WO2011108219A1 - 薄膜形成装置 - Google Patents

薄膜形成装置 Download PDF

Info

Publication number
WO2011108219A1
WO2011108219A1 PCT/JP2011/000957 JP2011000957W WO2011108219A1 WO 2011108219 A1 WO2011108219 A1 WO 2011108219A1 JP 2011000957 W JP2011000957 W JP 2011000957W WO 2011108219 A1 WO2011108219 A1 WO 2011108219A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
electrode plate
path portion
film forming
main surface
Prior art date
Application number
PCT/JP2011/000957
Other languages
English (en)
French (fr)
Inventor
一樹 滝澤
宮武 直正
村田 和俊
Original Assignee
三井造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井造船株式会社 filed Critical 三井造船株式会社
Priority to KR20127016617A priority Critical patent/KR20120120181A/ko
Priority to EP11750333.4A priority patent/EP2544223A4/en
Priority to US13/582,616 priority patent/US20130104803A1/en
Priority to JP2011508147A priority patent/JP4818483B2/ja
Publication of WO2011108219A1 publication Critical patent/WO2011108219A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5096Flat-bed apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32541Shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a thin film forming apparatus for forming a thin film on a substrate using plasma.
  • CVD Chemical Vapor
  • Deposition Chemical Vapor
  • a process of forming an amorphous Si thin film used for a thin film solar cell on a glass substrate by using a CVD apparatus has attracted attention.
  • monosilane (SiH 4 ) is turned into plasma to form an amorphous Si thin film on a glass substrate.
  • thin-film solar cell panels have become larger, and it is desired to form a uniform amorphous Si thin film on a large panel. For this reason, in a plasma CVD apparatus, it is necessary to form a high-density plasma uniformly.
  • a plasma generation method in which a plurality of high-frequency antennas are installed in a plasma generation chamber, and inductively coupled plasma is generated by applying high-frequency power to the plasma generation chamber gas with the high-frequency antenna;
  • a plasma generator is known (Patent Document 1).
  • the plasma generation method and the plasma generation apparatus at least some of the plurality of high-frequency antennas are sequentially arranged adjacent to each other, and the adjacent ones are arranged in parallel with each other facing each other. Install. Further, the plurality of high-frequency antennas are installed adjacent to each other in order and arranged in parallel with each other adjacent to each other.
  • the electron temperature in the inductively coupled plasma is controlled by controlling the phase of the high frequency voltage applied to each of the high frequency antennas.
  • a plasma generation device including a vacuum vessel, an opening provided on a wall surface of the vacuum vessel, and a plate-like high-frequency antenna conductor attached so as to cover the opening in an airtight manner (patent) Reference 2). Since the plasma generation apparatus has a structure in which a high-frequency antenna conductor is attached to the opening of the plasma generation apparatus, it is possible to generate plasma with high uniformity over a wide range.
  • FIG. 4A is a diagram illustrating a simplified configuration of an example of a plasma film forming apparatus using the plate-shaped high-frequency antenna conductor described above.
  • the electrode plate 102 is provided outside the film forming chamber of the film forming container 104 in the opening of the partition wall 106, and the surface of the partition wall 106 facing the film forming space is provided. Is provided with a dielectric 108.
  • a glass substrate G for forming a thin film is disposed at a position facing the dielectric 108.
  • the glass substrate G is placed on a susceptor 112 provided on the heater 110.
  • FIG. 4B is a schematic perspective view of the electrode plate 102 that generates a magnetic field in the film formation space.
  • the electrode plate 102 is a plate-like electrode as shown in FIG. One end face of the electrode plate 102 is connected to a high frequency power supply of several tens of MHz, and the other end face of the electrode plate 102 is grounded. In the electrode plate 102, current flows in the X direction. In the method of generating plasma using the electrode plate 102, the plasma is generated using the generated magnetic field, unlike the above-described apparatus that generates plasma using high voltage generated by a plurality of adjacent high frequency antennas. Is done.
  • the density of the plasma generated by the electrode plate 102 is not sufficient for forming an amorphous Si thin film, and there is a problem that the film forming speed is slow.
  • the above-described known plasma generation method and plasma generation apparatus that generate inductively coupled plasma by supplying high-frequency power to a plurality of high-frequency antennas have a problem that a sufficient plasma density cannot be generated uniformly. is there.
  • the present invention provides a thin film forming apparatus that can efficiently form a thin film with a uniform plasma density when a thin film is formed on a substrate using plasma. With the goal.
  • One aspect of the present invention is a thin film forming apparatus for forming a thin film on a substrate, A film formation container having a film formation space for forming a thin film on a substrate in a reduced pressure state; A raw material gas introduction section for introducing a raw material gas for a thin film into the film formation space of the film formation container; A plasma electrode unit for generating plasma using the thin film source gas in the film formation space;
  • the plasma electrode portion is a plate member in which a current flows from one end surface to the other end surface, and an electrode plate having an outward path portion and a return path portion that are bent in the middle and in which the current flow direction of the plate member is parallel to each other. , Provided as an electrode for plasma generation.
  • the length of the forward path part and the length of the return path part of the return path part are equal. Further, it is preferable that the forward path part and the return path part have the same width, and a separation distance between the forward path part and the return path part is 1 to 1.6 times a width of the forward path part and the return path part. .
  • the electrode plate preferably has a thickness greater than 0.2 mm.
  • the first main surface of the electrode plate is disposed so as to face the film formation space, and a plurality of groove-shaped recesses extending along the current direction are provided in the forward path portion and the return path portion of the first main surface. It may be done.
  • the first main surface of the electrode plate is disposed so as to face the film formation space, and the second main surface opposite to the first main surface is along a direction orthogonal to the current direction. It is preferable to have unevenness that extends. At this time, it is preferable that the unevenness is formed by a plurality of plate members standing on the second main surface.
  • the generated plasma density can be made uniform and the thin film can be formed efficiently.
  • FIG. 1 is a perspective view which shows an example of the electrode plate used for the thin film forming apparatus shown in FIG. 1
  • (b) is a perspective view which shows the 1st modification different from the electrode plate shown in (a).
  • (A), (b) is a figure explaining the relationship between the electrode plate and the electron density of the plasma produced
  • (A), (b) is a figure explaining the example of the electrode plate used for the conventional thin film formation apparatus.
  • FIG. 1 is a schematic diagram showing a configuration of a thin film forming apparatus 10 according to an embodiment of the present invention.
  • a thin film forming apparatus 10 shown in FIG. 1 is a CVD apparatus that forms a thin film on a substrate using generated plasma.
