WO2011099710A2 - 에너지 절감형 방식용 금속도막 조성물 및 그 제조방법 - Google Patents

에너지 절감형 방식용 금속도막 조성물 및 그 제조방법 Download PDF

Info

Publication number
WO2011099710A2
WO2011099710A2 PCT/KR2011/000563 KR2011000563W WO2011099710A2 WO 2011099710 A2 WO2011099710 A2 WO 2011099710A2 KR 2011000563 W KR2011000563 W KR 2011000563W WO 2011099710 A2 WO2011099710 A2 WO 2011099710A2
Authority
WO
WIPO (PCT)
Prior art keywords
sol
weight
gel resin
parts
energy
Prior art date
Application number
PCT/KR2011/000563
Other languages
English (en)
French (fr)
Other versions
WO2011099710A3 (ko
Inventor
이형오
김현민
송정의
박수량
Original Assignee
엘베스트지에이티 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘베스트지에이티 주식회사 filed Critical 엘베스트지에이티 주식회사
Priority to JP2012552793A priority Critical patent/JP5278931B2/ja
Priority to ES11742402.8T priority patent/ES2567181T3/es
Priority to US13/577,655 priority patent/US8932492B2/en
Priority to EP11742402.8A priority patent/EP2535385B1/en
Publication of WO2011099710A2 publication Critical patent/WO2011099710A2/ko
Publication of WO2011099710A3 publication Critical patent/WO2011099710A3/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/02Polysilicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/14Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/084Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/10Anti-corrosive paints containing metal dust
    • C09D5/103Anti-corrosive paints containing metal dust containing Al
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/69Particle size larger than 1000 nm
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/58Metal-containing linkages
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Definitions

