WO2011102326A1 - ガス分離複合膜 - Google Patents

ガス分離複合膜 Download PDF

Info

Publication number
WO2011102326A1
WO2011102326A1 PCT/JP2011/053090 JP2011053090W WO2011102326A1 WO 2011102326 A1 WO2011102326 A1 WO 2011102326A1 JP 2011053090 W JP2011053090 W JP 2011053090W WO 2011102326 A1 WO2011102326 A1 WO 2011102326A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite membrane
group
crosslinking agent
vinyl alcohol
alcohol polymer
Prior art date
Application number
PCT/JP2011/053090
Other languages
English (en)
French (fr)
Inventor
修司 浅野
延藤 芳樹
藤原 直樹
淑紅 段
伸吾 風間
Original Assignee
財団法人地球環境産業技術研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人地球環境産業技術研究機構 filed Critical 財団法人地球環境産業技術研究機構
Priority to EP11744612.0A priority Critical patent/EP2537577A4/en
Priority to CN201180019379.5A priority patent/CN103037955B/zh
Priority to JP2012500590A priority patent/JP5629751B2/ja
Priority to US13/579,169 priority patent/US8721774B2/en
Publication of WO2011102326A1 publication Critical patent/WO2011102326A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/60Polyamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/028Polyamidoamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/002Dendritic macromolecules
    • C08G83/003Dendrimers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals

Definitions

  • the present invention relates to a gas separation composite membrane that separates a specific gas species from a mixed gas containing water vapor.
  • separation technology using a separation membrane has been remarkably advanced.
  • separation techniques for example, from separation of liquids and solids such as separation of impurities to obtain drinking water, to separation of gases such as separation of nitrogen from air and enrichment of oxygen.
  • gases such as separation of nitrogen from air and enrichment of oxygen.
  • the establishment of a technology to selectively separate carbon dioxide from mixed gas is desired from the viewpoint of high-efficiency recovery of fossil resources and prevention of global warming. It has been implemented.
  • a composite membrane in which a hydrophilic polymer material cross-linked with a cross-linking agent is used as a matrix and a layer containing a specific amine compound is formed on the surface of the porous support membrane.
  • Patent Document 1 This composite membrane can be said to be a separation membrane that not only has high carbon dioxide selectivity but can also withstand a certain pressure difference.
  • moderate hydrophilicity for developing affinity between the mixed gas and the membrane surface and structural change of the separation membrane occur in a water vapor atmosphere.
  • the contradictory nature of water resistance is required.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a gas separation composite membrane capable of separating a specific gas species even with a mixed gas containing water vapor.
  • a gas separation composite containing a vinyl alcohol polymer modified with a specific amount by a carboxyl group, a polyamidoamine dendrimer, and a crosslinking agent having an azetidinium group.
  • the film is a mass ratio (A) / (C) of the polyamidoamine dendrimer (A) and the crosslinking agent (C) having an azetidinium group, and a crosslinking agent having a vinyl alcohol polymer (B) and an azetidinium group (
  • a gas separation composite membrane that has high carbon dioxide selectivity even in a mixed gas containing water vapor and can be put to practical use by having a mass ratio (B) / (C) with C) in a specific range. As a result, the present invention was found.
  • a gas separation composite membrane comprising a polyamidoamine dendrimer (A) having a group represented by formula (A), a vinyl alcohol polymer (B) containing 0.5 to 5 mol% of a carboxyl group, and a crosslinking agent (C) having an azetidinium group
  • the mass ratio (A) / (C) of the polyamidoamine dendrimer (A) and the crosslinking agent (C) having an azetidinium group is 20/80 to 65/35
  • the vinyl alcohol polymer (B) This is solved by providing a gas separation composite membrane characterized in that the mass ratio (B) / (C) to the crosslinking agent (C) having an azetidinium group is 20/80 to 80/20.
  • the weight retention of the composite membrane is preferably 60% by mass or more, and the nitrogen element weight retention is preferably 60% by mass or more. It is.
  • the mass ratio (B) / (C) of the alcohol polymer (B) to the azetidinium group-containing crosslinking agent (C) is 20/80 to 80/20, and the vinyl alcohol polymer (B) is polyfunctional.
  • This can also be solved by providing a gas separation composite membrane characterized in that the mass ratio (B) / (D) to the functional crosslinking agent (D) is 60/40 to 90/10.
  • the weight retention of the composite membrane is preferably 60% by mass or more, and the nitrogen element weight retention is preferably 60% by mass or more. It is.
  • the gas separation composite membrane of the present invention can separate a specific gas species even with a mixed gas containing water vapor.
  • the gas separation composite membrane of the present invention is a gas separation comprising a polyamidoamine dendrimer (A), a vinyl alcohol polymer (B) containing 0.5 to 5 mol% of a carboxyl group, and a crosslinking agent (C) having an azetidinium group.
  • the composite membrane has a mass ratio (A) / (C) of the polyamidoamine dendrimer (A) and the crosslinking agent (C) having an azetidinium group of 20/80 to 65/35, and a vinyl alcohol polymer (
  • the mass ratio (B) / (C) between B) and the crosslinking agent (C) having an azetidinium group is 20/80 to 80/20.
  • the polyamidoamine dendrimer (A) used in the present invention has the formula (1) [Wherein A 1 represents a divalent organic residue having 1 to 3 carbon atoms, and n represents an integer of 0 or 1. ] Or a group represented by formula (2) [Wherein A 2 represents a divalent organic residue having 1 to 3 carbon atoms, and n represents an integer of 0 or 1. ] It has the group shown by. Among these, the polyamidoamine dendrimer (A) which has group shown by Formula (1) is used suitably.
  • examples of the divalent organic residue having 1 to 3 carbon atoms represented by A 1 and A 2 include linear or branched alkylene having 1 to 3 carbon atoms Groups. Specific examples of such alkylene groups, -CH 2 -, - CH 2 -CH 2 -, - CH 2 -CH 2 -CH 2 -, - CH 2 -CH (CH 3) - is like, Of these, —CH 2 — is particularly preferable.
  • n 1 is preferable because affinity with a mixed gas containing water vapor increases.
  • the polyamidoamine dendrimer (A) used in the present invention can increase the number of primary amines in the molecule by forming a branched structure by an amidation reaction with ethylenediamine and increasing the number of branches. .
  • any generation of polyamidoamine dendrimers can be suitably used without being limited by the number of branches, but the number of primary amines per unit weight is large, and the formula that can expect the largest carbon dioxide adsorption capacity.
  • the 0th generation polyamidoamine dendrimer (3) is particularly preferably used.
  • the vinyl alcohol polymer (B) used in the present invention contains 0.5 to 5 mol% of carboxyl groups.
  • the vinyl alcohol polymer (B) used in the present invention contains 0.5 to 5 mol% of carboxyl groups.
  • the vinyl alcohol polymer (B) is bonded and crosslinked with the crosslinking agent (C) having an azetidinium group.
  • the azetidinium group which is a partial structure of the crosslinking agent (C) reacts with the carboxyl group in the vinyl alcohol polymer (B) to be crosslinked.
  • the content of carboxyl group in the vinyl alcohol polymer (B) is less than 0.5 mol%, the separation performance of the gas species in the gas separation composite membrane of the present invention tends to deteriorate with time, and the water resistance
  • the amount exceeds 5 mol% the stability of the vinyl alcohol polymer (B) solution is lowered, it is difficult to obtain a homogeneous composite film, and the target composite film is excellent in water resistance. May not be obtained.
  • the content of carboxyl group is preferably 0.75 to 4 mol%, particularly preferably 1 to 2 mol%.
  • the viscosity average polymerization degree of the vinyl alcohol polymer (B) (hereinafter sometimes abbreviated as polymerization degree) is preferably 300 to 2500, more preferably 330 to 2200, and particularly preferably 360 to 2000.
  • the degree of polymerization is less than 300, the function constituting the matrix of the composite membrane may be reduced, and the water resistance of the composite membrane may be reduced.
  • the viscosity of the solution comprising the polyamidoamine dendrimer (A), the vinyl alcohol polymer (B), and the cross-linking agent (C) having an azetidinium group at the time of producing the composite film is high. In some cases, the workability may be lowered, and a homogeneous composite film may not be obtained.
  • the saponification degree of the vinyl alcohol polymer (B) used in the present invention is preferably 95 to 99.9 mol%. If the degree of saponification is less than 95 mol%, the water resistance of the composite membrane may be reduced. If it exceeds 99.9 mol%, the workability during film formation may be reduced or the composite membrane may be produced. There is a risk that the viscosity stability of a solution comprising the polyamidoamine dendrimer (A), the vinyl alcohol polymer (B), and the azetidinium group-containing cross-linking agent (C) is lowered.
  • the saponification degree of the vinyl alcohol polymer (B) is more preferably 96 to 99 mol%.
  • the content of the vinyl alcohol unit in the vinyl alcohol polymer (B) used in the present invention is preferably 70 mol% or more, more preferably 80 mol% or more, and further preferably 90 mol% or more. .
  • the vinyl alcohol polymer (B) used in the present invention may contain an ethylene unit.
  • the ethylene unit content in the vinyl alcohol polymer (B) is preferably 0 to 15 mol%, particularly preferably 0 to 8 mol%. When the ethylene unit content exceeds 15 mol%, not only the water absorption amount of the composite membrane may be reduced, but also the compatibility with the polyamidoamine dendrimer (A) is reduced, and a homogeneous composite membrane is obtained. There is no fear.
  • the vinyl alcohol polymer (B) contains monomer units other than vinyl alcohol units, vinyl ester units, ethylene units, and units containing carboxyl groups as long as the effects of the present invention are not impaired. Also good.
  • monomer units include acrylic acid esters such as methyl acrylate, ethyl acrylate, n-propyl acrylate, and i-propyl acrylate; methacrylic acid and salts thereof; methyl methacrylate, ethyl methacrylate, methacryl Methacrylic acid esters such as n-propyl acid and i-propyl methacrylate; acrylamide; acrylamide derivatives such as N-ethylacrylamide; methacrylamide; methacrylamide derivatives such as N-methylmethacrylamide and N-ethylmethacrylamide; methyl vinyl ether; Vinyl ethers such as ethyl vinyl ether, n-propyl vinyl ether and i-propyl vinyl ether; Nitriles such
  • the crosslinking agent (C) used in the present invention is a crosslinking agent used not only for crosslinking the vinyl alcohol polymer (B) but also for crosslinking the polyamidoamine dendrimer (A).
  • the compound is not particularly limited as long as it is a compound having an azetidinium group.
  • a compound having a partial structure represented by the formula (4) described later is preferably used.
  • the polyamide epichlorohydrin resin is particularly preferably used as the crosslinking agent (C) having an azetidinium group.
  • crosslinking agent (C) having an azetidinium group one having a partial structure represented by the following formula (4) is preferably used.
  • R 1 and R 2 are each independently an alkylene group having 1 to 20 carbon atoms which may have a substituent
  • X 1 , X 2 , X 3 , X 4 , X 5 and X 6 is each independently a hydrogen atom, a hydroxyl group, or an organic group having 1 to 20 carbon atoms which may have a substituent
  • Y ⁇ is an anion
  • R 1 and R 2 are each independently an alkylene group having 1 to 20 carbon atoms which may have a substituent.
  • alkylene group having 1 to 20 carbon atoms include methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, and octylene group.
  • X 1 , X 2 , X 3 , X 4 , X 5 and X 6 each independently have 1 to 20 carbon atoms which may have a hydrogen atom, a hydroxyl group or a substituent.
  • the organic group having 1 to 20 carbon atoms which may have a substituent include, for example, an alkyl group having 1 to 20 carbon atoms which may have a substituent and 1 to 1 carbon atoms which may have a substituent.
  • X 3 and X 4 are preferably at least one selected from the group consisting of organic groups having 1 to 20 carbon atoms, and X 3 and X 4 are preferably at least one selected from the group consisting of a hydrogen atom and a hydroxyl group, X 1 , X 2 , X 5 and X 6 are each a hydrogen atom, and X 3 and X 4 are more preferably selected from the group consisting of a hydrogen atom and a hydroxyl group, and X 3 or X 4 is a hydroxyl group. More preferably.
  • Y 2 ⁇ is an anion.
  • the crosslinking agent (C) having the azetidinium group is bonded to both the polyamide amine dendrimer (A) and the vinyl alcohol polymer (B). It will be crosslinked. That is, the azetidinium group which is a partial structure of the crosslinking agent (C) reacts with the amino group in the polyamide amine dendrimer (A) to be crosslinked and reacts with the carboxyl group in the vinyl alcohol polymer (B). The inventors speculate that they are crosslinked.
  • the crosslinking reaction using the crosslinking agent (C) having an azetidinium group is preferably performed at 60 to 150 ° C.
  • the mass ratio (A) / (C) of the polyamidoamine dendrimer (A) and the crosslinking agent (C) having an azetidinium group is 20/80 to 65/35.
  • the mass ratio (A) / (C) is less than 20/80, since the ratio of (A) is not sufficient, high carbon dioxide selectivity may not be obtained.
  • the mass ratio (A) / (C ) Exceeds 65/35, the stability of the polyamidoamine dendrimer (A) in the gas separation composite membrane with respect to the gas having pressure may be lowered, and as a result, high carbon dioxide selectivity may not be obtained. is there.
  • the mass ratio (A) / (C) is preferably 35/65 to 65/35, and more preferably 40/60 to 65/35.
  • the mass ratio (B) / (C) between the vinyl alcohol polymer (B) and the cross-linking agent (C) having an azetidinium group is 20/80 to 80/20.
  • the mass ratio (B) / (C) is less than 20/80, the film forming property may be deteriorated and a homogeneous gas separation composite membrane may not be obtained.
  • the mass ratio (B) / (C) is When it exceeds 80/20, there is a possibility that the water resistance is lowered.
  • the mass ratio (B) / (C) is preferably 25/75 to 80/20.
  • the crosslinking agent (D) used in the present invention is a polyfunctional crosslinking agent having no azetidinium group. That is, the crosslinking agent (D) used in the present invention is a crosslinking agent used for crosslinking the vinyl alcohol polymers (B) or the polyamide amine dendrimer (A) and the vinyl alcohol polymer (B). However, it is not particularly limited, and examples thereof include a compound having two or more functional groups such as an epoxy group, an aldehyde group, and a halogen atom, a titanium-based crosslinking agent, and a zirconium-based crosslinking agent.