  • the thin film forming apparatus 10 is a system that generates plasma by a magnetic field generated by a current flowing through an electrode plate. This method is different from a method in which plasma is generated by a high voltage generated by resonance of an antenna element such as a monopole antenna.
  • the thin film forming apparatus 10 includes a power supply unit 12, a film forming container 14, a gas supply unit 16, and a gas exhaust unit 18.
  • the power supply unit 12 includes a high frequency power source 22, a high frequency cable 24, a matching box 26, transmission lines 28 and 29 (see FIG. 2A), and an electrode plate 30.
  • the high frequency power supply 22 supplies high frequency power of several tens of MHz to the electrode plate 30 at 10 to 1000 W, for example.
  • the matching box 26 matches impedance so that power supplied through the high-frequency cable 24 is efficiently supplied to the electrode plate 30.
  • the matching box 26 includes a known matching circuit provided with elements such as a capacitor and an inductor.
  • the transmission line 28 extending from the matching box 26 is, for example, a copper plate-like transmission line having a certain width, and can pass a current of several amperes to the electrode plate 30.
  • the transmission line 29 extends from the electrode plate 30 and is grounded.
  • the electrode plate 30 is a plate member fixed on a partition wall 32 to be described later, and the first main surface of the plate member is arranged in parallel to the partition wall 32 toward the film formation space in the film formation container 14. Has been.
  • the electrode plate 30 allows current to flow along the longitudinal direction of the plate member between the end face to which the transmission line 28 is connected and the end face to which the transmission line 29 is connected.
  • the electrode plate 30 is bent in the middle in the direction of current flow to form a U shape. This point will be described later.
  • the film formation container 14 has an internal space 38 in the container, and the internal space 38 is divided into an upper space and a lower film formation space 40 by a partition wall 32.
  • the film forming container 14 is formed of a material such as aluminum, for example, and is sealed so that the internal space 38 can be in a reduced pressure state of 0.1 to 100 Pa.
  • a matching box 26, transmission lines 28 and 29, and an electrode plate 30 are provided in the upper space of the film forming container 14.
  • An electrode plate 30 is fixed to the side of the partition wall 32 facing the upper space.
  • An insulating member 34 is provided around the electrode plate 30 to insulate the surrounding partition wall 32.
  • a dielectric 36 is provided on the side of the partition wall 32 facing the film formation space 40.
  • a quartz plate is used for the dielectric 36.
  • the dielectric 36 is provided in order to prevent the electrode plate 30 from being corroded by plasma and to efficiently supply electromagnetic energy to the plasma.
  • a heater 42 heats the glass substrate 20 placed on the susceptor 44 to a predetermined temperature, for example, about 250 ° C.
  • the susceptor 44 places the glass substrate 20 thereon.
  • the elevating mechanism 46 moves the susceptor 44 on which the glass substrate 20 is placed together with the heater 42 freely in the film forming space 40.
  • the glass substrate 20 is set at a predetermined position so as to be close to the electrode plate 30.
  • the gas supply unit 16 includes a gas tank 48 and a mass flow controller 50.
  • the gas tank 48 stores monosilane gas (SiH 4 ), which is a raw material gas for a thin film.
  • the mass flow controller 50 is a part that adjusts the flow rate of the monosilane gas. For example, the flow rate of the monosilane gas can be adjusted according to the results of the film thickness and film quality of the formed film.
  • the monosilane gas is supplied into the film formation space 40 from the side wall of the film formation space 40 of the film formation container 14.
  • the gas exhaust unit 18 includes an exhaust pipe extending from a side wall in the film formation space 40, a turbo molecular pump 52, and a dry pump 54.
  • the dry pump 54 roughens the inside of the film formation space 40, and the turbo molecular pump 52 maintains the pressure in the film formation space 40 in a predetermined reduced pressure state.
  • the turbo molecular pump 52 and the dry pump 54 are connected by an exhaust pipe.
  • FIG. 2A is a perspective view of an example of the electrode plate 30 used in the power supply unit 12.
  • the electrode plate 30 is a long plate member in which a current flows from one end surface 30a to the other end surface 30b, and has a U-shape. That is, part of the electrode plate 30 is bent 180 degrees in the longitudinal direction of the plate member, and has an outward path portion 30c and a return path portion 30d that are parallel to each other.
  • the electrode plate 30 is used as an electrode for plasma generation. For example, copper, aluminum, or the like is used for the electrode plate 30.
  • the end face 30 a of the forward path portion 30 c of the electrode plate 30 is supplied with power via the matching box 26 and the transmission line 28.
  • the return path portion 30 d is grounded via the transmission line 29.
  • the length in the forward path portion 30c, that is, the length from the end surface 30a to the bent portion, and the length in the return path portion 30d, that is, the length from the bent portion to the end surface 30b are preferably equal. This is to make the plasma density described later uniform.
  • the forward path portion 30c and the return path portion 30d have the same width (width in the X direction in the figure).
  • the distance d between the forward path portion 30c and the backward path portion 30d is 1 to 1.6 times the width of the forward path portion 30c and the backward path portion 30d. This is because a uniform plasma is generated by generating a uniform magnetic field. preferable.
  • FIGS. 3A and 3B are diagrams for explaining the relationship between the electrode plate and the electron density of the generated plasma.
  • the electrode plate 60 shown in FIG. 3A is used instead of the electrode plate 30 of the thin film forming apparatus 10 shown in FIG. 1, plasma generated in the film formation space 40 into which monosilane gas (1.3 Pa) is introduced.
  • the electron density has a value as shown in FIG.
  • the electrode plate 60 is an electrode plate extending in one direction that does not have a bent portion.
  • 1 kW high frequency power 13.56 to 60 MHz
  • the end surface 60b is grounded. That is, as shown in FIG.
  • the electron density is high on the ground side (the end face 60b side), and the electron density is low on the power feeding side (the end face 60a side).
  • the plasma generated based on the magnetic field generated by the current is dominant on the ground side, whereas it is generated by the high voltage on the power supply side. This is considered to be because the plasma (plasma derived from voltage) is dominant. This is because, on the power supply side, because of the high voltage, it is considered that the energy of electrons is low and high-density plasma is difficult to be generated.
  • the U-shaped electrode plate 30 by utilizing the fact that the plasma density is increased on the ground side, the U-shaped electrode plate 30 is used as shown in FIG.
  • the low region and the high plasma density region on the ground side are mixed to generate an average plasma density.
  • the magnetic fields generated by these currents are added at the distance d of the electrode plate 30.
  • a uniform magnetic field is formed in the film formation space 40. Therefore, by using the U-shaped electrode plate 30 in which the lengths of the forward path portion 30c and the backward path portion 30d are substantially equal, the plasma density in the forward path portion 30c and the backward path portion 30d in the longitudinal direction can be averaged. And a uniform plasma density can be achieved.