  • the present invention relates to an anticorrosive coating agent, and more particularly, to an energy-saving anticorrosive metal coating composition used in an anticorrosive coating agent for forming a composite layer of a metal coating film and an anticorrosive coating film, and a method of manufacturing the same.
  • Anticorrosive coatings are coatings that coat the object to form a coating and protect the object from contamination or corrosion, especially to protect the outer surfaces of metal parts that are assembled or bonded to various products manufactured in each industry. It is widely used for the purpose.
  • the anticorrosive coating agent generally comprises a metal powder having a main rust preventing function, an organic solvent, and various additives for imparting special functions such as heat resistance, weather resistance, thermal stability, and rust resistance.
  • Korean Patent Publication No. 10-0848671 discloses a method and a composition for forming a metal coating film and an anticorrosive coating film thereon to form two composite coating layers. have.
  • a method of forming a composite plating layer by forming a metal plating layer on an object, applying a composition for anticorrosive coating on the metal plating layer to form an anticorrosive coating, and curing it at a high temperature of 280 ° C to 350 ° C is disclosed.
  • This method is a two-coating 1 baking method, which exhibits superior anticorrosive properties than other conventional anticorrosive coating layers, but has a high curing temperature of 280 to 350 ° C., resulting in high carbon emissions and high energy consumption. There is a problem that the defect rate is high and the acid resistance and the corrosion resistance are degraded.
  • An object of the present invention is to provide a metal coating composition for anticorrosion that can be cured at a low temperature, high energy saving efficiency during manufacture, and particles of the metal coating do not penetrate the anticorrosive coating.
  • At least one metal powder having a particle size of 5 to 10 ⁇ m and selected from the group consisting of aluminum, magnesium, and alloys thereof;
  • a first sol-gel resin selected from the group consisting of zirconium tatra-normal-butanolate, zirconium butoxide, isopropyl titanate, and mixtures thereof;
  • the metal powder is preferably 100 to 160 parts by weight
  • the first sol gel resin is 35 to 60 parts by weight
  • the second sol gel resin is 165 to 250 parts by weight
  • the solvent is preferably composed of 60 to 90 parts by weight.
  • the metal powder is preferably made of aluminum magnesium alloy 70 to 100 parts by weight, aluminum 30 to 60 parts by weight.
  • the first sol-gel resin is preferably composed of 20 to 30 parts by weight of zirconium tatra-normal-butanolate, 10 to 20 parts by weight of zirconium butoxide and 5 to 10 parts by weight of isopropyl titanate.
  • the second sol-gel resin is 30 to 50 parts by weight of tri- (3- (trimethoxysil) propyl) isocyanurate, 50 to 70 parts by weight of gamma-methacryloxypropyltrimethoxysilane and normal-phenyl- It is preferable that it consists of 50-70 weight part of gamma-aminopropyl trimethoxysilane.
  • the solvent is preferably acetone.
  • a method for preparing an energy-saving anticorrosive metal coating composition may include a metal powder selected from the group consisting of aluminum, magnesium, and alloys of 5 to 10 ⁇ m in a solvent at room temperature for 2 to 3 hours.
  • Zirconium tatra-normal-butanolate, zirconium butoxide, isopropyl titanate, and a first sol gel resin selected from the group consisting of the mixture are added to the mixture of the metal powder dispersion step for 300 to 3 hours. Mixing and stirring the first sol-gel resin, which is stirred at 400 rpm; And
  • the temperature of the first sol-gel resin mixing and stirring step is preferably maintained at 15 to 20 °C.
  • the temperature of the second sol-gel resin mixing and stirring step is preferably maintained at 10 to 15 °C.
  • the anticorrosive metal coating composition according to the embodiment of the present invention does not penetrate the anticorrosive coating layer formed thereon, and thus has excellent effects such as physical properties such as corrosion resistance, chemical resistance, durability, and mechanical strength.
  • the anti-corrosive metal coating composition according to an embodiment of the present invention is capable of curing at low temperatures, thereby reducing energy and reducing environmental pollution.
  • the anticorrosive metal coating composition according to one aspect of the present invention includes a metal powder, a sol-gel resin and a solvent.
  • Metal powder uses light metals, such as aluminum, magnesium, and an aluminum-magnesium alloy, as a main material layer for giving the antirust function of an anticorrosive coating agent.
  • the particle size of the metal powder is preferably 5 to 10 ⁇ m, if less than 5 has a problem that the specific surface area is large, the viscosity rises, if it exceeds 10 penetrates the anticorrosive coating film to be formed on the upper metal coating film This is because there is a problem that the acid resistance is lowered.
  • Metal powders are generally spherical, but if each particle is not perfectly spherical, the particle size is defined as the average of the length of the longest line segment and the length of the shortest line segment that pass through the interior of the particle.
  • the metal powder is preferably contained in 100 to 160 parts by weight. If the metal powder is less than 100 parts by weight, there is a problem that the heat resistance is lowered, and if it exceeds 160 parts by weight, there is a problem that the adhesive strength is reduced.
  • Sol gel resin refers to a gel resin obtained by the Sol-Gel Reaction.
  • At least one or more materials may be used in the group consisting of gamma-aminopropyltrimethoxysilane, and mixtures thereof.
  • the sol-gel resin has excellent adhesion to the metal powder and the structure is dense so that the constituents of the metal coating film cannot penetrate into the anticorrosive coating film, and are excellent in corrosion resistance, acid resistance, heat resistance and scratch resistance.
  • the sol-gel resin is preferably contained in an amount of 165 to 250 parts by weight, and more preferably, the sol-gel resin is separated into a first sol-gel resin and a second sol-gel resin, and as a first sol-gel resin, zirconium tatra-normal-butanolate 20 to 30 weight Parts, 10 to 20 parts by weight of zirconium butoxide, and 5 to 10 parts by weight of isopropyl titanate to make the first sol-gel resin as a whole to 35 to 60 parts by weight, and as a second sol-gel resin, tri- (3- (trimethock) Sicily) propyl) isocyanurate 30 to 50 parts by weight, gamma-methacryloxypropyltrimethoxysilane 50 to 70 parts by weight and normal-phenyl-gamma-aminopropyltrimethoxysilane 50 to 70 parts by weight It is preferable to make the resin into 130 to 190 parts by weight.
  • zirconium tatra-normal-butanolate, zirconium butoxide and isopropyl titanate as the first sol-gel resin is out of the above-mentioned ranges, fine particles are formed during coating and nozzle clogging occurs when spray coating. As it occurs, the content has an important meaning.
  • the content of tri- (3- (trimethoxysil) propyl) isocyanurate, gamma-methacryloxypropyltrimethoxysilane and normal-phenyl-gamma-aminopropyltrimethoxysilane as the second sol-gel resin is If it is out of the range listed in the above, the uniform dispersion of the metal powder is not made because the sedimentation phenomenon is very severe and difficult to use.
  • the sol gel resin Since the sol gel resin is very sensitive and the gelation phenomenon occurs as soon as the stability decreases according to the order or temperature during manufacturing, the sol gel resin is experimentally divided into the first sol gel resin and the second sol gel resin by reflecting the tendency to gel. The resin is mixed and stirred in the order of the second sol-gel resin.
  • the solvent may be, but not limited to, acetone, dipropylene glycol, butyl diglycol, isopropyl alcohol, and the like, and acetone may be more preferably used.
  • the anticorrosive metal coating composition for achieving the object of the present invention may further include an additive such as an antifoaming agent, a dispersant, a surface modifier, or an organic solvent for adjusting the curing rate, and does not limit the inclusion of other additives other than these names.
  • the antifoam may be a silicone-modified polyoxypropylene antifoaming agent, a polyoxyethylene ether dispersant as a dispersant, and a glycidoxypropyltrimethoxysilane-based surface modifier as the surface modifier.
  • the anticorrosive metal coating composition according to the present invention is used to form a coating layer of a multi-layered structure by forming a separate anticorrosive coating on top, and the anticorrosive coating film which can be used at this time is not limited, but the anticorrosive coating composition including a silane-modified epoxy resin is used. It is preferable to apply.
  • Non-limiting examples of the anticorrosive coating composition including the silane-modified epoxy resin are disclosed in Korean Patent Publication No. 10-0848671 described in the Background Art.
  • Method for producing a metal coating composition for corrosion protection includes a metal powder dispersion step, the first sol gel resin mixing and stirring step, the second sol gel resin mixing and stirring step.
  • the metal powder dispersion step is a step of mixing 5 to 10 ⁇ m size metal powder in a solvent for 2 to 3 hours at room temperature.
  • the first sol-gel resin mixing and stirring step is to add the first sol-gel resin to the mixture of the dispersing step and to stir at 300 to 400 rpm for 3 to 5 hours, wherein the temperature is maintained at 15 to 20 °C desirable.
  • the second sol-gel resin mixing and stirring step is a step of adding the second sol-gel resin to the mixture of the above-mentioned first sol-gel resin mixing and stirring step and stirring at 100 to 200 rpm for 4 to 7 hours, wherein the temperature is It is preferable to keep it at 10-15 degreeC.
  • the sol-gel resin is poor in stability and the anticorrosive period is significantly decreased.
  • at least six weeks should be used, but a problem arises that only one week can be used.
  • zirconium tatra-normal-butanolate used a molecular weight of 384 (28% zirconium oxide content, 16% normal butanol content), zirconium butoxide has a molecular weight of 383, isopropyl titanate molecular weight of 284 was used.
  • tri- (3- (trimethoxysilyl) propyl) isocyanurate has a molecular weight of 136.3
  • gamma-methacryloxypropyltrimethoxysilane has a molecular weight of 248.4
  • Example 1 only 20 parts by weight of zirconium tatra-normal-butanolate was prepared in the same formulation for the anticorrosive metal coating composition.
  • Example 1 only 10 parts by weight of zirconium butoxide was prepared in the same formulation for the anticorrosive metal coating composition.
  • Example 2 Instead of using a mixture of aluminum magnesium alloy and aluminum as the metal powder in Example 1, only 125 parts by weight of aluminum having a size of 8 ⁇ m was used.
  • Example 1 all were the same and only 20 ⁇ m of aluminum magnesium was used.
  • Example 1 an epoxy resin was used instead of the sol-gel resin.
  • the anticorrosive coating film having a thickness of 20 to 25 ⁇ m was formed to measure acid resistance, adhesion, water tightness, corrosion resistance, and metal layer climb phenomenon. All the said anticorrosive coating films were hardened for about 10 minutes at the temperature of 130 degreeC, and were put together as Table 1, and the like.
  • the composite coating composition of the present invention is excellent in acid resistance, water resistance, corrosion resistance, etc., but the anticorrosive coating film coated with the compositions of Comparative Examples 1 and 2 is very poor in all physical properties. appear. This may be due to the size of the aluminum magnesium alloy used as the metal powder, the properties of the sol-gel resin and the ratio of the above-described composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Paints Or Removers (AREA)
  • Silicon Polymers (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

