WO2011102237A1 - 鉛蓄電池の電気処理による蓄電能力劣化防止と再生装置 - Google Patents
鉛蓄電池の電気処理による蓄電能力劣化防止と再生装置 Download PDFInfo
- Publication number
- WO2011102237A1 WO2011102237A1 PCT/JP2011/052336 JP2011052336W WO2011102237A1 WO 2011102237 A1 WO2011102237 A1 WO 2011102237A1 JP 2011052336 W JP2011052336 W JP 2011052336W WO 2011102237 A1 WO2011102237 A1 WO 2011102237A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lead
- lead sulfate
- sulfate film
- frequency
- current
- Prior art date
Links
- 239000002253 acid Substances 0.000 title claims abstract description 14
- 230000006866 deterioration Effects 0.000 title claims abstract description 7
- PIJPYDMVFNTHIP-UHFFFAOYSA-L lead sulfate Chemical compound [PbH4+2].[O-]S([O-])(=O)=O PIJPYDMVFNTHIP-UHFFFAOYSA-L 0.000 claims abstract description 55
- 238000010438 heat treatment Methods 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 8
- 230000035939 shock Effects 0.000 claims description 5
- 238000000354 decomposition reaction Methods 0.000 claims description 3
- 238000010248 power generation Methods 0.000 claims description 3
- 238000007600 charging Methods 0.000 abstract description 11
- 239000013078 crystal Substances 0.000 abstract description 10
- 239000012212 insulator Substances 0.000 abstract description 8
- 229910000464 lead oxide Inorganic materials 0.000 abstract description 5
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 abstract description 5
- 238000005516 engineering process Methods 0.000 abstract description 3
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 abstract description 2
- 230000033116 oxidation-reduction process Effects 0.000 abstract 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 18
- 239000010408 film Substances 0.000 description 6
- 230000008929 regeneration Effects 0.000 description 6
- 238000011069 regeneration method Methods 0.000 description 6
- 239000003792 electrolyte Substances 0.000 description 4
- 230000001172 regenerating effect Effects 0.000 description 4
- 239000012141 concentrate Substances 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000013081 microcrystal Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 1
- 238000010280 constant potential charging Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4242—Regeneration of electrolyte or reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/54—Reclaiming serviceable parts of waste accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/06—Lead-acid accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/84—Recycling of batteries or fuel cells
Definitions
- the present invention relates to an apparatus for regenerating a battery by heating and refining a lead sulfate crystal obtained by making a lead conductor battery deterioration prevention and regeneration by lead sulfate as a poor conductor at a lead sulfate dielectric loss frequency, and chemically decomposing it by a charging current.
- Lead acid batteries are covered with lead sulfate colloidal thin film, which is a poor conductor, due to the increase in the number of discharges.Lead sulfate colloidal thin film crystallizes over time, lead sulfate crystallization becomes an electrical insulator, The lead oxide is not oxidized and reduced to lead oxide on the positive electrode and metal lead on the negative electrode, and the storage capacity of the lead storage battery deteriorates.
- lead sulfate colloidal thin film crystallizes over time, lead sulfate crystallization becomes an electrical insulator, The lead oxide is not oxidized and reduced to lead oxide on the positive electrode and metal lead on the negative electrode, and the storage capacity of the lead storage battery deteriorates.
- Today in order to stabilize unstable power generation such as natural energy, solar power, and wind power, it is indispensable to extend the life of inexpensive lead-acid batteries, and it is necessary to prevent deterioration of storage capacity due to lead sulfate and to regenerate technology.
- lead sulfate is used to prevent the deterioration of storage capacity and regenerative technology.
- the above documents commonly aim to destroy lead sulfate microcrystals by assuming an electromechanical shock wave with a high voltage pulse of 1 MHz or less.
- the higher the voltage is used the greater the effect of removing lead sulfate.
- the method of destroying and removing lead sulfate microcrystals by electromechanical shock waves does not concentrate the electric field on the lead sulfate crystal surface, which is an insulating surface, under the condition that the electrode surface is mottled with lead sulfate.
- the current concentrates on the surface of the conductive electrode that is not covered with the lead sulfate insulator and is easy to flow. Therefore, it is considered that the electromechanical shock wave is hardly destroyed.