  • the surface layer of the current flowing through the electrode plate 30 is determined depending on the electrical resistivity of the electrode plate 30, the frequency of the flowing current, and the magnetic permeability of the electrode plate 30.
  • the depth of the surface layer is about 0.1 mm.
  • the thickness of the electrode plate 20 is preferably greater than 0.2 mm.
  • FIG. 2B is a perspective view showing an electrode plate 56 having a different form from the electrode plate 30 shown in FIG.
  • the electrode plate 56 is a long plate member through which a current flows from one end surface 56a to the other end surface 56b, and has a U shape. That is, the electrode plate 56 has an outward path portion 56c and a return path portion 56d that are bent in the middle of the longitudinal direction of the plate member and are parallel to each other.
  • the electrode plate 56 is used as an electrode for plasma generation.
  • the first main surface (the lower surface of the electrode plate 56 in FIG. 2B) 56e in the forward path portion 56c and the return path portion 56d of the electrode plate 56 has a certain depth and width extending in the direction of current flow.
  • the electrode plate 56 has a first main surface 56e having a surface area opposite to the first main surface 56e and a second main surface (a plate surface facing the upper side of the electrode plate 56 in FIG. 2B). Large relative to the surface area of The high-frequency current flowing through the electrode plate 56 gathers on the surface layers of the first main surface 56e and the second main surface due to surface effects. However, since the first main surface 56e has a larger surface area than the second main surface, the current flowing through the surface layer of the first main surface 56e is larger than that of the second main surface.
  • the magnetic field formed in the film-forming space 40 due to the current flowing through the surface layer of the first main surface 56e becomes larger than that of the electrode plate in which the recess 58 is not provided. For this reason, the plasma generated by the magnetic field is densified.
  • the thin film forming apparatus 10 can generate a uniform magnetic field over a wide range, and as a result, can generate high-density plasma over a wide range.
  • FIG. 4 is a perspective view of an electrode plate 62 different from the electrode plate 30 shown in FIG.
  • the electrode plate 62 is U-shaped like the electrode plate 30. That is, the electrode plate 62 is bent in the middle of the plate member in the longitudinal direction, and has an outward path portion and a return path portion parallel to each other.
  • the electrode plate 62 is used as an electrode for plasma generation.
  • the second main surface 62b facing the first main surface 62a facing the film formation space 40 of the electrode plate 62 has a plurality of fin-shaped thin plate members 62c extending in a direction orthogonal to the X direction in which current flows. Each of the part and the return part is erected at a constant height and at a constant interval.
  • the reason why the thin plate member 62c is provided on the second main surface 62b side is to increase the resistance by largely changing the cross-sectional area in the direction of current flow on the second main surface 62b side. For this reason, it becomes easy to flow an electric current through the 1st main surface 62a whose resistance is small compared with the 2nd main surface 62b. Therefore, the current flowing through the first main surface 62a can be increased, and the magnetic field formed in the film formation space 40 can be increased by the current flowing through the first main surface 62a compared to the conventional case.
  • the thin plate member 62c is also effective in dissipating heat generated by current flowing through the electrode plate 62.
  • the second main surface 62b of the electrode plate 62 is not limited to being provided with the thin plate member 62c, but may be provided with unevenness extending along a direction orthogonal to the direction of current flow.
  • the electrode plate 62 is preferably provided with at least irregularities that increase the resistance of the current flowing through the surface layer of the second main surface 62b.
  • FIG. 5 is a perspective view of an electrode plate 64 different from the electrode plate 56 shown in FIG.
  • the electrode plate 64 has a U shape. That is, the electrode plate 64 is bent in the middle of the plate member in the longitudinal direction, and has an outward path portion and a return path portion parallel to each other.
  • the electrode plate 64 is used as an electrode for plasma generation.
  • the first main surface 64a of the electrode plate 64 has a constant depth extending in the X direction in which current flows, like the recess 58 provided in the first main surface 56e of the electrode plate 56 shown in FIG.
  • a plurality of groove-shaped recesses having a height and a width are provided.
  • the first main surface 64a has a larger surface area than the second main surface 64b, and the current flowing through the surface layer of the first main surface 64a is the second main surface. Larger than 64b.
  • a plurality of fin-like thin plate members 64c extending in a direction orthogonal to the X direction in which current flows are provided at a constant height and a constant interval in each of the forward path portion and the return path portion. Standing up. For this reason, as in the second modification, the cross-sectional area in the direction in which the current flows changes greatly on the second main surface 64b side, so that the resistance in the second main surface 64b is large.
  • the thin plate member 64c is also effective in dissipating heat generated by current flowing through the electrode plate 64.
  • the second main surface 62b of the electrode plate 62 is not limited to being provided with the thin plate member 62c, but may be provided with unevenness extending along a direction orthogonal to the X direction in which the current flows.
  • the electrode plate 62 is preferably provided with at least irregularities that increase the resistance of the current flowing through the surface layer of the second main surface 62b.
  • the depth and width of the recess provided on the first main surface are constant, but the depth or width of the recess may vary depending on the location.
  • the depth or width of the recess may be changed so that the surface area becomes large so that the current flows in the portion where the current hardly flows in the first main surface.
  • the height and interval of the fin-like thin plate members are constant, but the height or interval of the thin plate members may vary depending on the location.
  • the height of the thin plate member or the height of the thin plate member is increased so that the resistance of the current flowing through the surface layer of the second main surface is increased to increase the current of the first main surface.
  • the interval may be changed.
  • the electrode plate which is a long plate member used for generating plasma
  • current flows from one end face to the other end face.
  • the electrode plate has an outward path portion and a backward path portion which are bent in the middle of the longitudinal direction and are parallel to each other. For this reason, the plasma density can be made uniform.
  • the thin film forming apparatus of the present invention has been described in detail above.
  • the thin film forming apparatus of the present invention is not limited to the above embodiment, and various improvements and modifications may be made without departing from the gist of the present invention. Of course.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 基板に薄膜を形成する薄膜形成装置は、減圧状態で基板に薄膜を形成する成膜空間を備える成膜容器と、前記成膜容器の前記成膜空間内に、薄膜用原料ガスを導入する原料ガス導入部と、前記成膜空間において、前記薄膜用原料ガスを用いてプラズマを生成させるプラズマ電極部と、を有する。前記プラズマ電極部は、電流が一方の端面から他方の端面に流れる、長尺状の板部材であって、前記板部材の長手方向の途中で屈曲して互いに並行する往路部分と復路部分を有する電極板を、プラズマ生成用電極として備える。