본 발명은 에너지 절감형 방식용 금속도막 조성물 및 그 제조방법에 관한 것으로, 입자크기가 5 내지 10um이며 알루미늄, 마그네슘, 및 그 합금으로 구성된 군에서 선택되는 적어도 하나 이상의 금속분말; 지르코늄태트라-노말-부탄올레이트, 지르코늄부톡사이드, 이소프로필티타네이트, 및 그 혼합물로 구성되는 군에서 선택되는 제1졸겔수지; 트리-(3-(트리메톡시실리)프로필)이소시아누레이트, 감마-메타아크릴옥시프로필트리메톡시실란 및 노말-페닐-감마-아미노프로필트리메톡시실란, 및 그 혼합물로 구성되는 군에서 선택되는 제2졸겔수지; 및 용매를 포함하는 에너지 절감형 방식용 금속도막 조성물 및 그 제조방법을 제공한다.

Description

에너지 절감형 방식용 금속도막 조성물 및 그 제조방법
본 발명은 방식 코팅제에 관한 것으로, 보다 상세하게는 금속도막과 방식도막의 복합층을 형성하는 방식코팅제에 사용되는 에너지 절감형 방식용 금속도막 조성물 및 그 제조방법에 관한 것이다.
방식 코팅제는 물체에 도장되어 도막을 형성하고 물체를 오염이나 부식으로부터 보호하는 기능의 코팅제로서, 특히 각 산업분야에서 제조되어지고 있는 각종 제품들에 조립 또는 결합되어지는 금속 부품들의 외부 표면을 보호하기 위한 용도로 널리 사용되고 있다.
방식 코팅제는 일반적으로 주 방청기능을 가지는 금속분말과, 유기용제와, 내열성, 내후성, 열안정성, 방청성 등의 특수기능을 부여하기 위해 각종의 첨가제를 포함하여 구성된다.
이러한 방식 코팅제는 통상 1개의 코팅층을 형성하지만, 대한민국 특허공보 제10-0848671호에는 금속도막을 형성하고, 그 상부에 방식성 도막을 형성하여 2개의 복합 코팅층을 형성하는 방법 및 그 조성물이 개시되어 있다.
즉, 대상체 상에 금속 도금층을 형성하고, 금속 도금층 상에 방식 도료용 조성물을 도포하여 방식성 도막을 형성하고, 이를 280℃ 내지 350℃의 고온에서 경화시켜 복합 도금층을 형성하는 방법이 개시되어 있다.
이러한 방법은 2 코팅 1 베이킹 방법으로서, 종래의 다른 방식 코팅층 형성보다는 우수한 방식성을 나타내지만 경화온도가 280 내지350℃로서 매우 높아 탄소 배출이 많고 에너지가 많이 소모되며, 금속 도금층이 방식성 도막으로 침투되어 불량률이 높고 또한 내산성과 내식성이 저하되는 문제점을 가지고 있다.
본 발명은 전술한 문제점을 해결하기 위한 것으로, 저온 경화가 가능하여 제조시 에너지 절감효가가 높고 금속도막의 입자가 방식도막에 침투되지 않는 방식용 금속도막 조성물을 제공하는 것을 목적으로 한다.
본 발명의 일측면에 따른 금속도막 조성물은,
입자크기가 5 내지 10um이며 알루미늄, 마그네슘, 및 그 합금으로 구성된 군에서 선택되는 적어도 하나 이상의 금속분말;
지르코늄태트라-노말-부탄올레이트, 지르코늄부톡사이드, 이소프로필티타네이트, 및 그 혼합물로 구성되는 군에서 선택되는 제1졸겔수지;
트리-(3-(트리메톡시실리)프로필)이소시아누레이트, 감마-메타아크릴옥시프로필트리메톡시실란 및 노말-페닐-감마-아미노프로필트리메톡시실란, 및 그 혼합물로 구성되는 군에서 선택되는 제2졸겔수지; 및
용매를 포함하는 것을 특징으로 한다.
이 때, 상기 금속분말은 100 내지 160중량부, 상기 제1졸겔수지는 35 내지 60중량부, 상기 제2졸겔수지는 165 내지 250중량부, 상기 용매는 60 내지 90중량부로 이루어지는 것이 바람직하다.
또한, 상기 금속분말은 알루미늄마그네슘합금 70 내지 100중량부, 알루미늄 30 내지 60중량부로 이루어지는 것이 바람직하다.
또한, 상기 제1졸겔수지는 지르코늄태트라-노말-부탄올레이트 20 내지30 중량부, 지르코늄부톡사이드 10 내지 20 중량부 및 이소프로필티타네이트 5 내지 10중량부로 이루어지는 것이 바람직하다.
또한, 상기 제2졸겔수지는 트리-(3-(트리메톡시실리)프로필)이소시아누레이트 30 내지 50중량부, 감마-메타아크릴옥시프로필트리메톡시실란 50 내지 70중량부 및 노말-페닐-감마-아미노프로필트리메톡시실란 50 내지 70중량부로 이루어지는 것이 바람직하다.
또한, 상기 용매는 아세톤인 것이 바람직하다.
본 발명의 다른 측면에 따른 에너지 절감형 방식용 금속도막 조성물의 제조방법은 5 내지 10㎛크기의 알루미늄, 마그네슘, 및 그 합금으로 구성된 군에서 선택되는 금속분말을 용매에 2 내지 3시간동안 상온에서 혼합하는 금속분말 분산단계;
상기 금속분말 분산단계의 혼합물에 지르코늄태트라-노말-부탄올레이트, 지르코늄부톡사이드, 이소프로필티타네이트, 및 그 혼합물로 구성되는 군에서 선택되는 제1졸겔수지를 첨가하여 3 내지 5시간동안 300~400rpm으로 교반하는 제1졸겔수지 혼합 및 교반단계; 및
상기 제1졸겔수지 혼합 및 교반단계의 혼합물에 트리-(3-(트리메톡시실리)프로필)이소시아누레이트, 감마-메타아크릴옥시프로필트리메톡시실란 및 노말-페닐-감마-아미노프로필트리메톡시실란, 및 그 혼합물로 구성되는 군에서 선택되는 제2졸겔수지를 첨가하여 4 내지 7시간동안 100~200rpm으로 교반하는 제2졸겔수지 혼합 및 교반단계;를 포함하는 것을 특징으로 한다.
이 때, 제1졸겔수지 혼합 및 교반단계에서의 온도는 15 내지 20℃로 유지하는 것이 바람직하다.
