WO2011013440A1 - 太陽電池電極用無鉛導電性組成物 - Google Patents

太陽電池電極用無鉛導電性組成物 Download PDF

Info

Publication number
WO2011013440A1
WO2011013440A1 PCT/JP2010/059154 JP2010059154W WO2011013440A1 WO 2011013440 A1 WO2011013440 A1 WO 2011013440A1 JP 2010059154 W JP2010059154 W JP 2010059154W WO 2011013440 A1 WO2011013440 A1 WO 2011013440A1
Authority
WO
WIPO (PCT)
Prior art keywords
mol
lead
solar cell
glass
electrode
Prior art date
Application number
PCT/JP2010/059154
Other languages
English (en)
French (fr)
Inventor
夕子 鈴木
高啓 杉山
泰 吉野
剛啓 中尾
Original Assignee
株式会社ノリタケカンパニーリミテド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ノリタケカンパニーリミテド filed Critical 株式会社ノリタケカンパニーリミテド
Priority to US13/387,520 priority Critical patent/US8778232B2/en
Priority to CN201080043514.5A priority patent/CN102549763B/zh
Priority to DE112010003112T priority patent/DE112010003112T5/de
Publication of WO2011013440A1 publication Critical patent/WO2011013440A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/18Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing free metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a conductive composition suitable for a solar cell electrode formed by a fire-through method.
  • a general silicon-based solar cell is provided with an antireflection film and a light-receiving surface electrode on an upper surface of a silicon substrate which is a p-type polycrystalline semiconductor via an n + layer, and on the lower surface via a p + layer. It has a structure provided with electrodes (hereinafter simply referred to as “electrodes” when they are not distinguished from each other).
  • the antireflection film is for reducing the surface reflectance while maintaining sufficient visible light transmittance, and is made of a thin film of silicon nitride, titanium dioxide, silicon dioxide or the like.
  • the light-receiving surface electrode of the solar cell is formed by a method called fire-through, for example.
  • this electrode forming method for example, after the antireflection film is provided on the entire surface of the n + layer, a conductive paste is applied on the antireflection film in an appropriate shape by using, for example, a screen printing method, and a baking process is performed. Apply. According to this method, the process is simplified as compared with the case where the antireflection film is partially removed and an electrode is formed on the removed portion, and there is no problem of misalignment between the removed portion and the electrode formation position. .
  • the conductive paste is mainly composed of, for example, silver powder, glass frit (a piece of flaky or powdered glass that is crushed as necessary after melting and quenching the glass raw material), an organic vehicle, and an organic solvent.
  • glass frit a piece of flaky or powdered glass that is crushed as necessary after melting and quenching the glass raw material
  • organic vehicle a piece of flaky or powdered glass that is crushed as necessary after melting and quenching the glass raw material
  • an organic solvent for example, a piece of flaky or powdered glass that is crushed as necessary after melting and quenching the glass raw material
  • an organic vehicle for example, an organic solvent
  • JP 2006-332032 A JP 2008-109016 A JP 2006-313744 A Special table 2008-543080
  • lead-free glass containing no lead has come to be used in various fields due to concerns about environmental problems, etc., but lead glass is still used in the above applications. If lead-free glass is used as the conductive paste for forming the light-receiving surface electrode by the fire-through method, the firing temperature becomes higher than that when lead glass is used, and sufficient ohmic contact cannot be obtained, resulting in electrical characteristics. It is because it is inferior.
  • Various proposals have been made in the past for improving the firing temperature and fire-through properties when using lead-free glass, but those having sufficient characteristics have not yet been obtained.
  • the addition amount of the Zn-containing additive is preferably in the range up to 10 (wt%) with respect to the total composition, and the average particle size is preferably less than 0.1 ( ⁇ m).
  • the amount of the Zn-containing additive is small, and it is preferable to use a fine one in order to obtain an effect in a small amount, but a small amount and a fine additive are poorly dispersible and are difficult to handle. Have difficulty.
  • ZnO is 5 ⁇ 10 (wt%)
  • Bi 2 O 3 is 70 ⁇ 84 (wt%)
  • B 2 O 3 + SiO 2 is 6 (wt%) or more of a silver paste for solar cell element using a glass frit Has been proposed (see Patent Document 2).
  • This silver paste is intended to increase the adhesive strength and long-term reliability with the substrate, but even if a glass frit whose main component is within the above composition range is used, the adhesive strength is not necessarily obtained. In addition, sufficient electrical characteristics could not be obtained.
  • lead-free glass for solar cell electrode applications includes metal particles of any of Al, Cu, Au, Ag, Pd, Pt, alloys thereof, or mixtures thereof, lead-free glass, and organic media.
  • SiO 2 is 0.5 to 35 (wt%)
  • B 2 O 3 is 1 to 15 (wt%)
  • Bi 2 O 3 is 55 to 90 (wt%)
  • ZnO is 0 to 15 (wt) %)
  • Al 2 O 3 in a proportion in the range of 0 to 5 (wt%).
  • the back electrode is made of Al, the lead cannot be soldered.
  • the bus bar is made of Ag or Ag / Al
  • the back surface electric field is damaged, so the conductive composition for forming an electrode that does not cause these problems.
  • the purpose is to improve the back electrode, and no consideration is given to fire-through property and electrical characteristics when used for the light-receiving surface electrode.
  • the above composition has a problem that the softening point is too high.
  • the glass composition described in the claims is remarkably wide and does not specify any composition suitable for forming a light-receiving surface electrode by fire-through. On the other hand, some specific glass compositions are described in the examples. However, even if any glass is used, the electrical characteristics are insufficient, or the softening point is too high and used for the light receiving surface electrode. It was not obtained.
  • the present invention has been made in the background of the above circumstances, and an object thereof is to provide a lead-free conductive composition for solar cell electrodes capable of forming an electrode having excellent electrical characteristics.
  • the gist of the present invention is a lead-free conductive composition for a solar cell electrode comprising a conductive powder, a glass frit, and a vehicle, wherein (a) the glass frit is oxidized.
  • the lead-free conductive composition for solar cell electrodes is lead-free when the glass frit constituting the solar cell electrode is composed of lead-free glass having the above composition, so that the solar cell electrode is formed using this.
  • an electrode having excellent electrical characteristics can be obtained.
  • B 2 O 3 is a glass-forming oxide (that is, a component that forms a glass skeleton), and is an essential component for lowering the softening point of glass. If it is less than 20 (mol%), the softening point is too high, and if it exceeds 33 (mol%), the electric characteristics of the solar cell become insufficient. While the softening point increases with decreasing B 2 O 3, the electrical characteristics decrease with increasing B 2 O 3 (for example, in silicon-based solar cells, this is considered to be due to the higher reactivity with Si, the substrate material). Therefore, the ratio is preferably determined in consideration of a desired softening point and electrical characteristics, for example, 30 (mol%) or less is preferable.
  • Bi 2 O 3 is a component that lowers the softening point of glass and is essential for enabling low-temperature firing. If it is less than 10 (mol%), the softening point is too high, and if it exceeds 29 (mol%), the electrical characteristics of the solar cell become insufficient. In order to obtain as high electrical characteristics as possible, the amount of Bi 2 O 3 is preferably as small as possible, and more preferably 20 (mol%) or less. Further, in order to sufficiently lower the softening point, a larger amount of Bi 2 O 3 is preferable, and 15 (mol%) or more is preferable. That is, a range of 15 to 20 (mol%) is particularly preferable.
  • ZnO is a component that lowers the softening point of glass and increases durability (i.e., long-term reliability) . If it is less than 15 (mol%), the softening point is too high and durability is insufficient. . On the other hand, if it exceeds 30 (mol%), the balance with other components is affected, but the glass is easily crystallized.
  • the larger the amount the easier it is to crystallize, so 20 (mol%) or more is more preferred, and 30 (mol%) or less is more preferred. That is, the range of 20 to 30 (mol%) is particularly preferable.
