WO2011102237A1 - 鉛蓄電池の電気処理による蓄電能力劣化防止と再生装置 - Google Patents

鉛蓄電池の電気処理による蓄電能力劣化防止と再生装置 Download PDF

Info

Publication number
WO2011102237A1
WO2011102237A1 PCT/JP2011/052336 JP2011052336W WO2011102237A1 WO 2011102237 A1 WO2011102237 A1 WO 2011102237A1 JP 2011052336 W JP2011052336 W JP 2011052336W WO 2011102237 A1 WO2011102237 A1 WO 2011102237A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
lead sulfate
sulfate film
frequency
current
Prior art date
Application number
PCT/JP2011/052336
Other languages
English (en)
French (fr)
Inventor
洋人 立野
Original Assignee
株式会社 Jsv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 Jsv filed Critical 株式会社 Jsv
Priority to EP11744525.4A priority Critical patent/EP2538486A4/en
Priority to CN201180009991.4A priority patent/CN102893447B/zh
Priority to KR1020127023946A priority patent/KR101384721B1/ko
Priority to US13/578,085 priority patent/US9077051B2/en
Publication of WO2011102237A1 publication Critical patent/WO2011102237A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4242Regeneration of electrolyte or reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to an apparatus for regenerating a battery by heating and refining a lead sulfate crystal obtained by making a lead conductor battery deterioration prevention and regeneration by lead sulfate as a poor conductor at a lead sulfate dielectric loss frequency, and chemically decomposing it by a charging current.
  • Lead acid batteries are covered with lead sulfate colloidal thin film, which is a poor conductor, due to the increase in the number of discharges.Lead sulfate colloidal thin film crystallizes over time, lead sulfate crystallization becomes an electrical insulator, The lead oxide is not oxidized and reduced to lead oxide on the positive electrode and metal lead on the negative electrode, and the storage capacity of the lead storage battery deteriorates.
  • lead sulfate colloidal thin film crystallizes over time, lead sulfate crystallization becomes an electrical insulator, The lead oxide is not oxidized and reduced to lead oxide on the positive electrode and metal lead on the negative electrode, and the storage capacity of the lead storage battery deteriorates.
  • Today in order to stabilize unstable power generation such as natural energy, solar power, and wind power, it is indispensable to extend the life of inexpensive lead-acid batteries, and it is necessary to prevent deterioration of storage capacity due to lead sulfate and to regenerate technology.
  • lead sulfate is used to prevent the deterioration of storage capacity and regenerative technology.
  • the above documents commonly aim to destroy lead sulfate microcrystals by assuming an electromechanical shock wave with a high voltage pulse of 1 MHz or less.
  • the higher the voltage is used the greater the effect of removing lead sulfate.
  • the method of destroying and removing lead sulfate microcrystals by electromechanical shock waves does not concentrate the electric field on the lead sulfate crystal surface, which is an insulating surface, under the condition that the electrode surface is mottled with lead sulfate.
  • the current concentrates on the surface of the conductive electrode that is not covered with the lead sulfate insulator and is easy to flow. Therefore, it is considered that the electromechanical shock wave is hardly destroyed.
  • the present invention has been made in view of the above-mentioned problems, and an apparatus for selectively decomposing lead sulfate by concentrating current on the surface of the lead sulfate insulator by using lead sulfate dielectric relaxation loss heating in the MHz region.
  • the purpose is to provide.
  • the lead sulfate crystal is thermomechanically distorted by heat generated by dielectric relaxation loss of the lead sulfate insulator, forming fine cracks in the crystal, resulting in electrical conduction and electrochemical decomposition by the charging current, lead oxide on the positive electrode, Metallic lead is produced in the negative electrode, and the electrical conductivity at the surface of the electrode not covered with the lead sulfate insulator is small at around the lead sulfate dielectric loss peak frequency of about 10 MHz. This is because the electrical conductivity of the metal electrode surface is mainly an ion diffusion current, and the response speed of the ion current is several tens of kHz or less, so the electrical conductivity of the metal electrode surface is small.
  • dilute sulfuric acid electrolyte in the MHz region has a lower dielectric constant
  • the lead sulfate insulator crystal film is selected and finely decomposed thermomechanically, the lead sulfate crystal film can be oxidized and reductively decomposed by high-frequency low voltage and low current of 2 V peak-to-peak per cell.
  • the lead sulfate crystal film can be oxidized and reductively decomposed by high-frequency low voltage and low current of 2 V peak-to-peak per cell.
