 For the samples obtained in each of the examples and comparative examples, using a DTA (model name “TG-8120”) manufactured by Rigaku Corporation, the samples were subjected to differential heat at a rate of temperature increase of 20 ° C./min in an air atmosphere. The glass transition point, the softening point, the crystallization start temperature, and the crystallization peak temperature were examined by tangent analysis after analysis. Moreover, about what can confirm the peak, the powder X-ray-diffraction analysis was performed and it confirmed that the peak was based on crystallization. The peak at this time was confirmed to be a peak due to any of the Pb 2 SiO 4 crystal, Pb 3 Si 2 O 7 crystal, or PbZnSiO 4 crystal in any sample of each example. The sample was measured by measuring about 50 mg of glass flakes ground as finely as possible with a mortar. The measurement range was from room temperature to 800 ° C. The results are shown in Tables 1 to 4.
  • Test example 2 A glass fine powder was produced using the samples obtained in Examples and Comparative Examples, and a conductive paste containing the same was prepared. The obtained conductive paste was examined for 1) adhesive strength and 2) presence or absence of blisters on the surface of the conductor film.
  • the glass fine powder was produced by a dry method so that even a poor moisture resistance could be comparatively evaluated. That is, it was pulverized with a ball mill to an average particle size of 5 to 10 ⁇ m and sieved with an airflow classifier so that the average particle size was 2.5 ⁇ m and the top size (maximum particle size) was 10 ⁇ m or less.
  • the obtained conductive paste was printed on a silicon wafer by screen printing, dried at 150 ° C., and then baked at 800 ° C. in the atmosphere to form an electrode film (conductor).
  • the adhesive strength of the obtained electrode film was measured. The adhesive strength was measured by checking whether the conductor was able to adhere to the wafer without being peeled off even after the cellophane tape was pressed from the electrode film and then peeled off. In the peeling test using the cellophane tape, the case where the conductor was not peeled was evaluated as “ ⁇ ”, and the case where the conductor was peeled was evaluated as “ ⁇ ”. The results are shown in Tables 1 to 4.
  • Examples 1 to 11 can be suitably used as a glass for adding a conductor from the viewpoint of any physical property. That is, it turns out that the paste containing the lead glass composition and conductive particles of the present invention can be suitably used as a conductor-forming composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Photovoltaic Devices (AREA)

Abstract

【課題】比較的低い軟化点を有するとともに、結晶化する鉛ガラス組成物を提供する。 【解決手段】モル%でPbO:46~63%、SiO:34~45%、Bi:0.5~25%、ZnO:2~13%、B:0~3%、Al:0~1.5%及びZrO:0~1.4%を含むことを特徴とする鉛ガラス組成物に係る。