  • Alkali components Li 2 O, Na 2 O, K 2 O are components that lower the softening point of the glass. If the total amount is less than 8 (mol%), the softening point is too high, and 21 (mol%) is reduced. If it exceeds, the electrical characteristics of the solar cell become insufficient.
  • the softening point increases as the amount of the alkali component decreases, while the electrical characteristics decrease as the amount of the alkali component increases. Therefore, it is more preferably 10 (mol%) or more, and more preferably 20 (mol%) or less. That is, the range of 10 to 20 (mol%) is particularly preferable.
  • SiO 2 is a glass-forming oxide and has an effect of improving the stability of the glass, it is preferably contained although it is not an essential component.
  • the softening point increases as the number increases, it is necessary to keep it at 20 (mol%) or less. In order to obtain sufficient stability, 4 (mol%) or more is more preferable, and in order to keep the softening point at a sufficiently low value, 11 (mol%) or less is more preferable. That is, 4 to 11 (mol%) is particularly preferable.
  • the said glass which comprises the electrically conductive composition of this invention can contain another various glass structural component and additive in the range which does not impair the characteristic.
  • Al 2 O 3 , P 2 O 5 , alkaline earth oxide, and other compounds may be contained. If these are contained in a large amount, the electrical characteristics of the solar cell are impaired.
  • the glass frit has an average particle size of 3.0 ( ⁇ m) or less.
  • the average particle size is 0.5 ( ⁇ m) or more, the dispersibility at the time of preparing the paste is further improved, and thus the productivity is increased.
  • the lead-free conductive composition for solar cell electrodes contains the glass frit in a proportion within the range of 2 to 6 (wt%) with respect to the entire paste.
  • the glass frit amount increases, the solubility of the antireflection film increases and the fire-through property improves.
  • the resistance value increases and the solar cell output decreases. Therefore, in order to obtain a sufficiently high fire-through property, it is preferable to be 2 (wt%) or more, while in order to obtain a sufficiently high solar cell output, it may be limited to 6 (wt%) or less. preferable.
  • the conductive powder is a silver powder.
  • the conductive powder copper powder, nickel powder or the like can be used, but silver powder is most preferable because high conductivity can be obtained.
  • the lead-free conductive composition for a solar cell electrode contains 64 to 90 parts by weight of the silver powder and 5 to 20 parts by weight of the vehicle. By doing so, it is possible to obtain a conductive composition that has good printability, high conductivity, and can produce an electrode with good solder wettability. If the silver powder is too small, high conductivity cannot be obtained, and if it is excessive, the fluidity is lowered and the printability is deteriorated. If the glass frit is too small, the adhesion to the substrate is insufficient. If the glass frit is excessive, the glass floats on the electrode surface after firing, resulting in poor solder wettability.
  • the silver powder is not particularly limited, and the basic effect of the present invention that the optimum firing temperature range can be expanded regardless of the shape of the powder, such as a spherical shape or a scale shape, can be enjoyed.
  • the printability is excellent and the filling rate of the silver powder in the coating film is increased. Therefore, in combination with the use of highly conductive silver, Compared with the case where silver powder of another shape such as a shape is used, the conductivity of the electrode generated from the coating film is increased. Therefore, the line width can be further reduced while ensuring the necessary conductivity. Therefore, if the conductive composition is applied to the light-receiving surface electrode to reduce the line width, the light-receiving area capable of absorbing solar energy can be further increased, and thus a solar cell with higher conversion efficiency can be obtained.
  • the conductive composition of the present invention can be suitably used for the light-receiving surface electrode because it can suitably control the diffusion of silver during the electrode formation by fire-through as described above.
  • it is not limited to the light receiving surface electrode, and can be used as a back surface electrode.
  • the back electrode is composed of an aluminum film covering the entire surface and a strip-like electrode overlapping therewith, but is also suitable as a constituent material of the strip-like electrode.
  • the glass frit can be synthesized from various raw materials that can be vitrified in the composition range, and examples thereof include oxides, carbonates, nitrates, and the like.
  • Bi sources include bismuth oxide
  • Zinc oxide may be used as the Zn source
  • silicon dioxide as the Si source
  • boric acid as the B source
  • lithium carbonate as the Li source
  • sodium carbonate as the Na source
  • potassium carbonate as the K source.
  • FIG. 1 is a diagram schematically showing a cross-sectional structure of a silicon-based solar cell 10 to which a conductive composition according to an embodiment of the present invention is applied.
  • a solar cell 10 is formed on a silicon substrate 12 which is, for example, a p-type polycrystalline semiconductor, an n + layer 14 and a p + layer 16 respectively formed on the upper and lower surfaces thereof, and the n + layer 14.
  • the antireflection film 18 and the light receiving surface electrode 20, and the back electrode 22 formed on the p + layer 16 are provided.
  • the n + layer 14 and the p + layer 16 are provided by forming layers having a high impurity concentration on the upper and lower surfaces of the silicon substrate 12, and the thickness dimension of the high concentration layer, that is, the layers 14 and 16 are formed.
  • the thickness dimension is, for example, about 0.5 ( ⁇ m).
  • the impurity contained in the n + layer 14 is, for example, phosphorus (P) that is an n-type dopant
  • the impurity contained in the p + layer 16 is, for example, boron (B) that is a p-type dopant.
  • the antireflection film 18 is a thin film made of, for example, silicon nitride Si 3 N 4 , and is provided with an optical thickness of, for example, about 1 ⁇ 4 of the visible light wavelength. It has a very low reflectivity of about 2%.
  • the light-receiving surface electrode 20 is made of, for example, a thick film conductor having a uniform thickness. As shown in FIG. 2, the light-receiving surface electrode 20 is a comb having a large number of thin line portions substantially on the entire surface of the light-receiving surface 24. Are provided in a planar shape.
  • the above thick film conductor, a 88 ⁇ 99 (wt%) about and glass Ag consist 1 ⁇ 12 (wt%) a thick film silver containing degree, the value that the glass in terms oxide, Bi 2 O 3 and 10 ⁇ 29 (mol%), ZnO and 15 ⁇ 30 (mol%), a SiO 2 20 (mol%) or less, a B 2 O 3 20 ⁇ 33 ( mol%), alkaline components (Li 2 O , Na 2 O, K 2 O) are lead-free glasses each containing a total amount of 8 to 21 (mol%).
  • the thickness dimension of the conductor layer is within a range of, for example, 15 to 20 ( ⁇ m), for example, about 17 ( ⁇ m). It is about 100 ( ⁇ m) and has sufficiently high conductivity.
  • the back electrode 22 is formed by applying a full-surface electrode 26 formed by applying a thick film material containing aluminum as a conductor component on the p + layer 16 over almost the entire surface, and a strip-like application on the full-surface electrode 26.
  • the band-shaped electrode 28 made of thick film silver is formed.
  • the belt-like electrode 28 is provided in order to make it possible to solder a conducting wire or the like to the back electrode 22.
  • the light-receiving surface electrode 20 is composed of thick film silver containing lead-free glass having the above-described composition in the range of 1 to 12 (wt%) as described above. Compared to conventional solar cells using lead-free glass, it has excellent electrical characteristics. For example, it has a F. of 74 (%) or more, which is about the same as when lead glass is used. F. There is an advantage to having a value.
  • the light-receiving surface electrode 20 as described above is formed by a well-known fire-through method using an electrode paste made of, for example, conductor powder, glass frit, vehicle, and solvent.
  • An example of the manufacturing method of the solar cell 10 including the formation of the light receiving surface electrode will be described below together with the manufacturing method of the electrode paste of the comparative example.
  • the glass frit is produced.