또한, 제2졸겔수지 혼합 및 교반단계에서의 온도는 10 내지 15℃로 유지하는 것이 바람직하다.
본 발명의 실시예에 따른 방식용 금속도막 조성물은 그 상부에 형성되는 방식성 도막층에 침투되지 않아, 내식성, 내화학성, 내구성 및 기계적 강도 등의 물성이 뛰어난 효과가 있다.
또한, 본 발명의 일실시예에 따른 방식용 금속도막 조성물은 저온에서 경화가 가능하여 에너지를 절감하여 환경오염을 감소시키는 효과가 있다.
본 발명의 일측면에 따른 방식용 금속도막 조성물은 금속분말, 졸겔수지 및 용매를 포함한다.
금속분말은 방식 코팅제의 방청 기능을 부여하기 위한 주 재료층으로서, 알루미늄, 마그네슘, 및 알루미늄-마그네슘 합금 등의 경금속을 사용한다. 이 때, 금속분말의 입자크기는 5 내지 10㎛인 것이 바람직한데, 5 미만인 경우 비표면적이 커 점도가 상승 하게 되는 문제점이 있고, 10을 초과하는 경우 금속도막 상부에 형성될 방식성 도막으로 침투하여 내산성이 저하하는 문제점이 있기 때문이다.
금속분말은 일반적으로 구형이지만 각 입자가 완전한 구형이 아닌 경우 입자의 크기는 입자 내부를 통과하는 가장 긴 선분의 길이와 가장 짧은 선분의 길이의 평균값으로 정의한다.
또한, 분말의 내부에는 각각의 입자 크기 사이에는 미세한 차이가 있으나, 가장 많은 수의 입자가 분포하거나 평균 입자크기를 분말의 입자 크기로 본다.
금속분말은 100 내지 160중량부로 포함되는 것이 바람직하다. 금속분말이 100 중량부 미만인 경우 내열성이 저하되는 문제점이 있고, 160 중량부를 초과하는 경우 접착력이 감소하는 문제점이 있기 때문이다.
졸겔수지는 졸겔반응(Sol-Gel Reaction)으로 얻어진 겔상 수지를 말한다. 지르코늄태트라-노말-부탄올레이트, 지르코늄부톡사이드, 이소프로필티타네이트, 트리-(3-(트리메톡시실리)프로필)이소시아누레이트, 감마-메타아크릴옥시프로필트리메톡시실란, 노말-페닐-감마-아미노프로필트리메톡시실란, 및 그 혼합물로 구성되는 군에서 적어도 하나 이상의 물질이 사용될 수 있다.
졸겔수지는 금속분말에 대한 결합력이 우수하고 조직이 치밀하여 금속도막의 구성물질이 방식도막으로 침투하지 못하며, 내식성, 내산성, 내열성 및 내스크레치성이 우수하다.
졸겔수지는 165 내지 250 중량부로 포함되는 것이 바람직하며, 보다 바람직하게는 졸겔수지를 제1졸겔수지와 제2졸겔수지로 분리하여 제1졸겔수지로서는 지르코늄태트라-노말-부탄올레이트 20 내지 30 중량부, 지르코늄부톡사이드 10 내지 20 중량부, 및 이소프로필티타네이트 5 내지10중량부를 사용하여 전체적으로 제1졸겔수지가 35 내지 60중량부가 되게 하고, 제2졸겔수지로서는 트리-(3-(트리메톡시실리)프로필)이소시아누레이트 30 내지50중량부, 감마-메타아크릴옥시프로필트리메톡시실란 50 내지 70중량부 및 노말-페닐-감마-아미노프로필트리메톡시실란 50 내지70중량부를 사용하여 제2수지가 130 내지 190중량부가 되게 하는 것이 바람직하다.
제1졸겔수지인 지르코늄태트라-노말-부탄올레이트와 지르코늄부톡사이드 및 이소프로필티타네이트 함량이 상기에서 열거한 범위를 벗어나면 코팅시 미세한 입자가 형성되어 스프레이코팅 시 노즐 막힘 현상이 발생하는 문제점이 발생하므로 상기 함량은 중요한 의미를 가진다.
또한, 제2졸겔수지인 트리-(3-(트리메톡시실리)프로필)이소시아누레이트, 감마-메타아크릴옥시프로필트리메톡시실란 및 노말-페닐-감마-아미노프로필트리메톡시실란 함량이 상기에서 열거한 범위를 벗어나면, 금속분말의 균일한 분산이 이루어지지 않아 침강 현상이 매우 심하게 나타나 사용하는데 어려움이 있기 때문이다.
졸겔 수지는 매우 민감하여 제조시 순서나 온도 등에 따라 안정성이 저하되면 바로 겔화가 되는 현상이 발생하므로 겔화되는 경향을 반영하여 실험적으로 제1졸겔수지와 제2졸겔수지로 구별되며, 제조상 제1졸겔수지와 제2졸겔수지 순으로 혼합 및 교반된다.
용매는 비제한적으로 아세톤, 디프로필렌를리콜, 뷰틸디글리콜, 아이소프로필알콜등이 사용될 수 있으며, 아세톤이 보다 바람직하게 사용될 수 있다.
한편, 본 발명의 목적을 달성하기 위한 방식용 금속도막 조성물은 소포제, 분산제, 표면개질제와 같은 첨가제나 경화속도 조절용 유기용매를 더 포함할 수 있으며, 이러한 명칭 이외의 다른 첨가제의 함유를 제한하지 않는다. 소포체로는 실리콘변성 폴리옥시프로필렌계 소포제가, 분산제로는 폴리옥시에틸렌에테르계 분산제가, 표면개질제로는 글리시독시프로필트리메톡시실란계 표면개질제가 사용될 수 있다.
본 발명에 따른 방식용 금속도막 조성물은 상부에 별도의 방식도막이 형성되어 복합층 구조의 코팅층을 형성하는 데 사용되고, 이 때 사용될 수 있는 방식도막은 제한되지 않지만 실란 변성 에폭시 수지를 포함한 방식도막 조성물에 적용되는 것이 바람직하다. 실란 변성 에폭시 수지를 포함한 방식도막 조성물의 비제한적인 예는 배경기술에서 설명한 대한민국 특허공보 제10-0848671호에 개시되어 있다.
본 발명의 다른 측면에 따른 방식용 금속도막 조성물의 제조방법은 금속분말 분산단계, 제1졸겔수지 혼합 및 교반단계, 제2졸겔수지 혼합 및 교반단계를 포함한다.