  • the figure which shows the characteristic with respect to the frequency of dielectric loss current The block diagram which shows schematic structure of lead storage battery degradation prevention and a reproducing
  • FIG. 1 shows current characteristics measured from 0.1 MHz to 30 MHz by adding dilute sulfuric acid to lead sulfate powder and sandwiching it with an insulating electrode in order to find the lead sulfate dielectric loss frequency.
  • the approximate curve by the Debye relaxation equation (1) is also shown. The measurement shows good agreement with the approximate expression.
  • the dielectric loss peak is distributed from 1 MHz to 100 MHz, and has a peak in the vicinity of about 10 MHz. It can be seen that the lead sulfate in the dilute sulfuric acid electrolyte has the maximum heating efficiency at the peak frequency of 10 MHz.
  • FIG. 2 is a block diagram showing a schematic configuration of the lead-acid battery deterioration preventing and regenerating apparatus according to the embodiment of the present invention.
  • a lead storage battery regenerator control MPU microprocessor
  • a charging voltage command D / A converter 22 by the MPU 21
  • a charging voltage power amplifier 23 23
  • a high frequency cutoff coil 24
  • a lead storage battery 25 25
  • a lead storage battery terminal voltage measurement It comprises an A / D converter 26, a lead sulfate dielectric loss frequency command oscillator 27, a lead sulfate dielectric loss frequency power amplifier 28, and a direct current blocking capacitor 29.
  • FIG. 2 describes an example of a 12V lead acid battery regenerated with an external power source.
  • the voltage of the lead storage battery 25 is measured by the A / D converter 26 and input to the MPU 21.
  • the MPU 21 enters the storage battery regeneration mode, generates a 10 MHz high frequency alternating current from the lead sulfate dielectric loss frequency command oscillator 27, and amplifies it by the high frequency power amplifier 28. Then, a dielectric loss heating AC current is passed through the lead storage battery 25 through the DC circuit breaker 29.
  • the MPU 21 is amplified by the power amplifier 23 from the D / A converter 22 and starts charging at a voltage about 2V higher than the open voltage of the lead storage battery 25 through the high frequency circuit breaker 24.
  • the A / D converter 26 the voltage of the lead storage battery 25 is always measured, and the MPU 21 performs charge induction by the D / A converter 22 until the open voltage of the lead storage battery 25 reaches 13.5V. Even after the open-circuit voltage becomes 13.5 V, the MPU 21 performs constant voltage charging of 14 V through the D / A converter 22 as floating charging, and at the same time, a high-frequency alternating current of 10 MHz continues to flow through the lead storage battery 25.
  • the continuous high-frequency current may be intermittently modulated to give an intermittent thermal shock.
  • Application and charging of the high-frequency alternating current described in claim 5 may be performed alternately.
  • FIG. 3 shows an example in which a 12 V battery left for one year is continuously applied with a 2 V peak-to-peak 10 MHz high-frequency current per cell, and simultaneously charged with a DC voltage 15 V constant voltage power source and regenerated in 18 hours.
  • the battery was charged by the conventional charging method, and the density of each cell was 1.20 or less, but 2 out of 6 cells were completely 100% regenerated.
  • the cell 6 showing a liquid density of 1.25, it is considered that the lead sulfate crystal dropped off from the electrode surface, lead sulfate was not deposited in the electrochemical decomposition, and the sulfuric acid concentration on the cell 6 did not increase.
  • sulfuric acid concentration did not increase, sulfuric acid was added until the density reached 1.28, and charging and discharging were performed again, and 100% regeneration was possible.
  • Lead-acid batteries are widely used to extend the cycle life of these batteries for starting engines in automobiles, ships, etc., for local energy storage stations in smart grids, and for pulsating rectification of natural energy, wind generators and solar cells. Can be used and can be used.
  • Lead sulfate dielectric loss experimental value 11
  • Approximate curve by Debye relaxation equation 12
  • Lead storage battery regenerator control MPU (microprocessor) 22
  • MPU charge voltage command D / A converter
  • Charge voltage power amplifier 24
  • High frequency cutoff coil 25
  • Lead storage battery 26
  • Lead storage battery terminal voltage measurement A / D converter
  • Lead sulfate dielectric loss frequency command oscillator 28
  • Lead sulfate dielectric loss frequency power amplifier 29 DC current blocking capacitor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

