WO2011099569A1 - 血小板検査用マイクロチップ及びそれを用いた血小板検査装置 - Google Patents

血小板検査用マイクロチップ及びそれを用いた血小板検査装置 Download PDF

Info

Publication number
WO2011099569A1
WO2011099569A1 PCT/JP2011/052901 JP2011052901W WO2011099569A1 WO 2011099569 A1 WO2011099569 A1 WO 2011099569A1 JP 2011052901 W JP2011052901 W JP 2011052901W WO 2011099569 A1 WO2011099569 A1 WO 2011099569A1
Authority
WO
WIPO (PCT)
Prior art keywords
platelet
blood
microchip
flow path
channel
Prior art date
Application number
PCT/JP2011/052901
Other languages
English (en)
French (fr)
Inventor
細川 和也
和田 朋子
征司 深澤
太郎 近藤
真紀 寺田
Original Assignee
藤森工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 藤森工業株式会社 filed Critical 藤森工業株式会社
Priority to EP11742312.9A priority Critical patent/EP2535721B1/en
Priority to CN201180008579.0A priority patent/CN102762991B/zh
Priority to US13/578,019 priority patent/US8796031B2/en
Priority to JP2011553893A priority patent/JP5752055B2/ja
Publication of WO2011099569A1 publication Critical patent/WO2011099569A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • G01N33/4905Determining clotting time of blood
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502746Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means for controlling flow resistance, e.g. flow controllers, baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502753Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54393Improving reaction conditions or stability, e.g. by coating or irradiation of surface, by reduction of non-specific binding, by promotion of specific binding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/084Passive control of flow resistance
    • B01L2400/086Passive control of flow resistance using baffles or other fixed flow obstructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/22Haematology
    • G01N2800/222Platelet disorders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/2575Volumetric liquid transfer