  • the polyfunctional crosslinking agent (D) is preferably at least one selected from the group consisting of a titanium-based crosslinking agent, a zirconium-based crosslinking agent, and a crosslinking agent having an epoxy group or an aldehyde group as a functional group. .
  • crosslinking agent having an epoxy group examples include epichlorohydrin, diepoxy alkane, diepoxy alkene, (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, and the like. In particular, ethylene glycol diglycidyl ether is preferable.
  • the crosslinking agent having an aldehyde group include dialdehyde compounds such as glutaraldehyde, succinaldehyde, malondialdehyde, terephthalaldehyde, and isophthalaldehyde, and glutaraldehyde is particularly preferable.
  • titanium alkoxide-based crosslinking agents such as titanium diisopropoxybis (triethanolaminate) and titanium lactate ammonium salt are preferable.
  • zirconium-based crosslinking agent examples include zirconium chloride, zirconium sulfate, zirconium nitrate, zirconium acetate, zirconium carbonate, ammonium zirconium carbonate, zirconium stearate, zirconium octylate, and zirconium silicate.
  • zirconium compounds water-soluble compounds are preferable, and those having no chlorine are more preferable. Specific examples include zirconium sulfate, zirconium nitrate, zirconium acetate, and ammonium zirconium carbonate.
  • the mass ratio (B) / (D) between the vinyl alcohol polymer (B) and the polyfunctional crosslinking agent (D) is not particularly limited, and is preferably 60/40 to 90/10.
  • the mass ratio (B) / (D) is less than 60/40, the film forming operation becomes difficult due to a decrease in solution stability, and as a result, a homogeneous gas separation composite membrane may not be obtained.
  • (B) / (D) exceeds 90/10, the water resistance may decrease.
  • the mass ratio (B) / (D) is more preferably 65/35 to 85/15.
  • the weight retention of the composite membrane is preferably in the range of 60 to 100% by mass.
  • the weight retention is in this range, a gas separation composite membrane having water resistance and no reduction in carbon dioxide selectivity can be suitably obtained.
  • the present inventors have confirmed that the weight retention in the gas separation composite membrane of the present invention is affected by the crosslinking rate and molecular weight of the polyamidoamine dendrimer (A) and the vinyl alcohol polymer (B). is doing.
  • the crosslinking rate can be adjusted by the mass ratio (A) / (C) of the above-described polyamidoamine dendrimer (A) and the crosslinking agent (C) having an azetidinium group.
  • a polyfunctional crosslinking agent It can be adjusted by adding D). Moreover, it can adjust also by bridge
  • the polyamidoamine dendrimer (A) when the weight retention is less than 60% by mass, the polyamidoamine dendrimer (A) can be immobilized on the matrix of the vinyl alcohol polymer (B) and the crosslinking agent (C). This is not possible, and the high carbon dioxide selectivity inherent in the polyamide amine dendrimer (A) may not be obtained, and at the same time, the water resistance may be lowered.
  • the weight retention is more preferably 70% by mass or more.
  • the nitrogen element weight retention of the composite membrane is preferably in the range of 60 to 100% by mass.
  • the composite membrane having high carbon dioxide selectivity inherent in the polyamidoamine dendrimer (A) can be suitably obtained.
  • the present inventors have shown that the nitrogen element weight retention in the gas separation composite membrane of the present invention is affected by the crosslinking rate and molecular weight of the polyamidoamine dendrimer (A) and the vinyl alcohol polymer (B). Has confirmed.
  • the crosslinking rate can be adjusted in the same manner as the method described for the weight retention rate.
  • the polyamide amine dendrimer (A) is fixed to the matrix of the vinyl alcohol polymer (B) and the crosslinking agent (C). May not be sufficient, and there is a possibility that the high gas selectivity inherent in the polyamidoamine dendrimer (A) may not be obtained.
  • the nitrogen element weight retention is more preferably 70% by mass or more.
  • the gas separation composite membrane of the present invention has a weight retention of 60% by mass or more and a nitrogen element weight retention of 60% by mass when the composite membrane is immersed in distilled water at 30 ° C. for 3 hours. It is preferable that the gas separation composite membrane has high carbon dioxide selectivity even for a mixed gas containing water vapor and can be used practically.
  • the weight retention of the composite membrane is 60% by mass or more, and the nitrogen element weight is retained.
  • the rate is 60% by mass or more, the polyamidoamine dendrimer (A) and the vinyl alcohol polymer (B) containing 0.5 to 5 mol% of carboxyl groups are crosslinked with a crosslinking agent (C) having an azetidinium group.
  • heat treatment of the composite membrane is important.
  • the heat treatment temperature is preferably 60 to 150 ° C, more preferably 90 to 130 ° C. If the heat treatment temperature is less than 60 ° C, the effect of the heat treatment may be insufficient, and if it exceeds 150 ° C, each component may be decomposed.
  • the heat treatment time is not particularly limited, but is preferably in the range of 1 second to 1 hour. If it is less than 1 second, the effect of heat treatment may be insufficient, and if it exceeds 1 hour, each component may be decomposed, and it may cause difficulty in industrial implementation, which is not preferable.
  • the gas separation composite membrane excellent in water resistance of the present invention is suitably used as a gas separation membrane that can withstand mixed gas containing water vapor and can be used practically.
  • the gas separation membrane is composed of a support membrane and the composite membrane of the present invention, and the composite membrane of the present invention is formed on the surface of a known support membrane.
  • the polymer constituting the support film conventionally known resins for film formation can be used.
  • resins for film formation can be used.
  • polysulfone, polyethersulfone, polyamide, polyimide, polyacrylonitrile, polystyrene, polyvinylidene fluoride, polyvinyl chloride, polymethyl methacrylate and the like can be mentioned.
  • the gas permeation rate of the composite membrane was measured from composition analysis by sending it to a gas chromatograph (Product No .: GC-4000, manufactured by GL Sciences) together with flowing Ar. In addition, this measurement was implemented by the differential pressure method which adjusted the transmembrane pressure difference to 0.4 MPa.
  • Q (CO 2 ) (CO 2 permeation flow rate) / (membrane area) ⁇ (CO 2 supply partial pressure ⁇ CO 2 permeation partial pressure)
  • Example 1 A 5% aqueous solution of PVA (brand: KL-118, manufactured by Kuraray Co., Ltd.) containing 1 mol% of a carboxyl group, having a saponification degree of vinyl acetate units of 98.6 mol% and a polymerization degree of 1800 was prepared.
  • PVA brand: KL-118, manufactured by Kuraray Co., Ltd.
  • aqueous methanol solution manufactured by Aldrich
  • polyamidoamine dendrimer surface group: —CONHCH 2 CH 2 NH 2 , number of surface groups: 4
  • 25% aqueous solution of polyamide epichlorohydrin resin (Brand: WS4020, manufactured by Seiko PMC Co., Ltd.) and 6 parts by weight were gradually added while stirring.
  • This solution was cast and dried at 20 ° C. to obtain a sheet having a thickness of 100 ⁇ m.
  • the obtained sheet was fixed to a frame and heat-treated at 120 ° C. for 10 minutes with a hot air dryer. After the heat-treated sheet-like material was immersed in distilled water at 30 ° C. for 3 hours, the weight retention rate, swelling rate, and nitrogen element weight retention rate were measured. The weight retention rate was 90%, the swelling rate was 340%, the nitrogen element weight retention rate was 93%, and the film state was firm. Further, using the gas separation composite membrane that is the obtained sheet-like material, the carbon dioxide permeation rate Q (CO 2 ) and the helium permeation rate Q (He) are measured, and the carbon dioxide selectivity ⁇ ( ⁇ ) is obtained. Asked. The results are shown in Table 1.
  • Example 2 A 5% aqueous solution of PVA (brand: KL-118, manufactured by Kuraray Co., Ltd.) similar to Example 1 was prepared, and polyamidoamine dendrimer (surface group: —CONHCH 2 CH 2 NH 2 , surface group) with respect to 100 parts by weight of the aqueous solution. 62.5 parts by weight of 20% aqueous methanol solution (manufactured by Aldrich) and 30 parts by weight of 25% aqueous solution of polyamide epichlorohydrin resin (brand: WS4020, manufactured by Seiko PMC) Slowly added to prepare. This solution was cast and dried at 20 ° C. to obtain a sheet having a thickness of 100 ⁇ m.
  • PVA brand: KL-118, manufactured by Kuraray Co., Ltd.
  • the obtained sheet was fixed to a frame and heat-treated at 120 ° C. for 10 minutes with a hot air dryer. After the heat-treated sheet-like material was immersed in distilled water at 30 ° C. for 3 hours, the weight retention rate, swelling rate, and nitrogen element weight retention rate were measured. The weight retention rate was 76%, the swelling rate was 410%, the nitrogen element weight retention rate was 91%, and the film state was firm. Further, using the gas separation composite membrane that is the obtained sheet-like material, the carbon dioxide permeation rate Q (CO 2 ) and the helium permeation rate Q (He) are measured, and the carbon dioxide selectivity ⁇ ( ⁇ ) is obtained. Asked. The results are shown in Table 1.
  • Example 3 A 5% aqueous solution of PVA (brand: KL-118, manufactured by Kuraray Co., Ltd.) similar to Example 1 was prepared, and polyamidoamine dendrimer (surface group: —CONHCH 2 CH 2 NH 2 , surface group) with respect to 100 parts by weight of the aqueous solution. 62.5 parts by weight of 20% aqueous methanol solution (manufactured by Aldrich), 30 parts by weight of 25% aqueous solution of polyamide epichlorohydrin resin (brand: WS4020, manufactured by Seiko PMC), and ORGATICS TC400 An 80% solution (manufactured by Matsumoto Fine Chemical Co., Ltd.) was prepared by gradually adding 1.5625 parts by weight with stirring.
  • PVA brand: KL-118, manufactured by Kuraray Co., Ltd.
  • This solution was cast and dried at 20 ° C. to obtain a sheet having a thickness of 100 ⁇ m.
  • the obtained sheet was fixed to a frame and heat-treated at 120 ° C. for 10 minutes with a hot air dryer. After the heat-treated sheet was immersed in distilled water at 30 ° C. for 3 hours, the weight retention rate, swelling rate, and nitrogen element weight retention rate were measured. The weight retention rate was 83%, the swelling rate was 170%, the nitrogen element weight retention rate was 91%, and the film state was firm. Further, using the gas separation composite membrane that is the obtained sheet-like material, the carbon dioxide permeation rate Q (CO 2 ) and the helium permeation rate Q (He) are measured, and the carbon dioxide selectivity ⁇ ( ⁇ ) is obtained. Asked. The results are shown in Table 1.
  • Comparative Example 1 A sheet-like material was prepared in the same manner as in Example 1 except that instead of the polyamide epichlorohydrin resin, an 80% solution of Orgatics TC400 was prepared using 1.5625 parts by weight. The weight retention was 83% and the swelling ratio was 160%, and the film state was firm, but the nitrogen element weight retention was as low as 5%, and it was confirmed that most of the polyamide amine dendrimer was eluted. It was. Further, the carbon dioxide permeation rate Q (CO 2 ) and the helium permeation rate Q (He) were measured using the obtained sheet-like material to obtain the carbon dioxide selectivity ⁇ ( ⁇ ). The results are shown in Table 1.
  • Comparative Example 2 Except for changing the type of PVA to PVA having a saponification degree of vinyl acetate unit of 98.6 mol%, a polymerization degree of 2000, and not modified by carboxyl groups (brand: PVA-120, manufactured by Kuraray Co., Ltd.), the same as in Example 1 A sheet-like material was prepared. The obtained sheet-like material could not maintain its film shape in distilled water, and the film itself dissolved. In addition, since the obtained sheet-like material was phase-separated and did not form a homogeneous membrane, carbon dioxide permeation rate Q (CO 2 ) and helium permeation rate Q (He) could not be measured. The selectivity ⁇ ( ⁇ ) could not be determined. The results are shown in Table 1.
  • Comparative Example 3 A sheet-like material was produced in the same manner as in Example 1 except that the amount of the polyamidoamine dendrimer was changed as shown in Table 1. The weight retention was 45%, the swelling ratio was 1440%, and the nitrogen element weight retention was 16%. Thus, it was confirmed that not only the film state was poor but also the polyamide amine dendrimer was mostly eluted. Further, the carbon dioxide permeation rate Q (CO 2 ) and the helium permeation rate Q (He) were measured using the obtained sheet-like material to obtain the carbon dioxide selectivity ⁇ ( ⁇ ). The results are shown in Table 1.
  • Comparative Example 4 A sheet-like material was produced in the same manner as in Example 3 except that the amount of the polyamide epichlorohydrin resin was changed as shown in Table 1. The weight retention rate was 51% and the swelling rate was 560%, and the film state was firm, but the nitrogen element weight retention rate was as low as 16%, and it was confirmed that most of the polyamide amine dendrimers were eluted. It was. Further, the carbon dioxide permeation rate Q (CO 2 ) and the helium permeation rate Q (He) were measured using the obtained sheet-like material to obtain the carbon dioxide selectivity ⁇ ( ⁇ ). The results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