【課題】鉛蓄電池は充放電回数の増加により、電池電極表面が不良導体化した硫酸鉛結晶で覆われ、充電によって正極に酸化鉛、負極に金属鉛に酸化還元されず鉛蓄電池の充電能力は充放電のサイクルにより劣化する。 このサイクル寿命による劣化を防止、再生する技術が必要である。 【解決手段】硫酸鉛絶縁体結晶皮膜の除去を硫酸鉛誘電緩和損失ピーク周波数10MHzで硫酸鉛を選択的に誘電緩和損加熱することによって、不良導体化した結晶を微細分解し、充電電流により正極に酸化鉛、負極に鉛に酸化還元する装置を提供する。

Description

鉛蓄電池の電気処理による蓄電能力劣化防止と再生装置
鉛蓄電池の硫酸鉛による蓄電能力の劣化防止と再生を硫酸鉛誘電損失周波数で不良導体化した硫酸鉛結晶を加熱微細化し、充電電流により化学分解し電池再生する装置に関する。
鉛蓄電池は放電回数の増加により電池電極面が不良導体である硫酸鉛コロイド薄膜で覆われ、硫酸鉛コロイド薄膜は時間の経過とともに結晶化し、硫酸鉛結晶化は電気的絶縁体化し、再充電によって正極に酸化鉛、負極に金属鉛にそれぞれ酸化還元されず、鉛蓄電池の蓄電能力は劣化する。今日、自然エネルギー、太陽光、風力などの不安定発電を安定化するために、安価な鉛蓄電池の長寿命化は不可欠であり、硫酸鉛による蓄電能力の劣化防止と再生技術が必要である。
現在、硫酸鉛による蓄電能力の劣化防止と再生技術は、鉛蓄電池にパルス電流を流し、電極表面に成長した硫酸鉛皮膜に電気衝撃を与え、硫酸鉛絶縁体皮膜を除去する装置が知られている。
特許第3902212号 特開2000-156247号 特開2000-323188号 特開2006-244973号 特開2000-40537号 特開2004-79374号
例えば、上記文献は共通に1MHz以下の高電圧パルスで電気機械的衝撃波を想定して硫酸鉛微結晶の破壊を目指している。ここでは、高電圧を用いるほど硫酸鉛除去効果は大きいと考えられている。
しかしながら、この場合、電気機械的衝撃波による硫酸鉛微結晶の破壊除去法は電極表面が硫酸鉛でまだらに絶縁されている状況下において、絶縁面である硫酸鉛結晶面に電界は集中せず、硫酸鉛絶縁体で覆われていない流れやすい伝導電極面に電流は集中する。よって、電気機械的衝撃波の破壊は起き難いと考えられる。
本発明は上述の問題を鑑みてなされたものであり、MHz領域にある硫酸鉛誘電緩和損加熱を用いることで硫酸鉛絶縁体表面に電流を集中させ、硫酸鉛を選択的に分解する装置を提供することを目的とする。
硫酸鉛絶縁体の誘電緩和損により発生する発熱で硫酸鉛結晶を熱機械的に歪ませ、結晶に微細割れ目を形成し、この結果電気導通化し充電電流により電気化学分解し、正極に酸化鉛、負極に金属鉛を生成するものであり、硫酸鉛誘電損失ピーク周波数約10MHz近辺で、硫酸鉛絶縁体で覆われていない電極表面における電気伝導度は小さい。なぜならば金属電極面の電気伝導度はイオン拡散電流が主で、イオン電流の応答速度が数十kHz以下である為、金属電極面の電気伝導度は小さい。MHz領域での希硫酸電解液は分極誘電率が下がる為、希硫酸電解液に比較して、MHz領域では誘電率の高い硫酸鉛絶縁体膜の表面に電流は集中する。
本発明によって、硫酸鉛絶縁体結晶膜が選択され、熱機械的に微細分解されるので、セル当たり2Vピークツーピークの高周波の低電圧低電流によって硫酸鉛結晶膜の酸化と還元分解が可能になり、従来の高電圧高電流パルス再生による電極板の発熱変形が招く電極間ショートを引き起こさずに鉛蓄電池を再生することが可能となる。
誘電損失電流の周波数に対する特性を示す図。 鉛蓄電池劣化防止と再生装置の概略構成を示すブロック図。 12V鉛蓄電池、6セル毎の旧来充電法に対する硫酸電解液密度再生実施比較を示す図。