Definitions

  • the present invention relates to a microchip used for examining blood platelet function using a trace amount of blood and an inspection apparatus using the microchip.
  • Platelet activation and aggregation plays a central role in thrombus formation in arteries (white thrombus) or primary hemostasis. Platelets bind directly or indirectly to collagen present under vascular endothelial cells when the blood vessels are damaged. In environments where blood flow is slow (under low shear stress), GPVI and other collagen receptors are the main direct bonds, and in environments where blood flow is fast (under high shear stress), vWF binds to collagen and binds to vWF. In contrast, platelet GPIb ⁇ receptor binds indirectly to collagen.
  • GPIIb and IIIa which are fibrinogen receptors, undergo structural changes to an activated form and become a high affinity form for fibrinogen. Activated platelets are successively cross-linked through fibrinogen, which is a dimer, to form platelet aggregates.
  • Non-patent Document 1 many of the conventional platelet aggregating ability measuring apparatuses are methods for measuring platelet activation and aggregation processes by stimulation with a large amount of platelet activating reagent. Therefore, it is a platelet activation reaction under the environment, far from physiological platelet activation conditions, and it was possible to measure obvious functional differences such as congenital abnormalities of each receptor, It was difficult to measure more physiological platelet function.
  • PFA-100 Platinum Function Analyzer: Non-Patent Document 2
  • PFA-100 is a system that measures the blockage of holes by comprehensive platelet activation through contact with solidified collagen, shear stress, and contact with platelet-inducing substances. It is a measurement system in a physiologically close environment than platelet aggregation by stimulation of a conventional single platelet activation inducer.
  • Patent Document 1 also discloses that blood is passed through a capillary tube, and then passed through the opening of the partition member; and at the opening of the partition member, formation of a thrombus is necessary until the opening is closed.
  • a method for measuring platelet function characterized by measuring time, is disclosed.
  • a large amount of platelet activation reagent is added, and platelets are activated in vivo. It is difficult to measure detailed platelet function reflecting the living body, such as when the number of platelets is decreased, or when the platelet count is normal but the platelet function is weak.
  • platelets are in an activated state due to vascular endothelial injury and thrombus formation, and a complex of platelets and leukocytes is also formed. Furthermore, due to the continuous thrombus formation, platelets are remarkably consumed and a thrombus may be formed in vivo, but at the same time, bleeding symptoms may occur.
  • the conventional platelet function test it has been difficult to conduct a test that accurately reflects such symptoms. For example, in the turbidity method, even if the platelet count is decreased, if the reactivity to the platelet-inducing substance is enhanced, it is determined that the platelet function is enhanced (strong).
  • Platelet-white blood cell complexes that are formed by inflammatory reactions in the body and have a great influence on thrombus formation are precipitated together with red blood cells by centrifugation to create platelet-rich plasma, so they are included in platelet-rich plasma. Absent.
  • PFA-100 when PFA-100 is used, measurement is performed at the same concentration of the inducer in both patients with strong and weak platelet functions. Tests for confirming the drug effect in a state where the inducer concentration is very high in a platelet-administered patient cannot be appropriately performed.
  • the occlusion time is extended by measurement with PFA-100, data when platelet function is weak and platelet function is enhanced (activated in vivo) but platelet count is low It was difficult to compare.
  • the present invention has been made in view of the above circumstances, and it is an object of the present invention to provide an apparatus and a method that can efficiently and accurately evaluate platelet function in an environment equivalent to blood flow using a small amount of blood. To do.
  • the present invention is a microchip for measuring platelet function by inducing platelet aggregation by flowing blood through a flow path, and has a flow path provided therein, At least a part of the channel is coated with collagen for platelet adhesion, a plurality of walls extend along the direction of blood flow in the channel, and the channel is divided by dividing the width of the channel A microchip is provided, wherein the wall is processed so that the surface roughness (Ra) is 10 to 200 nm.
  • the channel dividing wall preferably extends along the direction of blood flow at a position where the platelet easy-adhesion surface (collagen coat portion) exists on the channel.
  • the surface roughness of parts other than a flow-path division part is less than 10 nm among flow paths.
  • the treatment with a surface roughness (Ra) of 10 to 200 nm is preferably performed by plasma irradiation or ultraviolet irradiation.
  • the microchip preferably has a pressure resistance of 80 kPa or higher when blood inflow pressure is measured while blood is allowed to flow through the flow path at a constant rate to form platelet aggregates.
  • the microchip is preferably further provided with an impurity inflow prevention part upstream of the flow path dividing part (upstream of the thrombus formation inducing part with reference to the direction of blood flow on the flow path).
  • the present invention also provides a platelet function test apparatus including any one of the above microchips.
  • the platelet function testing apparatus further includes a container for storing blood, a liquid feeding pump for feeding blood from the container to a flow path in the microchip, and a pressure sensor for measuring a pressure applied to the pump. It is preferable that The platelet function testing apparatus also includes a waste liquid storage unit that stores blood waste fluid that has passed through the collagen coat part downstream of the collagen coat part inside the microchip (downstream of the collagen coat part with reference to the direction of blood flow on the flow path). It is preferable to provide.
  • the present invention also allows blood to pass through the flow path of any one of the microchips or any one of the platelet function testing devices, and causes platelet aggregation in the flow path dividing section and the collagen coat section, while the blood flow path.
  • a platelet function test method characterized by testing a function of platelets by measuring an inflow pressure into a blood vessel.
  • the collagen coat part extends along a part of the flow path inside the microchip, and the flow direction of blood in the flow path.
  • a flow path dividing section having a flow path dividing wall that divides the width of the path into a plurality of sections, and the flow path dividing wall is subjected to a treatment such that the surface roughness (Ra) is 10 to 200 nm. Therefore, the platelet aggregate formed on the collagen is stabilized at the flow path dividing portion, causing a stronger and more stable pressure increase, thereby improving the reproducibility of the data.
  • the microchip for functioning platelets since the treatment with the surface roughness (Ra) of 10 to 200 nm is performed by plasma irradiation or ultraviolet irradiation, the flow path dividing wall Not only the physical properties of the surface (surface roughness) but also the chemical properties (introduction of functional groups such as hydroxyl groups, imide groups and amide groups) can be brought into a state suitable for platelet aggregation.
  • the microchip for platelet function according to claim 3 of the present invention since the surface roughness of the portion other than the flow channel dividing portion in the flow channel is less than 10 nm, the platelet easy adhesion surface (collagen coat portion) and The formation of platelet aggregates can be promoted specifically at the flow path dividing section, and the formation of platelet aggregates can be specifically analyzed.
  • the pressure resistance is 80 kPa or more when blood inflow pressure is measured while blood is allowed to flow at a constant speed to form platelet aggregates. Therefore, measurement with higher sensitivity is possible.
  • the microchip for platelet function according to claim 5 of the present invention since the impurity inflow prevention part is provided upstream of the flow path dividing part, the measurement error is less likely to occur due to impurities in the sample. It is.
  • the platelet function test apparatus includes the microchip for platelet function according to any one of claims 1 to 5 of the present invention, so that platelet aggregation is efficiently promoted and the platelet function is achieved in a short time. High sensitivity can be measured.
  • the blood waste liquid is provided with the waste liquid reservoir that stores the blood waste liquid that has passed through the collagen coat part downstream of the collagen coat part inside the microchip. Therefore, it is possible to easily perform the inspection.
  • the platelet function testing device according to claim 9 of the present invention, blood is allowed to pass through the flow path of any one of the microchips or any one of the platelet function test apparatuses, and platelets are formed in the flow path dividing section and the collagen coat section. Since the platelet function is examined by measuring the inflow pressure of the blood into the flow channel while inducing aggregation, the platelet aggregation is efficiently promoted and the platelet function can be measured with high sensitivity in a short time.
  • the figure which shows the 1st example of a microchip for platelet tests of this invention The figure which shows the 1st example of a form of the platelet test apparatus of this invention.
  • inspection apparatus provided with the microchip by which the flow-path dividing wall was plasma-processed (Test example 3).
  • the vertical axis represents pressure (kPa), and the horizontal axis represents time (minutes).
  • Blood collected from subjects who received aspirin (aspirin administration) and blood collected from the same subjects who did not receive aspirin (control) were run at a flow rate of 9 ⁇ l / min and 27 ⁇ l / min.
  • inspection apparatus provided with the microchip by which the flow-path dividing wall is not plasma-processed (comparative example 2).
  • the vertical axis represents pressure (kPa), and the horizontal axis represents time (minutes).
  • Blood collected from subjects who received aspirin (aspirin administration) and blood collected from the same subjects who did not receive aspirin (control) were run at a flow rate of 9 ⁇ l / min and 27 ⁇ l / min.
  • FIG. 1 is a conceptual diagram showing a first embodiment of the microchip of the present invention. Hereinafter, a description will be given based on FIG.
  • FIG. 1A is a plan view of the first substrate 100 in which a groove that becomes the flow path 101 of the microchip 1 is dug in the surface.
  • the cross-sectional shape of this groove is arbitrary, such as a concave shape, a U shape, and a V shape. Since the platelet aggregate is brittle, the groove depth is preferably 10 to 200 ⁇ m or less in order to measure the pressure increase.
  • the width of the groove is preferably 10 ⁇ m to 3 mm.
  • a portion between the first end (inlet side end) and the second end (exhaust side end) of the groove serving as the channel 101 extends along the direction of blood flow.
  • a plurality of existing channel dividing walls 102 are provided to form a channel dividing unit 103 that divides the width of the channel into a plurality.
  • the interval between the flow path dividing walls 102 is desirably 200 ⁇ m or less. If the width is 200 ⁇ m or less, when platelet aggregates are formed, the internal pressure can be increased without being blown into the bloodstream even under high blood flow and high shear stress.
  • the width of the flow path 101 is desirably divided into five or more by the flow path dividing wall 102. That is, if the width of the flow path is divided into five or more, the blockage of each divided flow path is averaged, and data with little variation is easily obtained.
  • the shape of the flow path dividing wall 102 is not particularly limited as long as the width of the flow path 101 can be divided into a plurality of widths.
  • the channel dividing wall 102 is treated so that the surface roughness (centerline average surface roughness: Ra) is 10 to 200 nm in order to improve the adhesion of platelet aggregates.
  • the platelet size is around 1 to 2 ⁇ m, it is preferable to introduce 10-200 nm irregularities without impairing the shape of the divided flow path and improving the adhesiveness of the platelet aggregate.
  • This treatment is preferably performed by plasma or ultraviolet irradiation.
  • the adhesion of platelet aggregates to the flow dividing wall is not only the physical properties (surface roughness) of the flow dividing wall surface but also the chemical properties of the surface (functional groups such as hydroxyl, imide and amide groups). Introduction). By treating with plasma or ultraviolet irradiation, it is considered that not only the surface roughness increases, but also functional groups are introduced into the surface of the flow path dividing wall.
  • Examples of plasma treatment include atmospheric pressure plasma, vacuum plasma, and corona treatment, and examples of ultraviolet treatment include treatment using an excimer laser, a mercury lamp, and the like.
  • the atmospheric pressure plasma is preferable because the plasma treatment can be continuously performed with an inexpensive apparatus.
  • Plasma specifically irradiates the channel division part (channel division part) and specifically promotes the formation of platelet aggregates at the platelet adhesion surface (collagen coat part) and the channel division part located in the vicinity. Thus, it is preferable to specifically analyze the formation of platelet aggregates.
  • the pressure resistance of the microchip is preferably 80 kPa or more.
  • a plurality of columnar bodies at a predetermined interval in the width direction of the flow path are located upstream of the flow path dividing section 103, that is, in a part between the flow path dividing wall 102 and the first end (inlet side end). 104 is installed, and this becomes the impurity inflow prevention unit 105.
  • the interval between the columnar bodies (the length of the gap) may be any length that allows blood to pass but not impurities, but is preferably 10 to 200 ⁇ m.
  • the shape of the columnar body is not particularly limited, and examples thereof include a cylinder and a polygonal column.
  • FIG. 1B is a plan view of the second substrate 110 in which through holes that serve as the inlet 106 and the outlet 107 of the microchip 1 are dug.
  • the positions of the through hole serving as the inflow port 106 and the through hole serving as the discharge port 107 are the first end of the flow channel 101 on the first substrate 100 when stacked with the first substrate 100, respectively. And a position corresponding to the second end of the channel 101.