特定の基を有するポリアミドアミンデンドリマー(A)、カルボキシル基を0.5~5mol%含有するビニルアルコール系重合体(B)、及びアゼチジニウム基を有する架橋剤(C)を含むガス分離複合膜であって、ポリアミドアミンデンドリマー(A)とアゼチジニウム基を有する架橋剤(C)との質量比(A)/(C)が20/80~65/35であり、ビニルアルコール系重合体(B)とアゼチジニウム基を有する架橋剤(C)との質量比(B)/(C)が20/80~80/20であるガス分離複合膜である。これにより、水蒸気が含まれる混合ガスでも特定のガス種を分離できるガス分離複合膜が提供される。

Description

ガス分離複合膜
 本発明は、水蒸気の含まれる混合ガスから特定のガス種を分離するガス分離複合膜に関する。
 近年、分離膜を用いた分離技術がめざましく進展している。このような分離技術には、例えば不純物を分離して飲料水を得るといった液体と固体の分離から、空気から窒素を分離して酸素富化させるといった気体同士の分離まで、種々の事例が存在する。特に、気体の分離技術においては、化石資源の高効率回収や地球温暖化防止の観点から、混合ガスから二酸化炭素を選択的に分離する技術確立が切望されており、その技術検討が精力的に実施されている。
 しかしながら、従来の高分子膜では二酸化炭素選択性(二酸化炭素の膜透過速度/他ガスの膜透過速度)が不十分であり、目的の濃度の二酸化炭素を回収することが出来なかった。二酸化炭素選択性に優れた分離膜を得るため、二酸化炭素に対する親和性が高い素材を用いることが提案されており、例えば室温では液状物質であるポリアミドアミンデンドリマーを、微多孔質の支持体に含浸させた分離膜が提案されている(非特許文献1および2)。この含浸膜の二酸化炭素選択性は、膜に圧力差を掛けない条件下では1000以上の優れた数値を示すものの、圧力差が無いため膜透過速度が小さく、実用に供するには不十分であった。一方で、圧力を掛けるとポリアミドアミンデンドリマーが支持体から経時的に流出し、選択性を維持できなくなるため、同じく実用に供することが出来なかった。
 この問題を解決する方法として、架橋剤で架橋された親水性高分子材料をマトリックスとしてその中に特定のアミン化合物を包含させた層を多孔質性支持膜の表面に形成させた複合膜が提案されている(特許文献1)。この複合膜は、高い二酸化炭素選択性を持つだけでなく、一定の圧力差にも耐えることが可能な分離膜と言える。しかしながら、分離対象となる混合ガスに水蒸気が含まれている場合、混合ガスと膜表面との間に親和性が発現するための適度な親水性と、水蒸気雰囲気下において分離膜の構造変化が起こることのない耐水性という相反した性質が要求される。前記の複合膜では、水蒸気雰囲気下において混合ガスが供給されると、包含されていたアミン化合物が経時的に複合膜より流出して、二酸化炭素選択性を維持することが出来ないため、実用に供することが困難であった。混合ガスに水蒸気が含まれる事例は、石炭ガス化火力発電の新設など今後大幅に増えてくることが予測されるため、適度な親水性と耐水性を備え、水蒸気が含まれる混合ガスでも実用に供することのできる分離膜の開発が切望されている。
特開2008-68238号公報
J.Am.Chem.Soc.122(2000)7594~7595 Ind.Eng.Chem.Res.40(2001)2502~2511
 本発明は上記課題を解決するためになされたものであり、水蒸気が含まれる混合ガスでも特定のガス種を分離できるガス分離複合膜を提供することを目的とするものである。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、カルボキシル基で特定量変性されたビニルアルコール系重合体、ポリアミドアミンデンドリマー、及びアゼチジニウム基を有する架橋剤を含むガス分離複合膜であって、ポリアミドアミンデンドリマー(A)とアゼチジニウム基を有する架橋剤(C)との質量比(A)/(C)、およびビニルアルコール系重合体(B)とアゼチジニウム基を有する架橋剤(C)との質量比(B)/(C)が特定の範囲にあることによって、水蒸気の含まれる混合ガスでも高い二酸化炭素選択性を有し、実用に供することが可能なガス分離複合膜が得られることを見出し、本発明に至った。
 すなわち上記課題は、式(1)
Figure JPOXMLDOC01-appb-C000005
[式中、Aは炭素数1~3の二価有機残基を示し、nは0または1の整数を示す。]
で示される基、または式(2)
Figure JPOXMLDOC01-appb-C000006
[式中、Aは炭素数1~3の二価有機残基を示し、nは0または1の整数を示す。]
で示される基を有するポリアミドアミンデンドリマー(A)、カルボキシル基を0.5~5mol%含有するビニルアルコール系重合体(B)、及びアゼチジニウム基を有する架橋剤(C)を含むガス分離複合膜であって、ポリアミドアミンデンドリマー(A)とアゼチジニウム基を有する架橋剤(C)との質量比(A)/(C)が20/80~65/35であり、ビニルアルコール系重合体(B)とアゼチジニウム基を有する架橋剤(C)との質量比(B)/(C)が20/80~80/20であることを特徴とするガス分離複合膜を提供することによって解決される。
 このとき、前記複合膜を30℃の蒸留水に3時間浸漬させた時の該複合膜の重量保持率が60質量%以上であり、窒素元素重量保持率が60質量%以上であることが好適である。
 また、上記課題は、式(1)
Figure JPOXMLDOC01-appb-C000007
[式中、Aは炭素数1~3の二価有機残基を示し、nは0または1の整数を示す。]
で示される基、または式(2)
Figure JPOXMLDOC01-appb-C000008
[式中、Aは炭素数1~3の二価有機残基を示し、nは0または1の整数を示す。]
で示される基を有するポリアミドアミンデンドリマー(A)、カルボキシル基を0.5~5mol%含有するビニルアルコール系重合体(B)、アゼチジニウム基を有する架橋剤(C)および多官能性架橋剤(D)を含むガス分離複合膜であって、ポリアミドアミンデンドリマー(A)とアゼチジニウム基を有する架橋剤(C)との質量比(A)/(C)が20/80~65/35であり、ビニルアルコール系重合体(B)とアゼチジニウム基を有する架橋剤(C)との質量比(B)/(C)が20/80~80/20であり、ビニルアルコール系重合体(B)と多官能性架橋剤(D)との質量比(B)/(D)が60/40~90/10であることを特徴とするガス分離複合膜を提供することによっても解決される。
 このとき、前記複合膜を30℃の蒸留水に3時間浸漬させた時の該複合膜の重量保持率が60質量%以上であり、窒素元素重量保持率が60質量%以上であることが好適である。
 本発明のガス分離複合膜は、水蒸気が含まれる混合ガスでも特定のガス種を分離することができる。
 本発明のガス分離複合膜は、ポリアミドアミンデンドリマー(A)、カルボキシル基を0.5~5mol%含有するビニルアルコール系重合体(B)、及びアゼチジニウム基を有する架橋剤(C)を含むガス分離複合膜であって、ポリアミドアミンデンドリマー(A)とアゼチジニウム基を有する架橋剤(C)との質量比(A)/(C)が20/80~65/35であり、ビニルアルコール系重合体(B)とアゼチジニウム基を有する架橋剤(C)との質量比(B)/(C)が20/80~80/20であることを特徴とする。このような構成とすることで、水蒸気が含まれる混合ガスでも特定のガス種を選択的に分離する性能が優れたガス分離複合膜が得られる。
 本発明で用いられるポリアミドアミンデンドリマー(A)は、式(1)
Figure JPOXMLDOC01-appb-C000009
[式中、Aは炭素数1~3の二価有機残基を示し、nは0または1の整数を示す。]
で示される基、または式(2)
Figure JPOXMLDOC01-appb-C000010
[式中、Aは炭素数1~3の二価有機残基を示し、nは0または1の整数を示す。]
で示される基を有する。これらの中でも、式(1)で示される基を有するポリアミドアミンデンドリマー(A)が好適に用いられる。
 式(1)または式(2)中、AおよびAで示される炭素数1~3の二価有機残基としては、たとえば、直鎖状または分枝状の炭素数1~3のアルキレン基が挙げられる。このようなアルキレン基の具体例としては、-CH-、-CH-CH-、-CH-CH-CH-、-CH-CH(CH)-などが挙げられ、これらのうち特に-CH-が好ましい。また、式(1)または式(2)中、水蒸気が含まれる混合ガスとの親和性が増すことから、n=1であることが好ましい。
 また、本発明に用いられるポリアミドアミンデンドリマー(A)は、エチレンジアミンによるアミド化反応で分岐構造を形成し、その分岐数を増やしていくことで、分子内の1級アミンの個数を増すことができる。本発明においては、分岐数に制限されることなく、どの世代のポリアミドアミンデンドリマーでも好適に用いることができるが、単位重量あたりの1級アミンの個数が多く、最も大きな二酸化炭素吸着能力が見込める式(3)の第0世代ポリアミドアミンデンドリマーが特に好適に用いられる。
Figure JPOXMLDOC01-appb-C000011
 次に、ビニルアルコール系重合体(B)について説明する。本発明で用いられるビニルアルコール系重合体(B)は、カルボキシル基を0.5~5mol%含有する。このように、本発明で用いられるビニルアルコール系重合体(B)がカルボキシル基を0.5~5mol%含有することにより、アゼチジニウム基を有する架橋剤(C)と結合して架橋されることとなる。すなわち、架橋剤(C)が有する部分構造であるアゼチジニウム基が、ビニルアルコール系重合体(B)におけるカルボキシル基と反応して架橋されると本発明者らは推察している。
 ビニルアルコール系重合体(B)におけるカルボキシル基の含有量が0.5mol%未満の場合には、本発明のガス分離複合膜におけるガス種の分離性能が経時的に低下する傾向があるとともに、耐水性が低下する恐れがあり、5mol%を超える場合には、ビニルアルコール系重合体(B)溶液の安定性が低下し、均質な複合膜が得られにくく、目的とする耐水性に優れる複合膜が得られない恐れがある。カルボキシル基の含有量は、0.75~4mol%が好ましく、1~2mol%が特に好ましい。
 ビニルアルコール系重合体(B)の粘度平均重合度(以下、重合度と略記することがある)は300~2500が好ましく、330~2200がより好ましく、360~2000が特に好ましい。重合度(P)は、JIS-K6726に準じて測定される。すなわち、ビニルアルコール系重合体(B)を再けん化し、精製した後、30℃の水中で測定した極限粘度[η]から次式により求められる。
P=([η]×10/8.29)(1/0.62)
重合度が300未満の場合には、複合膜のマトリックスを構成する機能が低下して複合膜の耐水性が低下する恐れがある。重合度が2500を超える場合には、複合膜を作製する際のポリアミドアミンデンドリマー(A)とビニルアルコール系重合体(B)とアゼチジニウム基を有する架橋剤(C)とからなる溶液の粘度が高くなりすぎる場合があり、作業性が低下するのみならず均質な複合膜が得られない恐れがある。
