WO2011102327A1 - 固体電解質膜およびその製造方法 - Google Patents

固体電解質膜およびその製造方法 Download PDF

Info

Publication number
WO2011102327A1
WO2011102327A1 PCT/JP2011/053091 JP2011053091W WO2011102327A1 WO 2011102327 A1 WO2011102327 A1 WO 2011102327A1 JP 2011053091 W JP2011053091 W JP 2011053091W WO 2011102327 A1 WO2011102327 A1 WO 2011102327A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
electrolyte membrane
group
general formula
carbon atoms
Prior art date
Application number
PCT/JP2011/053091
Other languages
English (en)
French (fr)
Inventor
鈴木 克俊
小原 芳彦
田中 徹
小森谷 治彦
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to US13/574,167 priority Critical patent/US9171655B2/en
Priority to EP11744613.8A priority patent/EP2511975B1/en
Priority to KR1020127022575A priority patent/KR101423576B1/ko
Publication of WO2011102327A1 publication Critical patent/WO2011102327A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/38Esters containing sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04197Preventing means for fuel crossover
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solid electrolyte membrane used for a polymer electrolyte fuel cell and a method for producing the same.
  • the present invention particularly relates to a solid electrolyte membrane used for a direct methanol fuel cell which is a direct liquid fuel cell and a method for producing the same.
  • Fuel cells are power generation devices that have high power generation efficiency and can effectively use thermal energy. Since the fuel cell generates power by an electrochemical reaction, the power generation efficiency is higher than other power generation systems that secondarily extract electricity, such as by burning fuel to generate steam and turning a turbine. The product of the fuel cell is in principle water and does not burn the fuel, so the amount of carbon dioxide emission is small, and nitrogen oxides and sulfur oxides that cause air pollution are not emitted. It is attracting attention as a generational clean energy.
  • a polymer electrolyte fuel cell (hereinafter referred to as PEFC) uses a polymer ion exchange membrane as an electrolyte.
  • DMFC Direct Methanol Fuel Cell
  • DMFC direct Methanol Fuel Cell
  • anode side fuel electrode
  • DMFC methanol reacts directly with water on the anode electrode using a catalyst. And converted to protons, electrons, and carbon dioxide.
  • DMFCs are suitable for power supplies such as mobile phones and notebook computers because they have high output density, can be driven at low temperatures, and can be reduced in size and weight.
  • solid electrolyte membranes currently used include perfluorocarbon sulfonic acid electrolyte membranes, from DuPont, USA, Nafion, Asahi Glass Co., Ltd., Flemion, Asahi Kasei Co., Ltd. Product names, Gore Select, etc. are manufactured or marketed by Plex and Japan Gore-Tex Corporation.
  • the sulfonic acid group in the perfluorocarbon sulfonic acid polymer has an affinity with water, and water is adsorbed around the sulfonic acid group in the polymer. It is thought that protons show proton conductivity by forming and moving between clusters with water molecules. Methanol easily diffuses in the polymer through the clusters. Therefore, the methanol permeation rate in the perfluorocarbon sulfonic acid polymer is high, and the battery performance when the perfluorocarbon sulfonic acid polymer is used as a solid electrolyte membrane is lowered.
  • Patent Documents 1 and 2 disclose techniques for suppressing such a methanol crossover phenomenon.
  • Patent Document 1 discloses a technique for increasing the degree of crosslinking by irradiating a perfluorocarbon sulfonic acid polymer-based solid electrolyte membrane with radiation.
  • the proton conductivity is lowered by the cross-linking, and the manufacturing process becomes more complicated and the cost is increased.
  • the solid electrolyte membrane used in the DMFC has both high proton conductivity and low methanol permeability for suppressing the methanol crossover phenomenon, and the manufacturing method is simple and excellent in mass productivity. There is a problem that there is no one that satisfies all of these requirements.
  • Tf trifluoromethanesulfonyl groups
  • a solid electrolyte membrane comprising a resin having a repeating unit containing a bis (perfluoroalkanesulfonyl) methide moiety represented by the following general formula (1).
  • R represents a hydrogen atom or a methyl group
  • Y represents an oxygen atom or NH.
  • Rf represents a perfluoroalkyl group having 1 to 4 carbon atoms.
  • W is a linking group which is a linear or branched alkylene group having 2 to 4 carbon atoms or a branched chain group having 3 to 4 carbon atoms, or a cyclic hydrocarbon group having 5 to 8 carbon atoms, and has a branched chain or a bridge structure. You may have.
  • the resin having a repeating unit represented by the general formula (1) is polymerized by a polymerizable compound containing a bis (perfluoroalkanesulfonyl) methide moiety represented by the following general formula (2). It is preferable that it is a polymer.
  • R represents a hydrogen atom or a methyl group
  • Y represents an oxygen atom or NH
  • Rf represents a perfluoroalkyl group having 1 to 4 carbon atoms.
  • W is a linking group, which is a linear or branched alkylene group having 2 to 4 carbon atoms or a branched hydrocarbon group having 3 to 4 carbon atoms, or a cyclic hydrocarbon group having 5 to 8 carbon atoms, and is a branched chain or a bridge. It may have a structure.
  • the polymerizable compound represented by the repeating unit represented by the general formula (1) and the general formula (2) if the number of carbons is larger than the above, it is difficult to synthesize the resin used as the solid electrolyte membrane. Problems such as difficulty in dissolving in solvents occur. In addition, when the number of carbon atoms is small, the obtained resin is not strong enough to be used as a solid electrolyte membrane.
  • resin which has a repeating unit represented by General formula (1) consists of resin which polymerizes the polymeric compound and crosslinkable compound which are represented by General formula (2).
  • the crosslinkable compound refers to a compound containing at least two polymerizable groups (functional groups) in the molecule.
  • the crosslinkable compound is preferably a compound represented by the general formula (4).
  • each R independently represents a hydrogen atom or a methyl group
  • each Y independently represents an oxygen atom or NH.
  • Z represents a linear or branched alkylene group having 1 to 4 carbon atoms, and may have an ether bond, an ester bond, an amide bond or an alkoxy group (wherein m is 1 to 30, n Is an integer from 1 to 5.
  • the content of the repeating unit represented by the general formula (1) is 6% by mass or more and 84% by mass or less. Is preferred.
  • the content of the repeating unit containing a bis (perfluoroalkanesulfonyl) methide moiety is less than 6% by mass, the effect of being able to significantly reduce methanol permeability while having high proton conductivity cannot be expected. On the other hand, if it exceeds 84% by mass, the obtained solid electrolyte membrane is inferior in durability.
  • a bis (perfluoroalkanesulfonyl) methide moiety is obtained by polymerizing a polymerizable compound containing a bis (perfluoroalkanesulfonyl) methide moiety represented by the general formula (2) and a crosslinkable compound.
  • a method for producing a solid electrolyte membrane comprising a resin having a repeating unit containing a bis (perfluoroalkanesulfonyl) methide moiety represented by the general formula (1) is provided.
  • a fuel cell MEA using the above solid electrolyte membrane a PEFC using the above solid electrolyte membrane, and a DMFC using the above solid electrolyte membrane.
  • the solid electrolyte membrane of the present invention is characterized in that the solid electrolyte membrane of the present invention is made of a resin having a repeating unit having a bis (perfluoroalkanesulfonyl) methide moiety represented by the general formula (1).
  • R represents a hydrogen atom or a methyl group
  • Y represents an oxygen atom or NH