먼저, 금속분말 분산단계는 5 내지 10㎛크기의 금속분말을 용매에 2 내지 3시간동안 상온에서 혼합하는 단계이다.
다음으로 제1졸겔수지 혼합 및 교반단계는 분산단계의 혼합물에 제1졸겔수지를 첨가하여 3 내지 5시간동안 300 내지 400rpm으로 교반 하는 단계로서, 이 때, 온도는 15 내지 20℃로 유지하는 것이 바람직하다.
다음으로 제2졸겔수지 혼합 및 교반단계는 전술한 제1졸겔수지 혼합 및 교반단계의 혼합물에 제2졸겔수지를 첨가하여 4 내지 7시간동안 100 내지200rpm으로 교반 하는 단계로서, 이 때, 온도는 10 내지 15℃로 유지하는 것이 바람직하다.
제조시에 전술한 혼합시간, 교반속도, 및 온도의 범위를 벗어나면 졸겔 수지의 안정성이 떨어져 방식기간이 현저히 떨어지는 문제점이 발생한다. 예를 들면, 볼트, 너트등의 부품을 디핑 공정으로 방식코팅처리할 경우 적어도 6주간을 사용을 하여야 하는데, 일주일밖에 사용을 못하게 되는 문제가 발생한다.
[실시예]
<실시예 1>
8um 크기의 알루미늄마그네슘합금 90중량부, 8um크기의 알루미늄 35 중량부에 아세톤 70중량부를 2시간 동안 상온에서 혼합 하고 온도를 15℃로 조절한후 지르코늄태트라-노말-부탄올레이트 29 중량부, 지르코늄부톡사이드 15 중량부 및 이소프로필티타네이트 5중량부를 첨가하여 5시간 동안 400rpm으로 교반 한후 온도를 10℃로 교반 속도를 100rpm으로 각각 감소시킨 다음 트리-(3-(트리메톡시실리)프로필)이소시아누레이트 35중량부, 감마-메타아크릴옥시프로필트리메톡시실란 60중량부 및 노말-페닐-감마-아미노프로필트리메톡시실란 55중량부를 첨가하여 5시간 교반하여 방식용 금속도막 조성물을 제조하였다.
이때, 지르코늄태트라-노말-부탄올레이트는 분자량이 384(지르코늄옥사이드함량이 28%, 노말부탄올 함량이 16%)인 것을 사용하였으며, 지르코늄부톡사이드는 분자량이 383이고, 이소프로필티타네이트 분자량이 284인 것을 사용하였다.
또한, 트리-(3-(트리메톡시실리)프로필)이소시아누레이트는 분자량이 136.3이고, 감마-메타아크릴옥시프로필트리메톡시실란은 분자량이 248.4, 노말-페닐-감마-아미노프로필트리메톡시실란은 분자량이 255.4인 것을 사용하였다
*<실시예 2 >
실시예1 에서 지르코늄태트라-노말-부탄올레이트만 20중량부로 하고 나머지는 동일한 배합으로 방식용 금속도막 조성물을 제조하였다.
<실시예 3 >
실시예1 에서 지르코늄부톡사이드만 10중량부로 하고 나머지는 동일한 배합으로 방식용 금속도막 조성물을 제조하였다.
<실시예 4 >
실시예1 에서 금속분말로서 알루미늄마그네슘합금과, 알루미늄의 혼합물을 사용한 대신 8㎛ 크기의 알루미늄 125 중량부만을 사용하였다.
<실시예 5>
실시예 1에서 제1졸겔수지와 제2졸겔수지를 순차적으로 넣는 것을 제외하고는 동일한 조건에서 혼합 및 교반하였다.
<비교예 1>
실시예 1에서 모두 동일하게 하고 알루미늄마그네슘의 크기만 15㎛를 사용하였다.
<비교예 2>
실시예 1에서 모두 동일하게 하고 알루미늄마그네슘의 크기만 20㎛를 사용하였다.
<비교예 3>
실시예 1에서 졸겔수지 대신에 에폭시 수지를 사용하였다.
[실험예]
강철 표면에 상기 실시예 및 비교예에서 제조된 방식용 금속도막 조성물을 스프레이 법으로 도포 한 후 건조되기 전에 대한민국 특허 제10-0848671호(2008.7.28 공고)의 조성물인 실란 변성 에폭시 수지계로 스프레이 법으로 도포하여 20 내지 25㎛두께의 복합 방식성 도막을 형성하여 내산성, 밀착성, 내수밀착성, 내식성 및 금속층 기어 오름 현상을 측정하여 표1에 나타내었다. 상기 방식성 도막은 모두 130℃의 온도에서 약 10분간 경화시켜, 표 1과 같이 정리하였다.
표 1 복합 방식성 코팅층의 물성
평가 대상 평가 방법 실 시 예 비 교 예
1 2 3 4 5 1 2 3
내산성 불산10%용액에 30분 침지후 부풀음,갈라짐,박리 없을것 ×
금속층 기어 오름 현상 육안 관찰 × ×
내수 밀착성 40±2℃물에 120시간 침지후 부풀음,갈라짐,변색,부착 저하 없을것 × ×
내식성 NaCl 5% 용액 1000 900 800 800 800 400 300 300
염수 분무 시험(시간)
(◎: 매우양호○: 양호 △: 보통 × : 불량)
표 1의 실시예 1,2,3 나타낸 바와 같이, 본 발명의 복합 코팅 조성물은 내산성, 내수밀착성, 내식성 등이 우수하나 비교예 1과 2의 조성물로 코팅된 방식 도막은 모든 물성에서 매우 저조하게 나타났다. 이는 금속분말로 사용된 알루미늄마그네슘합금의 크기 및 졸겔수지의 특성과 전술한 조성물의 비율등에 기인한 것으로 보인다.
이상에서는 본 발명의 여러 실시예에 대해 설명하였으나, 본 발명은 상술한 실시예들에 한정되지 않으며, 본 발명이 속한 분야의 통상의 지식을 가진 자는 본 발명의 개념을 벗어나지 않고 변형이 가능하고 이러한 변형은 본 발명의 범위에 속한다.
전술한 발명에 대한 권리범위는 이하의 청구범위에서 정해지는 것으로서, 명세서 본문의 기재에 구속되지 않으며, 청구범위의 균등범위에 속하는 변형과 변경은 모두 본 발명의 범위에 속할 것이다.