 本発明で用いられるビニルアルコール系重合体(B)のけん化度は95~99.9mol%であることが好ましい。けん化度が95mol%未満の場合には、複合膜の耐水性が低下する恐れがあり、99.9mol%を超える場合には、製膜時の作業性が低下したり、複合膜を作製する際のポリアミドアミンデンドリマー(A)とビニルアルコール系重合体(B)とアゼチジニウム基を有する架橋剤(C)とからなる溶液の粘度安定性が低下する恐れがある。ビニルアルコール系重合体(B)のけん化度は96~99mol%がより好ましい。
 本発明で用いられるビニルアルコール系重合体(B)におけるビニルアルコール単位の含有量は、70mol%以上であることが好ましく、80mol%以上であることがより好ましく、90mol%以上であることが更に好ましい。また、本発明で用いられるビニルアルコール系重合体(B)は、エチレン単位を含有していてもよい。ビニルアルコール系重合体(B)におけるエチレン単位の含有量は0~15mol%が好ましく、0~8mol%が特に好ましい。エチレン単位の含有量が15mol%を超える場合は、複合膜の吸水量が低下する恐れがあるだけでなく、ポリアミドアミンデンドリマー(A)との相溶性が低下して、均質な複合膜が得られない恐れがある。
 ビニルアルコール系重合体(B)は、本発明の効果を損なわない範囲であれば、ビニルアルコール単位、ビニルエステル単位、エチレン単位、カルボキシル基を含有する単位以外の単量体単位を含有していても良い。このような単量体単位としては、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸i-プロピル等のアクリル酸エステル;メタクリル酸およびその塩;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸i-プロピル等のメタクリル酸エステル;アクリルアミド;N-エチルアクリルアミド等のアクリルアミド誘導体;メタクリルアミド;N-メチルメタクリルアミド、N-エチルメタクリルアミド等のメタクリルアミド誘導体;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル等のビニルエーテル;アクリロニトリル、メタクリロニトリル等のニトリル;塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン等のハロゲン化ビニル;酢酸アリル、塩化アリル等のアリル化合物;ビニルトリメトキシシラン等のビニルシリル化合物;酢酸イソプロぺニル等の単量体由来の単位が挙げられる。これらの単量体単位の含有量としては、10mol%以下が好ましく、5mol%以下がより好ましく、3mol%以下がさらに好ましい。
 次に、アゼチジニウム基を有する架橋剤(C)について説明する。本発明に用いられる架橋剤(C)は、ビニルアルコール系重合体(B)を架橋するのみならず、ポリアミドアミンデンドリマー(A)を架橋するのにも用いられる架橋剤であって、分子内にアゼチジニウム基を有する化合物であれば特に限定されるものではない。後述する式(4)で示される部分構造を有する化合物が好適に用いられる。耐水性や耐圧性の観点から、ポリアミドエピクロルヒドリン樹脂がアゼチジニウム基を有する架橋剤(C)として特に好ましく用いられる。
 ここで、アゼチジニウム基を有する架橋剤(C)としては、下記式(4)で示される部分構造を有するものが好ましく用いられる。
Figure JPOXMLDOC01-appb-C000012
[式中、R及びRは、それぞれ独立して、置換基を有してもよい炭素数1~20のアルキレン基であり、X、X、X、X、X及びXは、それぞれ独立して水素原子、水酸基、置換基を有してもよい炭素数1~20の有機基であり、Yは、アニオンである。]
 上記式(4)において、R及びRは、それぞれ独立して、置換基を有してもよい炭素数1~20のアルキレン基である。炭素数1~20のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、オクチレン基等が挙げられる。
 また、上記式(4)において、X、X、X、X、X及びXは、それぞれ独立して水素原子、水酸基、置換基を有してもよい炭素数1~20の有機基である。置換基を有してもよい炭素数1~20の有機基としては、例えば、置換基を有してもよい炭素数1~20のアルキル基、置換基を有してもよい炭素数1~20のアルケニル基、置換基を有してもよい炭素数1~20のアルキニル基、置換基を有してもよい炭素数6~20のアリール基、置換基を有してもよい炭素数1~20のアルコキシ基、置換基を有してもよい炭素数2~20のアシル基等が挙げられる。上記式(4)におけるX、X、X、X、X及びXの組合せとしては、X、X、X及びXが水素原子、水酸基及び置換基を有してもよい炭素数1~20の有機基からなる群から選択される少なくとも1種であり、X及びXが水素原子及び水酸基からなる群から選択される少なくとも1種であることが好ましく、X、X、X及びXが水素原子であり、X及びXが水素原子及び水酸基からなる群から選択される1種であることがより好ましく、XまたはXが水酸基であることがさらに好ましい。
 また、上記式(4)において、Yはアニオンである。Yの具体例としては、I(I )、Br、Cl等のハロゲンアニオン、ClO 等のハロゲン酸アニオン、SO 2-示される硫酸アニオン、NO で示される硝酸アニオン、p-トルエンスルホン酸アニオン、ナフタレンスルホン酸アニオン、CHSO 、CFSO 等のスルホン酸アニオン等が挙げられる。中でもハロゲンアニオンが好適に用いられる。
 本発明では、上記アゼチジニウム基を有する架橋剤(C)を用いることにより、ポリアミドアミンデンドリマー(A)及びビニルアルコール系重合体(B)の両方にアゼチジニウム基を有する架橋剤(C)が結合して架橋されることとなる。すなわち、架橋剤(C)が有する部分構造であるアゼチジニウム基が、ポリアミドアミンデンドリマー(A)におけるアミノ基と反応して架橋されるとともに、ビニルアルコール系重合体(B)におけるカルボキシル基と反応して架橋されると本発明者らは推察している。アゼチジニウム基を有する架橋剤(C)を用いた架橋反応は、60~150℃で行うことが好ましい。
 本発明において、ポリアミドアミンデンドリマー(A)とアゼチジニウム基を有する架橋剤(C)との質量比(A)/(C)は、20/80~65/35である。質量比(A)/(C)が20/80未満の場合、(A)の比率が充分でないため、高い二酸化炭素選択性が得られない恐れがあり、一方、質量比(A)/(C)が65/35を超える場合、圧力を有するガスに対してポリアミドアミンデンドリマー(A)の該ガス分離複合膜中での安定性が低下し、結果として高い二酸化炭素選択性が得られない恐れがある。質量比(A)/(C)は、35/65~65/35であることが好ましく、40/60~65/35であることがより好ましい。
 また、ビニルアルコール系重合体(B)とアゼチジニウム基を有する架橋剤(C)との質量比(B)/(C)は、20/80~80/20である。質量比(B)/(C)が20/80未満の場合、製膜性が低下して均質なガス分離複合膜の得られない恐れがあり、一方、質量比(B)/(C)が80/20を超える場合、耐水性が低下する恐れがある。質量比(B)/(C)は、25/75~80/20であることが好ましい。
 次に、多官能性架橋剤(D)について説明する。本発明に用いられる架橋剤(D)は、アゼチジニウム基を有しない多官能性の架橋剤である。すなわち、本発明に用いられる架橋剤(D)は、ビニルアルコール系重合体(B)同士や、ポリアミドアミンデンドリマー(A)とビニルアルコール系重合体(B)とを架橋するのに用いられる架橋剤であって、特に限定されるものではなく、エポキシ基、アルデヒド基、ハロゲン原子などの官能基を2個以上有する化合物、チタン系架橋剤、ジルコニウム系架橋剤が挙げられる。中でも、多官能性架橋剤(D)は、チタン系架橋剤、ジルコニウム系架橋剤、および官能基としてエポキシ基またはアルデヒド基を有する架橋剤からなる群から選択される少なくとも1種であることが好ましい。
 エポキシ基を有する架橋剤としては、例えば、エピクロロヒドリン、ジエポキシアルカン、ジエポキシアルケン、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテルなどのジグリシジルエーテル化合物が挙げられ、特にエチレングリコールジグリシジルエーテルが好ましい。また、アルデヒド基を有する架橋剤としては、グルタルアルデヒド、スクシンアルデヒド、マロンジアルデヒド、テレフタルアルデヒド、イソフタルアルデヒドなどのジアルデヒド化合物が挙げられ、特にグルタルアルデヒドが好ましい。チタン系架橋剤としては、チタンジイソプロポキシビス(トリエタノールアミネート)、チタンラクテートアンモニウム塩など、チタンのアルコシキド系架橋剤が好ましい。また、ジルコニウム系架橋剤としては、塩化ジルコニウム、硫酸ジルコニウム、硝酸ジルコニウム、酢酸ジルコニウム、炭酸ジルコニウム、炭酸ジルコニウムアンモニウム、ステアリン酸ジルコニウム、オクチル酸ジルコニウム、珪酸ジルコニウムなどが挙げられる。これらのジルコニウム化合物の中でも水溶性のものが好ましく、塩素を持たないものがさらに好ましい。具体的には硫酸ジルコニウム、硝酸ジルコニウム、酢酸ジルコニウム、炭酸ジルコニウムアンモニウムが挙げられる。
 ビニルアルコール系重合体(B)と多官能性架橋剤(D)との質量比(B)/(D)は特に限定されず、60/40~90/10であることが好ましい。質量比(B)/(D)が60/40未満の場合、溶液安定性の低下によって製膜作業が困難となり、結果として均質なガス分離複合膜が得られない恐れがあり、一方、質量比(B)/(D)が90/10を超える場合、耐水性が低下する恐れがある。質量比(B)/(D)は、65/35~85/15であることがより好ましい。
 本発明において、該複合膜を30℃の蒸留水に3時間浸漬させた時の該複合膜の重量保持率は、60~100質量%の範囲にあることが好ましい。重量保持率がこの範囲にあることで、耐水性を有して二酸化炭素選択性が低下しないガス分離複合膜を好適に得ることができる。ここで、本発明のガス分離複合膜における重量保持率は、ポリアミドアミンデンドリマー(A)と、ビニルアルコール系重合体(B)との架橋率や分子量により影響を受けることを本発明者らは確認している。架橋率は、上記説明したポリアミドアミンデンドリマー(A)とアゼチジニウム基を有する架橋剤(C)との質量比(A)/(C)により調節することができるし、別途、多官能性架橋剤(D)を加えることにより調節することができる。また、架橋条件によっても調節することができる。
 本発明のガス分離複合膜において、重量保持率が60質量%未満であると、ビニルアルコール系重合体(B)および架橋剤(C)のマトリックスにポリアミドアミンデンドリマー(A)を固定化することが出来ず、ポリアミドアミンデンドリマー(A)に固有の高い二酸化炭素選択性が得られない恐れがあると同時に、耐水性も低くなる恐れがある。重量保持率は、70質量%以上であることがより好ましい。