  • Rf represents a perfluoroalkyl group having 1 to 4 carbon atoms.
  • W is a linking group which is a linear or branched alkylene group having 2 to 4 carbon atoms or a branched chain group having 3 to 4 carbon atoms, or a cyclic hydrocarbon group having 5 to 8 carbon atoms, and has a branched chain or a bridge structure. You may have.
  • the resin containing the repeating unit represented by the general formula (1) is a polymer obtained by polymerizing a polymerizable compound containing a bis (perfluoroalkanesulfonyl) methide moiety represented by the general formula (2).
  • R represents a hydrogen atom or a methyl group
  • Y represents an oxygen atom or NH
  • Rf represents a perfluoroalkyl group having 1 to 4 carbon atoms.
  • W is a linking group, which is a linear or branched alkylene group having 2 to 4 carbon atoms or a branched hydrocarbon group having 3 to 4 carbon atoms, or a cyclic hydrocarbon group having 5 to 8 carbon atoms, and is a branched chain or a bridge. It may have a structure.
  • a resin having a repeating unit represented by the general formula (1) is obtained by reacting a polymerizable compound represented by the general formula (2) with a crosslinkable compound.
  • MA-ABMD a bis (trifluoromethylsulfonyl) methide moiety, that is, —CH (SO 2 CF 3 ) 2 by a polymerizable compound (MA-ABMD).
  • MA-ABMD is a compound that is easy to synthesize and is preferable for introduction into the solid polymer membrane of the present invention, as shown below in its synthesis route.
  • the crosslinkable compound that can be polymerized with the polymerizable compound represented by the general formula (2) is a compound containing at least two polymerizable groups (functional groups) in the molecule, and polyethylene glycol diacrylate listed below, or Commercially available urethane acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., product names: UA-122P, UA-4HA, UA-6HA, UA-6LPA, UA-1100H, UA-53H, UA-4200, UA-200PA, UA- 33H, UA-7100, UA-7200). In the present invention, these compounds may be used alone or in combination of two or more.
  • each R independently represents a hydrogen atom or a methyl group
  • each Y independently represents an oxygen atom or NH
  • Z represents a linear alkylene group having 1 to 4 carbon atoms or a branched alkylene group having 3 to 4 carbon atoms, and may have an ether bond, an ester bond, an amide bond or an alkoxy group.
  • m represents an integer of 1 to 30, and n represents an integer of 1 to 5.
  • polyethylene glycol diacrylate is also preferably used because it is easily available and has good reactivity.
  • Polyethylene glycol diacrylate is commercially available from Shin-Nakamura Chemical Co., Ltd. under the product name A-200.
  • a typical example of a resin having a repeating unit represented by the general formula (1), which is a constituent component of the solid electrolyte membrane of the present invention, is a resin represented by the general formula (5).
  • X, Y, and Z represent a polymerization degree with a positive integer.
  • the polymerization method of the polymerizable compound represented by the general formula (2) and the crosslinkable compound is preferably radical polymerization using a radical polymerization initiator.
  • ion polymerization, coordinated anion polymerization, Living anionic polymerization, cationic polymerization, ring-opening metathesis polymerization, transition metal catalyzed polymerization, vinylene polymerization, vinyl addition, thermal polymerization or radiation polymerization may also be mentioned.
  • Radical polymerization is carried out in the presence of a radical polymerization initiator or a radical initiator by a known polymerization method such as bulk polymerization, solution polymerization, suspension polymerization or emulsion polymerization, and is either batch-wise, semi-continuous or continuous. Can be done by operation.
  • a radical polymerization initiator or a radical initiator by a known polymerization method such as bulk polymerization, solution polymerization, suspension polymerization or emulsion polymerization, and is either batch-wise, semi-continuous or continuous. Can be done by operation.
  • radical polymerization initiators include azo compounds, peroxide compounds, and redox compounds.
  • azobisisobutyronitrile tert-butyl peroxypivalate, di-tert-butyl peroxide, i-butylene. It is preferable to use ruperoxide, lauroyl peroxide, succinic acid peroxide, dicinnamyl peroxide, di-n-propyl peroxydicarbonate, tert-butylperoxyallyl monocarbonate, benzoyl peroxide or hydrogen peroxide, ammonium persulfate .
  • tert-butyl peroxypivalate is particularly preferably used because it is readily available and has good reactivity.
  • the polymerization reaction in the production of the resin for the solid electrolyte of the present invention can be carried out without using a solvent, and a solvent that can be used for general radical polymerization is preferably used.
  • Ester solvents such as ethyl acetate and n-butyl acetate, ketones such as acetone and methylisobutylton, hydrocarbon solvents such as toluene or cyclohexanone, alcohols such as methanol, isopropyl alcohol or ethylene glycol monomethyl ether A solvent is mentioned. It is also possible to use water, ether solvents, cyclic ether solvents, chlorofluorocarbon solvents or aromatic solvents. These solvents can be used alone or in combination as a polymerization solvent.
  • the reaction temperature for the polymerization reaction is usually preferably 50 ° C. or higher and 150 ° C. or lower, and is preferably 80 ° C. or higher and 120 ° C. or lower for handling, and a raw material solution containing a polymerizable compound and a crosslinkable compound is coated on a glass substrate. It is possible to obtain a colorless and transparent solid electrolyte membrane by applying a radical polymerization reaction. If necessary, the solid electrolyte membrane is immersed in a hydrochloric acid aqueous solution or a sulfuric acid aqueous solution and washed with ion-exchanged water.
  • the mechanical strength of the solid electrolyte membrane may be increased by impregnating a porous film with a raw material solution containing a polymerizable compound and a crosslinkable compound, or by mixing nanosilica fine particles or glass fibers into the raw material solution.
  • a raw material solution containing a polymerizable compound and a crosslinkable compound or by mixing nanosilica fine particles or glass fibers into the raw material solution.
  • limiting in particular in the thickness of a solid electrolyte membrane 10 micrometers or more and 200 micrometers or less are preferable. When it is thinner than 10 ⁇ m, handling becomes difficult, and when it is thicker than 200 ⁇ m, the film resistance increases, and the characteristics as an electrochemical device tend to be lowered.
  • the film thickness is adjusted by the coating thickness on the substrate, that is, the coating amount per unit volume.
  • the solid electrolyte membrane of the present invention will be specifically described with reference to the following examples.
  • the following examples show examples of embodiments such as the solid electrolyte membrane of the present invention and the production thereof, and do not limit the solid polymer electrolyte membrane of the present invention itself.
  • MAAH methacrylic anhydride
  • MAAH methacrylic anhydride
  • 485 g 0.032 mol
  • the three-necked flask was heated and maintained at 70 ° C., and the contents were continuously stirred for 3.5 hours. Thereafter, the three-necked flask was cooled to room temperature (about 20 ° C.), and 30 g of toluene and 35 g of pure water were added to the contents, followed by a washing operation of stirring and mixing twice. After the washing operation, the content was azeotroped with toluene and dehydration operation was performed.
  • MA-ABMD 3-methacryloxy-1,1-bis (trifluoromethanesulfonyl) butanoic acid
  • Example 1 In a glass flask, the above MA-ABMD, 4.06 g (0.0100 mol), polyethylene glycol diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., product name: A-200) 0.76 g (0.0025 mol), and polymerization 0.10 g of perpivalic acid-tert-butyl (manufactured by Nippon Oil & Fats Co., Ltd., product name: perbutyl PV) as an initiator was weighed in, deaerated while being sufficiently stirred, and nitrogen gas was introduced.