Description

薄膜形成装置
 本発明は、プラズマを用いて基板に薄膜を形成する薄膜形成装置に関する。
 従来より、基板に薄膜を形成するためにCVD(Chemical Vapor
Deposition)装置が用いられる。特に、CVD装置を用いて薄膜太陽電池に用いるアモルファスSi薄膜をガラス基板に形成するプロセスが注目されている。アモルファスSi薄膜の形成では、例えば、モノシラン(SiH4)をプラズマ化して、ガラス基板上にアモルファスSi薄膜を形成する。近年、薄膜太陽電池用パネルは大型化しており、大型のパネルに均一なアモルファスSi薄膜を形成することが望まれている。このために、プラズマCVD装置では、高密度なプラズマが均一に形成されること必要である。
 例えば、プラズマCVD装置の一例として、プラズマ生成室内に複数本の高周波アンテナを設置し、該高周波アンテナにて該プラズマ生成室内ガスに高周波電力を印加して誘導結合型プラズマを発生させるプラズマ生成方法およびプラズマ生成装置が知られている(特許文献1)。
 当該プラズマ生成方法およびプラズマ生成装置は、複数本の高周波アンテナのうち少なくとも一部の複数本の高周波アンテナについては、順次隣り合わせて、且つ、各隣り合うもの同士が互いに向かい合った並列配置となるように設置する。さらに、この複数本の高周波アンテナは、該順次隣り合わせて、且つ、各隣り合うもの同士が互いに向かい合った並列配置となるように設置する。この高周波アンテナのそれぞれに印加する高周波電圧の位相を制御することで誘導結合プラズマにおける電子温度を制御する。
 また、真空容器と、前記真空容器の壁面に設けられた開口部と、前記開口部を気密に覆うように取り付けられる板状の高周波アンテナ導体と、を備えるプラズマ生成装置が知られている(特許文献2)。
 当該プラズマ生成装置は、プラズマ生成装置の開口部に高周波アンテナ導体が取り付けられた構造のため、広い範囲に亘って均一性が高いプラズマを生成することができる。
特開2007-149639号公報 WO2009/142016A1
 図4(a)は、上述の板状の高周波アンテナ導体を用いたプラズマ成膜装置の一例の構成を簡略化して説明する図である。図4(a)に示すプラズマ成膜装置100は、電極板102が成膜容器104の成膜室外の、隔壁106の開口部に設けられ、隔壁106の、成膜空間に面する側の面には、誘電体108が設けられる。誘電体108の対向する位置には、薄膜を形成するためのガラス基板Gが配置される。ガラス基板Gは、ヒータ110上に設けられたサセプタ112に載置される。
 図4(b)は、成膜空間に磁場を生成する電極板102の概略斜視図である。電極板102は、図4(b)に示すように、板状の電極である。電極板102の一方の端面は、数10MHzの高周波電源に接続され、電極板102の他方の端面は接地されている。電極板102では、電流がX方向に流れる。この電極板102を用いてプラズマを生成する方式では、上述の互いに隣り合わせた複数の高周波アンテナにより生成された高電圧を用いてプラズマを生成する装置と異なり、生成された磁場を用いてプラズマが生成される。
 しかし、この電極板102により生成されるプラズマの密度は、アモルファスSi薄膜を形成するには十分でなく、成膜速度が遅いといった問題がある。また、複数本の高周波アンテナに高周波電力を給電することにより誘導結合型プラズマを発生させる上述の公知のプラズマ生成方法およびプラズマ生成装置についても十分なプラズマ密度を均一に生成することができないといった問題がある。
 そこで、本発明は、上記問題点を解決するために、プラズマを用いて基板に薄膜を形成するとき、プラズマ密度を均一にして薄膜の形成を効率よく行うことのできる薄膜形成装置を提供することを目的とする。
 本発明の一態様は、基板に薄膜を形成する薄膜形成装置であって、
 減圧状態で基板に薄膜を形成する成膜空間を備える成膜容器と、
 前記成膜容器の前記成膜空間内に、薄膜用原料ガスを導入する原料ガス導入部と、
 前記成膜空間において、前記薄膜用原料ガスを用いてプラズマを生成させるプラズマ電極部と、を有し、
 前記プラズマ電極部は、電流が一方の端面から他方の端面に流れる板部材であって、前記板部材の電流の流れる方向が途中で屈曲して互いに並行する往路部分と復路部分を有する電極板を、プラズマ生成用電極として備える。
 その際、前記往路部分の長さと前記復路部分の復路部分の長さは等しい、ことが好ましい。
 また、前記往路部分と前記復路部分は同じ幅を有し、前記往路部分と前記復路部分の離間距離は、前記往路部分と前記復路部分の幅の1~1.6倍である、ことが好ましい。
 前記電極板の厚さは、0.2mmより大きい、ことが好ましい。
 また、前記電極板の第1の主面が前記成膜空間に向くように配置され、前記第1の主面の往路部分と復路部分に、電流方向に沿って延びる溝状の凹部が複数設けられていてもよい。
 また、前記電極板の第1の主面が前記成膜空間に向くように配置され、前記第1の主面と対向する第2の主面には、前記電流方向と直交する方向に沿って伸びる凹凸を備える、ことが好ましい。このとき、前記凹凸は、前記第2の主面に立設する複数の板部材により形成されることが好ましい。
 上述の薄膜形成装置では、生成されるプラズマ密度を均一化し、薄膜の形成を効率よく行うことができる。
本発明の一実施形態である薄膜形成装置の構成を表す概略図である。 (a)は、図1に示す薄膜形成装置に用いる電極板の一例を示す斜視図であり、(b)は、(a)に示す電極板と異なる第1変形例を示す斜視図である。 (a),(b)は、電極板と生成されるプラズマの電子密度の関係を説明する図である。 本実施形態の電極板と異なる第2変形例を示す斜視図である。 本実施形態の電極板と異なる第3変形例を示す斜視図である。 (a),(b)は、従来の薄膜形成装置に用いる電極板の例を説明する図である。
 以下、本発明の薄膜形成装置について詳細に説明する。
 図1は、本発明の一実施形態である薄膜形成装置10の構成を示す概略図である。
 図1に示す薄膜形成装置10は、生成されるプラズマを用いて、基板に薄膜を形成するCVD装置である。薄膜形成装置10は、電極板を流れる電流によって生成される磁界により、プラズマを生成する方式である。この方式は、モノポールアンテナ等のアンテナ素子等の共振により発生する高電圧によりプラズマを生成する方式と異なる。
(薄膜形成装置)
 以下、薄膜としてアモルファスSi薄膜を形成する例を用いて、薄膜形成装置10について説明する。
 薄膜形成装置10は、給電ユニット12と、成膜容器14と、ガス供給部16と、ガス排気部18と、を有する。
 給電ユニット12は、高周波電源22と、高周波ケーブル24と、マッチングボックス26と、伝送線28,29(図2(a)参照)と、電極板30と、を有する。