  • Bismuth oxide as the Bi source zinc oxide as the Zn source, silicon dioxide as the Si source, boric acid as the B source, lithium carbonate as the Li source, sodium carbonate as the Na source, potassium carbonate as the K source, Al source
  • Aluminum oxide as the P source NH 4 H 2 PO 4 as the P source
  • calcium oxide CaO as the Ca source and BaCO 3 as the Ba source, and weighed and formulated to have the compositions shown in the examples in Table 1 did.
  • the raw materials may be oxides, hydroxides, carbonates, or nitrates, but it is preferable to use finely pulverized raw materials because they are easy to melt.
  • the obtained glass is pulverized using an appropriate pulverizer such as a pot mill to obtain powder having an average particle size of 0.4 ( ⁇ m), 0.6 ( ⁇ m), 1.5 ( ⁇ m), 3.0 ( ⁇ m), 4.0 ( ⁇ m). It was.
  • the conductor powder for example, a commercially available spherical silver powder having an average particle diameter in the range of 0.5 to 3 ( ⁇ m), for example, about 2 ( ⁇ m) was prepared.
  • the vehicle is prepared by dissolving an organic binder in an organic solvent.
  • butyl carbitol acetate is used as the organic solvent
  • ethyl cellulose is used as the organic binder.
  • the ratio of ethyl cellulose in the vehicle is, for example, about 15 (wt%).
  • a solvent added separately from the vehicle is, for example, butyl carbitol acetate. That is, although it is not limited to this, the same solvent as that used for the vehicle may be used. This solvent is added for the purpose of adjusting the viscosity of the paste.
  • the n + layer 14 and the p + are diffused or implanted into an appropriate silicon substrate by a well-known method such as a thermal diffusion method or ion plantation.
  • the silicon substrate 12 is produced.
  • a silicon nitride (SiN x ) thin film is formed thereon by an appropriate method such as spin coating, and the antireflection film 18 is provided.
  • the electrode paste is screen-printed on the antireflection film 18 with the pattern shown in FIG. This is dried at, for example, 150 (° C.), and further baked at a temperature in the range of 650 to 900 (° C.) in a near infrared furnace.
  • the glass component in the electrode paste dissolves the antireflection film 18 in the firing process, and the electrode paste breaks the antireflection film 18, so that the conductor component in the electrode paste, that is, silver and the n + layer 14
  • ohmic contact between the silicon substrate 12 and the light receiving surface electrode 20 is obtained.
  • the light receiving surface electrode 20 is formed in this way.
  • the said back surface electrode 22 may be formed after the said process, it can also be formed by baking simultaneously with the light-receiving surface electrode 20.
  • FIG. When the back electrode 22 is formed, the entire surface electrode 26 made of a thick aluminum film is formed by applying, for example, an aluminum paste to the entire back surface of the silicon substrate 12 by screen printing or the like and performing a baking process. Further, the strip electrode 28 is formed by applying the electrode paste on the surface of the entire surface electrode 26 in a strip shape using a screen printing method or the like and performing a baking treatment. Thereby, the back electrode 22 which consists of the full surface electrode 26 which covers the whole back surface, and the strip
  • F. shown in the solar cell 10 obtained in this manner, the light receiving surface electrode 20 is formed by firing at the firing temperature recognized as optimum for each of the examples and comparative examples in which the glass composition and the addition amount are variously changed. Then, the output of the obtained solar cell 10 is measured and obtained. In addition, the output of the solar cell 10 was measured using a commercially available solar simulator.
  • the “F.F. value after humidity resistance test” shown in the rightmost column is an accelerated test held for 1000 hours at a high temperature and high humidity of temperature 85 (° C.) and humidity 85 (%). . F. When the rate of change of the value was within 5 (%), it was regarded as having moisture resistance (“ ⁇ ” evaluation), and when it exceeded 5 (%), it was regarded as having no moisture resistance (“ ⁇ ” evaluation).
  • Bi 2 O 3 is 10 to 29 (mol%)
  • B 2 O 3 is 20 to 33 (mol%)
  • SiO 2 is 20 (mol%) or less
  • ZnO is 15-30 (mol%)
  • alkali components total of Li 2 O, Na 2 O, K 2 O
  • other components Al 2 O 3 , CaO, BaO, P 2 O If the total of 5 ) is within the range of 18 (mol%) or less, F.R. F. The value is high enough.
  • Bi 2 O 3 is 15 to 20 (mol%)
  • B 2 O 3 is 26 to 30 (mol%)
  • SiO 2 is 4 to 17 (mol%)
  • alkali components total of Li 2 O, Na 2 O, K 2 O 17-21 (mol%)
  • other components Al 2 O 3 , CaO, BaO, P If the total of 2 O 5 ) is within the range of 3 (mol%) or less, 77.0 (%) F.I. F. A value is obtained.
  • Comparative Examples 1 to 10 are F.I. F. The value remained below 70 (%).
  • Comparative Examples 1, 3, and 7 the electrical characteristics deteriorate because Bi 2 O 3 is excessive, and the softening point is too high because ZnO is too small and the alkali component is too little or zero. . F. The value is considered to have decreased.
  • Comparative Examples 2 and 6 the electrical characteristics deteriorate because Bi 2 O 3 is excessive, and the softening point becomes too high because B 2 O 3 is excessive. F. The value is considered to have decreased.
  • Comparative Example 4 the electrical characteristics deteriorated due to the excess of Bi 2 O 3 and B 2 O 3 . F. The value is considered to have decreased.
  • Comparative Example 10 since the B 2 O 3 is excessive, the electrical characteristics are deteriorated, and since ZnO is excessive, the glass is easily crystallized, and since the alkali component is not included, the softening point is high. F. F. The value is considered to have decreased.
  • Comparative Examples 11 to 13 are higher in F.V. than Comparative Examples 1 to 10. F. Although the value was obtained, it remained at 70 to 72 (%). In Comparative Example 11, since B 2 O 3 is too small, the softening point is high, and since ZnO is excessive, the glass is easily crystallized. F. It is thought that the value became low. Further, in Comparative Examples 12 and 13, there is no problem in the glass component ratio, but since the amount of glass added when preparing the electrode paste is too small, sufficient fire-through properties cannot be obtained and good. F. The ohmic contact could not be obtained, or the resistance value of the electrode material became too high due to the excessive addition of glass. F. It is thought that the value remained low. Comparative Example 14 has a sufficiently high F.V. F. Although the value was obtained, the change after the moisture resistance test exceeded 5 (%), and the long-term reliability was insufficient. It is considered that since the amount of Si is too much, the softening point is high and the moisture resistance is insufficient.
  • Example 8 to 11 the glass frit having the same composition was used and the amount added to the entire paste was changed between 2 to 6 (wt%), so that the F. F. The value is evaluated. As shown in these evaluation results, if the addition amount is in the range of 2 to 6 (wt%), F.R. F. No change in value was observed. However, as shown in Comparative Examples 12 and 13 described above, when the addition amount is 1 (wt%) or 7 (wt%), F.I. F. The value drops slightly. Therefore, a sufficiently high F.I. F. In order to obtain the value, it is desirable that the glass addition amount is in the range of 2 to 6 (wt%).
  • the glass frit constituting the paste has Bi 2 O 3 of 10 to 29 (mol%), B 2 O 3 of 20 to 33 (mol%), SiO 2 is 20 (mol%) or less, ZnO is 15-30 (mol%), alkaline components (total of Li 2 O, Na 2 O, K 2 O) are 8-21 (mol%), other components ( Since the total of Al 2 O 3 , CaO, BaO, and P 2 O 5 ) is made of lead-free glass having a composition in the range of 18 (mol%) or less, the light-receiving surface electrode 20 of the solar cell 10 is used using this.
  • F.F. F. The value is 75 (%) or more, which is advantageous in that an electrode having excellent electrical characteristics can be obtained.
  • the ZnO amount is in the range of 15 to 30 (mol%), it is excellent in long-term reliability, for example, after a high temperature and high humidity test for 1000 hours. F. F. There is also an advantage that the value change rate is only 5% or less.
  • the antireflection film 18 is made of a silicon nitride film.
  • the constituent material is not particularly limited, and various other materials such as titanium dioxide TiO 2 generally used for solar cells. Those consisting of can be used as well.
  • the present invention is applicable to any solar cell that can form a light-receiving surface electrode by a fire-through method.
  • the substrate material is not particularly limited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Conductive Materials (AREA)
  • Glass Compositions (AREA)