  • the platelet easy-adhesion surface 108 is formed by coating collagen on the back surface of the second substrate 110 at a position where it is covered with the flow path dividing wall 102 on the first substrate 100 when the second substrate 110 is laminated. (Collagen coat part) is formed. Specifically, as shown in FIG. 1C, the collagen is applied in a wide manner at a position covering the channel dividing wall 102 for safety.
  • the platelet easy-adhesion surface (collagen coat portion) may extend over the entire length of the flow path.
  • FIG. 1C illustrates a micro structure in which the first substrate 100 and the second substrate 110 are stacked so that the groove of the first substrate 100 and the collagen coat portion of the second substrate 110 are on the inside.
  • 2 is a plan view of the chip 1.
  • FIG. The wavy line indicates that the channel 101 exists inside the microchip 1.
  • a through hole is provided at a position corresponding to the second end of the flow path on the second substrate as shown in FIG.
  • a groove that connects to the second substrate 210 at a position corresponding to the second end of the flow path 201 is provided and bonded to the first substrate 200, whereby the platelet-adhesive surface
  • the waste liquid storage unit 207 may store the blood waste liquid that has passed through 208 (collagen coat unit).
  • the waste liquid storage unit 207 may be provided with a through hole, which may be used as the air hole 209. If a blood absorbing material is installed at a position corresponding to the air hole 209 on the surface of the microchip 2, even when the amount of the blood sample is large, the blood waste liquid is not scattered outside the microchip. As the blood absorbing material, for example, sponge or cloth can be attached. Note that a discharge pipe may be connected to the air hole 209 to remove blood waste fluid by suction.
  • coated collagen is used for the platelet-adhesive surface, but it may contain collagen and tissue thromboplastin.
  • Collagen is coated on the platelet adhesion surfaces 108 and 208 with high adhesion strength so that the platelet adhesion surface does not flow out due to blood flow.
  • Collagen coatings are described, for example, in JP-A No. 05-260950 and Blood. 1995 Apr 1; 85 (7): 1826-35.
  • the collagen is dissolved in an acidic solution and applied to a predetermined position of a substrate such as glass or polystyrene to which hydrophilicity has been imparted, and then washed and dried. Coating is possible with adhesive strength.
  • the coating can be performed by applying a collagen solution to a desired area after hydrophilizing the resin surface and drying it under natural or reduced pressure.
  • a collagen solution or tissue thromboplastin is contained by applying collagen solution to a desired area with a dispenser such as a pipette or syringe and drying it under natural or reduced pressure. Collagen can be easily coated.
  • the material of the microchip is preferably metal, glass, plastic, silicone or the like.
  • a transparent material is preferable from the viewpoint of use for blood observation (particularly image analysis).
  • plastic is preferable, and transparent plastic is particularly preferable.
  • the material is made of silicone such as PDMS (polydimethylsiloxane)
  • the adhesion between the substrates is excellent, so that the first substrate and the second substrate can be bonded without bonding with an adhesive or the like.
  • an adhesive is preferably used when high pressure is applied to the inside of the microchip.
  • PMEA poly 2-methoxyethyl acrylate
  • substrate of a microchip can also be dug with a blade or a laser beam, but when the material of a microchip is a plastic, it can also be formed by injection molding. Forming by injection molding is preferable because a microchip with a constant quality can be efficiently produced.
  • a tube (not shown) is connected to the first inflow port 106, and a blood reservoir (blood storage unit) and a liquid feeding pump (not shown) are connected via the tube. Then, the liquid in the pump is injected into the reservoir from the connected pump, whereby the blood in the reservoir is injected into the flow path of the microchip 1.
  • the liquid of the liquid feed pump is a liquid having a specific gravity smaller than that of blood such as mineral oil or physiological saline, the liquid pump is used to introduce the liquid into a reservoir prefilled with blood, and the liquid is layered on the blood. Blood may be introduced into the flow path by pumping out the liquid.
  • blood pre-filled in the reservoir may be mixed with a platelet activating reagent.
  • the platelet activating reagent can be preliminarily placed in a reservoir in a dry or liquid state and mixed with blood.
  • the blood is preferably anticoagulated.
  • the anticoagulant used for the anticoagulation treatment include sodium citrate or potassium, sodium oxalate or potassium, ACD (Acid Citrate Dextrose), ethylenediaminetetraacetic acid (EDTA) salt, and the like.
  • Such an anticoagulant can be used as a solution such as a powder, a lyophilized product, or an aqueous solution.
  • these anticoagulant treatment agents general 3.2% sodium citrate is preferable because it is easily available. In this case, it is preferable to use 1 volume of the anticoagulant for 9 volumes of blood.
  • As other anticoagulant treatment agents heparin, hirudin, thrombin aptamer, corn-derived trypsin inhibitor (1977. J.
  • Biol. Chem 252.8105 and the like can be used.
  • a plurality of anticoagulant treatment agents may be used.
  • the anticoagulant used is hirudin, compared to anticoagulant treatment with citric acid, platelet aggregation is caused even without treatment with the platelet activating reagent. Suitable for measuring.
  • blood is collected by previously adding the above anticoagulation treatment agent into a syringe or a vacuum blood collection tube, or an anticoagulation treatment agent is rapidly added to blood immediately after blood collection, etc.
  • Blood that has been anticoagulated by the method can be obtained.
  • heparinase and an anticoagulant suitable for testing purposes can be added, and heparin can be decomposed with heparinase and replaced with an anticoagulant suitable for measurement purposes. It is.
  • the platelet activating reagent used include ADP, collagen, thrombin, arachidonic acid, and ristocetin.
  • the platelet activation ability of the platelet activation reagent can be evaluated.
  • Platelet activating reagent is mixed with anticoagulated blood at a concentration such that weak platelet activation occurs.
  • the concentration at which weak platelet activation occurs is a concentration that does not cause irreversible platelet aggregation (platelet secondary aggregation) in a quiescent state, for example, 0.001 to 5 ⁇ M in the case of ADP. In this case, it is 0.001 to 1 mM.
  • platelet activity exceeding these concentrations should be used when measuring the degree of decrease. It is desirable to measure by adding a fluorinating reagent.
  • the blood introduced from the inflow port 106 and passing through the flow path 101 passes through the flow path dividing section 103, thereby generating shear stress, enhancing platelet activation, and forming the platelet adhesion surface (collagen coat section). Adhesive and laminated.
  • the function evaluation of the platelets contained in the blood can be performed by monitoring the inflow pressure of blood.
  • the platelet function can be examined by observing the flow rate and properties of blood passing through the flow path dividing unit 103.
  • the impurities in the blood sample remain in the impurity inflow prevention unit 105 and do not flow into the flow path dividing unit 103, so that the platelet aggregation reaction is not inhibited.
  • the blood subjected to the test is discharged from a discharge port 107 provided at the end of the flow channel 101.
  • FIG. 2 is a schematic view of a platelet testing apparatus A that is a first embodiment of the platelet testing apparatus of the present invention in which the microchip 1 is configured and incorporated with a transparent substrate.
  • the first embodiment will be described below with reference to FIG.
  • a reservoir 109 (blood storing portion) that stores anticoagulated blood is inverted and connected to the inlet 106 of the microchip 1.
  • a liquid feed pump 111 that supplies mineral oil is connected to the reservoir 109. It is connected.
  • a pressure sensor (not shown) is connected to the liquid feed pump 111. Then, the mineral oil is press-fitted into the reservoir 109 from the liquid feed pump 111, is layered on the blood, and pushes the blood into the channel 101 of the microchip 1.
  • the blood passes through the flow path 101 and reaches the flow path dividing portion 103 having the platelet adhesion surface 108.
  • impurities in the blood sample remain in the impurity inflow prevention unit 105.
  • a more quantitative platelet function test can be performed. Further, the platelet function can be examined by observing with the camera 113 the platelet activation (platelet adhesion / aggregation, etc.) in the flow path dividing unit 103 and the accompanying blockage of the capillary. Furthermore, the platelet function test can also be performed by measuring the passage time or passage amount of the blood flow channel 101.
  • the camera 113 is connected to the image analysis device 115, and thereby the state of platelet activation can be imaged. The combination of visual evaluation by photographing internal platelet activation and quantitative examination of platelet activation by pressure increase is very important for comprehensive determination of patient blood condition.
  • the pressure rise and occlusion time are delayed.
  • imaging of the inside with a camera allows confirmation of platelet adhesion to the platelet adhesion surface (collagen coat) and increase in aggregation immediately after the start of the test, and the state of the patient's platelets.
  • the camera 113 may be movable along the blood flow direction of the flow path 101.
  • platelets can be fluorescently labeled with quinacrine, etc., and in that case, the luminance per unit area due to fluorescence development can be observed by image analysis, and the observation results can be digitized and acquired as data. is there.
  • the microchip 1 is installed on the stage-shaped heater 112, and the measurement can be performed under conditions closer to the living body by heating to 37 ° C. by the heater 112.
  • the blood mixture that has passed through the flow path dividing unit 103 is smoothly discharged from the discharge port 107 through the discharge pipe 114.
  • the flow path 101 has a length of 20 mm, a depth of 40 ⁇ m, and a width of 2 mm.
  • the flow path dividing portion 103 has a length of 1.5 mm, a width of 40 ⁇ m, and a height of 40 ⁇ m.
  • the walls 102 were installed at equal intervals of 40 ⁇ m, and this portion was used as the flow path dividing unit 103.
  • 13 cylinders with a diameter of 50 ⁇ m were installed at a distance of 7.5 ⁇ m from the first end part at intervals of 100 ⁇ m to form the impurity inflow prevention part 105.
  • the irradiation head is installed at the height of 3.5mm in Wedge Corporation PS-601SW atmospheric plasma irradiation surface reforming device, and the plasma division is performed 4 times using conveyor (12.5mm / sec) Treatment and UV irradiation from a distance of 30 mm from an ultraviolet lamp for 5 minutes using a PL2002N-18 optical surface treatment apparatus manufactured by Sen Special Light Source Co., Ltd.
  • Table 1 shows the results obtained by analyzing the smoothness of each comb region after untreated, plasma treatment, and ultraviolet irradiation treatment using a NewView 6200 non-contact surface shape measuring machine manufactured by Zygo.
  • PV 0.14 ⁇ 0.105mm maximum-minimum step difference (unit: nm)
  • Ra Dissociation of height from average / number of measurement points (unit: nm) From the above, it can be seen that the surface roughness of 10 to 200 nm is formed by the plasma treatment and the UV irradiation treatment.
  • the flow path dividing part was performed using a plasma-treated microchip, an ultraviolet irradiation treatment, and an untreated microchip.
  • the holes serving as the inlet 106 and the outlet 107 were through-holes having a circular cross section with an inner diameter of 2 mm and a depth of 2 mm.
  • 0.75 mg / ml collagen type I (made by Nitta Gelatin) is applied to the second substrate 110 at a position overlapping the flow path dividing portion 103 of the first substrate 100, and vacuum-dried to apply the platelet easy adhesion surface 108. It was.
  • the surface of the first substrate 100 where the groove serving as the channel 101 is opened and the surface of the second substrate 110 having the platelet adhesion surface 108 are opposed to each other by silane coupling agent and thermocompression bonding at 60 ° C. for 3 hours.
  • the prepared microchip 1 is placed on a stage-shaped heater 112 (heated to 37 ° C.), a reservoir 109 is connected to the inlet 106 of the microchip 1, and a tube is connected to the reservoir 109.
  • the pump 111 was connected via a pressure sensor, and the pressure applied to the pump was measured by a pressure sensor (not shown).
  • a discharge tube 114 is connected to the discharge port so that blood after the analysis is completed can be discharged.
  • a camera 113 connected to an image analysis device 115 is installed above the flow channel dividing unit 103 of the microchip 1 so that the state of platelet activation in the flow channel dividing unit 103 can be observed.
  • Test Examples 1 and 2 and Comparative Example 1 Blood collected from a healthy person was anticoagulated with hirudin (25 ⁇ g / ml).
  • the flow path of this anticoagulated blood microchip (Test Example 1) in which the flow path dividing part is plasma-treated, ultraviolet-irradiated microchip (Test Example 2), and untreated microchip (Comparative Example 1) Washed away.
  • the reservoir 109 is filled with anticoagulated blood
  • the pump 111 is filled with mineral oil
  • the pump 111 and the reservoir 109 are connected
  • the tip of the reservoir 109 is connected to the inlet 106 of the microchip 1. did.
  • Test example 3 Blood was collected from specimens before and after taking 100 mg of aspirin, and the obtained blood was anticoagulated with hirudin (25 ⁇ g / ml). The anticoagulated blood was passed through the flow path of the microchip in which the flow path dividing portion was plasma-treated. Specifically, the reservoir 109 is filled with anticoagulated blood (before and after taking 100 mg of aspirin), the pump 111 is filled with mineral oil, the pump 111 and the reservoir 109 are connected, and the tip of the reservoir 109 is connected to the microchip 1. Connected to the inlet 106.
  • the blood in the reservoir is pushed into the microchip 1 at the same flow rate and injected.
  • the inflow pressure of mineral oil (that is, the inflow pressure of blood) was measured by a non-pressure sensor.
  • Comparative Example 2 The inflow pressure of mineral oil was measured in the same manner as in Test Example 3 except that a microchip in which the flow path dividing portion was not plasma-treated was used.
  • Test Example 3 and Comparative Example 2 are shown in FIGS. 5 and 6, respectively.
  • the pressure increase was insufficient and the effect of aspirin could hardly be determined.
  • blood platelet function can be examined using a very small amount of blood, which is useful in fields such as medical treatment, diagnosis, examination, and research.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Biophysics (AREA)
  • Ecology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