 また、本発明において、該複合膜を30℃の蒸留水に3時間浸漬させた時の該複合膜の窒素元素重量保持率は、60~100質量%の範囲にあることが好ましい。窒素元素重量保持率がこの範囲にあることで、ポリアミドアミンデンドリマー(A)固有の高い二酸化炭素選択性を有した該複合膜を好適に得ることができる。ここで、本発明のガス分離複合膜における窒素元素重量保持率は、ポリアミドアミンデンドリマー(A)と、ビニルアルコール系重合体(B)との架橋率や分子量により影響を受けることを本発明者らは確認している。架橋率は、上記重量保持率のところで説明した方法と同様にして調節することができる。
 本発明のガス分離複合膜において、窒素元素重量保持率が60質量%未満であると、ビニルアルコール系重合体(B)および架橋剤(C)のマトリックスに対してポリアミドアミンデンドリマー(A)の固定化が充分でない恐れがあり、ポリアミドアミンデンドリマー(A)固有の高いガス選択性が得られない恐れがある。窒素元素重量保持率は、70質量%以上であることがより好ましい。
 本発明のガス分離複合膜は、前記複合膜を30℃の蒸留水に3時間浸漬させた時の該複合膜の重量保持率が60質量%以上であり、窒素元素重量保持率が60質量%以上であることが好適であり、このことによって水蒸気の含まれる混合ガスでも高い二酸化炭素選択性を有し、実用に供することが可能なガス分離複合膜を得ることができる。
 上述のように、本発明のガス分離複合膜において、前記複合膜を30℃の蒸留水に3時間浸漬させた時の該複合膜の重量保持率が60質量%以上であり、窒素元素重量保持率が60質量%以上である場合、ポリアミドアミンデンドリマー(A)、およびカルボキシル基を0.5~5mol%含有するビニルアルコール系重合体(B)が、アゼチジニウム基を有する架橋剤(C)で架橋されていると判断される。
 本発明のガス分離複合膜における重量保持率と窒素元素重量保持率を上記の範囲になるようにするには、ポリアミドアミンデンドリマー(A)、ビニルアルコール系重合体(B)、架橋剤(C)、多官能性架橋剤(D)の種類および使用比率を適宜選択することで可能となる。
 耐水性に優れるガス分離複合膜を得る観点から、該複合膜の熱処理が重要である。熱処理でビニルアルコール系重合体(B)の結晶化を促進させることにより、架橋と類似した効果を発現することができる。熱処理温度としては、60~150℃が好ましく、90~130℃がさらに好ましい。熱処理温度が60℃未満では熱処理の効果が不十分となる恐れがあり、150℃を超えると各成分が分解する恐れがあるため、好ましくない。熱処理の時間については特に制限はないが、1秒から1時間の範囲にあることが好ましい。1秒未満では熱処理の効果が不十分となる恐れがあり、1時間を越えると各成分が分解する恐れがあるのみならず、工業的実施に難が生じる場合があるため、好ましくない。
 本発明の耐水性に優れるガス分離複合膜は、水蒸気の含まれる混合ガスに耐え実用に供することが可能なガス分離膜として好適に使用される。ガス分離膜は支持膜と本発明の複合膜から構成され、公知の支持膜の表面に本発明の複合膜が形成される。支持膜を構成する高分子としては従来公知の膜形成用として用いられる樹脂が使用できる。例えば、ポリスルホン、ポリエーテルスルホン、ポリアミド、ポリイミド、ポリアクリロニトリル、ポリスチレン、ポリフッ化ビニリデン、ポリ塩化ビニル、ポリメタクリル酸メチルなどが挙げられる。
 以下、実施例を挙げて本発明を更に詳しく説明するが、本発明はこれらの実施例により何ら限定されるものではない。なお、実施例中で特に断りのない限り、「%」は「質量%」を意味する。
[複合膜の耐水性評価]
 シート状物の重量保持率、膨潤率、窒素元素重量保持率はそれぞれ次式で求めた。なお、窒素元素重量の値は、有機元素分析2400II(パーキンエルマー社製)を用いることにより得た。
重量保持率(%)=(W2/W3)×100
膨潤率(%)=(W1/W2)×100
窒素元素重量保持率(%)=(N2/N3)×100
W1:水浸漬後の試料重量、W2:水浸漬後さらに乾燥した後の試料重量、W3:水浸漬前の試料重量
N2:水浸漬後さらに乾燥した後の試料中の窒素重量、N3:水浸漬前の試料中の窒素重量
[複合膜の架橋性確認方法]
 シート状物を30℃の蒸留水に3時間浸漬させた時の重量保持率および窒素元素重量保持率を測定し、共に60質量%以上であることを以て複合膜が架橋していると判断した。
[複合膜のガス透過速度および二酸化炭素選択性の測定方法]
 二酸化炭素の透過速度Q(CO)(m/m・s・Pa)およびヘリウムの透過速度Q(He)(m/m・s・Pa)を以下のようにして測定し、二酸化炭素選択性α(-)を求めた。
 組成をCO/He=80/20(ml/min)、温度を40℃、相対湿度を80RH%に調整したガスを複合膜に供給し、膜を透過したガスは透過側にスウィープガスとして10ml/min流れるArとともにガスクロマトグラフ(品番:GC-4000、ジーエルサイエンス社製)に送られ、組成分析から該複合膜のガス透過速度を測定した。なお、本測定は、膜間圧力差を0.4MPaに調整した差圧法によって実施した。
Q(CO)=(CO透過流量)/(膜面積)・(CO供給分圧-CO透過分圧)
Q(He)=(He透過流量)/(膜面積)・(He供給分圧-He透過分圧)
α=Q(CO)/Q(He)
実施例1
 カルボキシル基を1モル%含有し、酢酸ビニル単位のけん化度98.6モル%、重合度1800のPVA(銘柄:KL-118、クラレ社製)5%水溶液を作製し、その水溶液100重量部に対してポリアミドアミンデンドリマー(表面基:-CONHCHCHNH、表面基の数:4個)の20%メタノール水溶液(アルドリッチ社製)を6.25重量部と、ポリアミドエピクロルヒドリン樹脂の25%水溶液(銘柄:WS4020、星光PMC社製)を6重量部とを攪拌しながら徐々に加えて調製した。この溶液を流延し、20℃で乾燥して厚み100μmのシート状物を得た。得られたシート状物を枠に固定し、熱風乾燥機で120℃、10分間熱処理した。熱処理したシート状物を30℃の蒸留水に3時間浸漬させた後、重量保持率、膨潤率、窒素元素重量保持率を測定した。重量保持率は90%、膨潤率は340%、窒素元素重量保持率は93%であり、皮膜状態もしっかりしていた。また、得られたシート状物であるガス分離複合膜を用いて、二酸化炭素の透過速度Q(CO)およびヘリウムの透過速度Q(He)を測定し、二酸化炭素選択性α(-)を求めた。結果を表1に示す。
実施例2
 実施例1と同様のPVA(銘柄:KL-118、クラレ社製)5%水溶液を作製し、その水溶液100重量部に対してポリアミドアミンデンドリマー(表面基:-CONHCHCHNH、表面基の数:4個)の20%メタノール水溶液(アルドリッチ社製)を62.5重量部と、ポリアミドエピクロルヒドリン樹脂の25%水溶液(銘柄:WS4020、星光PMC社製)を30重量部とを攪拌しながら徐々に加えて調製した。この溶液を流延し、20℃で乾燥して厚み100μmのシート状物を得た。得られたシート状物を枠に固定し、熱風乾燥機で120℃、10分間熱処理した。熱処理したシート状物を30℃の蒸留水に3時間浸漬させた後、重量保持率、膨潤率、窒素元素重量保持率を測定した。重量保持率は76%、膨潤率は410%、窒素元素重量保持率は91%であり、皮膜状態もしっかりしていた。また、得られたシート状物であるガス分離複合膜を用いて、二酸化炭素の透過速度Q(CO)およびヘリウムの透過速度Q(He)を測定し、二酸化炭素選択性α(-)を求めた。結果を表1に示す。
実施例3
 実施例1と同様のPVA(銘柄:KL-118、クラレ社製)5%水溶液を作製し、その水溶液100重量部に対してポリアミドアミンデンドリマー(表面基:-CONHCHCHNH、表面基の数:4個)の20%メタノール水溶液(アルドリッチ社製)を62.5重量部と、ポリアミドエピクロルヒドリン樹脂の25%水溶液(銘柄:WS4020、星光PMC社製)を30重量部、さらにオルガチックスTC400(マツモトファインケミカル社製)の80%溶液を1.5625重量部とを攪拌しながら徐々に加えて調製した。この溶液を流延し、20℃で乾燥して厚み100μmのシート状物を得た。得られたシート状物を枠に固定し、熱風乾燥機で120℃、10分間熱処理した。熱処理したシート状物を30℃の蒸留水に3時間浸漬させた後、重量保持率、膨潤率、窒素元素重量保持率を測定した。重量保持率は83%、膨潤率は170%、窒素元素重量保持率は91%であり、皮膜状態もしっかりしていた。また、得られたシート状物であるガス分離複合膜を用いて、二酸化炭素の透過速度Q(CO)およびヘリウムの透過速度Q(He)を測定し、二酸化炭素選択性α(-)を求めた。結果を表1に示す。
比較例1
 ポリアミドエピクロルヒドリン樹脂の代わりに、オルガチックスTC400の80%溶液を1.5625重量部用いて調製した以外は、実施例1と同様にシート状物を作製した。重量保持率は83%、膨潤率は160%であり、皮膜状態はしっかりしていたが、窒素元素重量保持率が5%と低く、大部分のポリアミドアミンデンドリマーが溶出していることが確認された。また、得られたシート状物を用いて、二酸化炭素の透過速度Q(CO)およびヘリウムの透過速度Q(He)を測定し、二酸化炭素選択性α(-)を求めた。結果を表1に示す。
比較例2
 PVAの種類を、酢酸ビニル単位のけん化度98.6モル%、重合度2000、カルボキシル基による変性なしのPVA(銘柄:PVA-120、クラレ社製)に変更した以外は、実施例1と同様にシート状物を作製した。得られたシート状物は、蒸留水中においてその皮膜形状を維持することができず、皮膜自体が溶解した。また、得られたシート状物は、相分離してしまい均質な膜とならなかったため、二酸化炭素の透過速度Q(CO)およびヘリウムの透過速度Q(He)の測定ができず、二酸化炭素選択性α(-)を求めることができなかった。結果を表1に示す。
比較例3
 ポリアミドアミンデンドリマーの量を表1のように変えた以外は、実施例1と同様にシート状物を作製した。重量保持率は45%、膨潤率は1440%、窒素元素重量保持率は16%であり、皮膜状態が不良であるだけでなく、ポリアミドアミンデンドリマーも大部分溶出していることが確認された。また、得られたシート状物を用いて、二酸化炭素の透過速度Q(CO)およびヘリウムの透過速度Q(He)を測定し、二酸化炭素選択性α(-)を求めた。結果を表1に示す。
比較例4
 ポリアミドエピクロルヒドリン樹脂の量を表1のように変えた以外は、実施例3と同様にシート状物を作製した。重量保持率は51%、膨潤率は560%であり、皮膜状態はしっかりしていたが、窒素元素重量保持率が16%と低く、大部分のポリアミドアミンデンドリマーが溶出していることが確認された。また、得られたシート状物を用いて、二酸化炭素の透過速度Q(CO)およびヘリウムの透過速度Q(He)を測定し、二酸化炭素選択性α(-)を求めた。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000013