Abstract

 電気的特性の優れた太陽電池電極用無鉛導電性組成物を提供する。 太陽電池電極用ペーストは、これを構成するガラスフリットが、Bi2O3が10~29(mol%)、B2O3が20~33(mol%)、SiO2が20(mol%)以下、ZnOが15~30(mol%)、アルカリ成分(Li2O、Na2O、K2Oの合計)が8~21(mol%)、他の成分(Al2O3、CaO、BaO、P2O5)の合計が18(mol%)以下の範囲内の組成を有する無鉛ガラスから成ることから、これを用いて太陽電池10の受光面電極20を形成すると、無鉛でありながら、F.F.値が75(%)以上と電気的特性に優れた電極が得られる利点がある。

Description

太陽電池電極用無鉛導電性組成物
 本発明は、ファイヤースルー法で形成する太陽電池電極用に好適な導電性組成物に関する。
 例えば、一般的なシリコン系太陽電池は、p型多結晶半導体であるシリコン基板の上面にn+層を介して反射防止膜および受光面電極が備えられると共に、下面にp+層を介して裏面電極(以下、これらを区別しないときは単に「電極」という。)が備えられた構造を有している。上記反射防止膜は、十分な可視光透過率を保ちつつ表面反射率を低減するためのもので、窒化珪素、二酸化チタン、二酸化珪素等の薄膜から成る。
 上記の太陽電池の受光面電極は、例えば、ファイヤースルーと称される方法で形成される。この電極形成方法では、例えば、前記反射防止膜をn+層上の全面に設けた後、例えばスクリーン印刷法を用いてその反射防止膜上に導電性ペーストを適宜の形状で塗布し、焼成処理を施す。この方法によれば、反射防止膜を部分的に除去してその除去部分に電極を形成する場合に比較して工程が簡単になり、除去部分と電極形成位置との位置ずれの問題も生じない。上記導電性ペーストは、例えば、銀粉末と、ガラスフリット(ガラス原料を溶融し急冷した後に必要に応じて粉砕したフレーク状または粉末状のガラスのかけら)と、有機質ベヒクルと、有機溶媒とを主成分とするもので、焼成過程において、この導電性ペースト中のガラス成分が反射防止膜をエッチングして破るので、導電性ペースト中の導体成分とn+層とによってオーミックコンタクトが形成される(例えば、特許文献1を参照。)。
 したがって、このような受光面電極形成では、オーミックコンタクトを改善し、延いては曲線因子(FF)やエネルギー変換効率を高めることが望まれており、これらを実現すべく、ファイヤースルー性を向上させるための改善が従来から種々試みられてきている。
特開2006-332032号公報 特開2008-109016号公報 特開2006-313744号公報 特表2008-543080号公報
 ところで、環境問題への懸念等から鉛を含まない無鉛ガラスが種々の分野で用いられるようになってきているが、上記用途においては、未だ鉛ガラスが用いられている。受光面電極をファイヤースルー法で形成するための導電性ペーストに無鉛ガラスを用いると、焼成温度が鉛ガラスを用いた場合よりも高くなると共に、十分なオーミックコンタクトが得られないので電気的特性が劣るためである。無鉛ガラスを用いた場合の焼成温度やファイヤースルー性を改善するための提案が従来から種々為されてきているが、未だ十分な特性を有するものは得られていなかった。
 例えば、Bi2O3、B2O3、SiO2を主成分とするBi系ガラスから成る無鉛ガラスフリットを用いた導電性組成物において、ZnO等のZn含有添加剤を添加することで、電気的性能を高めることが提案されている(前記特許文献1参照。)。この導電性組成物では、Zn含有添加剤の添加量が全組成物に対して10(wt%)までの範囲で、また、その平均粒径は0.1(μm)未満が好ましいとされている。電極の接着力等の面ではZn含有添加剤量が少ない方が好ましく、少量で効果を得るためには微細なものを用いることが好ましいが、少量且つ微細な添加物は分散性が悪く取扱いが困難である。
 また、ZnOが5~10(wt%)、Bi2O3が70~84(wt%)、B2O3+SiO2が6(wt%)以上のガラスフリットを用いた太陽電池素子用銀ペーストが提案されている(前記特許文献2参照。)。この銀ペーストは、基板との接着強度と長期信頼性を高めることを目的とするものであるが、主成分が上記組成の範囲内にあるガラスフリットを用いても、必ずしも接着強度が得られず、しかも、十分な電気的特性が得られなかった。
 また、太陽電池電極用途で無鉛ガラスを用いるものとしては、Al,Cu,Au,Ag,Pd,Ptの何れか、またはそれらの合金、或いはそれらの混合物の金属粒子と、無鉛ガラスと、有機媒体とを含む厚膜導電性組成物が提案されている(前記特許文献3参照。)。上記無鉛ガラスとしては、SiO2を0.5~35(wt%)、B2O3を1~15(wt%)、Bi2O3を55~90(wt%)、ZnOを0~15(wt%)、Al2O3を0~5(wt%)の範囲内の割合で含む組成を有するものが示されている。裏面電極をAlで構成した場合にはリードのはんだ付けができない一方、Ag或いはAg/Alでバスバーを形成すると裏面電界を損なうので、これらの問題が生じない電極を形成するための導電性組成物を提案するものである。しかしながら、裏面電極の改良を目的とするもので、受光面電極に用いた場合のファイヤースルー性や電気的特性等は何ら考慮されておらず、上記組成では例えば軟化点が高過ぎる問題がある。
 また、導電性金属成分を85~99(wt%)、ガラス成分を1~15(wt%)含み、そのガラス成分がBi2O3を5~85(mol%)、SiO2を1~70(mol%)含む受光面電極が提案されている(前記特許文献4参照。)。この受光面電極は、無鉛ガラスを用いた場合にも低い焼成温度で十分なオーミックコンタクトを得ることを目的としたものであって、上記ガラス成分は、V2O5を0.1~30(mol%)、Al,B等の三価の酸化物を1~20(mol%)、Ti,Zr,Hfの四価の酸化物を1~15(mol%)、P,Ta,Nb,Sbの五価の酸化物を0.1~20(mol%)、アルカリ酸化物を0.1~25(mol%)、アルカリ土類酸化物を0.1~20(mol%)、ZnOを0.1~25(mol%)、Ag2Oを0.1~12(mol%)の範囲内の割合で含むことが好ましいとされている。しかしながら、特許請求の範囲に記載されている上記ガラス組成は著しく広範で、ファイヤースルーによる受光面電極形成に適切な組成を何ら特定したものではない。一方、実施例には具体的なガラス組成が何点か記載されているが、何れのガラスを用いても、電気的特性が不十分であるか、軟化点が高過ぎて受光面電極に用い得ないものであった。
 本発明は、以上の事情を背景として為されたもので、その目的は、電気的特性の優れた電極を形成し得る太陽電池電極用無鉛導電性組成物を提供することにある。
 斯かる目的を達成するため、本発明の要旨とするところは、導電性粉末と、ガラスフリットと、ベヒクルとを含む太陽電池電極用無鉛導電組成物であって、(a)前記ガラスフリットが酸化物換算で全ガラス組成物に対して、Bi2O3 10~29(mol%)、ZnO 15~30(mol%)、SiO20~20(mol%)、B2O320~33(mol%)、Li2O、Na2O、K2Oの合計量 8~21(mol%)の範囲内の割合で含む少なくとも一種の無鉛ガラスから成ることにある。
 このようにすれば、太陽電池電極用無鉛導電性組成物は、これを構成するガラスフリットが上記組成を有する無鉛ガラスから成ることから、これを用いて太陽電池の電極を形成すると、無鉛でありながら電気的特性に優れた電極が得られる。
 なお、前記ガラスフリット組成において、B2O3は、ガラス形成酸化物(すなわちガラスの骨格を作る成分)であり、ガラスの軟化点を低くするために必須の成分である。20(mol%)未満では軟化点が高過ぎる値になり、33(mol%)を超えると太陽電池の電気的特性が不十分になる。B2O3は少なくなるほど軟化点が上昇する一方、多くなるほど電気的特性が低下する(例えば、シリコン系太陽電池においては基板材料であるSiとの反応性が高くなることに起因するものと考えられる)ので、その割合は所望する軟化点と電気的特性とを考慮して定めることが好ましく、例えば30(mol%)以下が好ましい。
 また、Bi2O3は、ガラスの軟化点を低下させる成分で、低温焼成を可能とするために必須である。10(mol%)未満では軟化点が高過ぎる値になり、29(mol%)を超えると太陽電池の電気的特性が不十分になる。可及的に高い電気的特性を得るためには、Bi2O3量が少ない方が好ましく、20(mol%)以下に留めることが一層好ましい。また、軟化点を十分に低くするためには、Bi2O3量が多い方が好ましく、15(mol%)以上が好ましい。すなわち、15~20(mol%)の範囲が特に好ましい。
 また、ZnOは、ガラスの軟化点を低下させると共に耐久性(すなわち長期信頼性)を高める成分で、15(mol%)未満では軟化点が高すぎる値になると共に、耐久性も不十分になる。一方、30(mol%)を超えると、他の成分とのバランスも影響するがガラスが結晶化し易くなる。ZnO量が少なくなるほど軟化点が上昇すると共に耐久性も低下する一方、多くなるほど結晶化しやすくなるので、20(mol%)以上が一層好ましく、30(mol%)以下が一層好ましい。すなわち、20~30(mol%)の範囲が特に好ましい。
 アルカリ成分Li2O、Na2O、K2Oは、ガラスの軟化点を低下させる成分で、合計量が8(mol%)未満では軟化点が高すぎる値になり、21(mol%)を超えると太陽電池の電気的特性が不十分になる。アルカリ成分量が少なくなるほど軟化点が上昇する一方、多くなるほど電気的特性が低下するので、10(mol%)以上が一層好ましく、20(mol%)以下が一層好ましい。すなわち、10~20(mol%)の範囲が特に好ましい。