Description

鉛ガラス組成物及びそれを含む導体形成用組成物
 本発明は、新規な鉛ガラス組成物及びそれを含む導体形成用組成物に関する。例えば、太陽電池の導体(電気的導体)等を形成するために用いられる導体形成用組成物に関する。
 シリコン結晶タイプの太陽電池は、高変換効率及び比較的低コストであることから、現在最も主流な太陽電池タイプの1つである。このシリコン結晶タイプ太陽電池は、Ag、Al等を用いた導体を積層・接続することにより形成される。これらAg導体ペースト又はAl導体ペーストには粉末ガラスが添加されており、粉末ガラスが焼成助剤としての役割を果たしている。
 太陽電池用の導体形成用として使用する場合においては、短時間で焼成するというプロセス上の制約があるために、粉末ガラスとしては粘度が加熱時に素早く低下し、金属粉末間を濡れ広がり易いことが必要である。このような用途に用いるガラス組成物としては、例えばSiO-PbO系のガラス組成物が開示されている(特許文献1~3)
 一方、金属ペースト焼成時にガラスの流動性が大きい場合、ガラスが軟化して導体膜表面へのガラスの染み出しが起こる場合がある。これを抑制する手法として、SiO-B-ZnO-Al-アルカリ土類金属酸化物系の結晶化ガラスを用いる手法が開示されている(特許文献4)。
 また、焼結中にブリスタと呼ばれる突起物が発生する場合がある。これはガラス成分又は樹脂バインダーの未分解成分が焼成中にガスとして発生しても金属粒子間を抜けて外に出ることができずに膜中に残り、大きな気泡となって膜がふくれる現象である。これについては、結晶化ガラスを用いると金属粒子を強固に固着でき、ブリスタの発生を抑制することができる(特許文献5)。同様に、焼成時に結晶を析出し導電性ペーストの接着強度を保持できる低融点ガラスフリットが開示されている(特許文献6)。
特表2008-520094 特表2005-504409 特開2003-165744 特開2004-39355 特開2006-253143 特開平10-92224
 しかしながら、これらの従来技術のガラス組成物では種々の問題があり、さらなる改善の余地が残されている。例えば、特許文献1のように比較的低温でのフロー性の優れたガラスを用いた場合、金属粉末が焼結する前にガラスが軟化することにより、ガラスの染み出しが起こる可能性がある。
 また、特許文献2~3についても、結晶化ガラスについて開示されておらず、かつ、特許文献2については軟化点が550℃以上となっているため、短時間で焼成する太陽電池の導体形成プロセスでは軟化点が高く、焼成することが困難である。
 特許文献4のSiO-B-ZnO系ガラスにおいても、その軟化点が600℃以上という高い値であり、焼成が困難という問題がある。
 特許文献4又は特許文献5のように鉛フリーの結晶化ガラスを用いる場合は、一般的に太陽電池において鉛含有ガラスよりも優れた電池特性(変換効率)を得ることが困難である。
 また、特許文献6のPbO-B系ガラスは、特にB含有量が重量%で5%以上となった場合、耐水性が低下し、粉砕加工が困難となる可能性がある。
 また、太陽電池表面(受光面)に配線されるAg電極については、電極を細線化することで受光面積を増大させ、発電量の増大が可能となる。この電極の細線化には、形状保持性を高めることのできる結晶化ガラスを用いることが有効である。
 従って、本発明の主な目的は、比較的低い軟化点を有するとともに、所定の温度領域で結晶化できるガラス組成物を提供することにある。
 本発明者は、従来技術の問題点に鑑みて鋭意研究を重ねた結果、特定のガラス組成が上記目的を達成できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、下記の鉛ガラス組成物及びそれを含む導体形成用組成物に係る。
1. モル%でPbO:46~63%、SiO:34~45%、Bi:0.5~25%、ZnO:2~13%、B:0~3%、Al:0~1.5%及びZrO:0~1.4%を含むことを特徴とする鉛ガラス組成物。
2. Bを含まないことを特徴とする、前記項1に記載の鉛ガラス組成物。
3. モル比(PbO+Bi)/(SiO+ZnO)が1以上である、前記項1に記載の鉛ガラス組成物
4. 800℃以下の温度範囲内で結晶化による発熱ピークが存在する、前記項1に記載の鉛ガラス組成物。