以下、本発明の実施の形態として一実施例を図1から図3に基づいて説明する。
図1は、硫酸鉛誘電損失周波数を探すために、硫酸鉛粉末に希硫酸を加え絶縁電極で挟んで、0.1MHzから30MHzまで実測された電流特性である。デバイ緩和方程式の数式(1)による近似曲線も同時に示す。測定は近似式と良い一致を示す。図1の結果、誘電損失ピークは1MHzから100MHzに分布しており、約10MHz近辺でピークを持つ。このピーク周波数10MHzで希硫酸電解液中の硫酸鉛は加熱効率が最大になることが分かる。
Figure JPOXMLDOC01-appb-M000001
図2は本発明の実施形態に係る鉛蓄電池劣化防止、再生装置の概略構成を示すブロック図である。図2に示すように、鉛蓄電池再生装置制御MPU(マイクロプロセッサ)21、MPU21による充電電圧指令D/Aコンバータ22、充電電圧パワーアンプ23、高周波遮断コイル24、鉛蓄電池25、鉛蓄電池端子電圧測定A/Dコンバータ26、硫酸鉛誘電損周波数指令用オシレータ27、硫酸鉛誘電損周波電力増幅器28、直流電流遮断コンデンサー29からなる。
図2は、外部電源で再生される12Vの鉛蓄電池の例について述べる。
この鉛蓄電池25の電圧はA/Dコンバータ26で計り、MPU21に入力される。MPU21は、鉛蓄電池25の開放電圧が13V以下を検出した場合は蓄電池再生モードに入り、硫酸鉛誘電損周波数指令用オシレータ27から10MHzの高周波交流電流を発生し、高周波電力増幅器28で増幅して、直流遮断器29を通して、鉛蓄電池25に誘電損加熱交流電流を流す。MPU21はD/Aコンバータ22から電力アンプ23で増幅して、高周波遮断器24を通して、鉛蓄電池25の開放電圧より約2V高い電圧で充電を開始する。A/Dコンバータ26を通して、鉛蓄電池25の電圧は常に測定され、MPU21は鉛蓄電池25の開放電圧が13.5VになるまでD/Aコンバータ22で充電誘導する。開放電圧が13.5Vになった後も、浮動充電としてMPU21はD/Aコンバータ22を通して、14Vの定電圧充電を行い、この間同時に10MHzの高周波交流電流は鉛蓄電池25に流し続ける。
前述の鉛蓄電池再生シークエンスにおいて、請求項3記載の鉛蓄電池の硫酸皮膜除去法にあって、連続高周波電流は、間欠的熱衝撃を与えるために連続高周波電流を断続変調しても良い。
請求項5に記載した高周波交流電流の印加と充電を交互に行っても良い。
図3は、一年間放置された12Vバッテリーに各セル当たり2Vピークツーピーク10MHz高周波電流を連続的に掛け、同時に直流電圧15V定電圧電源で充電を行い、18時間で再生した例を示す。旧来の充電方法で充電し、各セルの密度は1.20以下であったが、6個のセルの内、2個は完全に100%再生できている。液密度1.25を示すセル6は、電極面から硫酸鉛結晶が脱落し、電気化学分解に硫酸鉛が預からず、セル6上の硫酸濃度が上昇しなかったものと思われる。硫酸濃度の上昇しなかったセル6は密度1.28になるまで硫酸を加え、再度充放電し100%再生ができた。
鉛蓄電池は広く使われており、自動車、船舶等のエンジン始動用や、スマートグリッドのローカル蓄電ステーション用として、自然エネルギー、風力発電機や太陽電池の脈動整流用としてこれらの蓄電池のサイクル寿命の延長に貢献することが出来、利用可能である。
11 硫酸鉛誘電損失実験値
12 デバイ緩和方程式による近似曲線
21 鉛蓄電池再生装置制御MPU(マイクロプロセッサ)
22 MPU充電電圧指令D/Aコンバータ
23 充電電圧パワーアンプ
24 高周波遮断コイル
25 鉛蓄電池
26 鉛蓄電池端子電圧測定A/Dコンバータ 
27 硫酸鉛誘電損周波数指令用オシレータ
28 硫酸鉛誘電損周波電力増幅器
29 直流電流遮断コンデンサー