 流路に血液を流して血小板凝集を誘発することにより血小板機能を測定するためのマイクロチップであって、内部に設けられた流路を有し、前記流路の少なくとも一部は血小板接着のためにコラーゲンがコーティングされており、複数の壁が該流路における血液の流れる方向に沿って延在し且つ該流路の幅を分割して流路分割部を形成し、該壁は表面粗さ(Ra)が10~200nmになるような処理が施されていることを特徴とするマイクロチップ。

Description

血小板検査用マイクロチップ及びそれを用いた血小板検査装置
 本発明は、微量血液を用いて血液の血小板機能を調べるために用いられるマイクロチップおよびそれを用いた検査装置に関する。
(血小板凝集検査の従来技術の問題点)
 動脈における血栓形成(白色血栓)又は一次止血において血小板の活性化及び凝集は中心的機能を果たす。
 血小板は血管が障害を受けた場合に、血管内皮細胞下に存在するコラーゲンに対し、直接的、非直接的に結合する。血流の緩やかな環境下(低ずり応力下)ではGPVIなどコラーゲン受容体により直接的な結合が主となり、血流の早い環境下(高ずり応力下)ではコラーゲンにvWFが結合し、vWFに対し血小板のGPIbα受容体が結合することで間接的にコラーゲンに結合する。コラーゲンとの直接的、間接的相互作用は血小板を活性化し、この刺激により濃染顆粒及びα顆粒からADP,セロトニンなど様々な血小板活性化物質が放出される。
 これら放出された血小板活性化因子は自己の血小板及び周囲の血小板を活性化させる。活性化を受けた血小板はフィブリノゲン受容体であるGPIIb、IIIaが活性化型に構造変化を受け、フィブリノゲンに対し高親和性型となる。2量体であるフィブリノゲンを介して活性化血小板が次々架橋を受け血小板凝集を形成する。
 しかしながら、従来の血小板凝集能測定装置の多くは、多量の血小板活性化試薬の刺激による血小板の活性化及び凝集過程を測定する方法であった(非特許文献1)。
 その為、生理的血小板活性化条件とはかけ離れた、環境下での血小板活性化反応であり、各受容体の先天的機能異常など明らかな機能の違いを測定することは可能であったが、より生理的な血小板機能を測定することは困難であった。
 PFA-100(Platelet Function Analyzer:非特許文献2)は固層化されたコラーゲンへの接触、ずり応力、血小板惹起物質との接触による総合的な血小板の活性化により穴の閉塞を測定する系であり、従来の単独の血小板活性化惹起物質の刺激による血小板凝集よりは生理的に近い環境下での測定系である。しかしながらデータのバラツキ、及び、穴を通過する血液に含まれる惹起物質の濃度の調整が出来ず、血栓症発症により血小板が既に活性化を受けている患者において見られる血小板活性化惹起物質が非常に低い濃度又は存在しない状況で惹起される血小板凝集及び、血小板機能不全患者の血小板機能測定の場合における非常に高い濃度の血小板惹起物質の刺激による血小板凝集能を適切に測定することは出来なかった。
 また、特許文献1には、血液を毛細管中に通過させ、そして次に、仕切部材の開口部を通過させ;そして仕切部材の開口部で、血栓の形成が開口部を閉止するまでに必要な時間を測定することを特徴とする血小板機能の測定方法が開示されているが、この方法では、血小板活性化試薬が大量に加えられており、生体内で血小板が活性化されているが血小板数が減少している場合や、血小板数は正常であるが血小板機能が弱い場合など、生体を反映した詳細な血小板機能を測定することが困難であった。
特開2007-298511号公報
「血小板凝集能検査」Thrombosis and Circulation, vol. 12, No.4, p17-20, 2004 「PFA-100による血小板凝集能測定」Thrombosis and Circulation,vol. 13, No. 3, p90-94, 2005
 例えば、敗血症、播種性血管内凝固症候群(DIC)などの疾患においては、血管内皮障
害及び血栓形成により血小板は活性化された状態にあり、さらに、血小板と白血球の複合体なども形成される。さらには持続的な血栓形成により血小板は著しく消耗され生体内で血栓が形成されるにも関わらず、同時に出血症状をきたすことがある。
 従来の血小板機能試験においては、このような症状を厳密に反映した検査を行うことは困難であった。
 例えば、濁度法では、血小板数が減少していても、血小板惹起物質に対する反応性が亢進しているならば、血小板機能亢進(強い)と判定された。また生体内の炎症反応などで形成され血栓形成に大きな影響を与える血小板・白血球の複合体は多血小板血漿を作成するための遠心分離にて赤血球とともに沈殿してしまうので多血小板血漿には含まれない。
 また、PFA-100を用いた場合には、血小板の機能が強い患者においても弱い患者においても同じ惹起物質の濃度で測定するので、惹起物質のないまたは非常に薄い状態で起こる自然凝集惹起又は抗血小板薬投与患者に対し惹起物質濃度が非常に高い状態でその薬剤効果を確認するような検査が適切に実施出来ない。また、PFA-100による測定で閉塞時間が延長された場合においても血小板機能が弱い場合と血小板機能が亢進している(生体内で活性化を受けている)が、血小板数が少ない場合のデータの比較等が困難であった。
 本発明は、上記事情に鑑みてなされたものであり、血流と同等環境下における血小板機能を微量の血液を用いて効率よく正確に評価することのできる装置および方法を提供することを課題とする。
 前記課題を解決するため、本発明は、流路に血液を流して血小板凝集を誘発することにより血小板機能を測定するためのマイクロチップであって、内部に設けられた流路を有し、前記流路の少なくとも一部は血小板接着のためにコラーゲンがコーティングされており、複数の壁が該流路における血液の流れる方向に沿って延在し且つ該流路の幅を分割して流路分割部を形成し、該壁は表面粗さ(Ra)が10~200nmになるような処理が施されていることを特徴とする、マイクロチップを提供する。流路分割壁は流路上の血小板易接着面(コラーゲンコート部)が存在する位置に血液の流れる方向に沿って延在することが好ましい。なお、流路のうち、流路分割部以外の部分の表面粗さは10nm未満であることが好ましい。
 表面粗さ(Ra)が10~200nmになるような処理は、プラズマ照射、または紫外線照射によるものであることが好ましい。
 そして、前記マイクロチップは、流路に血液を一定の速度で流して血小板凝集塊を形成させながら血液の流入圧を測定したときに、耐圧性が80kPa以上であることが好ましい。
 そして、前記マイクロチップはさらに、流路分割部の上流(該流路上の血液の流れる方向を基準として該血栓形成誘発部の上流)に不純物流入防止部が設けられていることが好ましい。
 本発明はまた、前記いずれかのマイクロチップを含む血小板機能検査装置を提供する。
 前記血小板機能検査装置は、血液を収容するための容器と、血液を容器からマイクロチップ内の流路に送液するための送液ポンプと、該ポンプにかかる圧力を測定する圧力センサーをさらに備えたものであることが好ましい。
 前記血小板機能検査装置はまた、マイクロチップ内部のコラーゲンコート部の下流(該流路上の血液の流れる方向を基準としてコラーゲンコート部の下流)にコラーゲンコート部を通過した血液廃液を貯留する廃液貯留部を備えていることが好ましい。
 本発明はまた、前記いずれかのマイクロチップまたは前記いずれかの血小板機能検査装置の流路に血液を通過させ、流路分割部およびコラーゲンコート部において血小板凝集を惹起させつつ、該血液の流路への流入圧を測定することによって血小板の機能を検査することを特徴とする、血小板機能検査方法を提供する。
[発明の効果]
 本発明の請求項1に係る血小板機能用マイクロチップによれば、マイクロチップ内部の流路の一部に、コラーゲンコート部と、該流路における血液の流れる方向に沿って延在し且つ該流路の幅を複数に分割する流路分割壁を備えた流路分割部とが設けられ、該流路分割壁は表面粗さ(Ra)が10~200nmになるような処理が施されているため、コラーゲン上において形成された血小板凝集塊が流路分割部で安定化され、より強く安定な圧力上昇が引き起こされてデータの再現性が向上する。強い圧力上昇が起こることによって、血小板凝集塊の強固さ、または脆弱さ、およびその安定性(持続性)を評価する事が可能である。
 本発明の請求項2に係る血小板機能用マイクロチップによれば、表面粗さ(Ra)が10~200nmになるような処理は、プラズマ照射、または紫外線照射によるものであるため、流路分割壁表面の物理的性状(表面の粗さ)だけでなく化学的性状(水酸基、イミド基、アミド基などの官能基の導入)も血小板凝集に適した状態にすることができる。
 本発明の請求項3に係る血小板機能用マイクロチップによれば、流路のうち、流路分割部以外の部分の表面粗さは10nm未満であるため、血小板易接着面(コラーゲンコート部)と流路分割部で特異的に血小板凝集塊の形成を促し、血小板凝集塊の形成を特異的に解析することができる。
 本発明の請求項4に係る血小板機能用マイクロチップによれば、流路に血液を一定の速度で流して血小板凝集塊を形成させながら血液の流入圧を測定したときに、耐圧性が80kPa以上であるため、より感度の高い測定が可能である。
 本発明の請求項5に係る血小板機能用マイクロチップによれば、流路分割部の上流に不純物流入防止部が設けられているため、試料中の不純物により測定誤差が生じにくく正確な測定が可能である。
 本発明の請求項6に係る血小板機能検査装置は、本発明の請求項1~5のいずれかに係る血小板機能用マイクロチップを備えるため、血小板凝集を効率よく促進し、血小板機能を短時間で高感度に測定できる。
 本発明の請求項7に係る血小板機能検査装置によれば、血液を収容するための容器と、血液を容器からマイクロチップ内の流路に送液するための送液ポンプと、該ポンプにかかる圧力を測定する圧力センサーを備えたものであるため、血小板機能を流入血液の圧力により定量的に評価できて好ましい。
 本発明の請求項8に係る血小板機能検査装置によれば、マイクロチップ内部のコラーゲンコート部の下流にコラーゲンコート部を通過した血液廃液を貯留する廃液貯留部を備えたものであるため、血液廃液を吸引して除去する必要がなく、簡便に検査を行うことができる。
 本発明の請求項9に係る血小板機能検査装置によれば、前記いずれかのマイクロチップまたは前記いずれかの血小板機能検査装置の流路に血液を通過させ、流路分割部およびコラーゲンコート部において血小板凝集を惹起させつつ、該血液の流路への流入圧を測定することによって血小板の機能を検査するため、血小板凝集を効率よく促進し、血小板機能を短時間で高感度に測定できる。