5. 鉛ガラス組成物を加熱することによって結晶化させた際に、PbO-SiO系結晶及び/又はPbO-ZnO-SiO系の結晶相を発現する、前記項1に記載の鉛ガラス組成物。
6. 軟化点が500℃以下である、前記項1に記載の鉛ガラス組成物。
7. 前記項1~6のいずれかに記載の鉛ガラス組成物及び導電性粒子を含む導体形成用組成物。
8. 溶剤及びバインダーの少なくとも1種を含む、前記項7に記載の導体形成用組成物。
9. 太陽電池の導体を形成するために用いる、前記項7に記載の導体形成用組成物。
 本発明によれば、比較的低い軟化点を有し、かつ、所定の温度領域(特に800℃以下)で結晶化できるガラス組成物を提供することができる。すなわち、本発明の鉛ガラス組成物は、低軟化点であるがゆえに比較的低い温度で焼成することができる。また、結晶化できるので、それを用いて形成された成形体の形状保持性に優れることから、細かな形状又は複雑な形状も創出することができる。
このような特徴をもつ本発明の鉛ガラス組成物は、例えば導体形成用、焼結助剤等として有用である。特に、導体形成用(電気的導体形成用)として好適に用いることができる。具体的には、前記の粉末状ガラス組成物及び導電性粒子(導電性粉末)を含む導体形成用組成物として好適に用いることができる。
 前記の導体形成用組成物は、例えば太陽電池の導体を形成するのに好適に用いることができる。太陽電池の導体形成用として本発明組成物を用いることにより、フロー性を抑え、ガラスの流動化を低下させ、ガラスの染み出しを抑制できる。しかも、焼結中のブリスタの発生を抑制ないしは防止することができる。さらに、形状保持性に優れるため、特に太陽電池表面(受光面)に配線されるAg電極の細線化を図ることができる。すなわち、細くて厚い配線又は電極を形成できるので、良好な導電性を維持しつつ、太陽電池の受光面積をより拡大させることができ、発電量の増大が可能となる。
1.鉛ガラス組成物
 本発明の鉛ガラス組成物は、モル%でPbO:46~63%、SiO:34~45%、Bi:0.5~25%、ZnO:2~13%、B:0~3%、Al:0~1.5%及びZrO:0~1.4%を含むことを特徴とする。以下、各成分の主な役割等について説明する。
 PbO
 PbOは、主として軟化点を調整するための成分であり、同じ軟化点調整元素であるアルカリ金属酸化物と異なり、耐水性への影響が少ない。また、粉末化後の焼成においては、特にPbO-SiO系結晶及び/又はPbO-ZnO-SiO系の結晶相を析出させることによって、フロー性を抑え、ガラスの流動化を低下させ、より効果的にガラスの染み出しを抑制させるのに有効な成分である。より具体的には、PbSiO結晶、PbSi結晶及びPbZnSiO結晶の少なくとも1つの結晶相を析出させることが好適である。かかる見地より、PbOの含有量は、モル%で46~63%とし、好ましくは49~60%とする。PbOの含有量が63%を超えると結晶化が強くなりすぎる。また、PbOの含有量が46%未満では、太陽電池の変換効率が低下するおそれがある。
 SiO
 SiOは、主に、ガラスの失透を防ぎ、耐湿性を向上させるのに有効な成分である。また、被接着体がシリコン半導体の場合、シリコンと同じ元素であるのでよりなじみやすいという利点もある。このような見地より、SiOの含有量は、モル%で34~45%とし、好ましくは37~45%とする。SiO含有量が34%未満の場合は失透しやすくなる。一方、SiO含有量が45%を超える場合は軟化点が高くなり、軟化点500℃以下とならない。
 Bi
 Biは、主として、ガラスの軟化点を低下させるための成分であり、同じ軟化点調整元素であるアルカリ金属酸化物と異なり、耐水性への影響が少ない。Biの含有量は、モル%で0.5~10%とし、好ましくは1~6%とする。Biの含有量が10%を超える場合は、太陽電池の変換効率が低下するおそれがある。また、Biの含有量が0.5%未満の場合は、軟化点が高くなり、軟化点500℃以下とならないおそれがあるほか、結晶化が強くなりすぎるおそれもある。
 ZnO
 ZnOは、特に、ガラスの結晶化を促進させる働きがある。かかる見地より、ZnOの含有量は、モル%で2~13%とし、好ましくは3~10%とする。ZnOの含有量が13%を超える場合は結晶化が強くなりすぎる。その結果、焼成時に全くフローせず、ガラスが金属粒子へ濡れ広がらなくなる。また、ZnO含有量が2%未満である場合は結晶化しにくくなる。
 