Claims (6)

  1. 鉛蓄電池の蓄電能力の劣化原因である硫酸鉛皮膜を電気化学的に除去する装置であって、電圧検出器、高周波発振器、高周波電流増幅器、直流遮断器を備え、誘電緩和損により発生する発熱効果を伴う誘電損周波数の高周波交流電流を鉛蓄電池正負電極に出力し、硫酸鉛皮膜を選択的に分解し、高周波交流電流の周波数は1MHzから100MHzの硫酸鉛誘電損失周波数帯であることを特徴とする硫酸鉛皮膜の除去装置。
  2. 請求項1記載の硫酸鉛皮膜の除去装置の電源として、前記除去装置の取り付け対象である鉛蓄電池を利用することを特徴とする硫酸鉛皮膜の除去装置。
  3. 鉛蓄電池の硫酸鉛皮膜除去方法であって、請求項1の連続高周波交流電流は間欠的熱衝撃を与えるため、連続高周波電流を休止目的で変調する方法を含む事を特徴とする硫酸鉛皮膜の除去装置。
  4. 請求項1と請求項3記載の硫酸鉛皮膜加熱除去方法において、高周波交流電流を印加と平行して直流電流充電を行い、誘電緩和損分解で微細化した硫酸鉛皮膜成分を還元することを特徴とする硫酸鉛皮膜の除去装置。
  5. 請求項1と請求項3記載の硫酸鉛皮膜除去方法において、高周波交流電流の印加と充電を交互に行い、誘電緩和損加熱分解した硫酸鉛皮膜成分を充電電流によって酸化還元することを特徴とする硫酸鉛皮膜の除去装置。
  6. 請求項1、請求項3、請求項4、と請求項5記載の硫酸鉛皮膜の除去装置の電源として、商用電源、自然エネルギー、太陽電池、風力発電、波力発電を利用し、同時に電力を貯蔵させる装置。
PCT/JP2011/052336 2010-02-16 2011-02-04 鉛蓄電池の電気処理による蓄電能力劣化防止と再生装置 WO2011102237A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11744525.4A EP2538486A4 (en) 2010-02-16 2011-02-04 DEVICE FOR PREVENTING DETERIORATION OF STORAGE CAPACITY AND ENSURING RESTORATION THROUGH ELECTRICAL TREATMENT OF LEAD-ACID BATTERY
CN201180009991.4A CN102893447B (zh) 2010-02-16 2011-02-04 防止由铅蓄电池的电气处理导致的蓄电能力恶化和再生装置
KR1020127023946A KR101384721B1 (ko) 2010-02-16 2011-02-04 납축전지의 전기처리에 의한 축전능력 열화방지와 재생장치
US13/578,085 US9077051B2 (en) 2010-02-16 2011-02-04 System for preventing deterioration of storage capacity of lead acid battery and reusing lead acid battery by electrical treatment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-031600 2010-02-16
JP2010031600A JP4565362B1 (ja) 2010-02-16 2010-02-16 鉛蓄電池の電気処理による蓄電能力劣化防止と再生装置

Publications (1)

Publication Number Publication Date
WO2011102237A1 true WO2011102237A1 (ja) 2011-08-25

Family

ID=43098805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052336 WO2011102237A1 (ja) 2010-02-16 2011-02-04 鉛蓄電池の電気処理による蓄電能力劣化防止と再生装置

Country Status (6)