Claims (4)

  1.  式(1)
    Figure JPOXMLDOC01-appb-C000001
    [式中、Aは炭素数1~3の二価有機残基を示し、nは0または1の整数を示す。]
    で示される基、または式(2)
    Figure JPOXMLDOC01-appb-C000002
    [式中、Aは炭素数1~3の二価有機残基を示し、nは0または1の整数を示す。]
    で示される基を有するポリアミドアミンデンドリマー(A)、カルボキシル基を0.5~5mol%含有するビニルアルコール系重合体(B)、及びアゼチジニウム基を有する架橋剤(C)を含むガス分離複合膜であって、ポリアミドアミンデンドリマー(A)とアゼチジニウム基を有する架橋剤(C)との質量比(A)/(C)が20/80~65/35であり、ビニルアルコール系重合体(B)とアゼチジニウム基を有する架橋剤(C)との質量比(B)/(C)が20/80~80/20であることを特徴とするガス分離複合膜。
  2.  前記複合膜を30℃の蒸留水に3時間浸漬させた時の該複合膜の重量保持率が60質量%以上であり、窒素元素重量保持率が60質量%以上である請求項1記載のガス分離複合膜。
  3.  式(1)
    Figure JPOXMLDOC01-appb-C000003
    [式中、Aは炭素数1~3の二価有機残基を示し、nは0または1の整数を示す。]
    で示される基、または式(2)
    Figure JPOXMLDOC01-appb-C000004
    [式中、Aは炭素数1~3の二価有機残基を示し、nは0または1の整数を示す。]
    で示される基を有するポリアミドアミンデンドリマー(A)、カルボキシル基を0.5~5mol%含有するビニルアルコール系重合体(B)、アゼチジニウム基を有する架橋剤(C)および多官能性架橋剤(D)を含むガス分離複合膜であって、ポリアミドアミンデンドリマー(A)とアゼチジニウム基を有する架橋剤(C)との質量比(A)/(C)が20/80~65/35であり、ビニルアルコール系重合体(B)とアゼチジニウム基を有する架橋剤(C)との質量比(B)/(C)が20/80~80/20であり、ビニルアルコール系重合体(B)と多官能性架橋剤(D)との質量比(B)/(D)が60/40~90/10であることを特徴とするガス分離複合膜。
  4.  前記複合膜を30℃の蒸留水に3時間浸漬させた時の該複合膜の重量保持率が60質量%以上であり、窒素元素重量保持率が60質量%以上である請求項3記載のガス分離複合膜。
PCT/JP2011/053090 2010-02-16 2011-02-15 ガス分離複合膜 WO2011102326A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11744612.0A EP2537577A4 (en) 2010-02-16 2011-02-15 GAS SEPARATION COMPOSITE MEMBRANE
CN201180019379.5A CN103037955B (zh) 2010-02-16 2011-02-15 气体分离复合膜
JP2012500590A JP5629751B2 (ja) 2010-02-16 2011-02-15 ガス分離複合膜
US13/579,169 US8721774B2 (en) 2010-02-16 2011-02-15 Gas separation composite membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-031394 2010-02-16
JP2010031394 2010-02-16