  • perpivalic acid-tert-butyl manufactured by Nippon Oil & Fats Co., Ltd., product name: perbutyl PV
  • a spacer having a particle size of 60 ⁇ m was sandwiched between a pair of glass plates prepared in advance, and the solution was injected into the gap portion by utilizing capillary action. After maintaining in an oven heated to 80 ° C. for 30 minutes under a nitrogen atmosphere, the temperature was increased at 1 ° C. per minute and further maintained at 120 ° C. for 60 minutes for curing. After cooling to room temperature, it was immersed in water to obtain a solid electrolyte membrane having a thickness of 0.05 mm, a size of 60 mm ⁇ 60 mm, that is, a solid electrolyte membrane made of a resin represented by the general formula (5) .
  • X, Y, and Z represent a polymerization degree with a positive integer.
  • Example 2 In a glass flask, MA-ABMD, 2.54 g (0.0063 mol), polyethylene glycol diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., product name, A-200), 1.89 g (0.0063 mol) and polymerization start 0.10 g of perpivalic acid-tert-butyl (manufactured by Nippon Oil & Fats Co., Ltd., product name, perbutyl PV) as an agent was weighed in and nitrogen gas was introduced and deaerated while stirring sufficiently. Thereafter, the solution was cured by the same procedure as in Example 1 to obtain a solid electrolyte membrane.
  • MA-ABMD 2.54 g (0.0063 mol), polyethylene glycol diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., product name, A-200), 1.89 g (0.0063 mol) and polymerization start 0.10 g of perpivalic acid-tert-butyl (manu
  • Example 3 In a glass flask, MA-ABMD, 1.51 g (0.0037 mol), polyethylene glycol diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., product name: A-200), 2.64 g (0.0088 mol), and polymerization 0.10 g of perpivalic acid-tert-butyl (manufactured by Nippon Oil & Fats Co., Ltd., product name, perbutyl PV) as an initiator was weighed in and nitrogen gas was introduced and deaerated while stirring sufficiently. Thereafter, the solution was cured by the same procedure as in Example 1 to obtain a solid electrolyte membrane.
  • Example 4 In a glass flask, MA-ABMD, 1.02 g (0.0025 mol), polyethylene glycol diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., product name, A-200), 3.02 g (0.0100 mol), and polymerization start 0.10 g of perpivalic acid-tert-butyl (manufactured by NOF Corporation, product name, perbutyl PV) as an agent was added, and nitrogen gas was introduced with sufficient stirring to deaerate. Thereafter, the solution was cured by the same procedure as in Example 1 to obtain a solid electrolyte membrane.
  • Example 5 In a glass flask, MA-ABMD, 0.51 g (0.0013 mol), polyethylene glycol diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., product name: A-200), 3.40 g (0.0113 mol) and polymerization 0.10 g of perpivalic acid-tert-butyl (manufactured by Nippon Oil & Fats Co., Ltd., product name, perbutyl PV) as an initiator was weighed in, and degassed by introducing nitrogen gas with sufficient stirring. Thereafter, the solution was cured by the same procedure as in Example 1 to obtain a solid electrolyte membrane. .
  • Example 6 In a glass flask, MA-ABMD, 0.25 g (0.0006 mol), polyethylene glycol diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., product name, A-200), 3.59 g (0.0119 mol) and polymerization start 0.10 g of perpivalic acid-tert-butyl (manufactured by Nippon Oil & Fats Co., Ltd., product name, perbutyl PV) as an agent was weighed in and nitrogen gas was introduced and deaerated while stirring sufficiently. Thereafter, the solution was cured by the same procedure as in Example 1 to obtain a solid electrolyte membrane.
  • a solid electrolyte membrane was produced without using the MA-ABMD. Specifically, polyethylene glycol diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., product name: A-200), 3.78 g (0.0125 mol) and perpivalic acid as a polymerization initiator in a glass flask tert-butyl (Nippon Yushi Co., Ltd., product name: perbutyl PV), 0.10 g was added, and nitrogen gas was introduced and deaerated while stirring sufficiently. Thereafter, the solution was cured by the same procedure as in Example 1 to obtain a solid electrolyte membrane.
  • Proton conductivity was measured by the following method.
  • the electrolyte membrane and the platinum film electrode were brought into close contact with each other, and an electrochemical impedance measuring device (VFP600, manufactured by Gamry Instruments Co.) was connected to the electrode, and AC impedance was measured in the frequency range of 1 Hz to 1 MHz to obtain AC resistance.
  • VFP600 electrochemical impedance measuring device
  • the specific resistance of the proton conductive membrane was calculated by the following equation, and the AC impedance was calculated from the reciprocal of the specific resistance.
  • the film electrode which sputtered platinum on the substrate film with the sputtering device was used for the electrode.
  • the film electrode can precisely control the distance between the electrodes, and further, the film is not deformed by the pressing pressure of the electrode, and the non-resistance can be measured well. Calculation formulas for specific resistance and proton conductivity are shown below.
  • the methanol permeation rate was measured by the following method.
  • the above-mentioned solid electrolyte membrane immersed in ion-exchanged water for 1 day is sandwiched between separable type glass cells manufactured by Techno Sigma Co., Ltd., and a mixed solution of methanol and water adjusted to 10% by mass or 30% by mass in one cell. 20 ml was added, and the other cell was charged with 20 ml of ion-exchanged water.
  • the mixture was stirred at 25 ° C., and the methanol concentration in ion-exchanged water was measured using a gas chromatograph (manufactured by Shimadzu Corporation, model number, GC2010).
  • Table 1 shows the measurement results of proton conductivity and methanol permeation rate of the solid electrolyte membranes obtained in Examples 1 to 6 and Comparative Examples 1 and 2.
  • “%” means “% by mass”.
  • the solid electrolyte membranes of the present invention of Examples 1 to 6 containing bis (perfluoroalkanesulfonyl) methide moieties and those not containing bis (perfluoroalkanesulfonyl) methide moieties fall within the scope of the present invention.
  • the proton conductivity of the solid electrolyte membranes obtained in Examples 1 to 6 of the present invention is one digit or more higher.
  • the proton conductivity of the solid electrolyte membrane of Example 3 was particularly large and was at the same level as the commercially available solid electrolyte membrane of Comparative Example 2.
  • the methanol (MeOH) permeability of the solid electrolyte membranes of the examples was lower by one digit or more compared to the commercially available solid electrolyte membrane of Comparative Example 2, regardless of the concentration of methanol. Ethanol (EtOH) The permeability was similarly low.
  • the solid electrolyte membranes of the present invention of Examples 1 to 6 have good proton conductivity.
  • the solid electrolyte membrane of Example 3 has low methanol permeability and excellent alcohol blocking properties. It was found that it is suitably used as a solid electrolyte membrane for DMFC.
  • a polyether structure that has a bis (perfluoroalkanesulfonyl) methide moiety that is a hydrophobic and strongly acidic group in a chemical structure and coordinates with water by van der Waals force.
  • a solid polymer electrolyte membrane having high proton conductivity and capable of greatly reducing methanol permeability can be obtained.
  • the solid electrolyte membrane of the present invention is suitably used for solid polymer fuel cells such as PEFC, particularly DMFC, because of its excellent alcohol blocking property and proton conductivity.
  • the method for producing a solid electrolyte membrane of the present invention is industrially simple and suitable for mass production.