 高周波電源22は、例えば、10~1000Wで数10MHzの高周波電力を電極板30に給電する。マッチングボックス26は、高周波ケーブル24を通して提供される電力が電極板30に効率よく供給されるように、インピーダンスを整合する。マッチングボックス26は、キャパシタおよびインダクタ等の素子を設けた公知の整合回路を備える。
 マッチングボックス26から延びる伝送線28は、例えば、一定の幅を備える銅板状の伝送線路であり、電極板30へ数アンペアの電流を流すことができる。伝送線29は、電極板30から延び接地されている。 
 電極板30は、後述する隔壁32上に固定された板部材であって、この板部材の第1の主面が成膜容器14内の成膜空間に向いて隔壁32に対して並行に配置されている。電極板30は、伝送線28が接続されている端面と伝送線29が接続されている端面との間の、板部材の長手方向に沿って電流を流す。電極板30は、電流の流れる方向が途中で屈曲してコの字形状を成している。この点は、後述する。
 成膜容器14は、内部空間38を容器内に有し、内部空間38は、隔壁32により上部空間と下部の成膜空間40に区分けされている。成膜容器14は、例えば、アルミニウム等の材質で形成されて内部空間38を0.1~100Paの減圧状態にできるように、密閉されている。成膜容器14の上部空間には、マッチングボックス26と、伝送線28,29と、電極板30と、を有する。隔壁32の上部空間に面する側には、電極板30が固定されている。電極板30の周囲には、周囲の隔壁32と絶縁するための絶縁部材34が設けられている。一方、隔壁32の成膜空間40に面する側には、誘電体36が設けられている。誘電体36には、例えば石英板が用いられる。誘電体36を設けるのは、プラズマによる電極板30の腐食を防ぎ、かつ効率よくプラズマへ電磁エネルギを供給させるためである。
 成膜容器14の成膜空間40には、ヒータ42と、サセプタ44と、昇降機構46と、が設けられている。
 ヒータ42は、サセプタ44に載置するガラス基板20を所定の温度、例えば250℃程度に加熱する。
 サセプタ44は、ガラス基板20を載置する。
 昇降機構46は、ガラス基板20を載置したサセプタ44をヒータ42ともに、成膜空間40内を自在に昇降する。成膜プロセス段階では、電極板30に近接するように、ガラス基板20を所定の位置にセットする。
 ガス供給部16は、ガスタンク48と、マスフローコントローラ50と、を有する。
 ガスタンク48は、薄膜用原料ガスであるモノシランガス(SiH4)を貯蔵する。
 マスフローコントローラ50は、モノシランガスの流量を調整する部分である。例えば
形成される膜の膜厚や膜質等の結果に応じてモノシランガスの流量を調整することができる。モノシランガスは、成膜容器14の成膜空間40の側壁から成膜空間40内に供給される。
 ガス排気部18は、成膜空間40内の側壁から延びる排気管と、ターボ分子ポンプ52と、ドライポンプ54と、を有する。ドライポンプ54は、成膜空間40内を粗引きし、ターボ分子ポンプ52は、成膜空間40内の圧力を所定の減圧状態に維持する。ターボ分子ポンプ52とドライポンプ54とは、排気管で接続されている。
(電極板)
 図2(a)は、給電ユニット12に用いられる電極板30の一例の斜視図である。
 電極板30は、電流が一方の端面30aから他方の端面30bに流れる、長尺状の板部材であって、U字形状を成している。すなわち、電極板30は、その一部分が板部材の長手方向の途中で180度屈曲し、互いに並行する往路部分30cと復路部分30dを有する。電極板30は、プラズマ生成用電極として用いられる。
 電極板30は、例えば、銅、アルミニウム等が用いられる。
 電極板30の往路部分30cの端面30aはマッチングボックス26、伝送線28を介して給電を受ける。復路部分30dは、伝送線29を介して接地されている。
 往路部分30cにおける長さ、すなわち、端面30aから屈曲部にいたる長さと、復路部分30dにおける長さ、すなわち、屈曲部から端面30bにいたる長さとは等しいことが好ましい。これは、後述するプラズマ密度を均一するためである。
 また、往路部分30cと復路部分30dは同じ幅(図中X方向の幅)を有する。往路部分30cと復路部分30dの離間距離dは、往路部分30cと復路部分30dの幅の1~1.6倍であることが、均一な磁場を生成することで均一なプラズマを生成する点で好ましい。
 図3(a),(b)は、電極板と生成されるプラズマの電子密度の関係を説明する図である。
 図1に示す薄膜形成装置10の電極板30の代わりに図3(a)に示す電極板60を用いたとき、モノシランガス(1.3Pa)を導入した成膜空間40内で生成されるプラズマの電子密度は、図3(b)に示すような値となる。
 電極板60は、電極板30と異なり屈曲部を有さない一方向に伸びる電極板である。このとき、電極板60の端面60aに1kWの高周波電力(13.56~60MHz)が付与され、端面60bが接地されている。
 すなわち、図3(b)に示すように、接地側(端面60bの側)では電子密度が高く、給電側(端面60aの側)では電子密度が低い。この理由については、明確ではないが、接地側では電流により生成された磁場に基づいて生成されるプラズマ(電流に由来するプラズマ)が支配的であるのに対し、給電側では高電圧によって生成されるプラズマ(電圧に由来するプラズマ)が支配的であることに起因すると考えられる。給電側では、高電圧のため、電子のエネルギが低く、高密度なプラズマが生成されにくいと考えられるからである。
 したがって、電極板30では、接地側でプラズマ密度が高くなることを利用して、図2(a)に示すように、コの字形状の電極板30を用いることにより、給電側のプラズマ密度の低い領域と、接地側のプラズマ密度の高い領域とが混ざり合って、平均的なプラズマ密度を生成する。しかも、往路部分30cと復路部分30dの電流の方向が逆方向になるので、これらの電流により生成される磁場は、電極板30の離間距離dの部分において、磁場は加算される。この結果、成膜空間40で均一な磁場を形成する。したがって、往路部分30cと復路部分30dの長さを略等しくしたコの字形状の電極板30を用いることにより、長手方向の往路部分30cと復路部分30dにおけるプラズマ密度の高低を平均化することができ、均一なプラズマ密度を達成することができる。
 なお、電極板30を流れる電流の表層は、電極板30の電気抵抗率、流れる電流の周波数、および、電極板30の透磁率に依存して定まる。例えば、銅あるいはアルミニウムを電極板30の材質とし、電流の周波数を数10MHzとする場合、表層の深さはおよそ0.1mm程度である。したがって、第1の主面(図2(a)中の電極板30の下側に向く板面)30aと第2の主面(図2(a)中の電極板30の上側に向く板面)の表層に流れる電流を考慮して、電極板20の厚さは、0.2mmより厚いことが好ましい。