 また、SiO2は、ガラス形成酸化物であり、ガラスの安定性を向上させる効果があるので、必須成分ではないが含まれることが好ましい。但し、多くなるほど軟化点が上昇するので、20(mol%)以下に留めることが必要である。十分な安定性を得るためには、4(mol%)以上が一層好ましく、軟化点を十分に低い値に留めるためには11(mol%)以下が一層好ましい。すなわち、4~11(mol%)が特に好ましい。
 なお、上記各成分は、ガラス中に如何なる形態で含まれているか必ずしも特定が困難であるが、これらの割合は何れも酸化物換算した値とした。
 また、本発明の導電性組成物を構成する前記ガラスは、その特性を損なわない範囲で他の種々のガラス構成成分や添加物を含み得る。例えば、Al2O3、P2O5、アルカリ土類酸化物、その他化合物が含まれていても差し支えない。これらは多量に含まれていると太陽電池の電気的特性を損なうので、例えば合計20(mol%)以下の範囲で含まれ得る。
 ここで、好適には、前記太陽電池電極用無鉛導電性組成物において、前記ガラスフリットは平均粒径が3.0(μm)以下である。このようにすれば、一層印刷性が良好で一層高いFF値が得られる導電性組成物が得られる。なお、例えば平均粒径が0.5(μm)以上であれば、ペースト調合時の分散性に一層優れるので生産性が高められる。
 また、好適には、前記太陽電池電極用無鉛導電性組成物は、前記ガラスフリットをペースト全体に対して2~6(wt%)の範囲内の割合で含むものである。ガラスフリット量は、多くなるほど反射防止膜の溶解性が高められてファイヤースルー性が向上するが、その反面で多くなるほど抵抗値が高くなって太陽電池出力が低下する。そのため、十分に高いファイヤースルー性を得るためには、2(wt%)以上とすることが好ましく、一方、十分に高い太陽電池出力を得るためには、6(wt%)以下に留めることが好ましい。
 また、好適には、前記導電性粉末は銀粉末である。導電性粉末としては銅粉末やニッケル粉末等も用い得るが、銀粉末が高い導電性が得られるので最も好ましい。
 また、好適には、前記太陽電池電極用無鉛導電性組成物は、前記銀粉末を64~90重量部、前記ベヒクルを5~20重量部の範囲内の割合で含むものである。このようにすれば、印刷性が良好であり、導電性が高く、半田濡れ良好な電極を作製し得る導電性組成物が得られる。銀粉末が過少では高い導電性が得られず、過剰では流動性が低くなって印刷性が悪くなる。また、ガラスフリットが過少では基板との密着力が不足し、過剰では焼成後にガラスが電極表面に浮いて半田濡れ性が悪くなる。
 なお、前記銀粉末は特に限定されず、球状や鱗片状等、どのような形状の粉末が用いられる場合にも最適焼成温度範囲が拡大するという本発明の基本的効果を享受し得る。但し、例えば、球状を成すものを用いた場合には、印刷性に優れると共に、塗布膜における銀粉末の充填率が高くなるため、導電性の高い銀が用いられることと相俟って、鱗片状等の他の形状の銀粉末が用いられる場合に比較して、その塗布膜から生成される電極の導電率が高くなる。そのため、必要な導電性を確保したまま線幅を一層細くすることが可能となる。したがって、この導電性組成物を受光面電極に適用して線幅を細くすれば、太陽エネルギーを吸収できる受光面積を一層大きくできるので、変換効率の一層高い太陽電池を得ることができる。
 また、本願発明の導電性組成物は、前述したようにファイヤースルーによる電極形成時の銀の拡散を好適に制御し得るものであるから、受光面電極に好適に用い得る。しかしながら、受光面電極に限られず、裏面電極としても用いることができる。例えば、裏面電極は全面を覆うアルミニウム膜とこれに重なる帯状等の電極とから構成されるが、その帯状電極の構成材料としても好適である。
 また、前記ガラスフリットは、前記組成範囲でガラス化可能な種々の原料から合成することができ、例えば、酸化物、炭酸塩、硝酸塩等が挙げられるが、例えば、Bi源としては酸化ビスマスを、Zn源としては酸化亜鉛を、Si源としては二酸化珪素を、B源としては硼酸を、Li源としては炭酸リチウムを、Na源としては炭酸ナトリウムを、K源としては炭酸カリウムを用い得る。
 また、主要成分Bi、Zn、Si、B、アルカリ金属の他に、Al、P、アルカリ土類金属、その他の化合物等の他の成分を含む組成とする場合には、例えばそれらの酸化物、水酸化物、炭酸塩、硝酸塩等を用いればよい。
本発明の一実施例の電極用ペースト組成物が受光面電極の形成に適用された太陽電池の断面構造を示す模式図である。 図1の太陽電池の受光面電極パターンの一例を示す図である。
 以下、本発明の一実施例を図面を参照して詳細に説明する。なお、以下の実施例において図は適宜簡略化或いは変形されており、各部の寸法比および形状等は必ずしも正確に描かれていない。
 図1は、本発明の一実施例の導電性組成物が適用されたシリコン系太陽電池10の断面構造を模式的に示す図である。図1において、太陽電池10は、例えばp型多結晶半導体であるシリコン基板12と、その上下面にそれぞれ形成されたn+層14およびp+層16と、そのn+層14上に形成された反射防止膜18および受光面電極20と、そのp+層16上に形成された裏面電極22とを備えている。
 上記のn+層14およびp+層16は、シリコン基板12の上下面に不純物濃度の高い層を形成することで設けられたもので、その高濃度層の厚さ寸法すなわち層14,16の厚さ寸法は例えばそれぞれ0.5(μm)程度である。n+層14に含まれる不純物は、例えばn型のドーパントである燐(P)であり、p+層16に含まれる不純物は、例えばp型のドーパントである硼素(B)である。
 また、前記の反射防止膜18は、例えば、窒化珪素Si3N4等から成る薄膜で、例えば可視光波長の1/4程度の光学的厚さで設けられることによって10(%)以下、例えば2(%)程度の極めて低い反射率に構成されている。
 また、前記の受光面電極20は、例えば一様な厚さ寸法の厚膜導体から成るもので、図2に示されるように、受光面24の略全面に、多数本の細線部を有する櫛状を成す平面形状で設けられている。上記の厚膜導体は、Agを88~99(wt%)程度およびガラスを1~12(wt%)程度を含む厚膜銀から成るもので、そのガラスは酸化物換算した値で、Bi2O3を10~29(mol%)、ZnOを15~30(mol%)、SiO2を20(mol%)以下、B2O3を20~33(mol%)、アルカリ成分(Li2O、Na2O、K2O)を合計量で8~21(mol%)の範囲内の割合でそれぞれ含む無鉛ガラスである。また、上記の導体層の厚さ寸法は例えば15~20(μm)の範囲内、例えば17(μm)程度で、細線部の各々の幅寸法は例えば80~130(μm)の範囲内、例えば100(μm)程度で、十分に高い導電性を備えている。
 また、前記の裏面電極22は、p+層16上にアルミニウムを導体成分とする厚膜材料を略全面に塗布して形成された全面電極26と、その全面電極26上に帯状に塗布して形成された厚膜銀から成る帯状電極28とから構成されている。この帯状電極28は、裏面電極22に導線等を半田付け可能にするために設けられたものである。
 以上のように構成された太陽電池10は、前述したように受光面電極20が前述した組成の無鉛ガラスを1~12(wt%)の範囲で含む厚膜銀で構成されていることから、従来の無鉛ガラスが用いられた太陽電池に比較して電気的特性に優れ、例えば鉛ガラスが用いられている場合と同程度の74(%)以上のF.F.値を有する利点がある。
 上記のような受光面電極20は、例えば、導体粉末と、ガラスフリットと、ベヒクルと、溶剤とから成る電極用ペーストを用いて良く知られたファイヤースルー法によって形成されたものである。その受光面電極形成を含む太陽電池10の製造方法の一例を比較例の電極用ペーストの製造方法と併せて以下に説明する。
 まず、上記ガラスフリットを作製する。Bi源として酸化ビスマスを、Zn源として酸化亜鉛を、Si源として二酸化珪素を、B源として硼酸を、Li源として炭酸リチウムを、Na源として炭酸ナトリウムを、K源として炭酸カリウムを、Al源として酸化アルミニウムを、P源としてNH4H2PO4を、Ca源として酸化カルシウムCaOを、Ba源としてBaCO3をそれぞれ用意し、表1の実施例に示す組成となるように秤量して調合した。なお、上記各原料は、酸化物、水酸化物、炭酸塩、或いは硝酸塩の何れでも良いが、微粉砕原料を使用した方が溶融し易く好ましい。これを坩堝に投入して組成に応じた900~1400(℃)の範囲内の温度で、20分~1時間程度溶融してガラス化させた。得られたガラスをポットミル等の適宜の粉砕装置を用いて粉砕し、平均粒径が0.4(μm)、0.6(μm)、1.5(μm)、3.0(μm)、4.0(μm)の粉末を得た。
Figure JPOXMLDOC01-appb-T000001
 また、前記導体粉末として、例えば、平均粒径が0.5~3(μm)の範囲内、例えば2(μm)程度の市販の球状の銀粉末を用意した。このような平均粒径が十分に小さい銀粉末を用いることにより、塗布膜における銀粉末の充填率を高め延いては導体の導電率を高めることができる。また、前記ベヒクルは、有機溶剤に有機結合剤を溶解させて調製したもので、有機溶剤としては、例えばブチルカルビトールアセテートが、有機結合剤としては、例えばエチルセルロースが用いられる。ベヒクル中のエチルセルロースの割合は例えば15(wt%)程度である。また、ベヒクルとは別に添加する溶剤は、例えばブチルカルビトールアセテートである。すなわち、これに限定されるものではないが、ベヒクルに用いたものと同じ溶剤でよい。この溶剤は、ペーストの粘度調整の目的で添加される。