 本発明では、Bは、モル比で0~3%の範囲内の含有が許容されるが、結晶化促進の見地から、好ましくは0~2%とし、より好ましくは0~1%とし、最も好ましくはBを含まないことである。すなわち、Bの含有量が少ないほど結晶化を促進できる等の点でBを含有しないことが最も望ましい。
 Al
 Alは、少量の添加でガラスの失透を防ぐ働きがある。しかし、多量に添加すると軟化点が高くなってしまうため、Alの含有量は、モル%で0~1.5%とし、好ましくは0~1%とし、より好ましくは0.1~1%とする。前記含有量が1.5%を超える場合は軟化点が高くなり、軟化点500℃以下とならないことがある。
 ZrO
 ZrOは、少量の添加でガラスの結晶化を促進させる働きがある。しかし、多量に添加すると、失透しやすくなり、また軟化点も高くなるため、ZrOの含有量は、モル%で0~1.4%とし、好ましくは0~1%とし、より好ましくは0.1~1%とする。前記含有量が1.4%を超える場合は軟化点が高くなり、軟化点500℃以下にならないことがある。
 各成分の割合
 これらの成分について、本発明の鉛ガラス組成物では、モル比(PbO+Bi)/(SiO+ZnO)は1以上であり、特に1以上2以下であることが望ましい。モル比(PbO+Bi)/(SiO+ZnO)が1未満になると、軟化点が高くなり、軟化点500℃以下とすることが困難となることがある。
 本発明の鉛ガラス組成物の組成例としては、例えば、モル%で、PbO:48~52%、SiO:37~42%、Bi:0.8~2%、ZnO:5~10%、B:0~1%、Al:0~1.5%及びZrO:0~1.4%を含む組成等を好適に採用することができる。
 その他の成分
 本発明組成物では、本発明の効果を妨げない範囲内で他の成分が含まれていても良い。例えば、LiO、NaO、KO、MgO、CaO、BaO、SrO、P、TiO等をモル%で合量で3%まで含有していても良い。
 鉛ガラス組成物の物性
 本発明の鉛ガラス組成物は、800℃以下の温度範囲内で結晶化による発熱ピーク(すなわち、結晶化ピーク温度Tp)が存在することが望ましい。すなわち、本発明組成物は、結晶化ガラスをより確実に与える組成であることが好ましい。これにより、結晶化により電極形状をより効果的に保持できることになるため、太陽電池用導体としての効果をよりいっそう発揮することができる。
 結晶化による発熱ピークは、示差熱分析(DTA)及び粉末X線回折分析により、結晶化前後にわたるDTAのピークの頂点における温度を「結晶化ピーク温度Tp」とした。なお、前記DTAのピークの立ち上がり点の温度を「結晶化開始温度Tx」とした。
 また、前記の結晶化ピークの開始温度(Tx)と軟化点(Ts)の差(Tx-Ts)が50℃以上であることが望ましい。すなわち、800℃以下の温度範囲内で結晶化ピークが存在し、(Tx-Ts)が50℃以上となるように制御することにより、焼成時にガラスが金属粉末間を濡れ広がり、かつ結晶化で電極が形状保持されることにより、高効率な太陽電池用導体としての効果をより発揮することができる。
 本発明のガラス組成物の軟化点は特に限定されないが、一般に500℃以下であることが望ましい。軟化点を500℃以下に制御することにより、短時間で焼成できる等の効果を得ることができる。
 また、前記の通り、本発明の鉛ガラス組成物は、加熱することによって結晶化させた際に、PbO-SiO系結晶及び/又はPbO-ZnO-SiO系の結晶相を発現するものであることが望ましい。より具体的には、PbSiO結晶、PbSi結晶及びPbZnSiO結晶の少なくとも1つの結晶相を析出させることが好適である。これによって、フロー性を抑え、ガラスの流動化を低下させ、より効果的にガラスの染み出しを抑制することができる。
 本発明の鉛ガラス組成物の形態は限定的ではないが、通常は粉末状(粉末状ガラス組成物)であることが好ましい。この場合の粒度は、鉛ガラス組成物の用途、使用方法等に応じて適宜設定することができる。例えば、導体形成用に用いる場合は、特に最大粒径(Dmax)を10μm以下とすることが好ましい。この範囲に設定することにより、線幅20μm程度の導体の細線化により確実に対応することができる。最大粒径(Dmax)が10μmを超える場合は、導体の細線化に対応できなくなるおそれがある。
 本発明の鉛ガラス組成物(特に粉末状ガラス組成物)は、従来のガラス組成物と同様の用途に使用することができる。例えば、導体形成用、焼結助剤等が挙げられる。特に、導体形成用(電気的導体形成用)として好適に用いることができる。具体的には、前記の粉末状ガラス組成物及び導電性粒子(導電性粉末)を含む導体形成用組成物として好適に用いることができる。