(第1変形例)
 図2(b)は、図2(a)に示す電極板30と異なる形態の電極板56を示す斜視図である。
 電極板56は、電流が一方の端面56aから他方の端面56bに流れる、長尺状の板部材であって、U字形状を成している。すなわち、電極板56は、板部材の長手方向の途中で屈曲して互いに並行する往路部分56cと復路部分56dを有する。電極板56は、プラズマ生成用電極として用いられる。
 電極板56の往路部分56c及び復路部分56dにおける第1の主面(図2(b)中の電極板56の下側の面)56eには、電流の流れる方向に延びる一定の深さ及び幅を有する溝状の凹部58を複数備える。このため、電極板56は、第1の主面56eの表面積が第1の主面56eと反対側の第2の主面(図2(b)中の電極板56の上側に向く板面)の表面積に対して大きい。電極板56を流れる高周波の電流は表面効果により、第1の主面56e,第2の主面の表層に集まる。しかし、第1の主面56eは、第2の主面に比べて表面積が大きいので、第1の主面56eの表層を流れる電流は、第2の主面に比べて大きい。このため、第1の主面56eの表層を流れる電流により、成膜空間40内に形成される磁場は、凹部58が設けられていない電極板に比べて大きくなる。このため、磁場により生成されるプラズマは高密度化される。しかも、電極板56を用いて磁場を生成するので、薄膜形成装置10は広範囲に均一な磁場を生成することができ、その結果、広範囲に高密度のプラズマを生成することができる。
(第2変形例)
 図4は、図2(a)に示される電極板30とは異なる電極板62の斜視図である。電極板62は、電極板30と同様にU字形状を成している。すなわち、電極板62は、板部材の長手方向の途中で屈曲し、互いに並行する往路部分と復路部分を有する。電極板62は、プラズマ生成用電極として用いられる。
 電極板62の成膜空間40に向く第1の主面62aと対向する第2の主面62bは、電流が流れるX方向に対して直交する方向に延びる複数のフィン状の薄板部材62cが往路部分と復路部分のそれぞれに一定の高さで一定の間隔で立設している。第2の主面62bの側に薄板部材62cを設けるのは、電流の流れる方向の断面積を第2の主面62bの側で大きく変化させることにより、抵抗を大きくするためである。このため、第2の主表面62bに比べて抵抗が小さい第1の主面62aに電流が流れ易くなる。したがって、第1の主面62aに流れる電流を大きくし、第1の主面62aに流れる電流により、成膜空間40内に形成される磁場を、従来に比べて大きくすることができる。
 また、薄板部材62cは、電極板62を電流が流れることにより発生する熱を放熱する点でも有効である。なお、電極板62の第2の主面62bには、薄板部材62cが設けられることに限定されず、電流の流れる方向と直交する方向に沿って伸びる凹凸を備えればよい。電極板62には、少なくとも、第2の主面62bの表層を流れる電流の抵抗を大きくするような凹凸が設けられるとよい。
(第3変形例)
 図5は、図2(b)に示される電極板56とは異なる電極板64の斜視図である。電極板64は、電極板56と同様にU字形状を成している。すなわち、電極板64は、板部材の長手方向の途中で屈曲し、互いに並行する往路部分と復路部分を有する。電極板64は、プラズマ生成用電極として用いられる。
 電極板64の第1の主面64aは、図2(b)に示される電極板56の第1の主面56eに設けられる凹部58と同様に、電流の流れるX方向に延びる、一定の深さ及び幅を有する溝状の複数の凹部を備える。このため、第1変形例と同様に、第1の主面64aは、第2の主面64bに比べて表面積が大きく、第1の主面64aの表層を流れる電流は、第2の主面64bに比べて大きい。一方、第2の主面64bには、電流が流れるX方向に対して直交する方向に延びる複数のフィン状の薄板部材64cが往路部分と復路部分のそれぞれに一定の高さで一定の間隔で立設している。このため、第2変形例と同様に、電流の流れる方向の断面積が第2の主面64bの側で大きく変化するので、第2の主面64bにおける抵抗を大きい。このため、第1の主面64aの表面積の効果と合わせてより一層第1の主面64aに電流が流れやすくなる。したがって、第1の主面64aに流れる電流を大きくすることにより、成膜空間40内に形成される磁場を、従来に比べて大きくすることができる。
 また、薄板部材64cは、電極板64を電流が流れることにより発生する熱を放熱する点でも有効である。なお、電極板62の第2の主面62bには、薄板部材62cが設けられることに限定されず、電流の流れるX方向と直交する方向に沿って伸びる凹凸を備えればよい。電極板62には、少なくとも、第2の主面62bの表層を流れる電流の抵抗を大きくするような凹凸が設けられるとよい。
 上記第1変形例及び第3変形例では、第1の主面に設ける凹部の深さおよび幅は一定であるが、凹部の深さあるいは幅は場所によって異なってもよい。例えば、第1の主面において電流が流れにくい部分では、電流が流れるように表面積が大きくなるように凹部の深さあるいは幅を変化させてもよい。
 上記第2変形例及び第3変形例では、フィン状の薄板部材の高さ及び間隔は一定であるが、薄板部材の高さあるいは間隔は場所によって異なってもよい。例えば、第1の主面において電流が流れにくい部分では、第2の主面の表層を流れる電流の抵抗を大きくして第1の主面の電流が増大するように、薄板部材の高さあるいは間隔を変化させてもよい。
 以上のように、プラズマを生成するために用いる長尺状の板部材である電極板では、電流が一方の端面から他方の端面に流れる。この電極板は、この長手方向の途中で屈曲して互いに並行する往路部分と復路部分を有する。このため、プラズマ密度を均一にすることができる。
 以上、本発明の薄膜形成装置について詳細に説明したが、本発明の薄膜形成装置は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
10 薄膜形成装置
12 給電ユニット
14,104 成膜容器
16 ガス供給部
18 ガス排気部
20 ガラス基板
22 高周波電源
24 高周波ケーブル
26 マッチングボックス
28,29 伝送線
30,56,60,62,64,102 電極板
30a,30b,56a,56b,60a,60b 端面
30c、56c 往路部分
30d,56d 復路部分
32,106 隔壁
34 絶縁部材
36,108 誘電体
38 内部空間
40 成膜空間
42,110 ヒータ
44,112 サセプタ
46 昇降機構
48 ガスタンク
50 マスフローコントローラ
52 ターボ分子ポンプ
54 ドライポンプ
58 凹部
56e,62a,64a 第1の主面
62b,64b 第2の主面
62c,64c 薄板部材
100 プラズマ成膜装置