 以上のペースト原料をそれぞれ用意して、例えば導体粉末を80重量部、ベヒクルを10重量部と、その他適量の溶剤、添加剤と、ペースト全体に対して2~6(wt%)のガラスフリットを秤量し、攪拌機等を用いて混合した後、例えば三本ロールミルで分散処理を行う。これにより、前記電極用ペーストが得られる。なお、前記表1は、各実施例および比較例におけるガラスフリットの組成と、ペースト全体に対するその添加量(wt%)と、それぞれのガラスフリットを用いて前記受光面電極20を形成したときの太陽電池10のF.F.値の測定結果とをまとめたものである。
 上記のようにして電極用ペーストを調製する一方、適宜のシリコン基板に例えば、熱拡散法やイオンプランテーション等の良く知られた方法で不純物を拡散し或いは注入して前記n+層14およびp+層16を形成することにより、前記シリコン基板12を作製する。次いで、これに例えばスピンコーティング等の適宜の方法で窒化珪素(SiNx)薄膜を形成し、前記反射防止膜18を設ける。
 次いで、上記の反射防止膜18上に前記図2に示すパターンで前記電極用ペーストをスクリーン印刷する。これを例えば150(℃)で乾燥し、更に、近赤外炉において650~900(℃)の範囲内の温度で焼成処理を施す。これにより、その焼成過程で電極用ペースト中のガラス成分が反射防止膜18を溶かし、その電極用ペーストが反射防止膜18を破るので、電極用ペースト中の導体成分すなわち銀とn+層14との電気的接続が得られ、前記図1に示されるようにシリコン基板12と受光面電極20とのオーミックコンタクトが得られる。受光面電極20は、このようにして形成される。
 なお、前記裏面電極22は、上記工程の後に形成してもよいが、受光面電極20と同時に焼成して形成することもできる。裏面電極22を形成するに際しては、上記シリコン基板12の裏面全面に、例えばアルミニウムペーストをスクリーン印刷法等で塗布し、焼成処理を施すことによってアルミニウム厚膜から成る前記全面電極26を形成する。更に、その全面電極26の表面に前記電極用ペーストをスクリーン印刷法等を用いて帯状に塗布して焼成処理を施すことによって、前記帯状電極28を形成する。これにより、裏面全面を覆う全面電極26と、その表面の一部に帯状に設けられた帯状電極28とから成る裏面電極22が形成され、前記の太陽電池10が得られる。上記工程において、同時焼成で製造する場合には、受光面電極20の焼成前に印刷処理を施すことになる。
 前記の表1の右から2列目に示されるF.F.値は、このようにして得られる太陽電池10において、ガラスの組成および添加量を種々変更した実施例および比較例の各々について、それぞれ最適と認められる焼成温度で焼成して受光面電極20を形成し、得られた太陽電池10の出力を測定して求めたものである。なお、太陽電池10の出力は、市販のソーラーシミュレータを用いて測定した。また、右端欄に示される「耐湿性試験後F.F.値」は、温度85(℃)、湿度85(%)の高温高湿下において1000時間保持する加速試験を行い、試験後のF.F.値の変化率が5(%)以内であるものを耐湿性有り(「○」評価)、5(%)を超えたものを耐湿性無し(「×」評価)とした。
 太陽電池においては、74(%)以上のF.F.値が得られていれば使用可能であるが、F.F.値が高いほど好ましいのはもちろんである。表1の実施例1~11では、何れも75(%)以上のF.F.値が得られており、鉛ガラスを用いた場合と同等の十分に高い特性を有していることが確かめられた。
 すなわち、表1に示す評価結果によれば、Bi2O3が10~29(mol%)、B2O3が20~33(mol%)、SiO2が20(mol%)以下、ZnOが15~30(mol%)、アルカリ成分(Li2O、Na2O、K2Oの合計)が8~21(mol%)、他の成分(Al2O3、CaO、BaO、P2O5)の合計が18(mol%)以下の範囲内であれば、F.F.値が十分に高くなる。
 また、実施例2,5,7によれば、Bi2O3が15~20(mol%)、B2O3が26~30(mol%)、SiO2が4~17(mol%)、ZnOが28.5~30(mol%)、アルカリ成分(Li2O、Na2O、K2Oの合計)が17~21(mol%)、他の成分(Al2O3、CaO、BaO、P2O5)の合計が3(mol%)以下の範囲内であれば、77.0(%)のF.F.値が得られる。
 また、実施例1~11の何れにおいても、耐湿性試験後のF.F.値の変化は5(%)以内に留まり、十分な長期信頼性を有していることが確かめられた。
 これに対して、比較例1~10は、F.F.値が70(%)未満に留まった。比較例1、3、7は、Bi2O3が過剰であることから電気的特性が低下すると共に、ZnOが過少でアルカリ成分が過少或いは零であることから軟化点が高くなり過ぎたため、F.F.値が低下したものと考えられる。また、比較例2、6は、Bi2O3が過剰であることから電気的特性が低下すると共に、B2O3が過少であることから軟化点が高くなり過ぎたため、F.F.値が低下したものと考えられる。また、比較例4は、Bi2O3およびB2O3が過剰であることから電気的特性が低下し、延いてはF.F.値が低下したものと考えられる。過剰な硼素が基板材料である珪素と反応することが影響しているものと考えられる。また、比較例5は、Bi2O3が過剰であることから電気的特性が低下し、F.F.値が低下したものと考えられる。また、比較例8は、Bi2O3が過少でSiO2が過剰であることから軟化点が高くなり過ぎると共に、B2O3が過剰であることから電気的特性が低下するので、F.F.値が低下したものと考えられる。また、比較例9は、ZnOが過剰であることからガラスが結晶化するため、F.F.値が低下したものと考えられる。また、比較例10は、B2O3が過剰であることから電気的特性の低下が生じ、ZnOが過剰であることからガラスが結晶化し易くなり、アルカリ成分を含まないことから軟化点が高くなり過ぎるので、F.F.値が低下したものと考えられる。
 また、比較例11~13は、比較例1~10よりは高いF.F.値が得られているものの70~72(%)に留まった。比較例11では、B2O3が過少であることから軟化点が高くなると共に、ZnOが過剰であることからガラスが結晶化し易くなるので、実施例に比較してF.F.値が低くなったものと考えられる。また、比較例12,13では、ガラス構成成分比には何ら問題はないが、電極用ペーストを調製する際のガラス添加量が過少であることから十分なファイヤースルー性が得られず、良好なオーミックコンタクトが得られなかったため、或いは、ガラス添加量が過剰であることから電極材料の抵抗値が高くなり過ぎたため、F.F.値が低い値に留まったものと考えられる。また、比較例14は、十分に高いF.F.値が得られているが、耐湿性試験後の変化が5(%)を超え、長期信頼性が不十分であった。Siが多過ぎるため軟化点が高くなって耐湿性が不十分になったものと考えられる。
 なお、実施例8~11は、同一組成のガラスフリットを用いてペースト全体に対する添加量を2~6(wt%)の間で変化させて、太陽電池10のF.F.値を評価したものである。これらの評価結果に示されるように、添加量が2~6(wt%)の範囲内であれば、添加量に拘わらずF.F.値の変化は認められなかった。しかしながら、上述した比較例12,13に示されるように、添加量が1(wt%)、7(wt%)になると、F.F.値がやや低下する。したがって、十分に高いF.F.値を得るためには、ガラス添加量を2~6(wt%)の範囲内にすることが望ましい。
 上述したように、本実施例の太陽電池電極用ペーストは、これを構成するガラスフリットが、Bi2O3が10~29(mol%)、B2O3が20~33(mol%)、SiO2が20(mol%)以下、ZnOが15~30(mol%)、アルカリ成分(Li2O、Na2O、K2Oの合計)が8~21(mol%)、他の成分(Al2O3、CaO、BaO、P2O5)の合計が18(mol%)以下の範囲内の組成を有する無鉛ガラスから成ることから、これを用いて太陽電池10の受光面電極20を形成すると、無鉛でありながら、F.F.値が75(%)以上と電気的特性に優れた電極が得られる利点がある。
 また、本実施例の電極用ペーストによれば、ZnO量が15~30(mol%)の範囲内であることから、長期信頼性にも優れており、例えば1000時間の高温高湿試験後のF.F.値変化率が5(%)以下に過ぎない利点もある。
 また、本実施例において、特に電極ペースト中のガラス量を2~6(wt%)とすれば、ガラス量の多少に起因する特性の相違が殆ど無く、そのガラス組成に基づく高い電気的特性を享受できる利点がある。
 以上、本発明を図面を参照して詳細に説明したが、本発明は更に別の態様でも実施でき、その主旨を逸脱しない範囲で種々変更を加え得るものである。
 例えば、前記実施例においては、反射防止膜18が窒化珪素膜から成るものであったが、その構成材料は特に限定されず、一般に太陽電池に用いられる二酸化チタンTiO2等の他の種々の材料から成るものを同様に用い得る。
 また、実施例においては、本発明がシリコン系太陽電池10に適用された場合について説明したが、本発明は、ファイヤースルー法で受光面電極を形成することのできる太陽電池であれば適用対象の基板材料は特に限定されない。
10:太陽電池
12:シリコン基板
14:n+
16:p+
18:反射防止膜
20:受光面電極
22:裏面電極
24:受光面
26:全面電極
28:帯状電極