2.鉛ガラス組成物の製造方法
 本発明ガラス組成物の製造方法としては、特に限定されない。まず、原料としては、本発明ガラス組成物のガラス成分の供給源となる化合物(原料化合物)を出発原料として使用すれば良い。例えば、AlのためにAl(OH)、Al等を用いることができる。他の成分についても、SiO、ZrO等のように、各種酸化物、炭酸塩、硝酸塩等の通常用いられる出発原料を採用することができる。そして、これらを所定の割合で含有する混合物を出発原料として用い、これらを溶融することにより本発明ガラス組成物を得ることができる。
 より具体的には、本発明ガラス組成物の製造方法としては、1)原料化合物を混合することにより混合物を得る第1工程及び2)得られた混合物を溶融することにより溶融物を得る第2工程を含む製造方法によって、本発明の鉛ガラス組成物を得ることができる。
 第1工程では、原料化合物を混合することにより混合物を得る。この場合、本発明鉛ガラス組成物の組成・比率となるように各原料化合物を秤量し、混合することにより混合物を調製すれば良い。各成分の原料の混合順序等は特に制限されず、同時に配合しても良いし、所定の化合物から順番に配合しても良い。また、原料化合物は、通常は粉末形態で供給すれば良い。各成分を含む原料化合物を公知の方法で粉砕、混合等を実施することにより混合物(出発原料)を得ることができる。
 第2工程では、混合物を溶融することにより溶融物を得る。溶融に際しては、原料組成等に応じてガラス溶融温度を設定すれば良いが、通常は900~1300℃程度(特に900~1100℃)で実施すれば良い。得られた溶融物は、必要に応じて、溶融物からそのまま粉末を製造する工程に供しても良い。例えば、溶融物を冷却した後、必要に応じて粉砕、分級等の処理をすることにより粉末を得ることもできる。このようにして、本発明の鉛ガラス組成物は、粉末状として好適に提供することができる。
 粉末状とする場合の平均粒径(D50)は限定的ではないが、通常は50μm以下の範囲内において使用形態、用途等に応じて適宜調整することができる。その際に、微細粉末を、水を用いた湿式粉砕で調整することができる。また、水を用いない乾式の気流分級で調整することもできる。
3.導体形成用組成物
 本発明は、本発明の鉛ガラス組成物及び導電性粒子を含む導体形成用組成物を包含する。
 本発明の鉛ガラス組成物としては、前記の粉末状ガラス組成物を好適に用いることができる。
 導電性粒子は、特に限定されず、例えば金属等を用いることができる。金属としては、例えば銀、銅、金、ニッケル、鉄等のほか、これらを含む合金又は金属間化合物を用いることができる。これらは、用途等に応じて適宜選択することができる。例えば、太陽電池の半導体(特にシリコン)に積層・接続する導体を形成する場合は、銀又はアルミを好適に用いることができる。
 導電性粒子(導電性粉末)の平均粒径は、形成する導体の形状等に応じて変更することができるが、通常は0.1~10μm程度とすれば良い。また、導電性粒子の形状も限定されず、例えば球状、フレーク状等のいずれの形状であっても良い。
 本発明の導体形成用組成物の固形分中における導電性粒子(粉末)の含有量は、所望の導電性、用途等に応じて適宜設定すれば良いが、通常は70~99重量%程度とすれば良い。
 また、導電性粒子と粉末状ガラス組成物との比率は、所望の導電性等に応じて適宜設定することができるが、通常は導電性粒子100重量部に対して前記粉末状ガラス組成物1~30重量部、特に1~10重量部とすることが好ましい。
 本発明の導体形成用組成物は、粉末状であっても良いが、特にペースト状(導電ペースト)の形態で好適に用いることができる。すなわち、1)溶剤及びバインダーの少なくとも1種、2)本発明の粉末状ガラス組成物及び、3)導電性粒子(粉末)を含むペーストとして好適に用いることができる。例えば、前記ペーストとして、エチルセルロースを用いた導電ペーストを好適に調製することができる。この場合、ターピネオール等の溶剤にエチルセルロースを溶解させた溶液からなるヒビクル中、あるいは必要に応じて前記溶液にその他の添加物を含んでなるビヒクル中に本発明の粉末状ガラス組成物及び導電性粒子(粉末)を均一分散させれば良い。導体形成用組成物をペースト状で用いる場合、その固形分含有量は通常60~90重量%程度とすれば良い。また、本発明の導体形成用組成物は、感光性ガラスペースト等にも適用できる。