本発明の血小板検査用マイクロチップの第1の形態例を示す図。 本発明の血小板検査装置の第1の形態例を示す図。 本発明の血小板検査用マイクロチップの第2の形態例を示す図。 分割流路部分がプラズマ処理されたマイクロチップ(A)(試験例1)、紫外線処理されたマイクロチップ(B)(試験例2)、または未処理のマイクロチップ(C)(比較例1)を有する血小板検査装置を用いて流入血液の圧力を調べた結果を示す図。 流路分割壁がプラズマ処理されたマイクロチップを備えた血小板検査装置を用いてアスピリンの血小板凝集効果を調べた結果を示す図(試験例3)。縦軸は圧力(kPa)、横軸は時間(分)を示す。アスピリンを投与された被験者から採血された血液(アスピリン投与)とアスピリンを投与されない同一被験者から採血された血液(コントロール)とを9μl/分および27μl/分の流速で流して評価した。 流路分割壁がプラズマ処理されないマイクロチップを備えた血小板検査装置を用いてアスピリンの血小板凝集効果を調べた結果を示す図(比較例2)。縦軸は圧力(kPa)、横軸は時間(分)を示す。アスピリンを投与された被験者から採血された血液(アスピリン投与)とアスピリンを投与されない同一被験者から採血された血液(コントロール)とを9μl/分および27μl/分の流速で流して評価した。
 まず、図面を参照して本発明の血小板検査用マイクロチップおよび血小板検査装置を説明する。ただし、本発明の血小板検査用マイクロチップおよび血小板検査装置は以下の態様に限定されない。なお、本発明において、「血液」とは、全血及び多血小板血漿を含む。
 図1は、本発明のマイクロチップの第1の形態例を示す概念図である。以下、図1に基づいて説明する。
 図1(A)は、マイクロチップ1の流路101となる溝が表面に掘られた第1の基板100の平面図である。この溝の断面形状は、凹字状、U字状、V字状等任意である。血小板凝集塊は脆いため、圧力上昇を測定するためには溝の深さは10~200μm以下であることが望ましい。溝の幅は10μm~3mmであることが好ましい。
 そして、流路101となる溝の第1の端部(流入口側端部)と第2の端部(排出口側端部)の間の一部には、血液の流れる方向に沿って延在する複数の流路分割壁102が設けられ、該流路の幅を複数に分割する流路分割部103を形成する。
 また、流路分割壁102の間隔は200μm以下であることが望ましい。幅が200μm以下であれば血小板凝集塊が形成された場合、高血流、高ずり応力下においても血流に飛ばされず内部圧力を上昇させることが可能である。また、流路分割部103において、流路101の幅は流路分割壁102によって5つ以上に分割されていることが望ましい。すなわち、流路の幅が5本以上に分割されていれば、各分割流路の閉塞が平均化され、バラツキの少ないデータが得られやすい。
 なお、流路分割壁102の形状は、流路101の幅を複数に分割できさえすれば特に制限されない。
 流路分割壁102は、血小板凝集塊の接着性を向上させるため、表面粗さ(中心線平均表面粗さ:Ra)が10~200nmになるような処理が施されている。特に血小板のサイズが1から2μm前後であることから、10~200nmの凸凹を導入すると、分割流路の形状を損なわず、血小板凝集塊の接着性が向上し好ましい。この処理はプラズマや紫外線照射などによるものであることが好ましい。
 血小板凝集塊の流路分割壁への接着性は、流路分割壁表面の物理的性状(表面の粗さ)だけでなく表面の化学的性状(水酸基、イミド基、アミド基などの官能基の導入)の双方に依存すると考えられる。プラズマや紫外線照射によって処理することにより、表面粗さが大きくなるだけでなく、流路分割壁表面に官能基が導入されると考えられる。
 プラズマ処理としては、大気圧プラズマ、真空プラズマ、コロナ処理などが挙げられ、紫外線処理としてはエキシマレーザー、水銀ランプなどを用いた処理が挙げられる。特に大気圧プラズマであれば、安価な装置で連続的にプラズマ処理することができ好ましい。プラズマは流路分割部(流路分割部)に特異的に照射し、血小板易接着面(コラーゲンコート部)とその近傍に位置する流路分割部で特異的に血小板凝集塊の形成を促すことで、血小板凝集塊の形成を特異的に解析することが好ましい。
 健常人の血液をマイクロチップの流路に一定の速度で流して流路分割部に血小板凝集塊を形成させたとき、血液の流入圧は約80kPaまで上昇する。よってマイクロチップの耐圧性は80kPa以上であることが好ましい。
 流路分割部103の上流、すなわち、流路分割壁102と第1の端部(流入口側端部)の間の一部には、流路の幅方向に所定の間隔で複数の柱状体104が設置されており、これが不純物流入防止部105となる。柱状体同士の間隔(隙間の長さ)は、血液は通過できるが、不純物は通過できない長さであればよいが、10~200μmが好ましい。柱状体の形状は特に制限されず、円柱、多角柱などが挙げられる。
 図1(B)は、マイクロチップ1の流入口106および排出口107となる貫通孔が掘られた第2の基板110の平面図である。流入口106となる貫通孔および排出口107となる貫通孔の位置は、第1の基板100と積層されたときに、それぞれ、第1の基板100上の、流路101の第1の端部に相当する位置、流路101の第2の端部に相当する位置となっている。また、第2の基板110の裏面の、第1の基板100と積層されたときに第1の基板100上の流路分割壁102に被せられる位置にコラーゲンをコーティングすることで血小板易接着面108(コラーゲンコート部)が形成される。具体的には、コラーゲンは、図1(C)に示す様に、流路分割壁102に被せられる位置に、安全を見て広幅に塗布される。
 なお、血小板易接着面(コラーゲンコート部)は流路の全長に及んでもよい。
 図1(C)は、第1の基板100の溝と第2の基板110のコラーゲンコート部が内側になるように、第1の基板100と第2の第2の基板110が積層されたマイクロチップ1の平面図である。波線は、流路101がマイクロチップ1の内部に存在することを示す。
 なお、本発明のマイクロチップの第2の形態例では、図3に示されるように、図1のように第2の基板において流路の第2の端部に相当する位置に貫通孔を設けて排出口とする代わりに、第2の基板210において流路201の第2の端部に相当する位置に接続する溝を設けて、第1の基板200と貼り合わせることにより、血小板易接着面208(コラーゲンコート部)を通過した血液廃液を貯留する廃液貯留部207としてもよい。廃液貯留部207の容積を試験に用いる血液量よりも大きくすることにより、第1の形態例のように血液廃液を排出口からポンプ等で吸引して排出する必要がなく、より簡便な検査が可能である。なお、廃液貯留部207には貫通孔を設けてこれを空気穴209としてもよい。そして、マイクロチップ2の表面の空気穴209に相当する位置に血液吸収材を設置すれば、血液サンプルの量が多い場合でもマイクロチップ外に血液廃液が飛散することがない。血液吸収材としては、例えば、スポンジや布などを貼り付けることができる。なお、空気穴209に排出管を接続し、血液廃液を吸引除去してもよい。
 本発明のマイクロチップにおいて、血小板易接着面は、コーティングされたコラーゲンを用いるが、コラーゲンと組織トロンボプラスチンを含むものでも良い。血小板易接着面は血流によって流出しないようコラーゲンは血小板易接着面108,208に高い接着強度でコーティングされている。
 コラーゲンのコーティングは、例えば、特開平05-260950号公報やBlood.1995 Apr 1;85(7):1826-35.に記載されているように、コラーゲンを酸性溶液に溶解し、これを親水性が付与されたガラスやポリスチレン等の基板の所定の位置に塗布し、洗浄、乾燥するなどの方法にて簡便に高い接着強度でコーティングが可能である。
 疎水性の樹脂等にコートする場合には、樹脂表面を親水化処理した後、所望の領域にコラーゲン溶液を塗布し、自然乾燥ないしは減圧下にて乾燥することでコーティングすることが出来る。
 基材としてプラスチックを用いた場合は、表面を親水化処理し、所望の領域にコラーゲン溶液をピペットやシリンジ等のディスペンサーで塗布し、自然乾燥または減圧下で乾燥することでコラーゲンまたは組織トロンボプラスチンを含むコラーゲンを容易にコーティングすることが可能である。
 マイクロチップの材質は、金属、ガラスやプラスチック、シリコーン等が好ましい。また、血液観測(特に画像解析)に使用する観点からは透明な材質が好ましい。さらに、回路を形成する観点からはプラスチックが好ましく、透明なプラスチックが特に好ましい。材質をPDMS(ポリジメチルシロキサン)等のシリコーン製とした場合には、基板同士の密着性に優れるため、第1の基板と第2の基板を接着剤などで接着しなくても圧着することで積層することが出来るが、マイクロチップの内部に高い圧力がかかる場合は、接着剤を用いることが好ましい。また、ポリ2-メトキシエチルアクリレート(PMEA)によっても簡便かつ効果的に意図しない部位での血液凝固を抑制する事が可能である。なお、マイクロチップの基板に設けられる溝や穴は、刃物やレーザー光線で堀ることもできるが、マイクロチップの材質がプラスチックである場合は、射出成型で形成することもできる。射出成型で形成すると、一定した品質のマイクロチップが効率よく作成できるので好ましい。
 本形態例のマイクロチップ1を用いた血小板機能検査の一例を図1(C)に基づき説明する。第1の流入口106には図示しないチューブが接続され、チューブを介して図示しない血液リザーバー(血液収容部)及び送液ポンプが接続される。そして、接続されたポンプより該ポンプ内の液体をリザーバーに注入することで、該リザーバー内の血液がマイクロチップ1の流路に注入される。
 送液ポンプの液体はミネラルオイル又は生理食塩水などの血液より比重の小さい液体とし、送液ポンプで当該液体を血液があらかじめ充填されたリザーバーに導入し、該液体を血液の上に重層し、該液体をポンプで押し出すことで、血液が流路へ導入されるようにしてもよい。該液体の流入圧を測定することで血液の流路への流入圧を間接的に測定することができる。なお、リザーバーに予め充填された血液には血小板活性化試薬が混合されたものでもよい。血小板活性化試薬を乾燥又は液体状態でリザーバー内に予め入れておき、血液と混合することも可能である。
 血液は抗凝固処理されたものであることが好ましい。ここで、抗凝固処理に用いる抗凝固処理剤としては、クエン酸ナトリウムまたはカリウム、シュウ酸ナトリウムまたはカリウム、ACD(Acid Citrate Dextrose)、エチレンジアミンテトラ酢酸(EDTA)塩などを挙げることができる。このような抗凝固処理剤は、粉末、凍結乾燥品、水溶液などの溶液として使用することができる。これらの抗凝固処理剤のうち、一般的な3.2%クエン酸ナトリウムが容易に入手できることから好ましい。この場合、血液9容に対してこの抗凝固処理剤1容とするのが好ましい。
 その他の抗凝固処理剤としてはへパリン、ヒルジン、トロンビンアプタマー、コーン由来トリプシンインヒビター(1977.J.Biol.Chem 252.8105)等の利用が可能である。なお、抗凝固処理剤は、複数用いられてもよい。用いる抗凝固剤がヒルジンの場合には、クエン酸による抗凝固処理の場合に比べ、血小板活性化試薬の処理が無くとも、より強固な血小板凝集が引き起こされるので、ずり応力依存的な血小板機能を測定するのに適している。クエン酸による抗凝固処理血液の場合には、血小板活性化試薬の刺激依存的な血小板機能測定が精度良く測定でき、抗血小板剤の評価などにより適している。
 抗凝固処理された血液を得る方法としては、シリンジまたは真空採血管に予め上記の抗凝固処理剤を入れて採血を行うか、または、採血直後の血液に抗凝固処理剤を速やかに加える等の方法で抗凝固処理した血液を得ることができる。