Claims (9)

  1. 입자크기가 5 내지 10um이며 알루미늄, 마그네슘, 및 그 합금으로 구성된 군에서 선택되는 적어도 하나 이상의 금속분말;
    지르코늄태트라-노말-부탄올레이트, 지르코늄부톡사이드, 이소프로필티타네이트, 및 그 혼합물로 구성되는 군에서 선택되는 제1졸겔수지;
    트리-(3-(트리메톡시실리)프로필)이소시아누레이트, 감마-메타아크릴옥시프로필트리메톡시실란 및 노말-페닐-감마-아미노프로필트리메톡시실란, 및 그 혼합물로 구성되는 군에서 선택되는 제2졸겔수지; 및
    용매를 포함하는 에너지 절감형 방식용 금속도막 조성물.
  2. 제1항에 있어서,
    상기 금속분말은 100 내지 160중량부, 상기 제1졸겔수지는 35 내지 60중량부, 상기 제2졸겔수지는 165 내지 250중량부, 상기 용매는 60 내지 90중량부로 이루어지는 에너지 절감형 방식용 금속도막 조성물.
  3. 제2항에 있어서,
    상기 금속분말은 알루미늄마그네슘합금 70 내지 100중량부, 알루미늄 30 내지 60중량부로 이루어지는 에너지 절감형 방식용 금속도막 조성물.
  4. 제3항에 있어서,
    상기 제1졸겔수지는 지르코늄태트라-노말-부탄올레이트 20 내지30 중량부, 지르코늄부톡사이드 10 내지 20 중량부 및 이소프로필티타네이트 5 내지 10중량부로 이루어지는 에너지 절감형 방식용 금속도말 조성물.
  5. 제4항에 있어서,
    상기 제2졸겔수지는 트리-(3-(트리메톡시실리)프로필)이소시아누레이트 30 내지 50중량부, 감마-메타아크릴옥시프로필트리메톡시실란 50 내지 70중량부 및 노말-페닐-감마-아미노프로필트리메톡시실란 50 내지 70중량부로 이루어지는 에너지 절감형 방식용 금속도막 조성물.
  6. 제5항에 있어서,
    상기 용매는 아세톤인 에너지 절감형 방식용 금속도막 조성물.
  7. 5 내지 10㎛크기의 알루미늄, 마그네슘, 및 그 합금으로 구성된 군에서 선택되는 금속분말을 용매에 2 내지 3시간 동안 혼합하는 금속분말 분산단계;
    상기 금속분말 분산단계의 혼합물에 지르코늄태트라-노말-부탄올레이트, 지르코늄부톡사이드, 이소프로필티타네이트, 및 그 혼합물로 구성되는 군에서 선택되는 제1졸겔수지를 첨가하여 3 내지 5시간동안 300~400rpm으로 교반하는 제1졸겔수지 혼합 및 교반단계; 및
    상기 제1졸겔수지 혼합 및 교반단계의 혼합물에 트리-(3-(트리메톡시실리)프로필)이소시아누레이트, 감마-메타아크릴옥시프로필트리메톡시실란 및 노말-페닐-감마-아미노프로필트리메톡시실란, 및 그 혼합물로 구성되는 군에서 선택되는 제2졸겔수지를 첨가하여 4 내지 7시간동안 100 내지200rpm으로 교반하는 제2졸겔수지 혼합 및 교반단계;를 포함하는 에너지 절감형 방식용 금속도막 조성물의 제조방법.
  8. 제7항에 있어서,
    제1졸겔수지 혼합 및 교반단계에서의 온도는 15 내지 20℃로 유지하는 에너지 절감형 방식용 금속도막 조성물의 제조방법.
  9. 제8항에 있어서,
    제2졸겔수지 혼합 및 교반단계에서의 온도는 10 내지 15℃로 유지하는 에너지 절감형 방식용 금속도막 조성물의 제조방법.
PCT/KR2011/000563 2010-02-09 2011-01-27 에너지 절감형 방식용 금속도막 조성물 및 그 제조방법 WO2011099710A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012552793A JP5278931B2 (ja) 2010-02-09 2011-01-27 省エネルギー型防食用金属塗膜組成物及びその製造方法
ES11742402.8T ES2567181T3 (es) 2010-02-09 2011-01-27 Composición de película metálica anticorrosiva de alto rendimiento energético y fabricación de la misma
US13/577,655 US8932492B2 (en) 2010-02-09 2011-01-27 Energy-saving anti-corrosive metal film composition and manufacturing method for the same
EP11742402.8A EP2535385B1 (en) 2010-02-09 2011-01-27 Energy-saving anti-corrosive metal film composition and manufacturing method for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100012109A KR100970462B1 (ko) 2010-02-09 2010-02-09 에너지 절감형 방식용 금속도막 조성물 및 그 제조방법
KR10-2010-0012109 2010-02-09

Publications (2)

Publication Number Publication Date
WO2011099710A2 true WO2011099710A2 (ko) 2011-08-18
WO2011099710A3 WO2011099710A3 (ko) 2012-01-12

Family

ID=42645646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/000563 WO2011099710A2 (ko) 2010-02-09 2011-01-27 에너지 절감형 방식용 금속도막 조성물 및 그 제조방법

Country Status (6)