 このように、本発明の導体形成用組成物は、導電性ペーストとして用いることもできることから、各種の導体(特に電極及び配線の少なくとも1種)の形成に適している。例えば、太陽電池の導体(特に電極及び配線の少なくとも1種)の形成に好適に用いることができる。太陽電池に用いる半導体としては、多結晶シリコン、単結晶シリコン、アモルファスシリコン、化合物半導体等の各種があるが、この中でも、多結晶シリコン太陽電池又は単結晶シリコン太陽電池(特に太陽電池の前面(受光面))において、シリコンに接続する電極又は配線の形成に好適である。すなわち、本発明の導体形成用組成物は、シリコンに対してより高い接着強度で接合することができる。
 導体性ペーストを用いて導体を形成する方法としては、例えば導電性ペーストにより塗膜を形成する工程及び前記塗膜を焼成する工程を含む方法により実施することができる。塗膜を形成する方法自体は公知の方法に従えば良く、例えばスクリーン印刷等の各種印刷方法のほか、塗布、スプレー等の方法により実施することができる。塗膜を形成した後、焼成前においては、必要に応じて乾燥しても良い。焼成する際の焼成温度は通常600~800℃とすれば良い。また、焼成雰囲気は、導電性粒子の種類等に応じて、例えば大気中、不活性ガス雰囲気、還元性雰囲気等の中から適宜選択すれば良い。
 以下に実施例及び比較例を示し、本発明の特徴をより具体的に説明する。ただし、本発明の範囲は、実施例に限定されない。
 実施例1~11及び比較例1~11
 表1~表4に示す組成(単位:モル%)となるよう各成分を調合し、混合した後、約900~1150℃の温度で1~2時間溶融した。溶融物をステンレス鋼製の冷却ロールにて急冷し、ガラスフレーク(試料)をそれぞれ作製した。
 試験例1
 各実施例及び比較例で得られた試料について、(株)リガク社製DTA(型名「TG-8120」)を用いて、試料を大気雰囲気下において20℃/分の昇温速度で示差熱分析を行い接線法により、ガラス転移点、軟化点、結晶化開始温度及び結晶化ピーク温度を調べた。また、ピークが確認できたものについては、粉末X線回折分析を行い、ピークが結晶化によるものであることを確認した。このときのピークは、各実施例のいずれの試料についてもPbSiO結晶、PbSi結晶又はPbZnSiO結晶のいずれかによるピークであることを確認した。なお、試料は、ガラスフレークを乳鉢でできるだけ細かくすり潰し、約50mgで測定した。測定範囲は室温から800℃までとした。その結果を表1及~表4に示す。
 試験例2
 実施例及び比較例で得られた試料を用いてガラス微粉末を製造し、それを含む導電性ペーストを調製した。得られた導電性ペーストについて、1)接着強度及び2)導体膜表面のブリスタの有無を調べた。
 まず、ガラス微粉末は、耐湿性の悪いものも比較評価できるように乾式で作製した。すなわち、ボールミルで平均粒径5~10μmとなるまで粉砕し、気流式分級機で平均粒径が2.5μm、トップサイズ(最大粒径)が10μm以下になるように篩い分けした。次いで、得られたガラス微粉末を用いて導電性ペーストを調製した。導電性ペーストは、銀粒子(平均粒径=1μm程度)100重量部に対してガラス微粉末3重量部を添加した。これにビヒクルを添加し、三本ロールで混練することにより固形分約85質量%のAgペーストを調製した。前記ビヒクルとしては、ターピネオールにエチルセルロースを15質量%溶解させたものを使用した。
 得られた導電性ペーストを用いて、シリコンウエハ上にスクリーン印刷により印刷し、150℃で乾燥させた後、大気中800℃で焼成して電極膜(導体)を形成した。得られた電極膜について、その接着強度を測定した。接着強度の測定は、電極膜の上からセロハンテープを押し付けた後、セロハンテープを引き剥がした後でも、導体がウエハ上に剥れずに密着できているかで評価した。セロハンテープによる剥がしテストでも導体が剥れなかったものを「○」、剥れたものを「×」と評価した。その結果を表1~表4に示す。
 また、電極膜の表面観察により、ブリスタの有無を目視にて確認した。ブリスタが確認されなかったものを「○」、確認されたものを「×」と評価した。その結果についても表1~表4に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1~表4の結果からも明らかなように、比較例1~11においては、導体の密着性が得られない、あるいはブリスタの発生が見られる等のいずれかの問題があることから、導体添加用ガラスとしては適用し得ないことがわかる。これに対し、実施例1~11は、いずれの物性の点からみても、導体添加用ガラスとして好適に使用できることがわかる。すなわち、本発明の鉛ガラス組成物及び導電性粒子を含むペーストは、導体形成用組成物として好適に使用できることがわかる。