Abstract

 本発明の固体電解質膜は、一般式(1)で表されるビス(パーフルオロアルカンスルホニル)メチド部位を含む繰り返し単位を有する樹脂からなることを特徴とする。(式中、Rは水素原子またはメチル基、Yは酸素原子またはNHを表す。Rfは炭素数1~4のパーフルオロアルキル基を表す。Wは連結基であり、炭素数2~4の直鎖状もしくは炭素数3~4の分岐鎖状のアルキレン基、または炭素数5~8の環状の炭化水素基であり、分岐鎖または橋架け構造を有してもよい。) 該固体電解質膜は、高いプロトン伝導度と、メタノールのクロスオーバー現象を抑制するための低メタノール透過性を併せ持ち、ダイレクトメタノール型燃料電池などにも好適に使用することができる。

Description

固体電解質膜およびその製造方法
 本発明は、固体高分子型燃料電池に使用する固体電解質膜およびその製造方法に関する。本発明は、特に、直接液体型燃料電池であるダイレクトメタノール型燃料電池に使用する固体電解質膜およびその製造方法に関する。
 燃料電池は発電効率が高く、熱エネルギーも有効に利用できる発電装置である。燃料電池は、電気化学反応によって発電するため、燃料を燃焼させて蒸気を発生させタービンを回す等、二次的に電気を取り出す他の発電システムに比べ発電効率が高い。燃料電池の生成物は原理的に水であり、燃料を燃焼させることがないため、二酸化炭素の排出量が小さく、大気汚染の原因となる窒素酸化物や硫黄酸化物を排出しないことから、次世代クリーンエネルギーとして注目されている。固体高分子型燃料電池(Polymer Electrolyte Fuel Cell、以下、PEFCと略する)は電解質に高分子のイオン交換膜を使用する。PEFCの中で、ダイレクトメタノール型燃料電池(Direct Methanol Fuel Cell、以下、DMFCと略する)は、水素の代わりにメタノールを用い、直接これを電極で反応させて発電する。アノード側(燃料極)で、触媒により水素から電子を切り離し、水素を水素イオン(プロトン)と電子とする他の燃料電池と異なり、DMFCにおいては、アノード電極上、触媒によりメタノールが直接水と反応して、プロトン、電子、二酸化炭素に変換される。DMFCは、出力密度が高く、低温駆動でき、小型軽量化が可能であることから、携帯電話、ノートパソコン等の電源に適している。
 DMFCの課題の一つとして、メタノールの一部が、固体電解質膜内をアノード側(燃料極)からカソード側(空気極)へ透過するクロスオーバー現象が挙げられ、これにより、燃料のロスに加え、空気極でメタノールにより酸素が消費されることで出力低下が起きる。メタノールを透過させない固体電解質膜の開発が、DMFCの高性能化において、最大の問題である。
 また、現在使用される固体電解質膜には、パーフルオロカーボンスルホン酸系電解質膜が挙げられ、米国デュポン社より、商品名ナフィオン、旭硝子株式会社より、商品名フレミオン、旭化成株式会社より、商品名、アシプレックス、およびジャパンゴアテックス株式会社より、商品名、ゴアセレクト等が製造または市販されている。
 パーフルオロカーボンスルホン酸系ポリマー中のスルホン酸基は水と親和性を示し、ポリマー中でスルホン酸基の周囲に水が吸着され、スルホン酸基に葡萄の房の様に水が集合したクラスター構造を形成し、プロトンは水分子とともにクラスター間を移動していくことで、プロトン伝導性を示すと考えられている。メタノールはクラスターを介してポリマー内を拡散しやすく、そのため、パーフルオロカーボンスルホン酸系ポリマー中のメタノール透過速度は速く、パーフルオロカーボンスルホン酸系ポリマーを固体電解質膜として使用した際の電池性能を低下させる。
 このような、メタノールのクロスオーバー現象を抑制する技術が、特許文献1、2に開示されている。例えば、特許文献1に、パーフルオロカーボンスルホン酸ポリマー系固体電解質膜に放射線を照射し、架橋度を高める手法が開示されている。しかしながら、架橋によってプロトン伝導度が低下し、さらに、製造プロセスがより煩雑になり、より高コスト化してしまうという問題があった。
 また、パーフルオロカーボンスルホン酸系電解質膜に替わる低コストの固体電解質膜の開発が進められている。例えば、特許文献2に記載の細孔を持ったエンジニアリングプラスチックフィルム内にスルホン酸基を有する樹脂を充填する細孔フィリング膜は、メタノールの透過性を低減できると開示される。しかしながら、パーフルオロカーボンスルホン酸系電解質膜と比べ、プロトン伝導度が非常に低く、さらに、プロトン伝導度を得るためには、強酸性の樹脂を隙間無く充填する必要がある。その上、充填樹脂に架橋構造を導入する必要があり、架橋が十分でないと高濃度メタノールを使用することによって、樹脂が溶出してしまうという問題があった。また、製造プロセスが一般的でなく、大量スケールでの製造には向いていないという問題があった。さらに、例えば、メタノール酸化電極触媒を担持した、膜・電極接合体(Membrane-Electrode Assembly、以下、MEAと略する)を作製する上で、エンジニアリングプラスチックフィルムはガラス転移温度が200℃以上と高く、そのため、ホットプレス時に触媒層バインダー樹脂との接着性が悪く、剥がれが生じてしまう問題があった。
特開2006-179301号公報 特開2008-112712号公報
 上記の通り、DMFCに使用する固体電解質膜においては、高いプロトン伝導度とメタノールのクロスオーバー現象を抑制するための低いメタノール透過性の両方を兼ね備え、且つ、製法が簡便で量産性に優れることが求められており、これらを全て満たすものは存在しないという問題があった。
 本発明は、PEFC、特にDMFCに使用する高いプロトン伝導度と、メタノールのクロスオーバー現象を抑制するための低いメタノール透過性の両方を併せ持つ固体電解質膜を提供することを課題とする。また、当該固体電解質膜の工業的に簡便かつ多量生産に適した製法を提供することを課題とする。
 従来の固体電解質膜は、強酸性基としてスルホン酸基が導入されるが、スルホン酸基を有する樹脂はメタノール透過性が高い。これは、スルホン酸基の強い親水性によって水が膜中に強く保持されるため、メタノールの拡散が促進されてしまうためである。従来のパーフルオロ樹脂系の電解質膜でも、クラスター構造によってメタノールが透過できる細孔が形成される。
 また、固体電解質膜がプロトン伝導性を示すためには、水がプロトンのキャリアとなるため、膜中に水が存在する必要がある。
 このような背景から、本発明者らは、メタノール透過性を低減するためには、スルホン酸基に代わる疎水性の強酸性基を導入することが有効であると考え、強力な電子吸引性基であるトリフルオロメタンスルホニル基;-SO2CF3(以下、Tfと略する)等を2個有する疎水性の強酸性基であるビス(パーフルオロアルカンスルホニル)メチド部位を含む繰り返し単位を有する樹脂に着目し、鋭意検討を行った結果、疎水性且つ強酸性基であるビス(パーフルオロアルカンスルホニル)メチド基を含有した繰り返し単位中に、ファンデルワールス力で水と配位するポリエーテル構造を導入することで、高いプロトン伝導性と低メタノール透過性を発揮させることができることを見出し、本発明を完成するに至った。
 即ち、本発明によれば、下記一般式(1)で表されるビス(パーフルオロアルカンスルホニル)メチド部位を含む繰り返し単位を有する樹脂からなる固体電解質膜が提供される。
Figure JPOXMLDOC01-appb-C000005
式(1)中、Rは水素原子またはメチル基、Yは酸素原子またはNHを表す。Rfは炭素数1~4のパーフルオロアルキル基を表す。Wは連結基で炭素数2~4の直鎖状もしくは炭素数3~4の分岐鎖状のアルキレン基、または炭素数5~8の環状の炭化水素基であり、分岐鎖または橋架け構造を有してもよい。
 本発明の固体電解質膜において、一般式(1)で表される繰り返し単位を有する樹脂は、下記一般式(2)で表されるビス(パーフルオロアルカンスルホニル)メチド部位を含む重合性化合物が重合した重合体であることが好ましい。
Figure JPOXMLDOC01-appb-C000006
式(2)中、Rは水素原子またはメチル基、Yは酸素原子またはNHを表す。Rfは炭素数1~4のパーフルオロアルキル基を表す。Wは連結基であり、炭素数2~4の直鎖状もしくは炭素数3~4の分岐鎖状のアルキレン基、または炭素数5~8の環状の炭化水素基であり、分岐鎖または橋架け構造を有してもよい。
 一般式(1)で表される繰り返し単位および一般式(2)で表される重合性化合物において、前記したより炭素数が多いと、固体電解質膜として用いる樹脂の合成が困難となり、合成反応において溶媒に溶けにくい等の不具合を生じる。また、炭素数が少ないと、得られた樹脂は固体電解質膜として使用するのには丈夫さに欠ける。
 また、一般式(2)で表される重合性化合物に、少なくとも下記構造式(3)で表されるビス(トリフルオロメチルスルホニル)メチド部位を含む重合性化合物(MA-ABMD、W=C3)を用いることが好ましい。MA-ABMDは合成が容易である。
Figure JPOXMLDOC01-appb-C000007
 また、一般式(1)で表される繰り返し単位を有する樹脂は、一般式(2)で表される重合性化合物と架橋性化合物を重合させてなる樹脂からなることが好ましい。尚、本発明において、架橋性化合物とは、分子内に少なくとも2個以上の重合性基(官能基)を含む化合物を言う。該架橋性化合物は一般式(4)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000008