- the present invention has been made in view of the above-mentioned problems, and an apparatus for selectively decomposing lead sulfate by concentrating current on the surface of the lead sulfate insulator by using lead sulfate dielectric relaxation loss heating in the MHz region.
- the purpose is to provide.
- the lead sulfate crystal is thermomechanically distorted by heat generated by dielectric relaxation loss of the lead sulfate insulator, forming fine cracks in the crystal, resulting in electrical conduction and electrochemical decomposition by the charging current, lead oxide on the positive electrode, Metallic lead is produced in the negative electrode, and the electrical conductivity at the surface of the electrode not covered with the lead sulfate insulator is small at around the lead sulfate dielectric loss peak frequency of about 10 MHz. This is because the electrical conductivity of the metal electrode surface is mainly an ion diffusion current, and the response speed of the ion current is several tens of kHz or less, so the electrical conductivity of the metal electrode surface is small.
- dilute sulfuric acid electrolyte in the MHz region has a lower dielectric constant
- the lead sulfate insulator crystal film is selected and finely decomposed thermomechanically, the lead sulfate crystal film can be oxidized and reductively decomposed by high-frequency low voltage and low current of 2 V peak-to-peak per cell.
- the lead sulfate crystal film can be oxidized and reductively decomposed by high-frequency low voltage and low current of 2 V peak-to-peak per cell.
- the figure which shows the characteristic with respect to the frequency of dielectric loss current The block diagram which shows schematic structure of lead storage battery degradation prevention and a reproducing
- FIG. 1 shows current characteristics measured from 0.1 MHz to 30 MHz by adding dilute sulfuric acid to lead sulfate powder and sandwiching it with an insulating electrode in order to find the lead sulfate dielectric loss frequency.
- the approximate curve by the Debye relaxation equation (1) is also shown. The measurement shows good agreement with the approximate expression.
- the dielectric loss peak is distributed from 1 MHz to 100 MHz, and has a peak in the vicinity of about 10 MHz. It can be seen that the lead sulfate in the dilute sulfuric acid electrolyte has the maximum heating efficiency at the peak frequency of 10 MHz.
- FIG. 2 is a block diagram showing a schematic configuration of the lead-acid battery deterioration preventing and regenerating apparatus according to the embodiment of the present invention.
- a lead storage battery regenerator control MPU microprocessor
- a charging voltage command D / A converter 22 by the MPU 21
- a charging voltage power amplifier 23 23
- a high frequency cutoff coil 24
- a lead storage battery 25 25
- a lead storage battery terminal voltage measurement It comprises an A / D converter 26, a lead sulfate dielectric loss frequency command oscillator 27, a lead sulfate dielectric loss frequency power amplifier 28, and a direct current blocking capacitor 29.
- FIG. 2 describes an example of a 12V lead acid battery regenerated with an external power source.
- the voltage of the lead storage battery 25 is measured by the A / D converter 26 and input to the MPU 21.
- the MPU 21 enters the storage battery regeneration mode, generates a 10 MHz high frequency alternating current from the lead sulfate dielectric loss frequency command oscillator 27, and amplifies it by the high frequency power amplifier 28. Then, a dielectric loss heating AC current is passed through the lead storage battery 25 through the DC circuit breaker 29.
- the MPU 21 is amplified by the power amplifier 23 from the D / A converter 22 and starts charging at a voltage about 2V higher than the open voltage of the lead storage battery 25 through the high frequency circuit breaker 24.
- the A / D converter 26 the voltage of the lead storage battery 25 is always measured, and the MPU 21 performs charge induction by the D / A converter 22 until the open voltage of the lead storage battery 25 reaches 13.5V. Even after the open-circuit voltage becomes 13.5 V, the MPU 21 performs constant voltage charging of 14 V through the D / A converter 22 as floating charging, and at the same time, a high-frequency alternating current of 10 MHz continues to flow through the lead storage battery 25.
- the continuous high-frequency current may be intermittently modulated to give an intermittent thermal shock.
- Application and charging of the high-frequency alternating current described in claim 5 may be performed alternately.