Claims (9)

  1. モル%でPbO:46~63%、SiO:34~45%、Bi:0.5~25%、ZnO:2~13%、B:0~3%、Al:0~1.5%及びZrO:0~1.4%を含むことを特徴とする鉛ガラス組成物。
  2. を含まないことを特徴とする、請求項1に記載の鉛ガラス組成物。
  3. モル比(PbO+Bi)/(SiO+ZnO)が1以上である、請求項1に記載の鉛ガラス組成物
  4. 800℃以下の温度範囲内で結晶化による発熱ピークが存在する、請求項1に記載の鉛ガラス組成物。
  5. 鉛ガラス組成物を加熱することによって結晶化させた際に、PbO-SiO系結晶及び/又はPbO-ZnO-SiO系の結晶相を発現する、請求項1に記載の鉛ガラス組成物。
  6. 軟化点が500℃以下である、請求項1に記載の鉛ガラス組成物。
  7. 請求項1~6のいずれかに記載の鉛ガラス組成物及び導電性粒子を含む導体形成用組成物。
  8. 溶剤及びバインダーの少なくとも1種を含む、請求項7に記載の導体形成用組成物。
  9. 太陽電池の導体を形成するために用いる、請求項7に記載の導体形成用組成物。
PCT/JP2011/055034 2010-03-04 2011-03-04 鉛ガラス組成物及びそれを含む導体形成用組成物 WO2011108691A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012503277A JP5784004B2 (ja) 2010-03-04 2011-03-04 鉛ガラス組成物及びそれを含む導体形成用組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-048455 2010-03-04
JP2010048455 2010-03-04