式(4)中、Rはそれぞれ独立に水素原子またはメチル基、Yはそれぞれ独立に酸素原子またはNHを表す。Zは炭素数1~4の直鎖状もしくは分岐鎖状のアルキレン基を表し、エーテル結合、エステル結合、アミド結合またはアルコキシ基を有していてもよい(式中、mは1~30、nは1~5の整数である)。
 本発明の固体電解質膜において、固体電解膜全体の全質量を基準とする百分率で表して、一般式(1)で表される繰り返し単位の含有が6質量%以上、84質量%以下であることが好ましい。
 ビス(パーフルオロアルカンスルホニル)メチド部位を含む繰り返し単位の含有が6質量%より少ないと、高いプロトン伝導性を有しながら、メタノール透過性を大幅に低減できるという作用効果が期待できない。また、84質量%より多いと得られた固体電解質膜は丈夫さに劣る。
 また、本発明によれば、一般式(2)で表されるビス(パーフルオロアルカンスルホニル)メチド部位を含む重合性化合物と架橋性化合物を重合することにより、ビス(パーフルオロアルカンスルホニル)メチド部位を樹脂に導入する工程を含む、一般式(1)で表されるビス(パーフルオロアルカンスルホニル)メチド部位を含む繰り返し単位を有する樹脂からなる固体電解質膜の製造方法が提供される。
 さらに、本発明によれば、上記の固体電解質膜を用いた燃料電池用MEA、上記の固体電解質膜を用いたPEFC、及び上記の固体電解質膜を用いたDMFCが提供される。
 以下、本発明を詳細に説明する。
 本発明の固体電解質膜は、本発明の固体電解質膜は、一般式(1)で表されるビス(パーフルオロアルカンスルホニル)メチド部位を有する繰り返し単位を有する樹脂からなることを特徴とする。
Figure JPOXMLDOC01-appb-C000009
式(1)中、Rは水素原子またはメチル基、Yは酸素原子またはNHを表す。Rfは炭素数1~4のパーフルオロアルキル基を表す。Wは連結基で炭素数2~4の直鎖状もしくは炭素数3~4の分岐鎖状のアルキレン基、または炭素数5~8の環状の炭化水素基であり、分岐鎖または橋架け構造を有してもよい。
 一般式(1)で表される繰り返し単位を含有した樹脂は、一般式(2)で表されるビス(パーフルオロアルカンスルホニル)メチド部位を含む重合性化合物を重合してなる重合体であることが好ましい。
Figure JPOXMLDOC01-appb-C000010
式(2)中、Rは水素原子またはメチル基、Yは酸素原子またはNHを表す。Rfは炭素数1~4のパーフルオロアルキル基を表す。Wは連結基であり、炭素数2~4の直鎖状もしくは炭素数3~4の分岐鎖状のアルキレン基、または炭素数5~8の環状の炭化水素基であり、分岐鎖または橋架け構造を有してもよい。
 例えば、一般式(1)で表される繰り返し単位を有する樹脂は、一般式(2)で表される重合性化合物と架橋性化合物を反応させて得られる。
 一般式(2)で表される重合性化合物の具体例を以下に列挙する。
Figure JPOXMLDOC01-appb-C000011
 本発明では、ビス(トリフルオロメチルスルホニル)メチド部位、即ち-CH(SO2CF32、を、重合性化合物(MA-ABMD)によって導入することが特に好ましい。MA-ABMDは、以下にその合成経路を示すように、合成し易く、本発明の固体高分子膜に導入するのに好ましい化合物である。
Figure JPOXMLDOC01-appb-C000012
 一般式(2)で表される重合性化合物と重合可能な架橋性化合物は、分子内に少なくとも2個以上の重合性基(官能基)を含む化合物で、以下に挙げるポリエチレングリコールジアクリレート、または市販のウレタンアクリレート(新中村化学工業株式会社製、製品名:UA-122P、UA-4HA、UA-6HA、UA-6LPA、UA-1100H、UA-53H、UA-4200、UA-200PA、UA-33H、UA-7100、UA-7200)が挙げられる。本発明において、これら化合物を1種単独で用いても、2種類以上を組み合わせて用いても構わない。
Figure JPOXMLDOC01-appb-C000013
 この中でも、入手しやすく反応性が良好なことより一般式(4)の架橋性化合物を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000014
式(4)中、Rはそれぞれ独立に水素原子またはメチル基、Yはそれぞれ独立に酸素原子またはNHを表す。Zは炭素数1~4の直鎖状もしくは炭素数3~4の分岐鎖状のアルキレン基を表し、エーテル結合、エステル結合、アミド結合またはアルコキシ基を有していてもよい。式中、mは1~30、nは1~5の整数を表す。
 また、入手しやすく反応性が良好なことより、ポリエチレングリコールジアクリレートも好適に用いられる。尚、ポリエチレングリコールジアクリレートは新中村化学工業株式会社より、製品名、A-200として市販される。
 本発明の固体電解質膜の構成成分である、一般式(1)で表される繰り返し単位を有する樹脂の代表的な例として、一般式(5)で表される樹脂が挙げられる。
Figure JPOXMLDOC01-appb-C000015
式(5)中、X、Y、Zは、正の整数で重合度を表す。
 また、一般式(2)で表される重合性化合物と上記の架橋性化合物の重合方法は、ラジカル重合開始剤を用いたラジカル重合が好適であり、他に、イオン重合、配位アニオン重合、リビングアニオン重合、カチオン重合、開環メタセシス重合、遷移金属触媒重合、ビニレン重合、ビニルアディション、熱重合または放射線重合も挙げられる。
 ラジカル重合は、ラジカル重合開始剤あるいはラジカル開始源の存在下で、塊状重合、溶液重合、懸濁重合または乳化重合等の公知の重合方法により、回分式、半連続式又は連続式のいずれかの操作で行える。
 ラジカル重合開始剤は、アゾ系化合物、過酸化物系化合物あるいはレドックス系化合物が挙げられ、特にアゾビスイソブチロニトリル、tert-ブチルパーオキシピバレート、ジ-tert-ブチルパーオキシド、i-ブチリルパーオキシド、ラウロイルパーオキサイド、スクシン酸パーオキシド、ジシンナミルパーオキシド、ジ-n-プロピルパーオキシジカーボネート、tert-ブチルパーオキシアリルモノカーボネート、過酸化ベンゾイルまたは過酸化水素、過硫酸アンモニウムを用いることが好ましい。本発明の固体電解質膜用樹脂のラジカル重合開始剤としては、入手しやすく反応性が良好なことより、tert-ブチルパーオキシピバレートが特に好適に用いられる。
 また、本発明の固体電解質のための樹脂の製造における重合反応は、溶媒を用いずに行うことも可能であり、一般のラジカル重合に使用可能な溶媒が好適に用いられる。酢酸エチル、酢酸n-ブチル等のエステル系溶媒、アセトン、メチルイソブチルトン等のケトン系、トルエンまたはシクロヘキサノンに代表される炭化水素系溶媒、メタノール、イソプロピルアルコールまたはエチレングリコールモノメチルエーテルに代表されるアルコール系溶剤が挙げられる。また、水、エーテル系溶媒、環状エーテル系溶媒、フロン系溶媒または芳香族系溶媒を使用することも可能である。これらの溶剤を単独、あるいは複数種類を混合して重合溶媒として使用することができる。
 重合反応の反応温度は、通常、50℃以上、150℃以下が好ましく、ハンドリング上、特に80℃以上、120℃以下が好ましく、重合性化合物および架橋性化合物を含む原料溶液をガラス基板上にバーコータ等で塗布し、ラジカル重合反応させて、無色透明な固体電解質膜を得ることができる。固体電解質膜は、必要に応じて、塩酸水溶液や硫酸水溶液中に浸漬し、イオン交換水で洗浄を行う。
 また、重合性化合物および架橋性化合物を含む原料溶液を多孔質フィルムへ含浸させる、原料溶液にナノシリカ微粒子やグラスファイバー等の混合すること等によって、固体電解質膜の機械的強度を高めてもよい。固体電解質膜の厚みに特に制限はないが、10μm以上200μm以下が好ましい。10μmより薄いと取り扱いが困難となり、200μmより厚いと膜抵抗が大きくなり、電気化学デバイスとしての特性が低下する傾向となる。膜厚は基板上への塗布厚、即ち、単位体積あたりへの塗布量により調整する。
 本発明の固体電解質膜について以下の実施例により具体的に説明する。以下の実施例は、本発明の固体電解質膜及びその製造等、実施の形態の一例を示すものであり、本発明の固体高分子電解膜そのものを限定するものではない。
 [モノマー合成例1]
 窒素雰囲気下で、還流冷却器を備えた100mlの三口フラスコに、3-ヒドロキシ-1,1-ビス(トリフルオロメタンスルホニル)ブタン酸(以下、ABMDと略する)、10g(0.030モル)、トルエン、35g、メタンスルホン酸、(0.003mol)、2,2-メチレン-ビス(4-メチル-6-tert-ブチルフェノール)(精工化学株式会社製、製品名、ノンフレックスMBP)、0.05g(ABMDに対して0.5質量部)を各々量り入れた後、三口フラスコを7℃まで冷却した。次いで、窒素雰囲気下、メタクリル酸無水物(以下、MAAHと略する)、4.85g(0.032mol)を、少量ずつ10分間かけて徐々に、三つ口フラスコ内に滴下した。滴下終了後、三口フラスコを70℃に加熱保持し、3.5時間、内容物を攪拌し続けた。その後、三口フラスコを室温(約20℃)まで冷却し、内容物に、トルエン30gおよび純水35gを加え、攪拌混合する洗浄操作を2回行った。洗浄操作を行った後の内容物を、トルエンと共沸させて、脱水操作を行った後、ノンフレックスMBP、0.123gを加え、70Paの減圧下、83℃~86℃で減圧蒸留を行い、3-メタクリロキシ-1,1-ビス(トリフルオロメタンスルホニル)ブタン酸(以下、MA-ABMDと略する)を留出させて、MA-ABMDを9.29gが得た。この際、MA-ABMDの収率は77.2%であった。このようにして、ABMDに、メタンスルホン酸およびMAAHを反応させて、MA-ABMDを得た。その際の、反応式は以下に示す通りである。