Country Link
US (1) US9077051B2 (ja)
EP (1) EP2538486A4 (ja)
JP (1) JP4565362B1 (ja)
KR (1) KR101384721B1 (ja)
CN (1) CN102893447B (ja)
WO (1) WO2011102237A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104160545A (zh) * 2012-02-10 2014-11-19 株式会社Jsv 二次电池的蓄电能力劣化防止和再生以及蓄电量测量装置
US20150107989A1 (en) * 2011-03-17 2015-04-23 Jsv Co., Ltd. Apparatus for preventing deterioration of storage capacity of rechargeable battery, regenerating the same, and measuring storage quantity
CN107749498A (zh) * 2017-09-15 2018-03-02 杨光 一种铅酸蓄电池硫化修复剂

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5352843B1 (ja) 2013-03-12 2013-11-27 ケイテクエンジニアリング株式会社 据置鉛蓄電池の性能改善方法
DE202013007927U1 (de) * 2013-09-06 2013-10-08 Marcel Henschel Akku mit verlängerter Stromabgabe
WO2016189630A1 (ja) * 2015-05-25 2016-12-01 株式会社トーア紡コーポレーション 鉛蓄電池再生装置
DE102015223387A1 (de) * 2015-11-26 2017-06-01 Robert Bosch Gmbh Verfahren zum Erkennen eines Zustands eines Bordnetzes
CN108987831B (zh) * 2018-08-28 2021-05-14 双登集团股份有限公司 用于容量不足的铅酸蓄电池活化方法
JP6994208B1 (ja) 2020-11-11 2022-01-14 武 鍔田 鉛蓄電池再生装置
CN116169384B (zh) * 2023-04-22 2023-08-18 飞杨电源技术(深圳)有限公司 一种铅酸蓄电池的修复电路及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55111079A (en) * 1979-02-20 1980-08-27 Matsushita Electric Ind Co Ltd Capacity recovery method in lead acid battery
JP2000040537A (ja) 1998-07-24 2000-02-08 Tec:Kk 鉛蓄電池の再生方法
JP2000156247A (ja) 1998-11-19 2000-06-06 Kachi Boeki Kk 鉛蓄電池活性器
JP2000323188A (ja) 1999-05-15 2000-11-24 Jec Service Kk 鉛電池の活性化法
JP2002334723A (ja) * 2001-05-07 2002-11-22 Yoshio Kitamura 鉛蓄電池の再生方法
JP2004079374A (ja) 2002-08-20 2004-03-11 Osurogureen Kk バッテリー再生方法及び再生装置
JP2006244973A (ja) 2005-03-01 2006-09-14 Shigeyuki Minami 鉛蓄電池の寿命延長法
JP3902212B2 (ja) 2002-09-24 2007-04-04 株式会社エルマ 鉛蓄電池に生ずる硫酸鉛皮膜の除去装置および方法
JP2009176705A (ja) * 2007-12-27 2009-08-06 Electron Spring Kk 鉛蓄電池を再生させるための装置及び方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6184650B1 (en) * 1999-11-22 2001-02-06 Synergistic Technologies, Inc. Apparatus for charging and desulfating lead-acid batteries
GB2448516A (en) * 2007-04-18 2008-10-22 Jae Jin Jung Solid material decomposing and removing circuit for battery
WO2010056303A1 (en) * 2008-11-12 2010-05-20 Bravo Zulu International Ltd. Lead acid battery de-sulfation

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55111079A (en) * 1979-02-20 1980-08-27 Matsushita Electric Ind Co Ltd Capacity recovery method in lead acid battery
JP2000040537A (ja) 1998-07-24 2000-02-08 Tec:Kk 鉛蓄電池の再生方法
JP2000156247A (ja) 1998-11-19 2000-06-06 Kachi Boeki Kk 鉛蓄電池活性器
JP2000323188A (ja) 1999-05-15 2000-11-24 Jec Service Kk 鉛電池の活性化法
JP2002334723A (ja) * 2001-05-07 2002-11-22 Yoshio Kitamura 鉛蓄電池の再生方法
JP2004079374A (ja) 2002-08-20 2004-03-11 Osurogureen Kk バッテリー再生方法及び再生装置
JP3902212B2 (ja) 2002-09-24 2007-04-04 株式会社エルマ 鉛蓄電池に生ずる硫酸鉛皮膜の除去装置および方法
JP2006244973A (ja) 2005-03-01 2006-09-14 Shigeyuki Minami 鉛蓄電池の寿命延長法
JP2009176705A (ja) * 2007-12-27 2009-08-06 Electron Spring Kk 鉛蓄電池を再生させるための装置及び方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2538486A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150107989A1 (en) * 2011-03-17 2015-04-23 Jsv Co., Ltd. Apparatus for preventing deterioration of storage capacity of rechargeable battery, regenerating the same, and measuring storage quantity
US9419309B2 (en) * 2011-03-17 2016-08-16 Jsv Co., Ltd. Apparatus for preventing deterioration of storage capacity of rechargeable battery, regenerating the same, and measuring storage quantity
CN104160545A (zh) * 2012-02-10 2014-11-19 株式会社Jsv 二次电池的蓄电能力劣化防止和再生以及蓄电量测量装置
EP2814105A4 (en) * 2012-02-10 2015-10-21 Jsv Co Ltd DEVICE FOR PREVENTING THE DETERIORATION OF STORAGE CAPACITY AND RENEWING THE STORAGE CAPACITY OF A RECHARGEABLE BATTERY, AND FOR MEASURING THE STORAGE QUANTITY FOR A RECHARGEABLE BATTERY
CN107749498A (zh) * 2017-09-15 2018-03-02 杨光 一种铅酸蓄电池硫化修复剂

Also Published As

Publication number Publication date
US9077051B2 (en) 2015-07-07
JP4565362B1 (ja) 2010-10-20
EP2538486A1 (en) 2012-12-26
CN102893447A (zh) 2013-01-23
KR20120129964A (ko) 2012-11-28
US20120326675A1 (en) 2012-12-27
KR101384721B1 (ko) 2014-04-15
JP2011171007A (ja) 2011-09-01
CN102893447B (zh) 2015-09-09
EP2538486A4 (en) 2016-10-12

Similar Documents

Publication Publication Date Title
JP4565362B1 (ja) 鉛蓄電池の電気処理による蓄電能力劣化防止と再生装置
CN107706472A (zh) 镍氢电池的充电方法和充电系统
JPH10308212A (ja) 2次電池用電極板処理装置
US20090136829A1 (en) Method and apparatus for reducing lead sulfate compound used in lead-acid battery
JP5289595B2 (ja) 充放電に基づく電極絶縁体不活性化皮膜の除去再生充電装置
RU2663188C1 (ru) Способ регенерации никель-водородной батареи
KR101528813B1 (ko) 이차 전지의 축전 능력 열화 방지와 재생 및 축전량 계측 장치
JP3186811B2 (ja) リチウム2次電池の充電方法
JP5616043B2 (ja) 鉛蓄電池の再生方法および該方法に用いられる鉛蓄電池の再生装置
JPH0883596A (ja) 薄型カード電池
JP2002334723A (ja) 鉛蓄電池の再生方法
JP2017182993A (ja) リチウムイオン二次電池の製造方法
JP2002050407A (ja) 非水電解質二次電池およびその充放電制御方法
JPS60253157A (ja) 非水系二次電池
JP6751879B2 (ja) 鉛蓄電池再生装置
JP7079416B2 (ja) 被膜形成方法
EP4243154A1 (en) Lead-acid battery regeneration device
WO2024253575A1 (en) Method of improving a sodium-ion battery and an improved sodium-ion battery
JP2001273904A (ja) リチウムイオン電池用銅箔
JPH0582140A (ja) 固体電解質リチウム電池の使用方法
Gertel et al. Internal Heating of the Lithium-Ion Batteries Based on Alternating Pulse Current and Methods of Its Implementation
CN120016627A (zh) 一种电池充电方法
CN106099231A (zh) 一种提升电池放电性能的脉冲放电方法
JP2020035566A (ja) 非水電解液二次電池の再利用方法
CN111092474A (zh) 一种正负脉冲式蓄电池快充发电机

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180009991.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744525

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011744525

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13578085

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127023946

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 7906/CHENP/2012

Country of ref document: IN