Publications (1)

Publication Number Publication Date
WO2011108691A1 true WO2011108691A1 (ja) 2011-09-09

Family

ID=44542336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055034 WO2011108691A1 (ja) 2010-03-04 2011-03-04 鉛ガラス組成物及びそれを含む導体形成用組成物

Country Status (2)

Country Link
JP (1) JP5784004B2 (ja)
WO (1) WO2011108691A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013155102A (ja) * 2012-01-06 2013-08-15 Nippon Electric Glass Co Ltd 電極形成用ガラス及びこれを用いた電極形成材料
JP2018048057A (ja) * 2016-09-16 2018-03-29 日本電気硝子株式会社 立体造形用ガラス粉末

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335432A (ja) * 1986-07-29 1988-02-16 Matsushita Electric Ind Co Ltd 磁気ヘツドの製造方法及び磁気ヘツド用ガラス組成物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350217A (ja) * 1986-08-20 1988-03-03 Matsushita Electric Ind Co Ltd 受光装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335432A (ja) * 1986-07-29 1988-02-16 Matsushita Electric Ind Co Ltd 磁気ヘツドの製造方法及び磁気ヘツド用ガラス組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Jiki Head Fuchaku-yo Glass no Kenkyu, Heisei 10 Nendo Sokkoteki Chiteki Kiban Seibi Chosa Itaku Itaku Chosa Kenkyu Seika Hokokusho, New Glass no Sekkei ni Shisuru Database Kochiku", SHADAN HOJIN NEW GLASS FORUM, March 2000 (2000-03-01), pages 324 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013155102A (ja) * 2012-01-06 2013-08-15 Nippon Electric Glass Co Ltd 電極形成用ガラス及びこれを用いた電極形成材料
JP2018048057A (ja) * 2016-09-16 2018-03-29 日本電気硝子株式会社 立体造形用ガラス粉末

Also Published As

Publication number Publication date
JP5784004B2 (ja) 2015-09-24
JPWO2011108691A1 (ja) 2013-06-27

Similar Documents

Publication Publication Date Title
KR101159787B1 (ko) ZnO계 글래스 프릿 조성물 및 이를 이용한 태양전지의 후면 전극용 알루미늄 페이스트 조성물
CN103314414B (zh) 导电性糊剂及使用了该导电性糊剂的太阳能电池元件
JP2011525887A (ja) 光起電力電池用導体に用いるガラス組成物
WO2011013440A1 (ja) 太陽電池電極用無鉛導電性組成物
JP2013089600A (ja) 厚膜銀ペーストと半導体デバイスの製造においてのその使用
WO2011013469A1 (ja) ペースト組成物およびそれを用いた太陽電池素子
JP2018078120A (ja) 酸化アンチモンを含有する厚膜組成物および半導体デバイスの製造におけるその使用
EP2952488B1 (en) Glass frit
JP6155965B2 (ja) 電極形成用ガラス粉末および電極形成用導電ペースト
CN104513012A (zh) 玻璃粉末材料
EP3374999B1 (en) Process for forming conductive track or coating
JP2019127404A (ja) ガラス、ガラスの製造方法、導電ペーストおよび太陽電池
WO2014178419A1 (ja) 太陽電池ならびに太陽電池のアルミニウム電極形成用ペースト組成物
US8440111B2 (en) Lead-free conductive paste composition
WO2011052336A1 (ja) ガラス組成物及びそれを用いた導体形成用組成物
JP6351332B2 (ja) 低融点ガラス組成物を含む導体形成用組成物
JP5784004B2 (ja) 鉛ガラス組成物及びそれを含む導体形成用組成物
CN102992631B (zh) 太阳能电池电子浆料用无铅玻璃粉及其制备方法和应用
CN109493993B (zh) 一种用于晶硅太阳能电池正面电极的银浆料及其制备方法
US10407340B2 (en) Glass composition, glass powder, conductive paste, and solar cell
JP2020083670A (ja) ガラス組成物、ガラス粉末、導電ペーストおよび太陽電池
WO2013031957A1 (ja) 導体形成用無鉛ガラス組成物
JP6902398B2 (ja) 導体形成用Sb系ガラス組成物及びその製造方法
JP2013089481A (ja) ペースト組成物
JP2012025637A (ja) 導体形成用無鉛ガラス組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11750800

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012503277

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11750800

Country of ref document: EP

Kind code of ref document: A1