 さらに、ヘパリンを含む真空採血管等で採血した後、へパリナーゼと検査目的に適した抗凝固処理剤を加え、ヘパリナーゼでヘパリンを分解させ、測定目的に適した抗凝固処理剤と置き換えることも可能である。
 抗凝固処理された血液と血小板活性化試薬を混合する場合、用いられる血小板活性化試薬としては、ADP、コラーゲン、トロンビン、アラキドン酸およびリストセチン等が挙げられる。この場合、血小板活性化試薬の血小板活性化能の評価を行うこともできる。血小板活性化試薬は、微弱な血小板活性化が起こるような濃度で抗凝固処理された血液と混合する。微弱な血小板活性化が起こるような濃度とは、静止状態では不可逆的血小板凝集(血小板二次凝集)を引き起こさないような濃度、例えば、ADPの場合、0.001~5μMであり、アラキドン酸の場合、0.001~1mMである。但し、血小板機能の異常及び抗血小板剤の投与によりこれら血小板活性化試薬に対する反応性が明らかに低下している場合には、その低下具合を測定する場合には、これらの濃度を超えた血小板活性化試薬を加えて測定することが望ましい。
 流入口106から導入され、流路101を通過した血液は、流路分割部103を通過することで、ずり応力が生じ、血小板の活性化が増強され、血小板易接着面(コラーゲンコート部)にて粘着・積層される。これにより、血液の流入圧が上昇するため、血液の流入圧をモニターすることで血液中に含まれる血小板の機能評価を行うことができる。また、流路分割部103を通過する血液の流速や性状を観測することによって、血小板機能の検査を行うことができる。
 なお、血液サンプル中の不純物は、不純物流入防止部105に留まり、流路分割部103に流入しないため、血小板凝集反応を阻害しない。
 検査に供した血液は、流路101の終端に設けられた排出口107から排出される。
 次に、マイクロチップ1を用いた本発明の血小板検査装置について説明する。
 図2は、マイクロチップ1を透明な基板で構成して組み込んだ本発明の血小板検査装置の第1の形態例である血小板検査装置Aの模式図である。以下、図2に基づいて第1の形態例を説明する。
 マイクロチップ1の流入口106には、抗凝固処理された血液が収容されたリザーバー109(血液収容部)が倒立して接続されており、リザーバー109にはミネラルオイルを供給する送液ポンプ111が接続されている。送液ポンプ111には図示しない圧力センサーが接続されている。
 そして、送液ポンプ111から、ミネラルオイルがリザーバー109内に圧入され、血液の上に重層され、血液をマイクロチップ1の流路101内に押し出す。血液は流路101を通過し、血小板易接着面108を有する流路分割部103に到達する。一方、血液サンプル中の不純物は不純物流入防止部105に留まる。
 流入圧力を送液ポンプ111に接続された圧力センサーによって測定することでより定量的な血小板機能検査が可能となる。また、流路分割部103における血小板の活性化(血小板の粘着・凝集など)やそれに伴うキャピラリーの閉塞をカメラ113で観察することで血小板機能の検査を行うことができる。さらに、血液の流路101の通過時間または通過量を測定することによっても血小板機能検査を行うことができる。
 カメラ113は画像解析装置115に接続されており、それによって血小板活性化の様子を画像化したりすることができる。内部の血小板活性化を撮影することにより視覚的評価及び圧力上昇による血小板活性化の定量的検査の併用は、患者血液の状態を総合判断する上で非常に重要である。例えば、DIC等の病態において血小板が生体内で既に活性化を受けるとともに血小板が消耗し著しく減少しているケースにおいては、圧力上昇や閉塞時間は遅延される。そのようなケースにおいても、内部をカメラにより撮影することで検査開始直後から血小板易接着表面(コラーゲンコート部)への血小板の粘着及び凝集の上昇などを確認することができ、患者の血小板の状態を総合的に判断することが可能となる。カメラ113は流路101の血流方向に沿って移動可能なものでもよい。
 なお、キナクリン等によって血小板を蛍光標識して解析することもでき、その場合、蛍光発色による単位面積あたりの輝度を画像解析で観測することで観測結果を数値化し、データとして取得することが可能である。
 なお、マイクロチップ1はステージ状のヒーター112の上に設置されており、ヒーター112によって37℃に加温することでより生体内に近い条件で測定を行うことができる。
 流路分割部103を通過した血液混合液は、排出口107から排出管114により円滑に排出される。
 以下に、具体的な実施例を挙げて本発明をより詳細に説明するが、本発明はこれに限定されるものではない。
〔マイクロチップおよび血小板機能検査装置の作成〕
 図1(A)に示す第1の基板100および図1(B)に示す第2の基板110の2枚の透明な基板(株式会社リッチェル製射出成型品)を用意した。
 第1の基板100においては、流路101の長さは20mm、深さは40μm、幅は2mmとし、流路分割部103には、長さ1.5mm、幅40μm、高さ40μmの流路分割壁102を40μmの等間隔で設置し、この部分を流路分割部103とした。さらに、第1の端部より7.5mmの位置に直径50μmの円柱を100μm間隔で13本設置し、不純物流入防止部105とした。
 そして、流路分割部103をウェッジ株式会社 PS-601SW大気中プラズマ照射表面改質装置にて3.5mmの高さに照射ヘッドを設置し、コンベア(12.5mm/sec)を用いて4回プラズマ照射処理及びセン特殊光源株式会社製 PL2002N-18光表面処理装置によって紫外線ランプより30mmの距離から5分間紫外線照射した。
 未処理、プラズマ処理後、紫外線照射処理後のそれぞれの櫛領域の平滑性をZygo社製NewView6200非接触表面形状測定機によって解析した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
PV:0.14×0.105mm中の最大-最小の段差(単位nm)
Ra:平均からの高さの解離/測定ポイント数(単位nm)
 以上よりプラズマ処理、UV照射処理によって10~200nmのレベルでの表面の粗さが形成されていることがわかる。
 なお、下記の実験では流路分割部がプラズマ処理されたマイクロチップと、紫外線照射処理、未処理のマイクロチップを用いて行った。
 第2の基板100においては、流入口106および排出口107となる穴は内径2mm深さ2mmの断面円形の貫通孔とした。また、第2の基板110の、第1の基板100の流路分割部103と重なる位置に0.75mg/mlのコラーゲンタイプI(新田ゼラチン製)を塗布し真空乾燥して血小板易接着面108とした。
 第1の基板100の流路101となる溝が開口する面と第2の基板110の血小板易接着面108を有する面を対向させてシランカップリング剤及び60℃3時間の熱圧着により貼り合せ、図1(C)に示すマイクロチップ1とした。
 図2のように、作製したマイクロチップ1を、ステージ状のヒーター112(37℃に加温)の上に設置し、マイクロチップ1の流入口106にリザーバー109を接続し、リザーバー109にはチューブを介してポンプ111を接続し、ポンプにかかる圧力を図示しない圧力センサーで測定した。排出口には排出管114を接続し、解析終了後の血液を排出できるようにした。また、マイクロチップ1の流路分割部103の上方には画像解析装置115が接続したカメラ113を設置し、流路分割部103における血小板活性化の様子を観察できるようにした。
試験例1、2および比較例1
 健常人より採血した血液をヒルジン(25μg/ml)によって抗凝固処理した。この抗凝固処理された血液を流路分割部がプラズマ処理されたマイクロチップ(試験例1)、紫外線照射されたマイクロチップ(試験例2)及び未処理のマイクロチップ(比較例1)の流路に流した。具体的には、リザーバー109に抗凝固処理された血液を充填し、ポンプ111にミネラルオイルを充填し、ポンプ111とリザーバー109を接続し、リザーバー109の先端はマイクロチップ1の流入口106に接続した。ポンプ111からミネラルオイルを18μl/分の流速でリザーバーに注入して血液の上に重層することで、リザーバー内の血液を同様の流速にてマイクロチップ1に押し出して注入し、図示しない圧力センサーによってミネラルオイルの流入圧力(すなわち、血液の流入圧力)をそれぞれ3回ずつ測定した。
 結果をそれぞれ図4A、B及びCに示す。
 分割流路部分をプラズマ処理(図4A)、紫外線処理したマイクロチップ(図4B)は未処理のマイクロチップ(図4C)に比べより安定的な圧力上昇が促され、また圧力パターンのばらつきも少なかった。分割流路部がプラズマ処理及び紫外線照射処理によって血小板凝集塊の接着性が向上していることに起因するものと予測された。
試験例3
 アスピリン100mg服用前後の検体から採血を行い、得られた血液をヒルジン(25μg/ml)によって抗凝固処理した。この抗凝固処理された血液を流路分割部がプラズマ処理されたマイクロチップの流路に流した。具体的には、リザーバー109に抗凝固処理された血液(アスピリン100mg服用前後)を充填し、ポンプ111にミネラルオイルを充填し、ポンプ111とリザーバー109を接続し、リザーバー109の先端はマイクロチップ1の流入口106に接続した。ポンプ111からミネラルオイルを27μl/分及び9μl/分の流速でリザーバーに注入して血液の上に重層することで、リザーバー内の血液を同様の流速にてマイクロチップ1に押し出して注入し、図示しない圧力センサーによってミネラルオイルの流入圧力(すなわち、血液の流入圧力)を測定した。
比較例2
 流路分割部がプラズマ処理されないマイクロチップを用いた以外は試験例3と同様の操作を行い、ミネラルオイルの流入圧力を測定した。
 試験例3と比較例2の結果をそれぞれ図5および6に示す。流路分割部がプラズマ処理されないマイクロチップを用いた場合は、圧力上昇が不十分でアスピリンの効果がほとんど判別できなかった。これに対し、流路分割部がプラズマ処理されたマイクロチップを用いた場合は、低流速で約50kPa、高流速で約80kPaまで圧力上昇が起こり、アスピリンの効果は十分判別できた。
 以上より、プラズマ照射により、より高い圧力上昇が起こり高流速の条件下での血小板凝集塊の安定性をより解析することが出来た。抗血小板作用を有するアスピリンは血小板凝集塊の形成速度よりも寧ろ形成された血小板凝集塊の安定性を低下させる効果を有することが分かる。
 本発明のマイクロチップによれば微量血液を用いて血液の血小板機能を調べることができるので、医療、診断、検査、研究などの分野において有用である。
A…血小板検査装置;1、2…マイクロチップ;100,200…第1の基板;101,201…流路;102、202…流路分割壁;103、203…流路分割部;104,204…柱状体;105,205…不純物流入防止部;106,206…流入口;107…排出口;207…廃液貯留部;108,208…血小板易接着面(コラーゲンコート部);109…リザーバー;209…空気穴(排出口);110,210…第2の基板;111…ポンプ;112…ヒーター;113…カメラ;114…排出管;115…画像解析装置