(MA-ABMDの物性) 1H-NMR(溶剤:重クロロホルム);σ=6.13(s, 1H), 5.66(s, 1H), 5.58(m, 1H), 5.22(dd, 1H), 2.71(m, 2H), 1.94(s, 3H), 1.42(d, 3H)
Figure JPOXMLDOC01-appb-C000016
 次いで、上記[モノマー合成例1]で得られたMA-ABMDを用い、固体高分子型燃料電池に用いる固体電解質膜用樹脂を作製した。以下、実施例1~6に詳細を示す。
 [実施例1]
 ガラス製フラスコに、上記MA-ABMD、4.06g(0.0100mol)とポリエチレングリコールジアクリレート(新中村化学工業株式会社製、製品名:A-200)0.76g(0.0025mol)、および重合開始剤としての過ピバル酸-tert-ブチル(日本油脂株式会社製、製品名:パーブチルPV)0.10gを量り入れ、十分に攪拌しながら脱気し、窒素ガスを導入した。予め用意した一対のガラス板の間に、粒径、60μmのスペーサーを挟み込み、その隙間部分に毛細管現象を利用して、前記溶液を注入した。窒素雰囲気下、80℃に昇温させたオーブン内にて30分間保持した後、毎分1℃で昇温させ、さらに120℃に60分間保持して硬化させた。室温まで冷却後、水に浸漬することで、厚さ、0.05mm、大きさ、60mm×60mmの固体電解質膜、即ち、一般式(5)で表される樹脂からなる固体電解質膜を得た。
Figure JPOXMLDOC01-appb-C000017
式(5)中、X、Y、Zは、正の整数で重合度を表す。
 [実施例2]
 ガラス製フラスコに、MA-ABMD、2.54g(0.0063mol)、ポリエチレングリコールジアクリレート(新中村化学工業株式会社製、製品名、A-200)、1.89g(0.0063mol)および重合開始剤としての過ピバル酸-tert-ブチル(日本油脂株式会社製、製品名、パーブチルPV)、0.10gを量り入れ、十分に攪拌しながら、窒素ガスを導入し、脱気した。その後、実施例1と同様の手順で該溶液を硬化させて固体電解質膜を得た。
 [実施例3]
 ガラス製フラスコに、MA-ABMD、1.51g(0.0037mol)、ポリエチレングリコールジアクリレート(新中村化学工業株式会社製、製品名:A-200)、2.64g(0.0088mol)、および重合開始剤としての過ピバル酸-tert-ブチル(日本油脂株式会社製、製品名、パーブチルPV)0.10gを量り入れ、十分に攪拌しながら、窒素ガスを導入し、脱気した。その後、実施例1と同様の手順で該溶液を硬化させて固体電解質膜を得た。
 [実施例4]
 ガラス製フラスコに、MA-ABMD、1.02g(0.0025mol)、ポリエチレングリコールジアクリレート(新中村化学工業株式会社製、製品名、A-200)、3.02g(0.0100mol)および重合開始剤としての過ピバル酸-tert-ブチル(日本油脂株式会社製、製品名、パーブチルPV)、0.10gを加え、十分に攪拌しながら窒素ガスを導入し、脱気した。その後、実施例1と同様の手順で該溶液を硬化させて固体電解質膜を得た。
 [実施例5]
 ガラス製フラスコ中に、MA-ABMD、0.51g(0.0013mol)、ポリエチレングリコールジアクリレート(新中村化学工業株式会社製、製品名:A-200)、3.40g(0.0113mol)および重合開始剤としての過ピバル酸-tert-ブチル(日本油脂株式会社製、製品名、パーブチルPV)、0.10gを量り入れ、十分に攪拌しながら、窒素ガスを導入し、脱気した。その後、実施例1と同様の手順で該溶液を硬化させて固体電解質膜を得た。。
 [実施例6]
 ガラス製フラスコに、MA-ABMD、0.25g(0.0006mol)、ポリエチレングリコールジアクリレート(新中村化学工業株式会社製、製品名、A-200)、3.59g(0.0119mol)および重合開始剤としての過ピバル酸-tert-ブチル(日本油脂株式会社製、製品名、パーブチルPV)、0.10gを量り入れ、十分に攪拌しながら、窒素ガスを導入し、脱気した。その後、実施例1と同様の手順で該溶液を硬化させて固体電解質膜を得た。
 [比較例1]
 上記MA-ABMDを用いないで、固体電解質膜を作製した。具体的には、ガラス製フラスコ中に、ポリエチレングリコールジアクリレート(新中村化学工業株式会社製、製品名:A-200)、3.78g(0.0125mol)および重合開始剤としての過ピバル酸-tert-ブチル(日本油脂株式会社製、製品名:パーブチルPV)、0.10gを加え、十分に攪拌しながら、窒素ガスを導入し、脱気した。その後、実施例1と同様の手順で該溶液を硬化させて固体電解質膜を得た。
 [比較例2]
 米国デュポン社で製造される、パーフルオロカーボンスルホン酸系ポリマーからなる固体電解質膜、商品名ナフィオン、品番112を使用した。
 [性能評価]
 実施例1~6で作製した本発明の固体電解質膜、および本発明の固体電解質膜の技術の範疇に属さない、比較例1のMA-ABMDを用いない固体電解質膜および比較例2の市販の固体電解質膜のプロトン伝導度およびメタノール透過速度を測定し、結果を比較した。
 (プロトン伝導度)
 プロトン伝導度は、以下の手法で測定した。電解質膜と白金フィルム電極を密着させ、電極に電気化学インピーダンス測定装置(Gamry Instruments社製、VFP600)を接続し、周波数1Hz~1MHzの領域で交流インピーダンス測定を行い、交流抵抗を求めた。電極間距離と抵抗との勾配から、次式により、プロトン伝導性膜の比抵抗を算出し、比抵抗の逆数から交流インピーダンスを算出した。尚、電極には、スパッタ装置により基板フィルム上に白金をスパッタリングしたフィルム電極を使用した。フィルム電極は、電極間距離を精密に制御することができ、さらに、電極の押し付け圧力による膜の変形がなく、非抵抗を良好に測定する事ができる。比抵抗およびプロトン伝導度に算出式を以下に示す。
Figure JPOXMLDOC01-appb-M000018
 (メタノール透過速度)
 メタノール透過速度は、以下の手法で測定した。イオン交換水に1日浸漬した上記固体電解質膜を、株式会社テクノシグマ製のセパラブルタイプのガラスセルに挟み込み、片方のセルに10質量%、または30質量%に調整したメタノールと水の混合液、20mlを入れ、もう一方のセルには、イオン交換水、20mlを入れた。25℃下、攪拌し、イオン交換水中のメタノール濃度をガスクロマトグラフ(株式会社島津製作所製、型番、GC2010)を用いて測定した。
 実施例1~6および比較例1~2で得られた固体電解質膜のプロトン伝導度およびメタノール透過速度の測定結果を表1に示す。尚、表1中の%は質量%である。
Figure JPOXMLDOC01-appb-T000019
 表1から明らかなように、ビス(パーフルオロアルカンスルホニル)メチド部位を含む実施例1~6の本発明の固体電解質膜と、ビス(パーフルオロアルカンスルホニル)メチド部位を含まず本発明の範疇に属さない比較例1の固体電解質膜とを比較すると、本発明の実施例1~6で得た固体電解質膜の方が、プロトン伝導度が一桁以上大きいことが分かる。特に、実施例3の固体電解質膜のプロトン伝導度は特に大きく、比較例2の市販の固体電解質膜と同等レベルであった。また、実施例の固体電解質膜のメタノール(MeOH)透過性は、比較例2の市販固体電解質膜と比較して、メタノールの濃度に関係なく、1桁以上も低い値を示し、エタノール(EtOH)透過性についても同様に低い値であった。本実施例より、実施例1~6の本発明の固体電解質膜は、良好なプロトン伝導性を有し、特に、実施例3の固体電解質膜は、メタノール透過性が低く、アルコール遮断性に優れ、DMFC用の固体電解質膜として好適に使用されることがわかった。
 上述の通り、本発明によれば、化学構造中に疎水性且つ強酸性基であるビス(パーフルオロアルカンスルホニル)メチド部位を有しながら、ファンデルワールス力で水と配位するポリエーテル構造を導入することで、高いプロトン伝導性を有し、且つメタノール透過性を大幅に低減できる固体高分子電解質膜が得られる。本発明の固体電解質膜は、その優れたアルコール遮断性・プロトン伝導性から、PEFCなどの固体高分子型燃料電池、特にDMFCに好適に使用される。また、本発明の固体電解質膜の製造方法は、工業的に簡便であり、かつ多量生産に適ししている。
 以上、本発明の実施形態について説明したが、本発明の範囲は上記実施形態の説明に拘束されることはなく、本発明の趣旨を損なわない範囲で適宜変更し実施することができる。また、本明細書において引用された全ての刊行物、例えば先行技術文献、及び公開公報、特許公報その他の特許文献は、参照として本明細書に組み込まれる。