- FIG. 3 shows an example in which a 12 V battery left for one year is continuously applied with a 2 V peak-to-peak 10 MHz high-frequency current per cell, and simultaneously charged with a DC voltage 15 V constant voltage power source and regenerated in 18 hours.
- the battery was charged by the conventional charging method, and the density of each cell was 1.20 or less, but 2 out of 6 cells were completely 100% regenerated.
- the cell 6 showing a liquid density of 1.25, it is considered that the lead sulfate crystal dropped off from the electrode surface, lead sulfate was not deposited in the electrochemical decomposition, and the sulfuric acid concentration on the cell 6 did not increase.
- sulfuric acid concentration did not increase, sulfuric acid was added until the density reached 1.28, and charging and discharging were performed again, and 100% regeneration was possible.
- Lead-acid batteries are widely used to extend the cycle life of these batteries for starting engines in automobiles, ships, etc., for local energy storage stations in smart grids, and for pulsating rectification of natural energy, wind generators and solar cells. Can be used and can be used.
- Lead sulfate dielectric loss experimental value 11
- Approximate curve by Debye relaxation equation 12
- Lead storage battery regenerator control MPU (microprocessor) 22
- MPU charge voltage command D / A converter
- Charge voltage power amplifier 24
- High frequency cutoff coil 25
- Lead storage battery 26
- Lead storage battery terminal voltage measurement A / D converter
- Lead sulfate dielectric loss frequency command oscillator 28
- Lead sulfate dielectric loss frequency power amplifier 29 DC current blocking capacitor
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
この鉛蓄電池25の電圧はA/Dコンバータ26で計り、MPU21に入力される。MPU21は、鉛蓄電池25の開放電圧が13V以下を検出した場合は蓄電池再生モードに入り、硫酸鉛誘電損周波数指令用オシレータ27から10MHzの高周波交流電流を発生し、高周波電力増幅器28で増幅して、直流遮断器29を通して、鉛蓄電池25に誘電損加熱交流電流を流す。MPU21はD/Aコンバータ22から電力アンプ23で増幅して、高周波遮断器24を通して、鉛蓄電池25の開放電圧より約2V高い電圧で充電を開始する。A/Dコンバータ26を通して、鉛蓄電池25の電圧は常に測定され、MPU21は鉛蓄電池25の開放電圧が13.5VになるまでD/Aコンバータ22で充電誘導する。開放電圧が13.5Vになった後も、浮動充電としてMPU21はD/Aコンバータ22を通して、14Vの定電圧充電を行い、この間同時に10MHzの高周波交流電流は鉛蓄電池25に流し続ける。
前述の鉛蓄電池再生シークエンスにおいて、請求項3記載の鉛蓄電池の硫酸皮膜除去法にあって、連続高周波電流は、間欠的熱衝撃を与えるために連続高周波電流を断続変調しても良い。
請求項5に記載した高周波交流電流の印加と充電を交互に行っても良い。
12 デバイ緩和方程式による近似曲線
21 鉛蓄電池再生装置制御MPU(マイクロプロセッサ)
22 MPU充電電圧指令D/Aコンバータ
23 充電電圧パワーアンプ
24 高周波遮断コイル
25 鉛蓄電池
26 鉛蓄電池端子電圧測定A/Dコンバータ
27 硫酸鉛誘電損周波数指令用オシレータ
28 硫酸鉛誘電損周波電力増幅器
29 直流電流遮断コンデンサー
Claims (6)
- 鉛蓄電池の蓄電能力の劣化原因である硫酸鉛皮膜を電気化学的に除去する装置であって、電圧検出器、高周波発振器、高周波電流増幅器、直流遮断器を備え、誘電緩和損により発生する発熱効果を伴う誘電損周波数の高周波交流電流を鉛蓄電池正負電極に出力し、硫酸鉛皮膜を選択的に分解し、高周波交流電流の周波数は1MHzから100MHzの硫酸鉛誘電損失周波数帯であることを特徴とする硫酸鉛皮膜の除去装置。
- 請求項1記載の硫酸鉛皮膜の除去装置の電源として、前記除去装置の取り付け対象である鉛蓄電池を利用することを特徴とする硫酸鉛皮膜の除去装置。
- 鉛蓄電池の硫酸鉛皮膜除去方法であって、請求項1の連続高周波交流電流は間欠的熱衝撃を与えるため、連続高周波電流を休止目的で変調する方法を含む事を特徴とする硫酸鉛皮膜の除去装置。
- 請求項1と請求項3記載の硫酸鉛皮膜加熱除去方法において、高周波交流電流を印加と平行して直流電流充電を行い、誘電緩和損分解で微細化した硫酸鉛皮膜成分を還元することを特徴とする硫酸鉛皮膜の除去装置。
- 請求項1と請求項3記載の硫酸鉛皮膜除去方法において、高周波交流電流の印加と充電を交互に行い、誘電緩和損加熱分解した硫酸鉛皮膜成分を充電電流によって酸化還元することを特徴とする硫酸鉛皮膜の除去装置。
- 請求項1、請求項3、請求項4、と請求項5記載の硫酸鉛皮膜の除去装置の電源として、商用電源、自然エネルギー、太陽電池、風力発電、波力発電を利用し、同時に電力を貯蔵させる装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11744525.4A EP2538486A4 (en) | 2010-02-16 | 2011-02-04 | DEVICE FOR PREVENTING DETERIORATION OF STORAGE CAPACITY AND ENSURING RESTORATION THROUGH ELECTRICAL TREATMENT OF LEAD-ACID BATTERY |
CN201180009991.4A CN102893447B (zh) | 2010-02-16 | 2011-02-04 | 防止由铅蓄电池的电气处理导致的蓄电能力恶化和再生装置 |
KR1020127023946A KR101384721B1 (ko) | 2010-02-16 | 2011-02-04 | 납축전지의 전기처리에 의한 축전능력 열화방지와 재생장치 |
US13/578,085 US9077051B2 (en) | 2010-02-16 | 2011-02-04 | System for preventing deterioration of storage capacity of lead acid battery and reusing lead acid battery by electrical treatment |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-031600 | 2010-02-16 | ||
JP2010031600A JP4565362B1 (ja) | 2010-02-16 | 2010-02-16 | 鉛蓄電池の電気処理による蓄電能力劣化防止と再生装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011102237A1 true WO2011102237A1 (ja) | 2011-08-25 |
Family
ID=43098805
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/052336 WO2011102237A1 (ja) | 2010-02-16 | 2011-02-04 | 鉛蓄電池の電気処理による蓄電能力劣化防止と再生装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9077051B2 (ja) |
EP (1) | EP2538486A4 (ja) |
JP (1) | JP4565362B1 (ja) |
KR (1) | KR101384721B1 (ja) |
CN (1) | CN102893447B (ja) |
WO (1) | WO2011102237A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104160545A (zh) * | 2012-02-10 | 2014-11-19 | 株式会社Jsv | 二次电池的蓄电能力劣化防止和再生以及蓄电量测量装置 |
US20150107989A1 (en) * | 2011-03-17 | 2015-04-23 | Jsv Co., Ltd. | Apparatus for preventing deterioration of storage capacity of rechargeable battery, regenerating the same, and measuring storage quantity |
CN107749498A (zh) * | 2017-09-15 | 2018-03-02 | 杨光 | 一种铅酸蓄电池硫化修复剂 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5352843B1 (ja) | 2013-03-12 | 2013-11-27 | ケイテクエンジニアリング株式会社 | 据置鉛蓄電池の性能改善方法 |
DE202013007927U1 (de) * | 2013-09-06 | 2013-10-08 | Marcel Henschel | Akku mit verlängerter Stromabgabe |
WO2016189630A1 (ja) * | 2015-05-25 | 2016-12-01 | 株式会社トーア紡コーポレーション | 鉛蓄電池再生装置 |
DE102015223387A1 (de) * | 2015-11-26 | 2017-06-01 | Robert Bosch Gmbh | Verfahren zum Erkennen eines Zustands eines Bordnetzes |
CN108987831B (zh) * | 2018-08-28 | 2021-05-14 | 双登集团股份有限公司 | 用于容量不足的铅酸蓄电池活化方法 |
JP6994208B1 (ja) | 2020-11-11 | 2022-01-14 | 武 鍔田 | 鉛蓄電池再生装置 |
CN116169384B (zh) * | 2023-04-22 | 2023-08-18 | 飞杨电源技术(深圳)有限公司 | 一种铅酸蓄电池的修复电路及方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55111079A (en) * | 1979-02-20 | 1980-08-27 | Matsushita Electric Ind Co Ltd | Capacity recovery method in lead acid battery |
JP2000040537A (ja) | 1998-07-24 | 2000-02-08 | Tec:Kk | 鉛蓄電池の再生方法 |
JP2000156247A (ja) | 1998-11-19 | 2000-06-06 | Kachi Boeki Kk | 鉛蓄電池活性器 |
JP2000323188A (ja) | 1999-05-15 | 2000-11-24 | Jec Service Kk | 鉛電池の活性化法 |
JP2002334723A (ja) * | 2001-05-07 | 2002-11-22 | Yoshio Kitamura | 鉛蓄電池の再生方法 |
JP2004079374A (ja) | 2002-08-20 | 2004-03-11 | Osurogureen Kk | バッテリー再生方法及び再生装置 |
JP2006244973A (ja) | 2005-03-01 | 2006-09-14 | Shigeyuki Minami | 鉛蓄電池の寿命延長法 |
JP3902212B2 (ja) | 2002-09-24 | 2007-04-04 | 株式会社エルマ | 鉛蓄電池に生ずる硫酸鉛皮膜の除去装置および方法 |
JP2009176705A (ja) * | 2007-12-27 | 2009-08-06 | Electron Spring Kk | 鉛蓄電池を再生させるための装置及び方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6184650B1 (en) * | 1999-11-22 | 2001-02-06 | Synergistic Technologies, Inc. | Apparatus for charging and desulfating lead-acid batteries |
GB2448516A (en) * | 2007-04-18 | 2008-10-22 | Jae Jin Jung | Solid material decomposing and removing circuit for battery |
WO2010056303A1 (en) * | 2008-11-12 | 2010-05-20 | Bravo Zulu International Ltd. | Lead acid battery de-sulfation |
-
2010
- 2010-02-16 JP JP2010031600A patent/JP4565362B1/ja active Active
-
2011
- 2011-02-04 WO PCT/JP2011/052336 patent/WO2011102237A1/ja active Application Filing
- 2011-02-04 CN CN201180009991.4A patent/CN102893447B/zh not_active Expired - Fee Related
- 2011-02-04 US US13/578,085 patent/US9077051B2/en not_active Expired - Fee Related
- 2011-02-04 KR KR1020127023946A patent/KR101384721B1/ko not_active Expired - Fee Related
- 2011-02-04 EP EP11744525.4A patent/EP2538486A4/en not_active Withdrawn
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55111079A (en) * | 1979-02-20 | 1980-08-27 | Matsushita Electric Ind Co Ltd | Capacity recovery method in lead acid battery |
JP2000040537A (ja) | 1998-07-24 | 2000-02-08 | Tec:Kk | 鉛蓄電池の再生方法 |
JP2000156247A (ja) | 1998-11-19 | 2000-06-06 | Kachi Boeki Kk | 鉛蓄電池活性器 |
JP2000323188A (ja) | 1999-05-15 | 2000-11-24 | Jec Service Kk | 鉛電池の活性化法 |
JP2002334723A (ja) * | 2001-05-07 | 2002-11-22 | Yoshio Kitamura | 鉛蓄電池の再生方法 |
JP2004079374A (ja) | 2002-08-20 | 2004-03-11 | Osurogureen Kk | バッテリー再生方法及び再生装置 |
JP3902212B2 (ja) | 2002-09-24 | 2007-04-04 | 株式会社エルマ | 鉛蓄電池に生ずる硫酸鉛皮膜の除去装置および方法 |
JP2006244973A (ja) | 2005-03-01 | 2006-09-14 | Shigeyuki Minami | 鉛蓄電池の寿命延長法 |
JP2009176705A (ja) * | 2007-12-27 | 2009-08-06 | Electron Spring Kk | 鉛蓄電池を再生させるための装置及び方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2538486A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150107989A1 (en) * | 2011-03-17 | 2015-04-23 | Jsv Co., Ltd. | Apparatus for preventing deterioration of storage capacity of rechargeable battery, regenerating the same, and measuring storage quantity |
US9419309B2 (en) * | 2011-03-17 | 2016-08-16 | Jsv Co., Ltd. | Apparatus for preventing deterioration of storage capacity of rechargeable battery, regenerating the same, and measuring storage quantity |
CN104160545A (zh) * | 2012-02-10 | 2014-11-19 | 株式会社Jsv | 二次电池的蓄电能力劣化防止和再生以及蓄电量测量装置 |
EP2814105A4 (en) * | 2012-02-10 | 2015-10-21 | Jsv Co Ltd | DEVICE FOR PREVENTING THE DETERIORATION OF STORAGE CAPACITY AND RENEWING THE STORAGE CAPACITY OF A RECHARGEABLE BATTERY, AND FOR MEASURING THE STORAGE QUANTITY FOR A RECHARGEABLE BATTERY |
CN107749498A (zh) * | 2017-09-15 | 2018-03-02 | 杨光 | 一种铅酸蓄电池硫化修复剂 |
Also Published As
Publication number | Publication date |
---|---|
US9077051B2 (en) | 2015-07-07 |
JP4565362B1 (ja) | 2010-10-20 |
EP2538486A1 (en) | 2012-12-26 |
CN102893447A (zh) | 2013-01-23 |
KR20120129964A (ko) | 2012-11-28 |
US20120326675A1 (en) | 2012-12-27 |
KR101384721B1 (ko) | 2014-04-15 |
JP2011171007A (ja) | 2011-09-01 |
CN102893447B (zh) | 2015-09-09 |
EP2538486A4 (en) | 2016-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4565362B1 (ja) | 鉛蓄電池の電気処理による蓄電能力劣化防止と再生装置 | |
CN107706472A (zh) | 镍氢电池的充电方法和充电系统 | |
JPH10308212A (ja) | 2次電池用電極板処理装置 | |
US20090136829A1 (en) | Method and apparatus for reducing lead sulfate compound used in lead-acid battery | |
JP5289595B2 (ja) | 充放電に基づく電極絶縁体不活性化皮膜の除去再生充電装置 | |
RU2663188C1 (ru) | Способ регенерации никель-водородной батареи | |
KR101528813B1 (ko) | 이차 전지의 축전 능력 열화 방지와 재생 및 축전량 계측 장치 | |
JP3186811B2 (ja) | リチウム2次電池の充電方法 | |
JP5616043B2 (ja) | 鉛蓄電池の再生方法および該方法に用いられる鉛蓄電池の再生装置 | |
JPH0883596A (ja) | 薄型カード電池 | |
JP2002334723A (ja) | 鉛蓄電池の再生方法 | |
JP2017182993A (ja) | リチウムイオン二次電池の製造方法 | |
JP2002050407A (ja) | 非水電解質二次電池およびその充放電制御方法 | |
JPS60253157A (ja) | 非水系二次電池 | |
JP6751879B2 (ja) | 鉛蓄電池再生装置 | |
JP7079416B2 (ja) | 被膜形成方法 | |
EP4243154A1 (en) | Lead-acid battery regeneration device | |
WO2024253575A1 (en) | Method of improving a sodium-ion battery and an improved sodium-ion battery | |
JP2001273904A (ja) | リチウムイオン電池用銅箔 | |
JPH0582140A (ja) | 固体電解質リチウム電池の使用方法 | |
Gertel et al. | Internal Heating of the Lithium-Ion Batteries Based on Alternating Pulse Current and Methods of Its Implementation | |
CN120016627A (zh) | 一种电池充电方法 | |
CN106099231A (zh) | 一种提升电池放电性能的脉冲放电方法 | |
JP2020035566A (ja) | 非水電解液二次電池の再利用方法 | |
CN111092474A (zh) | 一种正负脉冲式蓄电池快充发电机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180009991.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11744525 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011744525 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13578085 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20127023946 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 7906/CHENP/2012 Country of ref document: IN |