 

Claims (9)

  1. 流路に血液を流して血小板凝集を誘発することにより血小板機能を測定するためのマイクロチップであって、
    内部に設けられた流路を有し、
    前記流路の少なくとも一部は血小板接着のためにコラーゲンがコーティングされており、複数の壁が該流路における血液の流れる方向に沿って延在し且つ該流路の幅を分割して流路分割部を形成し、該壁は表面粗さ(Ra)が10~200nmになるような処理が施されていることを特徴とする、マイクロチップ。
  2. 表面粗さ(Ra)が10~200nmになるような処理は、プラズマ照射、または紫外線照射によるものである、請求項1に記載のマイクロチップ。
  3. 流路のうち、流路分割部以外の部分の表面粗さは10nm未満であることを特徴とする、請求項1または2に記載のマイクロチップ。
  4. 前記マイクロチップは、流路に血液を一定の速度で流して血小板凝集塊を形成させながら血液の流入圧を測定したときに、耐圧性が80kPa以上である、請求項1ないし3のいずれか一項に記載のマイクロチップ。
  5. さらに、流路分割部の上流に不純物流入防止部が設けられたことを特徴とする、請求項1ないし4のいずれか一項に記載のマイクロチップ。
  6. 請求項1ないし5のいずれか一項に記載のマイクロチップを含む、血小板機能検査装置。
  7. 血液を収容するための容器と、血液を容器からマイクロチップ内の流路に送液するための送液ポンプと、該ポンプにかかる圧力を測定する圧力センサーをさらに備えた、請求項6に記載の血小板機能検査装置。
  8. マイクロチップ内部のコラーゲンコート部の下流にコラーゲンコート部を通過した血液廃液を貯留する廃液貯留部を備えた、請求項6または7に記載の血小板機能検査装置。
  9. 請求項1ないし5のいずれか一項に記載のマイクロチップまたは請求項6ないし8のいずれか一項に記載の血小板機能検査装置の流路に血液を通過させ、流路分割部およびコラーゲンコート部において血小板凝集を惹起させつつ、該血液の流路への流入圧を測定することによって血小板の機能を検査することを特徴とする、血小板機能検査方法。
PCT/JP2011/052901 2010-02-10 2011-02-10 血小板検査用マイクロチップ及びそれを用いた血小板検査装置 WO2011099569A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11742312.9A EP2535721B1 (en) 2010-02-10 2011-02-10 Microchip for platelet examination and platelet examination device using same
CN201180008579.0A CN102762991B (zh) 2010-02-10 2011-02-10 血小板检测用微芯片及使用该微芯片的血小板检测装置
US13/578,019 US8796031B2 (en) 2010-02-10 2011-02-10 Microchip for platelet examination and platelet examination device using same
JP2011553893A JP5752055B2 (ja) 2010-02-10 2011-02-10 血小板検査用マイクロチップ及びそれを用いた血小板検査装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010028090 2010-02-10
JP2010-028090 2010-02-10

Publications (1)

Publication Number Publication Date
WO2011099569A1 true WO2011099569A1 (ja) 2011-08-18

Family

ID=44367839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052901 WO2011099569A1 (ja) 2010-02-10 2011-02-10 血小板検査用マイクロチップ及びそれを用いた血小板検査装置

Country Status (5)

Country Link
US (1) US8796031B2 (ja)
EP (1) EP2535721B1 (ja)
JP (1) JP5752055B2 (ja)
CN (1) CN102762991B (ja)
WO (1) WO2011099569A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014098242A1 (ja) * 2012-12-20 2014-06-26 藤森工業株式会社 血小板凝集能の総合的評価方法
JP2016534714A (ja) * 2013-10-16 2016-11-10 プレジデント アンド フェローズ オブ ハーバード カレッジ 全血凝固のリアルタイムの臨床モニタリングおよび定量的評価
WO2017119508A1 (ja) 2016-01-07 2017-07-13 藤森工業株式会社 採血管、試薬及びそれらを利用した血液性状分析方法
JP2017529218A (ja) * 2014-09-23 2017-10-05 ティアラブ リサーチ,インク. 微小流体の涙液の収集と対象の分析物のラテラルフロー分析との統合のためのシステムと方法
KR101881203B1 (ko) 2016-01-25 2018-08-17 고려대학교 산학협력단 혈소판 분석 장치
WO2022114129A1 (ja) 2020-11-27 2022-06-02 藤森工業株式会社 血液凝固検査用マイクロチップの製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010018833A1 (ja) * 2008-08-11 2010-02-18 藤森工業株式会社 血小板検査方法及び血小板検査装置
KR101481240B1 (ko) * 2012-12-27 2015-01-19 고려대학교 산학협력단 마이크로 유동칩 기반 혈소판 기능 및 약물반응 검사 장치 및 방법
KR101497193B1 (ko) * 2012-12-31 2015-03-03 고려대학교 산학협력단 원심력 미세유동 기반 혈소판 복합기능 및 약물반응 검사 장치 및 방법
CN103616523A (zh) * 2012-12-31 2014-03-05 烟台卓越生物技术有限责任公司 一种改进型便携式生化检测仪上使用的检测卡
EP3130920B1 (en) 2014-04-08 2020-02-12 Fujimori Kogyo Co., Ltd. Microchip for assay of blood properties, and device for assay of blood properties
GB201415804D0 (en) 2014-09-08 2014-10-22 Univ Singapore Assay Device
CN107076733B (zh) * 2014-09-09 2021-04-30 佩罗斯芬尔技术有限公司 基于微流控芯片的通用凝血测定
EP3485927B1 (en) * 2014-10-14 2023-10-25 Becton, Dickinson and Company Blood sample treatment using open cell foam
JP7464038B2 (ja) * 2019-03-01 2024-04-09 Toppanホールディングス株式会社 マイクロ流体デバイスおよび試料分析方法
CN110773245A (zh) * 2019-11-01 2020-02-11 上海速创诊断产品有限公司 一种微流控芯片及其处理方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05260950A (ja) 1992-03-18 1993-10-12 Sumitomo Bakelite Co Ltd コラーゲンコート細胞培養器具およびその製造方法
JP2002277479A (ja) * 2001-03-16 2002-09-25 Jun Kikuchi 液体の移動装置および血液分析装置とそれらの製造方法
JP2004257766A (ja) * 2003-02-24 2004-09-16 Horiba Ltd マイクロ血球カウンタ
JP2005034129A (ja) * 2003-06-27 2005-02-10 Kyocera Corp 核酸検出用プローブ基板
JP2007147602A (ja) * 2005-10-27 2007-06-14 Kyocera Corp 流体検査用チップ、および流体検査用チップの製造方法、並びに流体検査用光学システム、流体検査用電気システム、および検知方法
JP2007298511A (ja) 2006-04-28 2007-11-15 Dade Behring Marburg Gmbh 血小板機能の流動状態下での測定方法および装置
JP2009068874A (ja) * 2007-09-11 2009-04-02 Tokai Univ 血小板凝集評価装置およびその方法
WO2009069656A1 (ja) * 2007-11-26 2009-06-04 Fujimori Kogyo Co., Ltd. マイクロチップおよび血液観測装置
JP2009223142A (ja) * 2008-03-18 2009-10-01 Fujifilm Corp 感光性フィルムの粗面化処理方法、及び感光性フィルム