Publications (1)

Publication Number Publication Date
WO2011102326A1 true WO2011102326A1 (ja) 2011-08-25

Family

ID=44482911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053090 WO2011102326A1 (ja) 2010-02-16 2011-02-15 ガス分離複合膜

Country Status (5)

Country Link
US (1) US8721774B2 (ja)
EP (1) EP2537577A4 (ja)
JP (1) JP5629751B2 (ja)
CN (1) CN103037955B (ja)
WO (1) WO2011102326A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012192316A (ja) * 2011-03-15 2012-10-11 Research Institute Of Innovative Technology For The Earth ガス分離複合膜
US20150217236A1 (en) * 2012-09-04 2015-08-06 Nitto Denko Corporation Separation membrane, composite separation membrane, and method for producing separation membrane
JP2015188866A (ja) * 2014-03-28 2015-11-02 次世代型膜モジュール技術研究組合 ガス分離膜
JP2015188865A (ja) * 2014-03-28 2015-11-02 次世代型膜モジュール技術研究組合 ガス分離膜
JP2015188867A (ja) * 2014-03-28 2015-11-02 次世代型膜モジュール技術研究組合 ガス分離膜
JP2020037100A (ja) * 2018-08-31 2020-03-12 ポール・コーポレーションPall Corporation 耐塩性アニオン交換媒体

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103212311B (zh) * 2013-05-08 2014-11-05 哈尔滨工业大学 一种气体分离膜的制备方法
CN103464012B (zh) * 2013-09-27 2015-05-20 中国石油大学(华东) 一种无机盐致孔剂用于耐有机溶剂聚酰亚胺纳滤膜的制备方法
CN104857867B (zh) * 2015-05-07 2017-04-26 天津大学 兼具伯胺基和碳酸根的co2分离膜及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07112122A (ja) * 1993-10-19 1995-05-02 Agency Of Ind Science & Technol 二酸化炭素分離ゲル膜及びその製造方法
JP2008068238A (ja) 2006-09-15 2008-03-27 Research Institute Of Innovative Technology For The Earth ガス分離膜およびその利用
JP2009185118A (ja) * 2008-02-04 2009-08-20 Research Institute Of Innovative Technology For The Earth 高分子膜およびその製造方法
JP2009241006A (ja) * 2008-03-31 2009-10-22 Research Institute Of Innovative Technology For The Earth 複合膜およびその製造方法
JP2010149026A (ja) * 2008-12-24 2010-07-08 Research Institute Of Innovative Technology For The Earth 高分子膜及びその利用
JP2010155205A (ja) * 2008-12-26 2010-07-15 Kuraray Co Ltd 耐水性に優れるガス分離膜用ビニルアルコール系重合体複合膜

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5445669A (en) 1993-08-12 1995-08-29 Sumitomo Electric Industries, Ltd. Membrane for the separation of carbon dioxide
US6635103B2 (en) * 2001-07-20 2003-10-21 New Jersey Institute Of Technology Membrane separation of carbon dioxide
US20080199619A1 (en) * 2005-08-08 2008-08-21 Kolon Industries, Inc. Method Of Manufacturing For Aromatic Polyamide Composite Membrane
US20090217819A1 (en) * 2006-03-15 2009-09-03 Matthias Wessling Gas separation membranes comprising permeability enhancing additives
DE102007058320A1 (de) * 2006-12-23 2008-06-26 Evonik Degussa Gmbh Membranen zur Trennung von Gasen
US20090110907A1 (en) * 2007-10-29 2009-04-30 Jiang Dayue D Membranes Based On Poly (Vinyl Alcohol-Co-Vinylamine)
EP2328671A1 (en) * 2008-07-31 2011-06-08 Novozymes A/S Modular reactor and process for carbon dioxide extraction
US8992668B2 (en) * 2010-03-29 2015-03-31 Fujifilm Corporation Gas separation membrane and method for producing the same, and method for separating gas mixture, gas separation membrane module and gas separation apparatus using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07112122A (ja) * 1993-10-19 1995-05-02 Agency Of Ind Science & Technol 二酸化炭素分離ゲル膜及びその製造方法
JP2008068238A (ja) 2006-09-15 2008-03-27 Research Institute Of Innovative Technology For The Earth ガス分離膜およびその利用
JP2009185118A (ja) * 2008-02-04 2009-08-20 Research Institute Of Innovative Technology For The Earth 高分子膜およびその製造方法
JP2009241006A (ja) * 2008-03-31 2009-10-22 Research Institute Of Innovative Technology For The Earth 複合膜およびその製造方法
JP2010149026A (ja) * 2008-12-24 2010-07-08 Research Institute Of Innovative Technology For The Earth 高分子膜及びその利用
JP2010155205A (ja) * 2008-12-26 2010-07-15 Kuraray Co Ltd 耐水性に優れるガス分離膜用ビニルアルコール系重合体複合膜

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
IND. ENG. CHEM. RES., vol. 40, 2001, pages 2502 - 2511
J. AM. CHEM. SOC., vol. 122, 2000, pages 7594 - 7595
See also references of EP2537577A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012192316A (ja) * 2011-03-15 2012-10-11 Research Institute Of Innovative Technology For The Earth ガス分離複合膜
US20150217236A1 (en) * 2012-09-04 2015-08-06 Nitto Denko Corporation Separation membrane, composite separation membrane, and method for producing separation membrane
JP2015188866A (ja) * 2014-03-28 2015-11-02 次世代型膜モジュール技術研究組合 ガス分離膜
JP2015188865A (ja) * 2014-03-28 2015-11-02 次世代型膜モジュール技術研究組合 ガス分離膜
JP2015188867A (ja) * 2014-03-28 2015-11-02 次世代型膜モジュール技術研究組合 ガス分離膜
JP2020037100A (ja) * 2018-08-31 2020-03-12 ポール・コーポレーションPall Corporation 耐塩性アニオン交換媒体
JP7027673B2 (ja) 2018-08-31 2022-03-02 ポール・コーポレーション 耐塩性アニオン交換媒体

Also Published As

Publication number Publication date
CN103037955B (zh) 2015-02-11
EP2537577A1 (en) 2012-12-26
US8721774B2 (en) 2014-05-13
US20120312168A1 (en) 2012-12-13
CN103037955A (zh) 2013-04-10
JPWO2011102326A1 (ja) 2013-06-17
JP5629751B2 (ja) 2014-11-26
EP2537577A4 (en) 2015-07-29

Similar Documents

Publication Publication Date Title
JP5629751B2 (ja) ガス分離複合膜
JP4980014B2 (ja) ガス分離膜およびその利用
JP5563503B2 (ja) ガス分離複合膜
US9623380B2 (en) Gas separation membrane
JP6018790B2 (ja) 分離膜、この製造方法および分離膜を含む水処理装置
JP2010155207A (ja) ガス分離膜用エチレン−ビニルアルコール系重合体複合膜
KR20170063759A (ko) 분리 모듈, 시스템 및 방법
JP5859676B2 (ja) 耐塩素性高透過水処理分離膜及びその製造方法
CN104822440A (zh) 用于气体分离的含有氟化乙烯-丙烯聚合物的共混聚合物膜
EP2548631A1 (en) Cellulose-ether-ester support for forward osmosis membrane
JP2010155205A (ja) 耐水性に優れるガス分離膜用ビニルアルコール系重合体複合膜
JP2010155206A (ja) 耐水性に優れるガス分離膜用シリル基含有ビニルアルコール系重合体複合膜
JP6421113B2 (ja) ガス分離膜およびガス分離方法
EP2554249B1 (en) Composite semipermeable membrane
KR102101061B1 (ko) 역삼투막 제조용 조성물, 이를 이용한 역삼투막 제조방법, 역삼투막 및 수처리 모듈
JP5241751B2 (ja) ガス分離複合膜
KR102045108B1 (ko) 역삼투막 및 그 제조방법
Zhang et al. PIM-1/PAN thin-film composite hollow fiber membrane as structured packings for isopropanol (IPA)/water distillation
US11319439B2 (en) Polyimide blends, methods of making each and methods of use
JP6038621B2 (ja) ガス分離膜
CN111788251A (zh) 用于聚酰胺界面聚合的组合物和通过使用其制造水处理分离膜的方法
KR20200005747A (ko) 클로로트리플루오로에틸렌와 비닐 염화물에 기초한 공중합체와 3량체 및 그의 용도
JP2011083721A (ja) アルコールの分離膜及びアルコールの分離濃縮方法
JP6223255B2 (ja) ガス分離膜
JP6038622B2 (ja) ガス分離膜

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180019379.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744612

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012500590

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13579169

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011744612

Country of ref document: EP