Claims (7)

  1.  基板に薄膜を形成する薄膜形成装置であって、
     減圧状態で基板に薄膜を形成する成膜空間を備える成膜容器と、
     前記成膜容器の前記成膜空間内に、薄膜用原料ガスを導入する原料ガス導入部と、
     前記成膜空間において、前記薄膜用原料ガスを用いてプラズマを生成させるプラズマ電極部と、を有し、
     前記プラズマ電極部は、電流が一方の端面から他方の端面に流れる板部材であって、前記板部材の電流の流れる方向が途中で屈曲して互いに並行する往路部分と復路部分を有する電極板を、プラズマ生成用電極として備える、ことを特徴とする薄膜形成装置。
  2.  前記往路部分の長さと前記復路部分の復路部分の長さは等しい、請求項1に記載の薄膜形成装置。
  3.  前記往路部分と前記復路部分は同じ幅を有し、
     前記往路部分と前記復路部分の離間距離は、前記往路部分と前記復路部分の幅の1~1.6倍である、請求項1または2に記載の薄膜形成装置。
  4.  前記電極板の厚さは、0.2mmよりおおきい、請求項1~3のいずれか1項に記載の薄膜形成装置。
  5.  前記電極板の第1の主面が前記成膜空間に向くように配置され、前記第1の主面の往路部分と復路部分に、電流方向に沿って延びる溝状の凹部が複数設けられている、請求項1~4のいずれか1項に記載の薄膜形成装置。
  6.  前記電極板の第1の主面が前記成膜空間に向くように配置され、
     前記第1の主面と対向する第2の主面には、前記電流方向と直交する方向に沿って伸びる凹凸を備える、請求項1~5のいずれか1項に記載の薄膜形成装置。
  7.  前記凹凸は、前記第2の主面に立設する複数の板部材により形成される、請求項6に記載の薄膜形成装置。
PCT/JP2011/000957 2010-03-03 2011-02-21 薄膜形成装置 WO2011108219A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR20127016617A KR20120120181A (ko) 2010-03-03 2011-02-21 박막 형성 장치
EP11750333.4A EP2544223A4 (en) 2010-03-03 2011-02-21 THIN-FINISHING DEVICE
US13/582,616 US20130104803A1 (en) 2010-03-03 2011-02-21 Thin film forming apparatus
JP2011508147A JP4818483B2 (ja) 2010-03-03 2011-02-21 薄膜形成装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010046846 2010-03-03
JP2010-046846 2010-03-03

Publications (1)

Publication Number Publication Date
WO2011108219A1 true WO2011108219A1 (ja) 2011-09-09

Family

ID=44541889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000957 WO2011108219A1 (ja) 2010-03-03 2011-02-21 薄膜形成装置

Country Status (6)

Country Link
US (1) US20130104803A1 (ja)
EP (1) EP2544223A4 (ja)
JP (1) JP4818483B2 (ja)
KR (1) KR20120120181A (ja)
TW (1) TWI524387B (ja)
WO (1) WO2011108219A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013201157A (ja) * 2012-03-23 2013-10-03 Mitsui Eng & Shipbuild Co Ltd プラズマ処理装置
EP2592644A3 (en) * 2011-11-09 2016-01-06 Nissin Electric Co., Ltd. Plasma processing apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6104126B2 (ja) * 2013-10-22 2017-03-29 三井造船株式会社 皮膜形成装置及び皮膜形成方法
JP6240042B2 (ja) * 2014-08-05 2017-11-29 東芝メモリ株式会社 半導体製造装置および半導体装置の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07316824A (ja) * 1994-05-17 1995-12-05 Semiconductor Energy Lab Co Ltd 気相反応装置
JP2007149639A (ja) 2005-10-28 2007-06-14 Nissin Electric Co Ltd プラズマ生成方法及び装置並びにプラズマ処理装置
JP2009076876A (ja) * 2007-08-31 2009-04-09 Tokyo Electron Ltd プラズマ処理装置
WO2009142016A1 (ja) 2008-05-22 2009-11-26 株式会社イー・エム・ディー プラズマ生成装置およびプラズマ処理装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3640420B2 (ja) 1994-11-16 2005-04-20 アネルバ株式会社 プラズマ処理装置
JPH08279493A (ja) 1995-04-04 1996-10-22 Anelva Corp プラズマ処理装置
JPH09199431A (ja) * 1996-01-17 1997-07-31 Canon Inc 薄膜形成方法および薄膜形成装置
JPH11317299A (ja) 1998-02-17 1999-11-16 Toshiba Corp 高周波放電方法及びその装置並びに高周波処理装置
US6929727B2 (en) * 1999-04-12 2005-08-16 G & H Technologies, Llc Rectangular cathodic arc source and method of steering an arc spot
KR100732148B1 (ko) 1999-09-09 2007-06-25 이시카와지마-하리마 주고교 가부시키가이샤 내부 전극 방식의 플라즈마 처리 장치 및 플라즈마 처리방법
JP4120546B2 (ja) * 2002-10-04 2008-07-16 株式会社Ihi 薄膜形成方法及び装置並びに太陽電池の製造方法及び装置並びに太陽電池
JP2006237469A (ja) 2005-02-28 2006-09-07 Toray Eng Co Ltd プラズマcvd装置及びプラズマcvd方法
JP2007123008A (ja) * 2005-10-27 2007-05-17 Nissin Electric Co Ltd プラズマ生成方法及び装置並びにプラズマ処理装置
JP2007149638A (ja) * 2005-10-27 2007-06-14 Nissin Electric Co Ltd プラズマ生成方法及び装置並びにプラズマ処理装置
JP2007220600A (ja) * 2006-02-20 2007-08-30 Nissin Electric Co Ltd プラズマ生成方法及びプラズマ生成装置並びにプラズマ処理装置
US20090056877A1 (en) * 2007-08-31 2009-03-05 Tokyo Electron Limited Plasma processing apparatus
US9078336B2 (en) * 2008-03-05 2015-07-07 Emd Corporation Radio-frequency antenna unit and plasma processing apparatus
JP2011181832A (ja) * 2010-03-03 2011-09-15 Mitsui Eng & Shipbuild Co Ltd 薄膜形成装置
JP2011179096A (ja) * 2010-03-03 2011-09-15 Mitsui Eng & Shipbuild Co Ltd 薄膜形成装置
JP5563502B2 (ja) * 2011-03-10 2014-07-30 三井造船株式会社 薄膜形成装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07316824A (ja) * 1994-05-17 1995-12-05 Semiconductor Energy Lab Co Ltd 気相反応装置
JP2007149639A (ja) 2005-10-28 2007-06-14 Nissin Electric Co Ltd プラズマ生成方法及び装置並びにプラズマ処理装置
JP2009076876A (ja) * 2007-08-31 2009-04-09 Tokyo Electron Ltd プラズマ処理装置
WO2009142016A1 (ja) 2008-05-22 2009-11-26 株式会社イー・エム・ディー プラズマ生成装置およびプラズマ処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2544223A1

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2592644A3 (en) * 2011-11-09 2016-01-06 Nissin Electric Co., Ltd. Plasma processing apparatus
JP2013201157A (ja) * 2012-03-23 2013-10-03 Mitsui Eng & Shipbuild Co Ltd プラズマ処理装置

Also Published As

Publication number Publication date
EP2544223A1 (en) 2013-01-09
EP2544223A4 (en) 2013-08-14
JPWO2011108219A1 (ja) 2013-06-20
TWI524387B (zh) 2016-03-01
TW201209888A (en) 2012-03-01
US20130104803A1 (en) 2013-05-02
KR20120120181A (ko) 2012-11-01
JP4818483B2 (ja) 2011-11-16

Similar Documents

Publication Publication Date Title
US7880392B2 (en) Plasma producing method and apparatus as well as plasma processing apparatus
JP4029615B2 (ja) 内部電極方式のプラズマ処理装置およびプラズマ処理方法
JP4671361B2 (ja) プラズマ発生装置
KR20080015364A (ko) 표면 프로세싱 장치들
US8859929B2 (en) Method and apparatus for forming a film by deposition from a plasma
TW201931415A (zh) 線性化高能射頻電漿離子源
EP1976346A1 (en) Apparatus for generating a plasma
CN102362337A (zh) 等离子体处理装置及使用其的非晶硅薄膜的制造方法
JP4818483B2 (ja) 薄膜形成装置
JP5551635B2 (ja) 薄膜形成装置
WO2011104803A1 (ja) プラズマ生成装置
KR20130081369A (ko) 박막 증착 장치, 플라즈마 발생 장치, 및 박막 증착 방법
EP2080425B1 (en) Device for forming a film by deposition from a plasma
JP5563502B2 (ja) 薄膜形成装置
JP2011181832A (ja) 薄膜形成装置
JP4875527B2 (ja) プラズマ発生装置およびこれを用いた薄膜形成装置
JP2012188684A (ja) 薄膜形成装置及び薄膜形成方法
JP2012177174A (ja) 薄膜形成装置
JP6662998B2 (ja) プラズマ処理装置
JP2011179096A (ja) 薄膜形成装置
JP6969234B2 (ja) プラズマ処理装置及びプラズマ処理方法
JP2017228422A (ja) プラズマ生成装置
JP5512728B2 (ja) プラズマ処理装置
JP5690299B2 (ja) プラズマ形成装置
JP6973718B2 (ja) プラズマcvd装置、及びフィルムの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011508147

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11750333

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127016617

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011750333

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011750333

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13582616

Country of ref document: US