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2500330B2 (ja) 1991-03-26 1996-05-29 工業技術院長 血栓溶解能を有する生体適合性材料
US5888826A (en) 1994-06-30 1999-03-30 Dade Behring Inc. Combination reagent holding and test device
US5504011A (en) * 1994-10-21 1996-04-02 International Technidyne Corporation Portable test apparatus and associated method of performing a blood coagulation test
CA2220574A1 (en) 1996-03-22 1997-09-25 Roy Ostgaard Combination reagent holding and test device
CN1173776C (zh) 1996-06-28 2004-11-03 卡钳技术有限公司 在微规模流体性设备里的高通过量的筛选分析系统
AUPP660798A0 (en) 1998-10-20 1998-11-12 Monash University Method for measuring cellular adhesion
JP3345641B2 (ja) 2000-03-10 2002-11-18 学校法人立命館 マイクロ分析チップ、及びその製造方法
GB0030929D0 (en) 2000-12-19 2001-01-31 Inverness Medical Ltd Analyte measurement
JP2004004002A (ja) 2002-04-01 2004-01-08 Kunimasa Koga 血栓形成能測定装置
CA2500392C (en) 2002-09-27 2012-11-27 The General Hospital Corporation Microfluidic device for cell separation and uses thereof
JP2004251630A (ja) 2003-02-18 2004-09-09 Tokai Univ 血栓生成過程観測装置及び血栓生成過程観測方法
US7745223B2 (en) * 2004-08-12 2010-06-29 C A Casyso Ag Device with novel and improved surface properties
GB0418474D0 (en) * 2004-08-12 2004-09-22 Pentapharm Ltd Device with novel and improved surface properties
ATE425774T1 (de) 2004-10-07 2009-04-15 Coloplast As Medizinische vorrichtung mit einer befeuchteten hydrophilen beschichtung
JP4277785B2 (ja) 2004-11-18 2009-06-10 佑二 菊池 流体流動性測定方法およびそれに用いる測定装置
JP2006205080A (ja) 2005-01-28 2006-08-10 Moritex Corp マイクロミキサー
JP4604834B2 (ja) * 2005-05-19 2011-01-05 コニカミノルタエムジー株式会社 検査用マイクロチップおよびそれを用いた検査装置
JP2007024522A (ja) 2005-07-12 2007-02-01 Sharp Corp マイクロ分析チップ
JP5036547B2 (ja) * 2005-10-18 2012-09-26 藤森工業株式会社 血栓観測装置および血栓観測方法
US20070092399A1 (en) 2005-10-24 2007-04-26 Kyocera Corporation Fluid Examination Chip and Method of Manufacturing the Fluid Examination Chip
US8288157B2 (en) 2007-09-12 2012-10-16 Plc Diagnostics, Inc. Waveguide-based optical scanning systems
JP2007271323A (ja) 2006-03-30 2007-10-18 Chisso Corp 装置
JP4833727B2 (ja) * 2006-05-08 2011-12-07 藤森工業株式会社 血管内皮細胞を用いた血栓観測方法および血栓観測装置
JP2009536821A (ja) 2006-05-12 2009-10-22 バハラ バイオテック インターナショナル リミテッド 新規血栓溶解分子及びその製造法
WO2010018833A1 (ja) * 2008-08-11 2010-02-18 藤森工業株式会社 血小板検査方法及び血小板検査装置
US20120058500A1 (en) * 2009-03-10 2012-03-08 Monash University Platelet aggregation using a microfluidics device
JP5816613B2 (ja) * 2009-04-23 2015-11-18 ダブリン シティ ユニバーシティ 凝固をモニタするための側方流動分析装置及びその方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05260950A (ja) 1992-03-18 1993-10-12 Sumitomo Bakelite Co Ltd コラーゲンコート細胞培養器具およびその製造方法
JP2002277479A (ja) * 2001-03-16 2002-09-25 Jun Kikuchi 液体の移動装置および血液分析装置とそれらの製造方法
JP2004257766A (ja) * 2003-02-24 2004-09-16 Horiba Ltd マイクロ血球カウンタ
JP2005034129A (ja) * 2003-06-27 2005-02-10 Kyocera Corp 核酸検出用プローブ基板
JP2007147602A (ja) * 2005-10-27 2007-06-14 Kyocera Corp 流体検査用チップ、および流体検査用チップの製造方法、並びに流体検査用光学システム、流体検査用電気システム、および検知方法
JP2007298511A (ja) 2006-04-28 2007-11-15 Dade Behring Marburg Gmbh 血小板機能の流動状態下での測定方法および装置
JP2009068874A (ja) * 2007-09-11 2009-04-02 Tokai Univ 血小板凝集評価装置およびその方法
WO2009069656A1 (ja) * 2007-11-26 2009-06-04 Fujimori Kogyo Co., Ltd. マイクロチップおよび血液観測装置
JP2009223142A (ja) * 2008-03-18 2009-10-01 Fujifilm Corp 感光性フィルムの粗面化処理方法、及び感光性フィルム

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Measurement of Platelet Aggregability with PFA-100", THROMBOSIS AND CIRCULATION, vol. 13, no. 3, 2005, pages 90 - 94
"Platelet Aggregability Test", THROMBOSIS AND CIRCULATION, vol. 12, no. 4, 2004, pages 17 - 20
BLOOD, vol. 85, no. 7, 1 April 1995 (1995-04-01), pages 1826 - 35
J. BIOL. CHEM, vol. 252, 1977, pages 8105
See also references of EP2535721A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014098242A1 (ja) * 2012-12-20 2014-06-26 藤森工業株式会社 血小板凝集能の総合的評価方法
JPWO2014098242A1 (ja) * 2012-12-20 2017-01-12 藤森工業株式会社 血小板凝集能の総合的評価方法
JP2016534714A (ja) * 2013-10-16 2016-11-10 プレジデント アンド フェローズ オブ ハーバード カレッジ 全血凝固のリアルタイムの臨床モニタリングおよび定量的評価
JP2017529218A (ja) * 2014-09-23 2017-10-05 ティアラブ リサーチ,インク. 微小流体の涙液の収集と対象の分析物のラテラルフロー分析との統合のためのシステムと方法
US11536707B2 (en) 2014-09-23 2022-12-27 Tearlab Research, Inc. Systems and methods for integration of microfluidic tear collection and lateral flow analysis of analytes of interest
WO2017119508A1 (ja) 2016-01-07 2017-07-13 藤森工業株式会社 採血管、試薬及びそれらを利用した血液性状分析方法
US11480559B2 (en) 2016-01-07 2022-10-25 Fujimori Kogyo Co., Ltd. Blood collection tube, reagent, and method for analyzing blood characteristics using same
KR101881203B1 (ko) 2016-01-25 2018-08-17 고려대학교 산학협력단 혈소판 분석 장치
WO2022114129A1 (ja) 2020-11-27 2022-06-02 藤森工業株式会社 血液凝固検査用マイクロチップの製造方法

Also Published As

Publication number Publication date
CN102762991A (zh) 2012-10-31
EP2535721A1 (en) 2012-12-19
EP2535721A4 (en) 2014-07-30
CN102762991B (zh) 2015-08-19
US20120301966A1 (en) 2012-11-29
US8796031B2 (en) 2014-08-05
JP5752055B2 (ja) 2015-07-22
EP2535721B1 (en) 2017-04-19
JPWO2011099569A1 (ja) 2013-06-17

Similar Documents

Publication Publication Date Title
JP5752055B2 (ja) 血小板検査用マイクロチップ及びそれを用いた血小板検査装置
JP5421918B2 (ja) 血小板検査方法及び血小板検査装置
KR101284072B1 (ko) 혈전 관측 장치 및 혈전 관측 방법
JP5317988B2 (ja) マイクロチップおよび血液観測装置
US9378557B2 (en) Microfluidic device for assessing object/test material interactions
EP3058367A2 (en) A microfluidic device for real-time clinical monitoring and quantitative assessment of whole blood coagulation
JP6596768B2 (ja) 血液性状検査用マイクロチップおよび血液性状検査用装置
JP4833727B2 (ja) 血管内皮細胞を用いた血栓観測方法および血栓観測装置
JP6322144B2 (ja) 血小板凝集能の総合的評価方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180008579.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11742312

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011553893

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13578019

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011742312

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011742312

Country of ref document: EP