Claims (8)

  1.  導電性粉末と、ガラスフリットと、ベヒクルとを含む太陽電池電極用無鉛導電組成物であって、
     前記ガラスフリットが酸化物換算で全ガラス組成物に対して、Bi2O310~29(mol%)、ZnO 15~30(mol%)、SiO2 0~20(mol%)、B2O3 20~33(mol%)、Li2O、Na2O、K2Oの合計量 8~21(mol%)の範囲内の割合で含む少なくとも一種の無鉛ガラスから成ることを特徴とする太陽電池電極用無鉛導電性組成物。
  2.  前記無鉛ガラスは、更に、Al2O3、P2O5、アルカリ土類酸化物のいずれかの他のガラス構成成分や添加物を含む請求項1の太陽電池電極用無鉛導電性組成物。
  3.  前記ガラスフリットは平均粒径が3.0(μm)以下である請求項1または2の太陽電池電極用無鉛導電性組成物。
  4.  前記ガラスフリットを組成物全体に対して2~6(wt%)の範囲内の割合で含むものである請求項1乃至3のいずれか1の太陽電池電極用無鉛導電性組成物。
  5.  前記導電性粉末は銀粉末である請求項1乃至4のいずれか1の太陽電池電極用無鉛導電性組成物。
  6.  前記銀粉末を64~90重量部、前記ベヒクルを5~20重量部の範囲内の割合で含むものである請求項5の太陽電池電極用無鉛導電性組成物。
  7.  前記銀粉末は、球状や鱗片状等の形状の粉末である請求項5または6の太陽電池電極用無鉛導電性組成物。
  8.  前記太陽電池の受光面電極および/または裏面電極として用いられる請求項1乃至7のいずれか1の太陽電池電極用無鉛導電性組成物。
PCT/JP2010/059154 2009-07-30 2010-05-28 太陽電池電極用無鉛導電性組成物 WO2011013440A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/387,520 US8778232B2 (en) 2009-07-30 2010-05-28 Lead-free conductive compound for solar cell electrodes
CN201080043514.5A CN102549763B (zh) 2009-07-30 2010-05-28 太阳能电池电极用无铅导电性组合物
DE112010003112T DE112010003112T5 (de) 2009-07-30 2010-05-28 Bleifreie leitfähige verbindung für solarzellelektroden

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009177493A JP5649290B2 (ja) 2009-07-30 2009-07-30 太陽電池電極用無鉛導電性組成物
JP2009-177493 2009-07-30

Publications (1)

Publication Number Publication Date
WO2011013440A1 true WO2011013440A1 (ja) 2011-02-03

Family

ID=43529104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059154 WO2011013440A1 (ja) 2009-07-30 2010-05-28 太陽電池電極用無鉛導電性組成物

Country Status (7)

Country Link
US (1) US8778232B2 (ja)
JP (1) JP5649290B2 (ja)
KR (1) KR20120039738A (ja)
CN (1) CN102549763B (ja)
DE (1) DE112010003112T5 (ja)
TW (1) TWI544496B (ja)
WO (1) WO2011013440A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014531702A (ja) * 2011-08-26 2014-11-27 ヘレウス プレシャス メタルズ ノース アメリカ コンショホーケン エルエルシー SINxおよび良好なBSF形成のためのファイアスルーアルミニウムペースト