Claims (10)

  1. 一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは水素原子またはメチル基、Yは酸素原子またはNHを表す。Rfは炭素数1~4のパーフルオロアルキル基を表す。Wは連結基であって、炭素数2~4の直鎖状もしくは炭素数3~4の分岐鎖状のアルキレン基、または炭素数5~8の環状の炭化水素基であり、分岐鎖または橋架け構造を有してもよい。)
    で表されるビス(パーフルオロアルカンスルホニル)メチド部位を含む繰り返し単位を有する樹脂からなる固体電解質膜。
  2. 一般式(1)で表される繰り返し単位を有する樹脂が、一般式(2):
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは水素原子またはメチル基、Yは酸素原子またはNHを表す。Rfは炭素数1~4のパーフルオロアルキル基を表す。Wは連結基で炭素数2~4の直鎖状もしくは分岐鎖状のアルキレン基、または炭素数5~8の環状の炭化水素基であり、分岐鎖または橋架け構造を有してもよい。)
    で表されるビス(パーフルオロアルカンスルホニル)メチド部位を含む重合性化合物が重合した重合体であることを特徴とする、請求項1に記載の固体電解質膜。
  3. 一般式(2)で表される重合性化合物が、構造式(3):
    Figure JPOXMLDOC01-appb-C000003
    で表されるビス(トリフルオロメチルスルホニル)メチド部位を含む重合性化合物(MA-ABMD)であることを特徴とする、請求項2に記載の固体電解質。
  4. 一般式(1)で表される繰り返し単位を有する樹脂が、一般式(2)で表される重合性化合物と架橋性化合物を重合させてなる樹脂からなることを特徴とする、請求項1から請求項3のいずれか1項に記載の固体電解質膜。
  5. 架橋性化合物が一般式(4):
    Figure JPOXMLDOC01-appb-C000004
    (式中、Rはそれぞれ独立に水素原子またはメチル基、Yはそれぞれ独立に酸素原子またはNHを表す。Zは炭素数1~4の直鎖状もしくは分岐鎖状のアルケニル基を表し、エーテル結合、エステル結合、アミド結合またはアルコキシ基を有していてもよい。式中、mは1~30、nは1~5の整数。)
    で表される化合物であることを特徴とする、請求項4に記載の固体電解質膜。
  6. 固体電解膜の全質量を基準とする質量百分率で表して、ビス(パーフルオロアルカンスルホニル)メチド部位を含む繰り返し単位の含有が6質量%以上、84質量%以下であることを特徴とする、請求項1から請求項5のいずれか1項に記載の固体電解質膜。
  7. 一般式(2)で表されるビス(パーフルオロアルカンスルホニル)メチド部位を含む重合性化合物と架橋性化合物を重合することにより、ビス(パーフルオロアルカンスルホニル)メチド部位を樹脂に含有させることを特徴とする、請求項4から請求項6のいずれか1項に記載の固体電解質膜の製造方法。
  8. 請求項1から請求項6のいずれか1項に記載の固体電解質膜を用いた燃料電池用膜・電極接合体。
  9. 請求項1から請求項6のいずれか1項に記載の固体電解質膜を用いた固体高分子型燃料電池。
  10. 請求項1から請求項6のいずれか1項に記載の固体電解質膜を用いたダイレクトメタノール型燃料電池。
PCT/JP2011/053091 2010-02-16 2011-02-15 固体電解質膜およびその製造方法 WO2011102327A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/574,167 US9171655B2 (en) 2010-02-16 2011-02-15 Solid electrolyte film, and method for producing same
EP11744613.8A EP2511975B1 (en) 2010-02-16 2011-02-15 Solid electrolyte film, and method for producing same
KR1020127022575A KR101423576B1 (ko) 2010-02-16 2011-02-15 고체 전해질막, 그 제조 방법, 연료 전지용 막·전극 접합체, 고체 고분자형 연료 전지 및 다이렉트 메탄올형 연료 전지

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-030779 2010-02-16
JP2010030779 2010-02-16
JP2011025965A JP5764956B2 (ja) 2010-02-16 2011-02-09 固体電解質膜およびその製造方法
JP2011-025965 2011-02-09

Publications (1)

Publication Number Publication Date
WO2011102327A1 true WO2011102327A1 (ja) 2011-08-25

Family

ID=44482912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053091 WO2011102327A1 (ja) 2010-02-16 2011-02-15 固体電解質膜およびその製造方法

Country Status (5)

Country Link
US (1) US9171655B2 (ja)
EP (1) EP2511975B1 (ja)
JP (1) JP5764956B2 (ja)
KR (1) KR101423576B1 (ja)
WO (1) WO2011102327A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012141296A1 (ja) * 2011-04-15 2012-10-18 セントラル硝子株式会社 プロトン伝導性高分子膜およびそれを用いた膜―電極接合体並びに高分子電解質型燃料電池
JP2014205662A (ja) * 2013-03-19 2014-10-30 三菱レイヨン株式会社 (メタ)アクリル酸エステルの製造方法
CN104661998A (zh) * 2012-09-25 2015-05-27 中央硝子株式会社 包含双(全氟烷基磺酰基)甲基的化合物和盐的制造方法、使用了其的固体电解质膜

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105009341A (zh) * 2012-12-17 2015-10-28 纳幕尔杜邦公司 具有包含离聚物的隔膜的液流电池
WO2016076129A1 (ja) * 2014-11-13 2016-05-19 セントラル硝子株式会社 固体高分子形燃料電池の電極触媒バインダー
CN114716132B (zh) * 2022-03-08 2023-04-25 机械工业仪器仪表综合技术经济研究所 一种基于纳米粉末制备玻璃的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003331647A (ja) * 2002-03-06 2003-11-21 Ube Ind Ltd 高分子電解質組成物、高分子電解質膜およびその製造法
WO2004001771A1 (ja) * 2002-06-19 2003-12-31 Ube Industries, Ltd. 高分子電解質膜およびその製造法
JP2005162623A (ja) * 2003-11-28 2005-06-23 Toyota Motor Corp モノマー化合物、グラフト共重合化合物、及びそれらの製造方法、高分子電解質膜、並びに燃料電池
US6956083B2 (en) * 2001-05-31 2005-10-18 The Regents Of The University Of California Single ion conductor cross-linked polymeric networks
JP2006032181A (ja) * 2004-07-20 2006-02-02 Honda Motor Co Ltd 固体高分子型燃料電池用膜・電極構造体及び固体高分子型燃料電池
JP2006179301A (ja) 2004-12-22 2006-07-06 Japan Atomic Energy Agency 架橋構造を導入した高耐久性燃料電池用高分子電解質膜
JP2008112712A (ja) 2006-08-09 2008-05-15 Hitachi Chem Co Ltd プロトン伝導性電解質膜、その製造方法、及びそれを用いた膜−電極接合体、燃料電池