Country Link
US (1) US8932492B2 (ko)
EP (1) EP2535385B1 (ko)
JP (1) JP5278931B2 (ko)
KR (1) KR100970462B1 (ko)
ES (1) ES2567181T3 (ko)
WO (1) WO2011099710A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018048332A (ja) * 2012-07-11 2018-03-29 大日本塗料株式会社 防錆塗料、防錆塗膜、及び防錆積層塗膜

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100970462B1 (ko) * 2010-02-09 2010-07-16 엘베스트지에이티 주식회사 에너지 절감형 방식용 금속도막 조성물 및 그 제조방법
KR100970461B1 (ko) * 2010-02-09 2010-07-16 엘베스트지에이티 주식회사 유무기 하이브리드 방식 코팅제 조성물 및 그 제조방법
JP5555131B2 (ja) * 2010-10-22 2014-07-23 オイレス工業株式会社 鋼材用防食塗料及び鋼材用防食塗料による防食方法並びに防食補修方法
US10246593B2 (en) 2016-07-20 2019-04-02 The Boeing Company Sol-gel coating compositions including corrosion inhibitor-encapsulated layered double hydroxide and related processes
US10428226B2 (en) * 2016-07-20 2019-10-01 The Boeing Company Sol-gel coating compositions and related processes
US10246594B2 (en) 2016-07-20 2019-04-02 The Boeing Company Corrosion inhibitor-incorporated layered double hydroxide and sol-gel coating compositions and related processes
US10421869B2 (en) 2017-01-09 2019-09-24 The Boeing Company Sol-gel coating compositions including corrosion inhibitor-encapsulated layered metal phosphates and related processes
US10633556B2 (en) * 2017-12-28 2020-04-28 Flora Coatings Llc Method of producing ambient curing sprayable transparent smart quasi-ceramic coating
WO2023034488A1 (en) * 2021-09-01 2023-03-09 Raytheon Company Hybrid sol-gel coating formulations doped with corrosion inhibitive pigments

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100848671B1 (ko) 2006-12-01 2008-07-28 아벨테크노(주) 수계 방식 도료용 조성물 및 이를 이용한 복합 도금층의형성 방법

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4086153A (en) * 1975-10-09 1978-04-25 Toyo Kohan Co., Ltd. Method of producing a composite coated steel sheet
JPH05230179A (ja) * 1992-02-20 1993-09-07 Kansai Paint Co Ltd 低温硬化性樹脂組成物
GB9300261D0 (en) * 1993-01-08 1993-03-03 British Tech Group Sol-gel composition for producing glassy coatings
US5869141A (en) * 1996-11-04 1999-02-09 The Boeing Company Surface pretreatment for sol coating of metals
JP3856617B2 (ja) * 2000-04-04 2006-12-13 帝人ファイバー株式会社 仮撚加工用ポリエステル繊維
KR100385158B1 (ko) 2001-05-22 2003-05-23 주식회사 디피아이 금속표면처리용 조성물 및 이의 제조방법
US6579472B2 (en) * 2001-07-27 2003-06-17 The Boeing Company Corrosion inhibiting sol-gel coatings for metal alloys
JP4544450B2 (ja) * 2002-12-24 2010-09-15 日本ペイント株式会社 化成処理剤及び表面処理金属
JP4684889B2 (ja) * 2003-04-15 2011-05-18 日本曹達株式会社 有機薄膜の製造方法
DE10320779A1 (de) * 2003-05-09 2004-11-18 Degussa Ag Korrosionsschutz auf Metallen
FR2866029B1 (fr) * 2004-02-11 2006-05-26 Dacral Composition de revetement anti-corrosion en dispersion aqueuse comprenant un titanate et/ou un zirconate organique
US7141306B1 (en) * 2004-05-13 2006-11-28 Cessna Aircraft Company Sol-gel composition and process for coating aerospace alloys
US20070160863A1 (en) * 2004-06-30 2007-07-12 Shin-Etsu Chemical Co., Ltd. Corrosion resistant rare earth metal permanent magnets and process for production thereof
US20060009536A1 (en) * 2004-07-12 2006-01-12 Guang-Way Jang Functionalized sol-gel material, sol-gel film derived therefrom, and method for preparing the same
JP3636203B1 (ja) * 2004-07-16 2005-04-06 ユケン工業株式会社 クロムを含まない防錆用水系コーティング組成物
JP5475210B2 (ja) * 2004-12-24 2014-04-16 メルク株式会社 高耐腐食性薄片状金属顔料、その製造方法、およびそれをベースとする金属光沢干渉発色顔料
KR20070102717A (ko) * 2005-01-24 2007-10-19 신벤션 아게 금속 함유 복합 물질
US20060246233A1 (en) * 2005-04-28 2006-11-02 Fuji Photo Film Co., Ltd. Light diffusion film, anti-reflection film, polarizing plate and image display device
FR2886309B1 (fr) * 2005-05-31 2007-08-17 Airbus France Sas Sol pour le revetement par voie sol-gel d'une surface et procede de revetement par voie sol-gel le mettant en oeuvre
EP1947154B1 (en) * 2005-10-20 2016-01-13 Chugoku Marine Paints, Ltd. Polyfunctional epoxy resin coating composition containing rust-preventive pigment, coating film obtained therefrom, base coated with the coating film, and method of rust prevention
EP1785265A1 (en) * 2005-11-14 2007-05-16 SEDA S.p.A. Device for producing a stacking projection on a container wall and container with same
US7713347B2 (en) * 2005-12-14 2010-05-11 The Boeing Company Heat and rain erosion resistant coating
DE102006003957A1 (de) * 2006-01-26 2007-08-02 Degussa Gmbh Wasserverdünnbare Sol-Gel-Zusammensetzung
FR2899906B1 (fr) * 2006-04-13 2008-06-27 Eads Ccr Groupement D Interet Utilisation d'un materiau nanostructure, comme revetement protecteur de surfaces metalliques
US8592042B2 (en) * 2006-11-09 2013-11-26 The Boeing Company Sol-gel coating method and composition
FR2914630B3 (fr) * 2007-04-04 2009-02-06 Saint Gobain Procede de structuration de surface d'un produit a couche sol-gel, produit a couche sol-gel structuree
TWI477565B (zh) * 2007-04-19 2015-03-21 Akzo Nobel Coatings Int Bv 用於金屬基材之塗料組合物
US8883291B2 (en) * 2007-08-07 2014-11-11 President And Fellows Of Harvard College Metal oxide coating on surfaces
RU2514962C2 (ru) * 2007-11-26 2014-05-10 Дублин Инститьют Оф Текнолоджи Интеллекчуал Проперти Лимитед Органосилановые композиции для покрытий и их использование
JP2009185363A (ja) * 2008-02-08 2009-08-20 Matsumoto Fine Chemical Co Ltd 表面処理組成物
EP2250226A4 (en) * 2008-03-03 2012-05-23 Univ Florida HYBRID TRANSPARENT COATING MATERIALS FROM NANOTEILIC SOL-GEL COMPOSITE MATERIAL
CN101688316B (zh) * 2008-05-23 2013-07-17 塔塔钢铁有限公司 金属基材上的抗腐蚀混合溶胶-凝胶薄膜及其制备方法
US8728579B2 (en) * 2008-10-31 2014-05-20 University Of Florida Research Foundation, Inc. Transparent inorganic-organic hybrid materials via aqueous sol-gel processing
KR101104262B1 (ko) * 2008-12-31 2012-01-11 주식회사 노루홀딩스 자기세정성 부재 및 그 제조방법
AU2010205242B8 (en) * 2009-01-13 2015-09-24 Tokuyama Corporation Coating composition, process for producing the composition, and laminate having a hard coat layer
JP4358897B1 (ja) * 2009-02-27 2009-11-04 株式会社システム・トート 表面被覆アルミニウム顔料の製造方法
JP5555225B2 (ja) * 2009-03-12 2014-07-23 三井化学株式会社 金属酸化物多孔質体の製造方法
JP5591530B2 (ja) * 2009-06-24 2014-09-17 日揮触媒化成株式会社 シリカ系微粒子分散ゾルの製造方法、シリカ系微粒子分散ゾル、該分散ゾルを含む塗料組成物、硬化性塗膜および硬化性塗膜付き基材
WO2011011899A2 (es) * 2009-07-29 2011-02-03 Universidad De Chile Nanopartículas híbridas con morfología controlada y su uso en nanocompuestos con matriz de polímero termoplástico
GB2477117B (en) * 2010-01-22 2014-11-26 Univ Sheffield Hallam Anticorrosion sol-gel coating for metal substrate
KR100970462B1 (ko) * 2010-02-09 2010-07-16 엘베스트지에이티 주식회사 에너지 절감형 방식용 금속도막 조성물 및 그 제조방법
KR100970461B1 (ko) * 2010-02-09 2010-07-16 엘베스트지에이티 주식회사 유무기 하이브리드 방식 코팅제 조성물 및 그 제조방법
US11072712B2 (en) * 2011-06-08 2021-07-27 Henkel Ag & Co. Kgaa Corrosion resistant sol-gel coating and composition and process for making the same
EP2736981A4 (en) * 2011-07-29 2015-03-25 SiOx ApS ANTICORROSIVE TREATMENT FACILITATED BY A REACTIVE SILICON OXIDE PRECURSOR