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013011986A1 (ja) * 2011-07-19 2013-01-24 日立化成工業株式会社 n型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池素子の製造方法
JP6027765B2 (ja) * 2012-05-02 2016-11-16 株式会社ノリタケカンパニーリミテド 太陽電池用無鉛導電性ペースト組成物
US9245663B2 (en) * 2012-10-10 2016-01-26 E I Du Pont De Nemours And Company Thick film silver paste and its use in the manufacture of semiconductor devices
TWI490184B (zh) * 2012-12-11 2015-07-01 Advanced Electronic Materials Inc 無鉛奈米導電漿材料
KR102032280B1 (ko) * 2013-04-25 2019-10-15 엘지전자 주식회사 태양 전지의 전극용 페이스트 조성물
KR101659131B1 (ko) * 2013-11-12 2016-09-22 제일모직주식회사 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
US9761742B2 (en) * 2013-12-03 2017-09-12 E I Du Pont De Nemours And Company Conductive paste composition and semiconductor devices made therewith
KR101721731B1 (ko) * 2014-07-11 2017-03-31 삼성에스디아이 주식회사 태양전지 전극용 페이스트 및 이로부터 제조된 전극
CN104150775A (zh) * 2014-08-01 2014-11-19 东华大学 一种用于光伏电池导电浆料的低熔点碲系玻璃及制备方法
KR20160035700A (ko) * 2014-09-23 2016-04-01 삼성에스디아이 주식회사 고면저항 기판상에 형성된 전극을 포함하는 태양전지
JP6688500B2 (ja) * 2016-06-29 2020-04-28 ナミックス株式会社 導電性ペースト及び太陽電池
CN107117824A (zh) * 2017-05-18 2017-09-01 江苏东昇光伏科技有限公司 一种太阳能电池用无铅玻璃粉及其制备方法
KR102060425B1 (ko) * 2017-10-31 2020-02-11 엘에스니꼬동제련 주식회사 태양전지 전극용 도전성 페이스트 및 이에 포함되는 유리 프릿, 그리고 태양 전지
KR102152837B1 (ko) * 2018-11-30 2020-09-07 엘에스니꼬동제련 주식회사 태양전지 전극용 도전성 페이스트 및 이를 이용하여 제조된 태양 전지
JP7444552B2 (ja) * 2019-06-04 2024-03-06 Agc株式会社 ガラス組成物、ガラス組成物の製造方法、導電ペースト、及び太陽電池
KR20210111912A (ko) * 2020-03-02 2021-09-14 창저우 퓨전 뉴 머티리얼 씨오. 엘티디. 태양전지 전극 형성용 조성물 및 이로부터 형성된 태양전지 전극
CN114751647B (zh) * 2022-03-29 2023-06-20 华南理工大学 一种易研磨的玻璃熔块及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270035A (ja) * 2001-03-14 2002-09-20 Noritake Co Ltd 導体ペースト、該ペースト調製用粉末材料およびセラミック電子部品製造方法
JP2006332032A (ja) * 2005-04-14 2006-12-07 E I Du Pont De Nemours & Co 半導体デバイスの製造に使用される導電性組成物および方法
WO2008078374A1 (ja) * 2006-12-25 2008-07-03 Namics Corporation 太陽電池用導電性ペースト
WO2009041182A1 (ja) * 2007-09-27 2009-04-02 Murata Manufacturing Co., Ltd. Ag電極ペースト、太陽電池セルおよびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19502653A1 (de) * 1995-01-28 1996-08-01 Cerdec Ag Bleifreie Glaszusammensetzung und deren Verwendung
US6171987B1 (en) * 1997-12-29 2001-01-09 Ben-Gurion University Of The Negev Cadmium-free and lead-free glass compositions, thick film formulations containing them and uses thereof
US6787068B1 (en) * 1999-10-08 2004-09-07 E. I. Du Pont De Nemours And Company Conductor composition
US7494607B2 (en) 2005-04-14 2009-02-24 E.I. Du Pont De Nemours And Company Electroconductive thick film composition(s), electrode(s), and semiconductor device(s) formed therefrom
US7556748B2 (en) 2005-04-14 2009-07-07 E. I. Du Pont De Nemours And Company Method of manufacture of semiconductor device and conductive compositions used therein
US8093491B2 (en) 2005-06-03 2012-01-10 Ferro Corporation Lead free solar cell contacts
JP2007246382A (ja) * 2006-02-16 2007-09-27 Nippon Electric Glass Co Ltd プラズマディスプレイパネル用誘電体材料
JP5219355B2 (ja) 2006-10-27 2013-06-26 京セラ株式会社 太陽電池素子の製造方法
JP2009038022A (ja) 2007-07-11 2009-02-19 Toray Ind Inc 電子放出素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270035A (ja) * 2001-03-14 2002-09-20 Noritake Co Ltd 導体ペースト、該ペースト調製用粉末材料およびセラミック電子部品製造方法
JP2006332032A (ja) * 2005-04-14 2006-12-07 E I Du Pont De Nemours & Co 半導体デバイスの製造に使用される導電性組成物および方法
WO2008078374A1 (ja) * 2006-12-25 2008-07-03 Namics Corporation 太陽電池用導電性ペースト
WO2009041182A1 (ja) * 2007-09-27 2009-04-02 Murata Manufacturing Co., Ltd. Ag電極ペースト、太陽電池セルおよびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014531702A (ja) * 2011-08-26 2014-11-27 ヘレウス プレシャス メタルズ ノース アメリカ コンショホーケン エルエルシー SINxおよび良好なBSF形成のためのファイアスルーアルミニウムペースト
US9824790B2 (en) 2011-08-26 2017-11-21 Heraeus Precious Metals North America Conshohocken Llc Fire through aluminum paste for SiNx and better BSF formation

Also Published As

Publication number Publication date
TW201108251A (en) 2011-03-01
KR20120039738A (ko) 2012-04-25
TWI544496B (zh) 2016-08-01
US8778232B2 (en) 2014-07-15
DE112010003112T5 (de) 2012-10-04
US20120138872A1 (en) 2012-06-07
CN102549763B (zh) 2015-02-25
JP5649290B2 (ja) 2015-01-07
JP2011035034A (ja) 2011-02-17
CN102549763A (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
JP5649290B2 (ja) 太陽電池電極用無鉛導電性組成物
JP5856178B2 (ja) 太陽電池用無鉛導電性ペースト組成物
JP5856277B1 (ja) 太陽電池電極用ペーストおよび太陽電池セル
JP5059042B2 (ja) 太陽電池電極用ペースト組成物
JP5137923B2 (ja) 太陽電池用電極ペースト組成物
TWI778207B (zh) 玻璃、玻璃粉末、導電糊料及太陽能電池
EP3405961B1 (en) Conductive paste, method, electrode and solar cell
TWI533329B (zh) 太陽電池用導電性糊組成物
JP6027765B2 (ja) 太陽電池用無鉛導電性ペースト組成物
TW201425260A (zh) 太陽電池用導電性糊組成物
JP2019127404A (ja) ガラス、ガラスの製造方法、導電ペーストおよび太陽電池
CN114380507A (zh) 一种适应晶硅p+层接触的厚膜银浆用玻璃粉及其制备方法
JP6027968B2 (ja) 太陽電池用導電性ペースト組成物、太陽電池、および、太陽電池の製造方法
JP5279699B2 (ja) 太陽電池用導電性ペースト組成物
JP2020083670A (ja) ガラス組成物、ガラス粉末、導電ペーストおよび太陽電池
JP2011035035A (ja) 太陽電池電極用導電性組成物
KR20230055847A (ko) 태양 전지 전극 형성용 유리 프릿 조성물, 이를 사용하여 형성된 태양 전지용 전극, 및 상기 전극을 포함하는 태양 전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080043514.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10804187

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120100031126

Country of ref document: DE

Ref document number: 112010003112

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 13387520

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127005029

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10804187

Country of ref document: EP

Kind code of ref document: A1