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3704311A (en) * 1969-03-14 1972-11-28 Minnesota Mining & Mfg Functional bis(perfluoroalkylsulfonyl)alkyl compounds
FR2723098B1 (fr) * 1994-07-28 1996-10-04 Centre Nat Rech Scient Materiau macromoleculaire comportant des substituants ioniques et son utilisation dans les systemes electrochimiques
ATE231169T1 (de) * 1998-03-03 2003-02-15 Du Pont Im wesentlichen fluorierte ionomere
JPH11260407A (ja) * 1998-03-16 1999-09-24 Mitsubishi Paper Mills Ltd リチウム2次電池用高分子電解質
JP4104290B2 (ja) * 2001-02-27 2008-06-18 セントラル硝子株式会社 電気化学ディバイス用電解質、その電解液または固体電解質並びに電池
JP3773824B2 (ja) * 2001-03-12 2006-05-10 独立行政法人科学技術振興機構 高分子担持型アリールビス(パーフルオロアルキルスルホニル)メタン
DE60238512D1 (de) 2001-11-29 2011-01-13 Ube Industries Polymerelektrolytzusammensetzung
JP4139986B2 (ja) * 2002-03-19 2008-08-27 トヨタ自動車株式会社 高分子電解質膜及びその製造方法並びに燃料電池
CA2646797A1 (en) * 2006-03-27 2007-10-11 Toyota Jidosha Kabushiki Kaisha Composite electrolyte membrane having imido-network polymer cross-linked with strongly-acidic groups, method for manufacturing the same, and fuel cell
KR101213586B1 (ko) * 2008-03-13 2012-12-18 샌트랄 글래스 컴퍼니 리미티드 신규 함불소 카르바니온 구조를 가지는 염 및 그 유도체, 광산발생제 및 이것을 사용한 레지스트재료 및 패턴 형성방법
JP5481944B2 (ja) * 2008-06-12 2014-04-23 セントラル硝子株式会社 含フッ素重合体およびそれを用いた帯電防止剤
JP2010053257A (ja) * 2008-08-28 2010-03-11 Central Glass Co Ltd 含フッ素重合体およびそれを用いた高分子固体電解質
JP5644252B2 (ja) * 2009-08-20 2014-12-24 セントラル硝子株式会社 燃料電池用固体電解質膜およびその製造方法
JP6019686B2 (ja) * 2011-04-15 2016-11-02 セントラル硝子株式会社 プロトン伝導性高分子膜およびそれを用いた膜―電極接合体並びに高分子電解質型燃料電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6956083B2 (en) * 2001-05-31 2005-10-18 The Regents Of The University Of California Single ion conductor cross-linked polymeric networks
JP2003331647A (ja) * 2002-03-06 2003-11-21 Ube Ind Ltd 高分子電解質組成物、高分子電解質膜およびその製造法
WO2004001771A1 (ja) * 2002-06-19 2003-12-31 Ube Industries, Ltd. 高分子電解質膜およびその製造法
JP2005162623A (ja) * 2003-11-28 2005-06-23 Toyota Motor Corp モノマー化合物、グラフト共重合化合物、及びそれらの製造方法、高分子電解質膜、並びに燃料電池
JP2006032181A (ja) * 2004-07-20 2006-02-02 Honda Motor Co Ltd 固体高分子型燃料電池用膜・電極構造体及び固体高分子型燃料電池
JP2006179301A (ja) 2004-12-22 2006-07-06 Japan Atomic Energy Agency 架橋構造を導入した高耐久性燃料電池用高分子電解質膜
JP2008112712A (ja) 2006-08-09 2008-05-15 Hitachi Chem Co Ltd プロトン伝導性電解質膜、その製造方法、及びそれを用いた膜−電極接合体、燃料電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2511975A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012141296A1 (ja) * 2011-04-15 2012-10-18 セントラル硝子株式会社 プロトン伝導性高分子膜およびそれを用いた膜―電極接合体並びに高分子電解質型燃料電池
JP2012230890A (ja) * 2011-04-15 2012-11-22 Central Glass Co Ltd プロトン伝導性高分子膜およびそれを用いた膜―電極接合体並びに高分子電解質型燃料電池
US9318764B2 (en) 2011-04-15 2016-04-19 Central Glass Company, Limited Proton conducting polymer membrane, membrane-electrode assembly using same, and polymer electrolyte fuel cell
CN104661998A (zh) * 2012-09-25 2015-05-27 中央硝子株式会社 包含双(全氟烷基磺酰基)甲基的化合物和盐的制造方法、使用了其的固体电解质膜
JP2014205662A (ja) * 2013-03-19 2014-10-30 三菱レイヨン株式会社 (メタ)アクリル酸エステルの製造方法

Also Published As

Publication number Publication date
KR20120129932A (ko) 2012-11-28
JP2011192640A (ja) 2011-09-29
KR101423576B1 (ko) 2014-07-25
EP2511975B1 (en) 2014-04-16
JP5764956B2 (ja) 2015-08-19
US20120301811A1 (en) 2012-11-29
EP2511975A1 (en) 2012-10-17
EP2511975A4 (en) 2013-07-31
US9171655B2 (en) 2015-10-27

Similar Documents

Publication Publication Date Title
JP5764956B2 (ja) 固体電解質膜およびその製造方法
JP5702093B2 (ja) 燃料電池用高分子膜組成物、これを用いて製造された高分子膜、ならびにこれを含む膜−電極接合体及び燃料電池
JP5862372B2 (ja) ポリマーの製造方法、固体高分子形燃料電池用電解質膜の製造方法および膜電極接合体の製造方法
JP2008159591A (ja) リン酸基含有固体高分子電解質(複合)膜及びその製造方法
US20080118808A1 (en) Electrolyte membrane for polymer electrolyte fuel cell, process for its production and membrane-electrode assembly for polymer electrolyte fuel cell
JPWO2006004098A1 (ja) 電解質膜および当該電解質膜を用いた燃料電池
EP3239189A1 (en) Electrolyte material, liquid composition, and membrane-electrode assembly for solid polymer fuel cell
JP2008311226A (ja) 複合高分子電解質膜、膜−電極接合体および燃料電池
Lan et al. Cross-linked anion exchange membranes with pendent quaternary pyrrolidonium salts for alkaline polymer electrolyte membrane fuel cells
JP5032175B2 (ja) 固体高分子型燃料電池用膜−電極構造体
US8609743B2 (en) Method for producing electrolyte membrane for fuel cell and method for producing electrolyte membrane-electrode assembly for fuel cell
KR20130048519A (ko) 스타이렌-부타디엔 삼중 블록 공중합체, 및 이의 제조 방법
EP3214070B1 (en) Fluorine-based compound for brancher, polymer using same, and polymer electrolyte membrane using same
JP4979236B2 (ja) 架橋電解質膜及びその製造方法
JP2011065838A (ja) 固体高分子形燃料電池用膜電極接合体
JP2008166199A (ja) 高分子電解質、高分子電解質膜及びこれを備える燃料電池
JP6019686B2 (ja) プロトン伝導性高分子膜およびそれを用いた膜―電極接合体並びに高分子電解質型燃料電池
JP2005248114A (ja) 珪素含有高分子化合物、固体高分子電解質膜形成用組成物、固体高分子電解質膜及び当該膜の製造方法、並びに燃料電池
JP4390047B2 (ja) 固体高分子電解質膜及びその製造方法並びに燃料電池
EP2081195B1 (en) Solid polyelectrolyte, process for production thereof, and membrane/electrode assembly for fuel cells made by using the polyelectrolyte
JP2008166004A (ja) 固体高分子型燃料電池用膜−電極構造体
JP2006032302A (ja) 電解質膜および当該電解質膜を用いた燃料電池
JP2010248488A (ja) 組成物、共重合体、電解質膜及びそれらの製造方法、並びに燃料電池
KR20110082853A (ko) 연료전지용 고분자 막 조성물 및 이를 이용한 고분자 막, 막전극 접합체 및 연료전지
KR20180050142A (ko) 중합체, 이를 포함하는 전해질막, 이를 포함하는 연료전지 및 레독스 플로우 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744613

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011744613

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13574167

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127022575

Country of ref document: KR

Kind code of ref document: A