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100848671B1 (ko) 2006-12-01 2008-07-28 아벨테크노(주) 수계 방식 도료용 조성물 및 이를 이용한 복합 도금층의형성 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018048332A (ja) * 2012-07-11 2018-03-29 大日本塗料株式会社 防錆塗料、防錆塗膜、及び防錆積層塗膜

Also Published As

Publication number Publication date
EP2535385A2 (en) 2012-12-19
EP2535385A4 (en) 2013-07-24
EP2535385B1 (en) 2016-01-13
JP5278931B2 (ja) 2013-09-04
JP2013518981A (ja) 2013-05-23
WO2011099710A3 (ko) 2012-01-12
ES2567181T3 (es) 2016-04-20
US20120298923A1 (en) 2012-11-29
US8932492B2 (en) 2015-01-13
KR100970462B1 (ko) 2010-07-16

Similar Documents

Publication Publication Date Title
WO2011099710A2 (ko) 에너지 절감형 방식용 금속도막 조성물 및 그 제조방법
WO2011099709A2 (ko) 유무기 하이브리드 방식 코팅제 조성물 및 그 제조방법
WO2011090292A2 (ko) 나노 플레이크를 이용한 방수 및 방식 세라믹 코팅제
WO2011030999A1 (ko) 수용성 방청도료 조성물
WO2011108787A1 (ko) 태양열차단 코팅액과 이를 이용한 태양열차단 코팅 유리
EP2644745B1 (en) Metal protective coating, the use thereof, and hot-dip metallic material using the same
WO2009139590A2 (ko) 우수한 가공성, 내열성 및 내식성을 갖는 프리코트 강판용 수지조성물, 이를 이용하여 제조된 프리코트 강판
CN110054917B (zh) 一种无机保温涂料组合物、无机保温涂料
CN103788727A (zh) 一种钢结构表面的防护涂料及其制备方法
JP3321805B2 (ja) 含フッ素溶融樹脂水性分散組成物
WO2022154222A1 (ko) 하도 및 중도 도막이 필요없는 차열 및 단열 도료 조성물
KR20210018873A (ko) 조성물
WO2020091274A1 (ko) 방청 피막
CN113248946A (zh) 用于制作类陶瓷涂层的涂料组合物及其制备方法和应用
WO2019245326A1 (en) Anti-corrosive coating composition and anti-corrosive layer using the same
KR20090107835A (ko) 향상된 내열성과 내스크래치성을 갖는 크롬프리 수지 용액조성물, 이의 제조 방법 및 이를 이용한 표면처리 강판
JPS61258871A (ja) エンジンおよび排気系部品用耐熱塗料
CN103360841B (zh) 一种金属防护涂料及其用途和热镀金属材料
CN105694543A (zh) 一种阻燃涂层及其制备方法
JPS621659B2 (ko)
KR102555398B1 (ko) 고경도 초발수 투명 코팅액
CN107987569B (zh) 一种具有良好结合力的环保型柔性底漆的制备方法
CN116162367B (zh) 一种厚涂型金属表面用耐高温涂料及其制备方法
CN107987568B (zh) 一种具有良好结合力的环保型柔性底漆
CN114181613B (zh) 一种耐高温隔热防腐涂料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11742402

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011742402

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13577655

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012552793

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE