WO2011099190A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2011099190A1
WO2011099190A1 PCT/JP2010/064464 JP2010064464W WO2011099190A1 WO 2011099190 A1 WO2011099190 A1 WO 2011099190A1 JP 2010064464 W JP2010064464 W JP 2010064464W WO 2011099190 A1 WO2011099190 A1 WO 2011099190A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
temperature
inverter
refrigerant
power
Prior art date
Application number
PCT/JP2010/064464
Other languages
English (en)
French (fr)
Inventor
貴幸 萩田
貴之 鷹繁
中川 信也
幹彦 石井
竹志 平野
中野 浩児
石川 雅之
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201080054436.9A priority Critical patent/CN102639943B/zh
Priority to US13/512,442 priority patent/US9791196B2/en
Priority to EP10845782.1A priority patent/EP2538149B1/en
Publication of WO2011099190A1 publication Critical patent/WO2011099190A1/ja
Priority to US15/707,589 priority patent/US10488093B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00792Arrangement of detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/08Cylinder or housing parameters
    • F04B2201/0801Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0209Rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/11Outlet temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/08Exceeding a certain temperature value in a refrigeration component or cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/29High ambient temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21153Temperatures of a compressor or the drive means therefor of electronic components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21154Temperatures of a compressor or the drive means therefor of an inverter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21156Temperatures of a compressor or the drive means therefor of the motor

Definitions

  • the present invention relates to an air conditioner, and more particularly to an air conditioner that can suppress an increase in device volume and device cost and can perform more appropriate overheat protection.
  • a compressor that compresses gas refrigerant, a condenser that condenses high-pressure gas refrigerant by exchanging heat with outside air, and an expansion valve that converts high-temperature and high-pressure liquid refrigerant into low-temperature and low-pressure liquid refrigerant And an evaporator that vaporizes the low-temperature and low-pressure liquid refrigerant by exchanging heat with the outside air and that constitutes a refrigeration cycle in which these are connected via a refrigerant passage is known.
  • the parameter used for the calculation for obtaining the motor coil temperature is not a parameter that is directly affected by the temperature. There was a circumstance that was not taken into account. In other words, during normal operation, such high-temperature atmosphere on the vehicle side can be dealt with with correction values obtained experimentally in advance, but in the case of abnormal rise in outside air temperature, abnormal heat generation, etc. This correction cannot be dealt with and may be missed.
  • the present invention has been made in view of such circumstances, and it is possible to obtain the motor coil temperature of the electric motor or the discharge temperature of the compressor without newly providing a temperature detecting means, thereby increasing the apparatus volume and the apparatus cost.
  • An air conditioner capable of suppressing the above is provided.
  • Another object of the present invention is to provide an air conditioner that can realize more practical estimation of the motor coil temperature of the electric motor or the discharge temperature of the compressor, and can perform more appropriate overheat protection. .
  • the present invention employs the following means.
  • the first aspect of the present invention includes an electric compressor that compresses a gas refrigerant, a condenser that exchanges heat by condensing high-pressure gas refrigerant with outside air, and an expansion valve that converts high-temperature and high-pressure liquid refrigerant into low-temperature and low-pressure liquid refrigerant.
  • an air conditioner having an evaporator that heats and vaporizes the low-temperature and low-pressure liquid refrigerant with outside air, and a controller, wherein the electric compressor drives the compressor and the compressor
  • An electric compressor integrated with an electric motor and an inverter provided with an inverter provided with a temperature detection unit for detecting the temperature in the vicinity of the semiconductor switching element, wherein the control unit is configured to detect the detected temperature of the inverter,
  • the air conditioner estimates a discharge temperature of the compressor based on a rotation speed of the compressor and power of the compressor.
  • the discharge temperature of the compressor is estimated based on the detected temperature in the vicinity of the semiconductor switching element of the inverter, and the temperature parameter is used as a parameter used for the estimation calculation. Therefore, even when the outside temperature rises abnormally or when heat is abnormally generated, more realistic estimation of the compressor discharge temperature can be performed. Further, when the compressor discharge temperature exceeds the set threshold value, the overheat protection can be appropriately performed by setting the decrease in the compressor speed or stopping the compressor.
  • the temperature detection part of an inverter should just use the existing thing for the overheating protection of a semiconductor switching element, and does not need to set newly.
  • control unit determines the discharge temperature of the compressor based on the correlation of the pressure load characteristics in the refrigeration cycle of the detected temperature of the inverter, the power of the compressor, and the discharge temperature of the compressor. It is good also as a structure to estimate.
  • the compressor discharge temperature is estimated based on the correlation between the compressor discharge temperature at the set compressor rotation speed and the pressure load characteristics in the refrigeration cycle. Protection can be performed.
  • the second aspect of the present invention includes an electric compressor that compresses a gas refrigerant, a condenser that exchanges heat of high-pressure gas refrigerant with outside air and condenses, and an expansion valve that converts high-temperature and high-pressure liquid refrigerant into low-temperature and low-pressure liquid refrigerant.
  • an air conditioner having an evaporator that heats and vaporizes the low-temperature and low-pressure liquid refrigerant with outside air, and a controller, wherein the electric compressor drives the compressor and the compressor And an inverter-integrated electric compressor integrally comprising an electric motor and an inverter provided with a temperature detection unit for detecting a temperature in the vicinity of the semiconductor switching element, wherein the control means includes the detected temperature of the inverter,
  • the air conditioner estimates the motor coil temperature of the electric motor based on the rotation speed of the compressor and the power of the compressor.
  • the motor coil temperature of the electric motor is estimated based on the detected temperature in the vicinity of the semiconductor switching element of the inverter, and the detected temperature of the inverter is used as a parameter used for the estimation calculation. Therefore, even when the outside temperature rises abnormally or when heat is abnormally generated, the motor coil temperature can be estimated more practically. Further, for example, when the estimated motor coil temperature exceeds the set threshold value, the overheat protection can be appropriately performed by setting the compressor rotational speed to be lowered or stopping the compressor. In addition, the temperature detection part of an inverter should just use the existing thing for the overheating protection of a semiconductor switching element, and does not need to set newly.
  • control unit may be configured such that the motor coil of the electric motor is based on the correlation of the pressure load characteristics in the refrigeration cycle of the detected temperature of the inverter, the power of the compressor, and the motor coil temperature of the electric motor. It is good also as a structure which estimates temperature.
  • the pressure load characteristic in the refrigeration cycle of the inverter detection temperature at the set compressor speed the pressure load characteristic in the refrigeration cycle of the compressor power at the set compressor speed, Since the motor coil temperature of the electric motor is estimated based on the correlation between the motor coil temperature at the set compressor speed and the pressure load characteristic in the refrigeration cycle, more realistic estimation is realized and more appropriate overheating is achieved. Protection can be performed.
  • the temperature detector is disposed at a position corresponding to a downstream region from a midstream region of the refrigerant flow flowing through the electric compressor.
  • the temperature detection unit is arranged at a position corresponding to the midstream region to the downstream region of the refrigerant flow flowing through the electric compressor, even if there is an abnormal temperature rise due to a malfunction of the electric motor, the motor coil temperature of the electric motor or the This can be reflected in the estimation of the discharge temperature of the compressor, and more appropriate overheat protection can be performed.
  • control unit may determine whether the refrigerant is missing based on the rotational speed of the compressor and the power of the compressor.
  • the refrigerant loss is determined based on the compressor rotational speed and the compressor power. For example, when the predetermined compressor rotational speed is exceeded, the compressor power falls below a predetermined threshold. In such a case, it is possible to prevent the discharge temperature of the compressor from increasing in the gas low state by determining that the refrigerant has been removed (refrigerant leakage to the outside of the system) and stopping the compressor.
  • frost may be determined based on the detected temperature of the inverter.
  • the frost is determined based on the detected temperature of the inverter, for example, when the detected temperature of the inverter falls below a predetermined threshold value, the compressor rotational speed is increased, and if it is not improved for a predetermined period, the compressor is stopped. It is possible to prevent the compressor from being damaged due to the frost.
  • the discharge temperature of the compressor or the motor coil temperature of the electric motor is estimated based on the detected temperature in the vicinity of the semiconductor switching element of the inverter, even in the case of an abnormal rise in the outside air temperature or abnormal heat generation, etc.
  • FIG. 1 is a configuration diagram of an air conditioner according to a first embodiment of the present invention.
  • the air conditioning apparatus 1 which concerns on this embodiment is equipped with the refrigerating cycle 2 and the control apparatus 3 as main elements.
  • the refrigeration cycle 2 supplies, for example, a low-temperature and low-pressure liquid refrigerant to the evaporator 4, and includes a compressor 5, a condenser 8, and an expansion valve 9.
  • the compressor 5 compresses the low-temperature and low-pressure gas refrigerant that has been vaporized by taking the heat in the passenger compartment with the evaporator 4, and sends it to the condenser 8 as a high-temperature and high-pressure gas refrigerant.
  • the compressor 5 is driven by the power of the electric motor 6.
  • the condenser 8 is disposed, for example, in the front part of the engine room, and cools the high-temperature and high-pressure gas refrigerant supplied from the compressor 5 with outside air to condense and liquefy the gaseous refrigerant.
  • the refrigerant thus liquefied is sent to a receiver (not shown) for gas-liquid separation, and then sent to the expansion valve 9 as a high-temperature and high-pressure liquid refrigerant.
  • the high-temperature and high-pressure liquid refrigerant is decompressed and expanded to form a low-temperature and low-pressure liquid (mist-like) refrigerant and supplied to the evaporator 4.
  • the rotational speed of the electric motor 6 is variably controlled continuously or stepwise by the change in the electric power supplied from the inverter 7. As the rotational speed of the electric motor 6 changes, the refrigerant discharge capacity of the compressor 5 changes, the amount of refrigerant circulating (flow rate) circulating in the refrigeration cycle 2 is adjusted, and the cooling capacity of the evaporator 4 (cooling of the refrigeration cycle 2). Ability) is controlled.
  • control device 3 includes at least a storage device 31 and an arithmetic device 32.
  • the arithmetic device 32 is realized by a CPU or a microprocessor MPU.
  • the arithmetic device 32 of the control device 3 sets the rotation speed of the compressor 5 in accordance with a setting instruction from an operation panel (not shown) and various detection data (such as low-pressure side pressure) in the refrigeration cycle 2, The rotational speed of the electric motor 6 is controlled via the inverter 7.
  • the compressor 5, the electric motor 6 that drives the compressor 5, and the inverter 7 are integrated to form a so-called inverter-integrated electric compressor 10.
  • the inverter 7 is provided with a temperature sensor 11 for detecting the temperature in the vicinity of the semiconductor switching element (power element such as IGBT). This temperature sensor 11 is already installed for overheating protection of the semiconductor switching element because the temperature environment becomes very severe by integrating the inverter with the electric compressor.
  • FIG. 2 and FIG. 3 are shown about the outline
  • FIG. 2 is a partial vertical cross-sectional view illustrating the inverter accommodating portion 61 of the inverter-integrated electric compressor 10 by cutting it.
  • FIG. 3 is a power semiconductor switching element in the inverter 7 of the inverter-integrated electric compressor 10. 74 (IGBT or the like) and a schematic plan view illustrating the arrangement configuration of the temperature sensor 11.
  • the inverter-integrated electric compressor 10 includes a housing 52 that forms an outer shell thereof.
  • the housing 52 is configured by integrally fastening and fixing a motor housing 53 in which the electric motor 6 is accommodated and a compressor housing 54 in which a compression mechanism (not shown) is accommodated with a bolt 55.
  • the motor housing 53 and the compressor housing 54 are pressure vessels and are made of aluminum die casting using an aluminum alloy.
  • the electric motor 6 incorporated in the housing 52 and a compression mechanism are connected via a motor shaft 60, and the compression mechanism is driven by the rotation of the electric motor 6.
  • a refrigerant suction port (not shown) is provided on one end side (left side in FIG. 2) of the motor housing 53, and low-temperature and low-pressure refrigerant gas sucked into the motor housing 53 from the refrigerant suction port is electrically driven. After flowing around the motor 6 along the direction of the motor axis L (from the left side to the right side in FIG. 2), it is sucked into the compression mechanism and compressed.
  • the high-temperature and high-pressure refrigerant gas compressed by the compression mechanism is discharged into the compressor housing 54 and then sent out from the discharge port 57 provided on one end side (right side in FIG. 2) of the compressor housing 54. It is configured to be.
  • FIG. 2 shows a partial longitudinal sectional view in which the inverter accommodating portion 61 is broken.
  • the inverter accommodating portion 61 has a box structure surrounded by a peripheral wall having a predetermined height with the upper surface open, and the upper surface opening is screwed and fixed with a screw via a seal material (not shown). It is sealed with a cover member.
  • Two power cable outlets are provided on one side of the inverter housing 61, and the high voltage power source and the inverter 7 installed in the inverter housing 61 are connected via the two power cables. It is configured as follows.
  • the inverter 7 installed in the inverter accommodating portion 61 includes six power semiconductor switching elements 74 (power elements such as IGBT), a power system control circuit (not shown) for operating them, and a high voltage component (not shown). And a control circuit board (printed circuit board) 76 on which a control and communication circuit (not shown) having elements operating at a low voltage, such as a CPU, are mounted.
  • power semiconductor switching elements 74 power elements such as IGBT
  • a power system control circuit for operating them
  • a high voltage component not shown
  • a control circuit board (printed circuit board) 76 on which a control and communication circuit (not shown) having elements operating at a low voltage, such as a CPU, are mounted.
  • the six power semiconductor switching elements 74 in the inverter 7 are arranged in parallel in a direction orthogonal to the motor axial direction L, and two rows in the motor axial direction L are arranged. Is arranged. In the arrangement of these two rows, the deviation in the direction orthogonal to the motor axis direction L is for convenience in layout design.
  • the temperature sensor 11 is arranged in the vicinity of the approximate center of the arrangement area of the six power semiconductor switching elements 74.
  • the temperature sensor 11 detects the ambient temperature in the vicinity of the power semiconductor switching element 74 and transmits the detected temperature data to the control device 3 (FIG. 1) via the communication system.
  • the temperature sensor 11 is preferably arranged in the vicinity of the power semiconductor switching element 74 and at a position corresponding to the midstream region to the downstream region of the refrigerant flow flowing through the inverter-integrated electric compressor 10. This is because an abnormal temperature rise due to a malfunction of the electric motor 6 can be reflected in the detected temperature data on the downstream side.
  • FIG. 4 is a flowchart of operation control in the air conditioning apparatus 1 according to the first embodiment
  • FIGS. 5 to 7 show examples of various pressure load characteristics used for estimating the discharge temperature of the compressor. It is a figure.
  • a series of processing sequences related to operation control of the air conditioner 1 according to the present embodiment is executed by the arithmetic device 32 of the control device 3 as a program.
  • a series of processing sequences described below is repeatedly performed at predetermined time intervals.
  • the predetermined time intervals are recorded with a timer, and the series of processing sequences is started.
  • step S102 various data are acquired (step S102). Specifically, the ambient temperature in the vicinity of the power semiconductor switching element 74 is acquired as the detection data IGBT temperature from the temperature sensor 11 of the inverter 7, and the compressor rotation speed and compressor power currently set by the arithmetic device 32 are obtained. get.
  • step S104 the calculated compressor discharge temperature TD is compared with a predetermined compressor discharge temperature threshold value Tth1 (step S104).
  • the compressor discharge temperature TD is equal to or lower than the compressor discharge temperature threshold Tth1
  • the process proceeds to step S105 and the normal operation is continued, and when the compressor discharge temperature TD exceeds the compressor discharge temperature threshold Tth1, the step Proceeding to S106, the compressor rotational speed is decreased.
  • step S107 the reduced compressor speed is compared with a predetermined minimum speed Nth1 (step S107).
  • the compressor rotational speed is equal to or higher than the minimum rotational speed Nth1, the process returns to step S101 (timer processing).
  • the compressor rotational speed is lower than the minimum rotational speed Nth1, the compressor discharge temperature TD has reached an abnormal overheating state. Determination is made and the process proceeds to step S108 and the compressor 5 is stopped.
  • step S103 of FIG. 4 a method for calculating the compressor discharge temperature TD executed in step S103 of FIG. 4 will be described with reference to FIGS.
  • the pressure load characteristic in the refrigeration cycle of the inverter detection temperature preset in the storage device 31 of the control device 3 the pressure load characteristic in the refrigeration cycle of the compressor power, and the pressure in the refrigeration cycle of the compressor discharge temperature Based on the correlation with the load characteristics, the compressor discharge temperature TD is estimated.
  • each characteristic will be described with reference to FIGS.
  • FIG. 5 is a diagram showing an example of the pressure load characteristic of the compressor power when the compressor rotation speed is 1800 [rpm], on the map of the high pressure side pressure HP [MPaG] ⁇ the low pressure side pressure LP [MPaG].
  • the distribution of compressor power at is divided into regions Aa1 to Aa5.
  • FIG. 6 is a diagram showing an example of the pressure load characteristic of the inverter detected temperature when the compressor rotational speed is 1800 [rpm], and is on the map of high pressure side pressure HP [MPaG] ⁇ low pressure side pressure LP [MPaG].
  • the distribution of the IGBT temperature (inverter detection temperature) is divided into a region Ab1 to a region Ab5.
  • FIG. 7 is a diagram showing an example of the pressure load characteristic of the compressor discharge temperature when the compressor rotation speed is 1800 [rpm], and is a map of high pressure side pressure HP [MPaG] ⁇ low pressure side pressure LP [MPaG].
  • the distribution of the compressor discharge temperature is divided into a region Ac1 to a region Ac5.
  • Each of the pressure load characteristics is prepared according to the level of the compressor speed, and is stored in the storage device 31 in association with each compressor speed.
  • the distribution is created by dividing the range that each parameter can take into five levels, but the number of divisions is not limited. Further, instead of having information as a map, an arithmetic expression related to a correlation may be included as information.
  • the pressure load characteristic of the compressor power corresponding to the acquired compressor speed is extracted from the storage device 31.
  • the computing device 32 draws a curve corresponding to the acquired IGBT on the pressure load characteristic of the extracted inverter detection temperature, and a curve corresponding to the compressor power acquired on the pressure load characteristic of the compressor power. When there is no corresponding value, the curve is drawn by interpolating the distribution curve. Subsequently, the arithmetic unit 32 draws a curve drawn on the pressure load characteristic of the inverter detected temperature and a curve drawn on the pressure load characteristic of the compressor power on the pressure load characteristic of the compressor discharge temperature. The compressor discharge temperature TD at that time is estimated by reading the compressor discharge temperature located at the intersection.
  • the arithmetic unit 32 sets the curve P900 of 900 [W] on the pressure load characteristic of the compressor power shown in FIG. 5 and 70 [° C.] on the pressure load characteristic of the inverter detected temperature shown in FIG.
  • a curve TI70 is drawn, and further, the curve P900 drawn in FIG. 5 and the curve TI70 drawn in FIG. 6 are superimposed on the pressure load characteristic of the compressor discharge temperature shown in FIG.
  • the compressor discharge temperature TD on the distribution of the intersection points PTD is read.
  • the discharge temperature TD of the compressor is estimated as 105 [° C.].
  • the compressor discharge temperature TD can be estimated by reading the compressor discharge temperature at the intersection of the compressor power characteristic curve and the IGBT temperature characteristic curve on the pressure load characteristic of the compressor discharge temperature.
  • these three types of pressure load characteristics and the like are determined by arithmetic expressions, etc., and various data are given to these arithmetic expressions to calculate the discharge temperature TD of the compressor. It may be asking.
  • the discharge temperature TD of the compressor 5 is estimated based on the temperature detected in the vicinity of the semiconductor switching element 74 of the inverter 7 by the temperature sensor 11.
  • the detected temperature in the vicinity of the semiconductor switching element 74 in the inverter 7 is used as a parameter used for the estimation calculation, a more practical compressor can be used even in the case of an abnormal increase in the outside air temperature or abnormal heat generation.
  • the discharge temperature TD can be estimated.
  • the compressor rotational speed is decreased when the compressor discharge temperature TD exceeds the set threshold value Tth1, and the compressor is stopped when the compressor rotational speed falls below the minimum rotational speed Nth1, appropriate overheat protection is achieved. It can be performed.
  • the temperature sensor 11 of the inverter 7 may be an existing sensor for overheating protection of the semiconductor switching element 74, and does not need to be newly set.
  • FIG. 8 is a flowchart of operation control in the air-conditioning apparatus 1 according to the second embodiment.
  • FIG. 9 is a pressure load characteristic of the motor coil temperature TM of the electric motor 6 when the compressor rotational speed is 1800 [rpm]. It is the figure which showed an example.
  • the series of processes shown in FIG. 8 is executed by the arithmetic device 32 of the control device 3 as a program.
  • a series of processing sequences described below is repeatedly performed at predetermined time intervals.
  • the predetermined time intervals are recorded with a timer, and the series of processing sequences is started.
  • step S202 various data are acquired. Specifically, the ambient temperature in the vicinity of the power semiconductor switching element 74 is acquired as the detection data IGBT temperature from the temperature sensor 11 of the inverter 7, and the compressor rotation speed and compressor power currently set by the arithmetic device 32 are obtained. get.
  • step S203 these various data are given to a predetermined arithmetic expression to calculate the motor coil temperature TM of the electric motor 6 (step S203).
  • the calculation method here will be described later.
  • step S204 the calculated motor coil temperature TM is compared with a predetermined motor coil temperature threshold value Tth2 (step S204).
  • the routine proceeds to step S205, and the normal operation is continued.
  • the routine proceeds to step S206, and the compressor rotation speed is reached. Reduce.
  • step S207 the reduced compressor speed is compared with a predetermined minimum speed Nth2 (step S207).
  • the compressor rotational speed is equal to or higher than the minimum rotational speed Nth2, the process returns to step S201 (timer processing).
  • the compressor rotational speed is lower than the minimum rotational speed Nth2, the motor coil temperature of the electric motor 6 reaches an abnormal overheating state. It judges that it is, and progresses to step S208 and the compressor 5 is stopped.
  • step S203 of FIG. 8 a method for calculating the motor coil temperature TM of the electric motor 6 executed in step S203 of FIG. 8 will be described with reference to FIG.
  • FIG. 9 shows an example of the pressure load characteristic of the motor coil temperature when the compressor rotational speed is 1800 [rpm], and the motor coil on the map of the high pressure side pressure HP [MPaG] ⁇ the low pressure side pressure LP [MPaG].
  • the temperature distribution is shown separately from the region Ad1 to the region Ad6. Note that such a pressure load characteristic of the motor coil temperature is also prepared in accordance with the level of the compressor speed, similarly to the above-described pressure load characteristic of the inverter detection temperature and the pressure load characteristic of the compressor power.
  • the arithmetic device 32 of the control device 3 acquires the data of the IGBT temperature, the compressor power, and the compressor rotational speed in step S202 of FIG. 8, among the plurality of pressure load characteristics stored in the storage device 31, The pressure load characteristic of the compressor power corresponding to the acquired compressor rotation speed, the pressure load characteristic of the inverter detection temperature, and the pressure load characteristic of the motor coil temperature are extracted.
  • the arithmetic unit 32 draws a curve corresponding to the acquired IGBT on the pressure load characteristic of the extracted inverter detection temperature and a curve corresponding to the compressor power acquired on the pressure load characteristic of the compressor power.
  • the arithmetic unit 32 draws a curve drawn on the pressure load characteristic of the inverter detected temperature and a curve drawn on the pressure load characteristic of the compressor power on the pressure load characteristic of the motor coil temperature. By reading the motor coil temperature located at the intersection, the motor coil temperature at that time is estimated.
  • step S202 in FIG. 8 when the IGBT temperature is 70 [° C.], the compressor power is 900 [W], and the compressor rotational speed is 1800 [rpm], the arithmetic unit 32 displays FIG.
  • a curve P900 of 900 [W] is drawn on the pressure load characteristic of the compressor power shown in FIG. 6, a curve TI70 of 70 [° C.] is drawn on the pressure load characteristic of the inverter detected temperature shown in FIG.
  • a curve P900 drawn in FIG. 5 and a curve TI70 drawn in FIG. 6 are overlaid on the pressure load characteristic of the motor coil temperature shown to obtain the intersection PTM of both characteristics, and the motor on the distribution of the intersection PTM is obtained. Read coil temperature. As a result, the motor coil temperature is estimated to be 70 [° C.].
  • the motor coil temperature 70 [° C.] of the electric motor 6 is estimated by reading the motor coil temperature at the intersection of the compressor power characteristic curve and the IGBT temperature characteristic curve on the pressure load characteristic of the motor coil temperature. Can do.
  • these three types of pressure load characteristics are determined by arithmetic expressions and the like, and various data are given to these arithmetic expressions to determine the discharge temperature of the compressor. TD may be obtained by calculation.
  • the motor coil temperature TM of the electric motor 6 is estimated based on the temperature detected by the temperature sensor 11 near the semiconductor switching element 74 of the inverter 7. As described above, since the detected temperature in the vicinity of the semiconductor switching element 74 of the inverter 7 is used as a parameter used for the estimation calculation, a more practical electric motor 6 can be used even in the case of an abnormal increase in the outside air temperature or abnormal heat generation.
  • the motor coil temperature TM can be estimated. Further, by reducing the compressor rotational speed when the motor coil temperature TM of the electric motor 6 exceeds the set threshold value Tth2, and by stopping the compressor when the compressor rotational speed falls below the minimum rotational speed Nth2, Appropriate overheat protection can be provided. Note that the temperature sensor 11 of the inverter 7 may be an existing sensor for overheating protection of the semiconductor switching element 74, and does not need to be newly set.
  • the temperature sensor 11 corresponds to the vicinity of the power semiconductor switching element 74 and from the midstream region to the downstream region of the refrigerant flow flowing through the inverter-integrated electric compressor 10.
  • an air conditioner according to a third embodiment of the present invention will be described.
  • the configuration of the air conditioner of this embodiment is the same as that of the first embodiment (FIGS. 1 to 3), and the description thereof is omitted.
  • the operation control in the air conditioner 1 of the present embodiment is to determine whether the refrigerant is missing based on the compressor rotation speed and the compressor power, and is added to the operation control of the first embodiment or the second embodiment. It is implemented.
  • FIG. 10 is a flowchart of operation control in the air-conditioning apparatus 1 according to the third embodiment.
  • the processing steps between the connector Q1 and the connector Q2 in the figure are inserted after acquisition of various data (step S102 in FIG. 4 or step S202 in FIG. 8) in the first embodiment or the second embodiment. .
  • the acquired compressor rotational speed NC is compared with a predetermined compressor rotational speed threshold Nth3 (step S301), and if the compressor rotational speed NC is lower than the compressor rotational speed threshold Nth3, the first embodiment is continued. Alternatively, the process returns to the process of the second embodiment.
  • the compressor power PC is compared with a predetermined compressor power threshold function value Pth (NC) (step S302) to compress the compressor power PC. Is equal to or greater than the compressor power threshold function value Pth (NC), the process returns to the process of the first embodiment or the second embodiment.
  • step S302 when the compressor power PC is lower than the compressor power threshold function value Pth (NC), it is determined that the refrigerant is missing, and the process proceeds to step S303 to stop the compressor 5. .
  • the power of the compressor 5 becomes abnormally small, and the compressor 5 is in a gas low state.
  • the discharge temperature rises. Therefore, when the compressor rotational speed is equal to or higher than a certain value and the power of the compressor 5 is abnormally reduced, it is determined that the refrigerant has run out and the compressor 5 is stopped to protect the discharge temperature from overheating.
  • FIG. 11 illustrates the characteristics of the compressor power with respect to the compressor rotation speed, and illustrates the compressor power threshold function PTH.
  • the compressor power threshold function PTH is set so that the situation in which the refrigerant amount in the cooling cycle 2 is less than 40 [%] is determined as refrigerant missing.
  • the compressor power threshold function value Pth (NC) used in step S302 is obtained by substituting the compressor rotational speed NC for the compressor power threshold function PTH.
  • the refrigerant loss is determined based on the compressor rotational speed and the compressor power, the compressor rotational speed NC exceeds the compressor rotational speed threshold Nth3, and the compression is performed.
  • the mechanical power PC is lower than the compressor power threshold function value Pth (NC)
  • Pth the compressor power threshold function value
  • FIG. 1 An air conditioning apparatus according to a fourth embodiment of the present invention will be described.
  • the configuration of the air conditioner according to the present embodiment is the same as that of the first embodiment (FIGS. 1 to 3), and the description thereof is omitted.
  • the operation control in the air conditioning apparatus 1 of this embodiment judges frost based on the detected temperature (IGBT temperature) of an inverter, and adds to the operation control of 1st Embodiment or 2nd Embodiment. Is implemented.
  • Frost is a phenomenon in which water in the air freezes (frosts) in the evaporator 4 when the cooling capacity is excessive and the humidity is high. Frost prevents air from passing through and reduces the amount of heat exchange with air. For this reason, the refrigerant that normally exchanges heat with air and is vaporized and returns to the compressor 5 returns to the liquid refrigerant without being vaporized.
  • the liquid refrigerant has an action such as washing away the lubricating oil in the sliding portion, and may damage the compressor 5.
  • FIG. 12 is a flowchart of operation control in the air-conditioning apparatus 1 of the fourth embodiment.
  • the processing steps between the connector Q3 and the connector Q4 in the figure are inserted after acquisition of various data (step S102 in FIG. 4 or step S202 in FIG. 8) in the first embodiment or the second embodiment. .
  • the IGBT temperature is compared with a predetermined IGBT temperature threshold Tth3 (step S401).
  • the process returns to the process of the first embodiment or the second embodiment as it is.
  • step S402 the counter is incremented, and the counter value is compared with the threshold value Cth1 a predetermined number of times (step S403).
  • the counter counts the number of times that the IGBT temperature is determined to have continuously decreased abnormally, and the number threshold Cth1 corresponds to the interval of timer processing (step S101 in FIG. 4 and step S201 in FIG. 8). And set it.
  • step S404 When the counter value is less than the predetermined threshold value Cth1, the compressor rotational speed is increased (step S404), and the process returns to the first embodiment or the second embodiment as it is.
  • the counter value is equal to or greater than the predetermined number of times threshold Cth1, it is determined that the counter value is not improved, and the process proceeds to step S405 where the compressor 5 is stopped.
  • the frost is determined based on the detected temperature (IGBT temperature) of the inverter, and when the IGBT temperature falls below the IGBT temperature threshold Tth3, the compressor rotational speed is increased. If the compressor 5 is not improved for a predetermined period, the compressor 5 is stopped, so that the compressor 5 can be prevented from being damaged due to the frost of the evaporator 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Inverter Devices (AREA)
  • Air Conditioning Control Device (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

 装置容積や装置コストの上昇を抑制し得ると共に、より適切な過熱保護を行い得る空気調和装置を提供する。電動圧縮機を、圧縮機(5)と、圧縮機(5)を駆動する電動モータ(6)と、半導体スイッチング素子近傍の温度を検知する温度センサ(11)を備えたインバータ(7)と、を一体にして備えたインバータ一体型電動圧縮機(10)とし、制御装置(3)により、インバータ(7)の検出温度、圧縮機(5)の回転数および圧縮機(5)の動力それぞれの冷凍サイクル(2)における圧力負荷特性の相関関係に基づき、圧縮機(5)の吐出温度を推定する。

Description

空気調和装置
 本発明は空気調和装置に係り、特に、装置容積や装置コストの上昇を抑制し得ると共に、より適切な過熱保護を行い得る空気調和装置に関する。
 自動車等の車両用空気調和装置として、ガス冷媒を圧縮する圧縮機と、高圧のガス冷媒を外気と熱交換して凝縮させるコンデンサと、高温高圧の液冷媒を低温低圧の液冷媒にする膨張弁と、低温低圧の液冷媒を外気と熱交換して気化させるエバポレータとを備え、冷媒通路を介してこれらを接続した冷凍サイクルを構成するものが知られている。
 この種の車両用空気調和装置において、圧縮機を電動モータによって駆動する電動圧縮機を用いる構成の場合に、圧縮機の吐出温度を検知して、該吐出温度が一定温度以上になったとき、電動圧縮機の回転数を設定値まで下げるような運転制御が行われている。また、過熱保護の観点から、電動モータのモータコイル近傍に温度検出手段を設置し、モータコイル温度が許容温度を超えた場合に、電動圧縮機の回転数の低下や電動圧縮機を停止させるなどの制御も行われている。
 このように、圧縮機の吐出温度検知や電動モータのモータコイル温度検知のためには、該当箇所に温度センサの設置が必要となるが、構造的な複雑さやスペースの問題、或いは部品点数の増加によるコスト上昇等の観点から、センサレスの構成として他のパラメータからこれら温度を推定する手法が提案されている。
 例えば、特許文献1に開示の「電動圧縮機の制御方法および制御装置」では、電動圧縮機の吐出圧力、電動モータ回転数、電動モータ駆動装置の入力電流からモータコイル温度を演算により求める手法が開示されている。
特開2006-291878号公報
 しかしながら、上述した特許文献1に開示された技術においては、モータコイル温度を求める演算に用いるパラメータが、直接的に温度に影響されるパラメータではないため、例えば車両側の高温雰囲気等の外乱による影響が加味されていないという事情があった。つまり、正常運転時にはこのような車両側の高温雰囲気等についても、予め実験的に求めた補正値などで対処可能であるが、外気温度の異常な上昇や、異常発熱時などの場合には温度の補正では対処できず、見逃してしまう可能性がある。
 本発明は、このような事情に鑑みてなされたものであって、新たに温度検出手段を具備することなく電動モータのモータコイル温度または圧縮機の吐出温度を求め、装置容積や装置コストの上昇を抑制し得る空気調和装置を提供する。
 また、本発明の他の目的は、電動モータのモータコイル温度または圧縮機の吐出温度について、より実際的な推定を実現し、より適切な過熱保護を行い得る空気調和装置を提供することにある。
 上記課題を解決するため、本発明は以下の手段を採用する。
 本発明の第一の態様は、ガス冷媒を圧縮する電動圧縮機と、高圧のガス冷媒を外気と熱交換して凝縮させるコンデンサと、高温高圧の液冷媒を低温低圧の液冷媒にする膨張弁と、低温低圧の液冷媒を外気と熱交換して気化させるエバポレータとを備えた冷凍サイクルと、制御部とを有する空気調和装置において、前記電動圧縮機は、圧縮機と、前記圧縮機を駆動する電動モータと、半導体スイッチング素子近傍の温度を検知する温度検知部を備えたインバータとを一体にして備えたインバータ一体型電動圧縮機であって、前記制御部は、前記インバータの検出温度、前記圧縮機の回転数および前記圧縮機の動力に基づき、前記圧縮機の吐出温度を推定する空気調和装置である。
 本発明の第一の態様に係る空気調和装置によれば、インバータの半導体スイッチング素子近傍の検出温度に基づいて圧縮機の吐出温度を推定することとし、推定演算に用いるパラメータに温度パラメータを用いているので、外気温度の異常な上昇や、異常発熱時などの場合でも、より実際的な圧縮機の吐出温度の推定を行うことができる。また、圧縮機吐出温度が設定閾値を超えたときに圧縮機回転数の低下設定または圧縮機の停止を行うことにより、適切に過熱保護を行うことができる。なお、インバータの温度検出部は、半導体スイッチング素子の過熱保護のための既設のものを使用すれば良く、新たに設定する必要はない。
 上記空気調和装置において、制御部は、前記インバータの検出温度、前記圧縮機の動力および前記圧縮機の吐出温度それぞれの前記冷凍サイクルにおける圧力負荷特性の相関関係に基づき、前記圧縮機の吐出温度を推定する構成としてもよい。
 このような構成によれば、設定されている圧縮機回転数におけるインバータ検出温度の冷凍サイクルにおける圧力負荷特性と、設定されている圧縮機回転数における圧縮機動力の冷凍サイクルにおける圧力負荷特性と、設定されている圧縮機回転数における圧縮機吐出温度の冷凍サイクルにおける圧力負荷特性との相関関係に基づき、圧縮機の吐出温度を推定するので、より実際的な推定を実現し、より適切な過熱保護を行うことができる。
 本発明の第二の態様は、ガス冷媒を圧縮する電動圧縮機と、高圧のガス冷媒を外気と熱交換して凝縮させるコンデンサと、高温高圧の液冷媒を低温低圧の液冷媒にする膨張弁と、低温低圧の液冷媒を外気と熱交換して気化させるエバポレータとを備えた冷凍サイクルと、制御部とを有する空気調和装置において、前記電動圧縮機は、圧縮機と、前記圧縮機を駆動する電動モータと、半導体スイッチング素子近傍の温度を検知する温度検知部を備えたインバータとを一体にして備えたインバータ一体型電動圧縮機であって、前記制御手段は、前記インバータの検出温度、前記圧縮機の回転数および前記圧縮機の動力に基づき、前記電動モータのモータコイル温度を推定する空気調和装置である。
 本発明の第二の態様に係る空気調和装置によれば、インバータの半導体スイッチング素子近傍の検出温度に基づいて電動モータのモータコイル温度を推定することとし、推定演算に用いるパラメータにインバータの検出温度を用いているので、外気温度の異常な上昇や、異常発熱時などの場合でも、より実際的なモータコイル温度の推定を行うことができる。
 また、例えば、推定したモータコイル温度が設定閾値を超えた場合に、圧縮機回転数の低下設定または圧縮機の停止を行うことにより、適切に過熱保護を行うことができる。なお、インバータの温度検出部は、半導体スイッチング素子の過熱保護のための既設のものを使用すれば良く、新たに設定する必要はない。
 上記空気調和装置において、制御部は、前記インバータの検出温度、前記圧縮機の動力および前記電動モータのモータコイル温度それぞれの前記冷凍サイクルにおける圧力負荷特性の相関関係に基づき、前記電動モータのモータコイル温度を推定する構成としてもよい。
 このような構成によれば、設定されている圧縮機回転数におけるインバータ検出温度の冷凍サイクルにおける圧力負荷特性と、設定されている圧縮機回転数における圧縮機動力の冷凍サイクルにおける圧力負荷特性と、設定されている圧縮機回転数におけるモータコイル温度の冷凍サイクルにおける圧力負荷特性との相関関係に基づき、電動モータのモータコイル温度を推定するので、より実際的な推定を実現し、より適切な過熱保護を行うことが可能となる。
 上記空気調和装置において、前記温度検知部は、前記電動圧縮機を流れる冷媒流の中流域から下流域に対応した位置に配置されることが好ましい。
 温度検知部を、電動圧縮機を流れる冷媒流の中流域から下流域に対応した位置に配置するので、電動モータの不具合による異常な温度上昇があっても、確実に電動モータのモータコイル温度または圧縮機の吐出温度の推定に反映することができ、より適切な過熱保護を行うことができる。
 上記空気調和装置において、前記制御部は、前記圧縮機の回転数および前記圧縮機の動力に基づき、冷媒抜けを判断する構成としてもよい。
 このような構成によれば、圧縮機回転数および圧縮機動力に基づき冷媒抜けを判断することとし、例えば、所定の圧縮機回転数を超えているときに、圧縮機動力が所定の閾値を下回っている場合には、冷媒抜け(システム外部への冷媒漏れ)と判断して、圧縮機を停止するようにすれば、ガスロー状態で圧縮機の吐出温度が上昇することを防ぐことができる。
 上記空気調和装置において、前記インバータの検出温度に基づき、フロストを判断することとしてもよい。
 インバータの検出温度に基づきフロストを判断するので、例えば、インバータの検出温度が所定閾値を下回ったときには圧縮機回転数を上昇させ、所定期間改善されなければ圧縮機を停止するようにすれば、エバポレータのフロストに伴う圧縮機の損傷を防止することができる。
 本発明によれば、インバータの半導体スイッチング素子近傍の検出温度に基づいて圧縮機の吐出温度または電動モータのモータコイル温度を推定するので、外気温度の異常な上昇や、異常発熱時などの場合でも、より実際的な圧縮機の吐出温度またはモータコイル温度の推定を行うことができ、適切に過熱保護を行うことができるという効果を奏する。
本発明の第1の実施形態に係る空気調和装置の構成図である。 インバータ一体型電動圧縮機のインバータ収容部を破断して例示する部分縦断面図である。 インバータ一体型電動圧縮機のインバータにおける電力用半導体スイッチング素子と温度センサの配置を例示する概略平面図である。 本発明の第1の実施形態に係る空気調和装置における運転制御のフローチャートである。 所定の圧縮機回転数におけるインバータ温度の冷凍サイクルにおける圧力負荷特性を例示した図である。 所定の圧縮機回転数における圧縮機動力の冷凍サイクルにおける圧力負荷特性を例示した図である。 所定の圧縮機回転数における圧縮機吐出温度の冷凍サイクルにおける圧力負荷特性を例示した図である。 本発明の第2の実施形態に係る空気調和装置における運転制御のフローチャートである。 所定の圧縮機回転数における電動モータのモータコイル温度の冷凍サイクルにおける圧力負荷特性を例示した図である。 本発明の第3の実施形態に係る空気調和装置における運転制御のフローチャートである。 圧縮機回転数に対する圧縮機動力の特性を例示した図である。 本発明の第4の実施形態に係る空気調和装置における運転制御のフローチャートである。
〔第1の実施形態〕
 以下、本発明の第1の実施形態に係る空気調和装置について、図面を参照して説明する。
 図1は本発明の第1の実施形態に係る空気調和装置の構成図である。同図において、本実施形態に係る空気調和装置1は、冷凍サイクル2および制御装置3を主たる要素として備えている。
 冷凍サイクル2は、例えば、エバポレータ4に低温低圧の液冷媒を供給するもので、圧縮機5、コンデンサ8および膨張弁9を備えている。圧縮機5は、エバポレータ4で車室内の熱を奪って気化した低温低圧のガス冷媒を圧縮し、高温高圧のガス冷媒としてコンデンサ8へ送り出すものであり、電動モータ6の動力により駆動される。またコンデンサ8は、例えば、エンジンルームの前部に配設され、圧縮機5から供給された高温高圧のガス冷媒を外気で冷却し、ガス状の冷媒を凝縮液化させるものである。こうして液化された冷媒は、レシーバ(図示せず)へ送られて気液の分離がなされた後、高温高圧の液冷媒として膨張弁9に送られる。この膨張弁9では、高温高圧の液冷媒を減圧および膨張させることによって低温低圧の液(霧状)冷媒とし、エバポレータ4へ供給する。
 電動モータ6の回転速度は、インバータ7から供給される電力の変化により連続的または段階的に可変制御される。電動モータ6の回転速度の変化により、圧縮機5による冷媒吐出容量が変化し、冷凍サイクル2内を循環する冷媒の循環量(流量)が調節され、エバポレータ4の冷却能力(冷凍サイクル2の冷房能力)が制御される。
 また、制御装置3は、少なくとも記憶装置31および演算装置32を備えている。演算装置32は、CPUまたはマイクロプロセッサMPU等で実現される。通常運転時には、制御装置3の演算装置32は、図示しない操作パネルからの設定指示、並びに、冷凍サイクル2における各種検出データ(低圧側圧力等)に応じて圧縮機5の回転数を設定し、インバータ7を介して電動モータ6の回転速度を制御する。
 また、本実施形態では、上記圧縮機5、圧縮機5を駆動する電動モータ6、及びインバータ7は一体化されており、いわゆるインバータ一体型電動圧縮機10を構成している。ここで、インバータ7には、半導体スイッチング素子(IGBT等のパワー素子)近傍の温度を検知する温度センサ11が設けられている。この温度センサ11は、電動圧縮機にインバータを一体化することで温度環境が非常に厳しいものとなるため、半導体スイッチング素子の過熱保護用として既設のものである。
 次に、本実施形態に係る空気調和装置1において用いるインバータ一体型電動圧縮機10の構造の概要と、インバータ7の半導体スイッチング素子の温度検出を行う温度センサの設置について、図2および図3を参照して説明する。ここで、図2はインバータ一体型電動圧縮機10のインバータ収容部61を破断して例示する部分縦断面図であり、図3はインバータ一体型電動圧縮機10のインバータ7における電力用半導体スイッチング素子74(IGBT等)と温度センサ11の配置構成を例示する概略平面図である。
 図2において、インバータ一体型電動圧縮機10は、その外殻を構成するハウジング52を備えている。ハウジング52は、電動モータ6が収容されるモータハウジング53と、図示省略の圧縮機構が収容される圧縮機ハウジング54とをボルト55で一体に締め付け固定することによって構成される。このモータハウジング53および圧縮機ハウジング54は、耐圧容器であり、アルミ合金を用いたアルミダイカスト製とされている。
 上記ハウジング52の内部に内蔵される電動モータ6および図示省略の圧縮機構は、モータ軸60を介して連結され、電動モータ6の回転によって圧縮機構が駆動されるように構成されている。モータハウジング53の一端側(図2の左側)には、冷媒吸入ポート(図示せず)が設けられており、この冷媒吸入ポートからモータハウジング53内に吸入された低温低圧の冷媒ガスは、電動モータ6の周囲をモータ軸線L方向に沿って(図2の左側から右側へ向かって)流通後、圧縮機構に吸い込まれて圧縮される。圧縮機構により圧縮された高温高圧の冷媒ガスは、圧縮機ハウジング54内に吐き出された後、圧縮機ハウジング54の一端側(図2の右側)に設けられている吐出ポート57から外部へと送出されるように構成されている。
 また、モータハウジング53の外周部には、その上方部にボックス形状をなすインバータ収容部61が一体に成形されている。図2には、このインバータ収容部61を破断した部分縦断面図が示されている。インバータ収容部61は、上面が開放された所定高さの周囲壁により囲われたボックス構造を有しており、その上面開口部は、図示省略のシール材を介してビスによりネジ止め固定されるカバー部材で密閉されるようになっている。このインバータ収容部61の一側面には2つの電源ケーブル取り出し口が設けられており、2本の電源ケーブルを介して高電圧電源とインバータ収容部61内に設置されるインバータ7とが接続されるように構成されている。
 インバータ収容部61内に設置されるインバータ7は、6個の電力用半導体スイッチング素子74(IGBT等のパワー素子)、それらを動作させるパワー系制御回路(図示省略)並びに高電圧部品(図示省略)等が実装されたパワー回路基板75、及びCPU等の低電圧で動作する素子を有する制御並びに通信回路(図示省略)等が実装された制御基板(プリント基板)76などを備えている。
 インバータ7内の6個の電力用半導体スイッチング素子74は、図3の概略平面図に示すように、モータ軸線方向Lと直交する方向に各々3個ずつ並列されて、モータ軸線方向Lに2列に配列されている。なお、これら2列の配置において、モータ軸線方向Lと直交する方向にずれがあるのは、レイアウト設計上の便宜からなるものである。
 また、温度センサ11は、6個の電力用半導体スイッチング素子74の配置領域の略中央付近に配置されている。温度センサ11は、電力用半導体スイッチング素子74近傍の周囲温度を検知して、通信系統を介して検知した温度データを制御装置3(図1)に送信する。なお、温度センサ11は、電力用半導体スイッチング素子74の近傍で、且つ、インバータ一体型電動圧縮機10を流れる冷媒流の中流域から下流域に対応した位置に配置するのが好ましい。より下流側とした方が電動モータ6の不具合による異常な温度上昇をも検出温度データに反映できるためである。
 次に、図4から図7を参照して、本実施形態に係る空気調和装置1における圧縮機5の吐出温度の推定と、該推定吐出温度に応じた運転制御について説明する。ここで、図4は第1の実施形態に係る空気調和装置1における運転制御のフローチャートであり、図5から図7は、圧縮機の吐出温度の推定に用いられる各種圧力負荷特性の一例を示した図である。
 本実施形態に係る空気調和装置1の運転制御に関する一連の処理シーケンスは制御装置3の演算装置32がプログラムとして実行するものである。また、以下に説明する一連の処理シーケンスは所定時間間隔毎に繰り返し行われるものであり、ステップS101のタイマ処理では、この所定時間間隔をタイマで刻み、一連の処理シーケンスをスタートさせる。
 まず、各種データを取得する(ステップS102)。具体的には、インバータ7の温度センサ11から電力用半導体スイッチング素子74近傍の周囲温度を検知データIGBT温度として取得するとともに、演算装置32が現在設定している圧縮機回転数および圧縮機動力を取得する。
 次に、所定の演算式にこれら各種データを与えて、圧縮機吐出温度TDを計算する(ステップS103)。ここでの計算方法については後述する。
 次に、算出した圧縮機吐出温度TDを所定の圧縮機吐出温度閾値Tth1と比較する(ステップS104)。圧縮機吐出温度TDが圧縮機吐出温度閾値Tth1以下の場合には、ステップS105に進んで通常運転を継続し、圧縮機吐出温度TDが圧縮機吐出温度閾値Tth1を超えている場合には、ステップS106に進んで圧縮機回転数を低下させる。
 次に、低下させた圧縮機回転数を所定の最低回転数Nth1と比較する(ステップS107)。圧縮機回転数が最低回転数Nth1以上のときにはステップS101(タイマ処理)に戻り、圧縮機回転数が最低回転数Nth1を下回っているときには、圧縮機吐出温度TDが異常な過熱状態に至っていると判断して、ステップS108に進んで圧縮機5を停止する。
 次に、図5から図7を参照して、図4のステップS103において実行される圧縮機吐出温度TDの計算方法について説明する。本実施形態では、制御装置3の記憶装置31に予め設定されているインバータ検出温度の冷凍サイクルにおける圧力負荷特性、圧縮機動力の冷凍サイクルにおける圧力負荷特性、及び圧縮機吐出温度の冷凍サイクルにおける圧力負荷特性との相関関係に基づき、圧縮機吐出温度TDを推定する。
 まず、各特性について図5から図7を参照して説明する。
 図5は、圧縮機回転数が1800[rpm]のときの圧縮機動力の圧力負荷特性の一例を示した図であり、高圧側圧力HP[MPaG]-低圧側圧力LP[MPaG]のマップ上での圧縮機動力の分布が領域Aa1から領域Aa5に分けて示されている。
 図6は、圧縮機回転数が1800[rpm]のときのインバータ検出温度の圧力負荷特性の一例を示した図であり、高圧側圧力HP[MPaG]-低圧側圧力LP[MPaG]のマップ上でのIGBT温度(インバータ検出温度)の分布が領域Ab1から領域Ab5に分けて示されている。
 図7は、圧縮機回転数が1800[rpm]のときの圧縮機吐出温度の圧力負荷特性の一例を示した図であり、高圧側圧力HP[MPaG]-低圧側圧力LP[MPaG]のマップ上での圧縮機吐出温度の分布が領域Ac1から領域Ac5に分けて示されている。
 なお、上記各圧力負荷特性は、圧縮機回転数のレベルに応じてそれぞれ用意されており、各圧縮機回転数に対応付けられてそれぞれ記憶装置31に格納されている。
 なお、上記各圧力負荷特性においては、各パラメータの取り得る範囲を5つのレベルに分割して分布を作成したが、分割数については限定されない。また、マップとして情報を有しているのではなく、相関関係に関する演算式を情報として有していてもよい。
 制御装置3の演算装置32は、図4のステップS102において、IGBT温度、圧縮機動力、圧縮機回転数のデータを取得すると、取得した圧縮機回転数に対応する圧縮機動力の圧力負荷特性、インバータ検出温度の圧力負荷特性、および圧縮機吐出温度の圧力負荷特性を記憶装置31から抽出する。
 続いて、演算装置32は、抽出したインバータ検出温度の圧力負荷特性上に、取得したIGBTに対応する曲線を、圧縮機動力の圧力負荷特性上に取得した圧縮機動力に対応する曲線を描く。なお、対応する値がない場合には、分布曲線を補間して曲線を描く。
 続いて、演算装置32は、インバータ検出温度の圧力負荷特性上に描いた曲線と圧縮機動力の圧力負荷特性上に描いた曲線とを圧縮機吐出温度の圧力負荷特性に重ねて描き、両曲線の交点に位置する圧縮機吐出温度を読み取ることで、その時点での圧縮機吐出温度TDを推定する。
 例えば、図4のステップS102において、IGBT温度として70[℃]、圧縮機動力として900[W]、圧縮機回転数として1800[rpm]が取得された場合、演算装置32は、記憶装置31から圧縮機回転数1800[rpm]に対応する圧縮機動力の圧力負荷特性、インバータ検出温度の圧力負荷特性、および圧縮機吐出温度の圧力負荷特性をそれぞれ抽出する。この結果、図5から図7に示した各圧力負荷特性が抽出される。
 続いて、演算装置32は、図5に示される圧縮機動力の圧力負荷特性上に900[W]の曲線P900を、図6に示されるインバータ検出温度の圧力負荷特性上に70[℃]の曲線TI70を描き、更に、図7に示される圧縮機吐出温度の圧力負荷特性上に、図5に描いた曲線P900及び図6に描いた曲線TI70を重ねて描き、この両特性の交点PTDを求め、該交点PTDの分布上での圧縮機吐出温度TDを読み取る。この結果、圧縮機の吐出温度TDは105[℃]として推定される。
 このように、圧縮機吐出温度の圧力負荷特性上で、圧縮機動力特性曲線とIGBT温度特性曲線の交点の圧縮機吐出温度を読み取ることで、圧縮機吐出温度TDを推定することができる。また、上記分布特性を用いて求める他、例えば、これら3種の圧力負荷特性等を演算式等で定めておき、これらの演算式に各種データを与えて、圧縮機の吐出温度TDを演算により求めることとしてもよい。
 以上説明したように、本実施形態に係る空気調和装置1によれば、温度センサ11によるインバータ7の半導体スイッチング素子74近傍の検出温度に基づいて、圧縮機5の吐出温度TDを推定する。このように、推定演算に用いるパラメータとしてインバータ7における半導体スイッチング素子74の近傍の検出温度を用いているので、外気温度の異常な上昇や、異常発熱時などの場合でも、より実際的な圧縮機吐出温度TDの推定を行うことができる。
 また、圧縮機吐出温度TDが設定閾値Tth1を超えたときに圧縮機回転数を低下させ、また圧縮機回転数が最低回転数Nth1を下回ったときに圧縮機を停止するので、適切な過熱保護を行うことができる。なお、インバータ7の温度センサ11は、半導体スイッチング素子74の過熱保護のための既設のものを使用すれば良く、新たに設定する必要はない。
〔第2の実施形態〕
 次に、本発明の第2の実施形態に係る空気調和装置について説明する。上述した第1の実施形態では、圧縮機吐出温度TDを推定していたが、本実施形態では、圧縮機吐出温度TDに代えて、モータコイル温度TMを推定する。以下、第1の実施形態と異なる点であるモータコイル温度TMの推定方法及び推定したモータコイル温度TMに応じた運転制御について図8及び図9を参照して説明する。
 図8は第2の実施形態に係る空気調和装置1における運転制御のフローチャートであり、図9は圧縮機回転数が1800[rpm]のときの電動モータ6のモータコイル温度TMの圧力負荷特性の一例を示した図である。
 図8に示した一連の処理は、制御装置3の演算装置32がプログラムとして実行するものである。また、以下に説明する一連の処理シーケンスは所定時間間隔毎に繰り返し行われるものであり、ステップS201のタイマ処理では、この所定時間間隔をタイマで刻み、一連の処理シーケンスをスタートさせる。
 まず、各種データを取得する(ステップS202)。具体的には、インバータ7の温度センサ11から電力用半導体スイッチング素子74近傍の周囲温度を検知データIGBT温度として取得するとともに、演算装置32が現在設定している圧縮機回転数および圧縮機動力を取得する。
 次に、所定の演算式にこれら各種データを与えて、電動モータ6のモータコイル温度TMを計算する(ステップS203)。ここでの計算方法については後述する。
 次に、算出したモータコイル温度TMを所定のモータコイル温度閾値Tth2と比較する(ステップS204)。モータコイル温度TMがモータコイル温度閾値Tth2以下のときには、ステップS205に進んで通常運転を継続し、モータコイル温度TMがモータコイル温度閾値Tth2を超えているときには、ステップS206に進んで圧縮機回転数を低下させる。
 次に、低下させた圧縮機回転数を所定の最低回転数Nth2と比較する(ステップS207)。圧縮機回転数が最低回転数Nth2以上のときにはステップS201(タイマ処理)に戻り、圧縮機回転数が最低回転数Nth2を下回っているときには、電動モータ6のモータコイル温度が異常な過熱状態に至っていると判断して、ステップS208に進んで圧縮機5を停止する。
 次に、図9を参照して、図8のステップS203において実行される電動モータ6のモータコイル温度TMの計算方法について説明する。
 本実施形態では、制御装置3の記憶装置31に予め格納されているインバータ検出温度の圧力負荷特性、圧縮機動力の圧力負荷特性、及び電動モータ6のモータコイル温度の圧力負荷特性との相関関係に基づき、電動モータ6のモータコイル温度TMを推定する。
 ここで使用されるインバータ検出温度の圧力負荷特性及び圧縮機動力の圧力負荷特性については、上述した第1の実施形態と同様であるので説明を省略する。
 図9は、圧縮機回転数が1800[rpm]のときのモータコイル温度の圧力負荷特性の一例であり、高圧側圧力HP[MPaG]-低圧側圧力LP[MPaG]のマップ上でのモータコイル温度の分布が領域Ad1から領域Ad6に分けて示されている。
 なお、このようなモータコイル温度の圧力負荷特性も、上述したインバータ検出温度の圧力負荷特性及び圧縮機動力の圧力負荷特性と同様に、圧縮機回転数のレベルに応じてそれぞれ用意されている。
 制御装置3の演算装置32は、図8のステップS202において、IGBT温度、圧縮機動力、圧縮機回転数のデータを取得すると、記憶装置31に格納されている複数の圧力負荷特性の中から、取得した圧縮機回転数に対応する圧縮機動力の圧力負荷特性、インバータ検出温度の圧力負荷特性、およびモータコイル温度の圧力負荷特性をそれぞれ抽出する。
 続いて、演算装置32は、抽出したインバータ検出温度の圧力負荷特性上に、取得したIGBTに対応する曲線を、圧縮機動力の圧力負荷特性上に取得した圧縮機動力に対応する曲線を描く。次に、演算装置32は、インバータ検出温度の圧力負荷特性上に描いた曲線と圧縮機動力の圧力負荷特性上に描いた曲線とをモータコイル温度の圧力負荷特性に重ねて描き、両曲線の交点に位置するモータコイル温度を読み取ることで、その時点でのモータコイル温度を推定する。
 例えば、図8のステップS202において、IGBT温度として70[℃]、圧縮機動力として900[W]、圧縮機回転数として1800[rpm]が取得された場合には、演算装置32は、図5に示される圧縮機動力の圧力負荷特性上に900[W]の曲線P900を、図6に示されるインバータ検出温度の圧力負荷特性上に70[℃]の曲線TI70を描き、更に、図9に示されるモータコイル温度の圧力負荷特性上に、図5に描いた曲線P900及び図6に描いた曲線TI70を重ねて描き、この両特性の交点PTMを求め、該交点PTMの分布上でのモータコイル温度を読み取る。この結果、モータコイル温度は70[℃]と推定される。
 このように、モータコイル温度の圧力負荷特性上で、圧縮機動力特性曲線とIGBT温度特性曲線の交点のモータコイル温度を読み取ることで、電動モータ6のモータコイル温度70[℃]を推定することができる。なお、上述したように上記分布特性を用いて求める他、例えば、これら3種の圧力負荷特性等を演算式等で定めておき、これらの演算式に各種データを与えて、圧縮機の吐出温度TDを演算により求めることとしてもよい。
 以上説明したように、本実施形態に係る空気調和装置によれば、温度センサ11によるインバータ7の半導体スイッチング素子74近傍の検出温度に基づいて、電動モータ6のモータコイル温度TMを推定する。このように、推定演算に用いるパラメータとしてインバータ7の半導体スイッチング素子74近傍の検出温度を用いているので、外気温度の異常な上昇や、異常発熱時などの場合でも、より実際的な電動モータ6のモータコイル温度TMの推定を行うことができる。
 また、電動モータ6のモータコイル温度TMが設定閾値Tth2を超えたときに圧縮機回転数を低下させ、また圧縮機回転数が最低回転数Nth2を下回ったときに圧縮機を停止することにより、適切な過熱保護を行うことができる。なお、インバータ7の温度センサ11は、半導体スイッチング素子74の過熱保護のための既設のものを使用すれば良く、新たに設定する必要はない。
 また、第1の実施形態でも説明したように、温度センサ11を、電力用半導体スイッチング素子74の近傍で、且つ、インバータ一体型電動圧縮機10を流れる冷媒流の中流域から下流域に対応した位置に配置することにより、電動モータ6の不具合による異常な温度上昇をも検出温度データに反映でき、適切な過熱保護を行うことができる。
〔第3の実施形態〕
 次に、本発明の第3の実施形態に係る空気調和装置について説明する。本実施形態の空気調和装置の構成は第1の実施形態(図1~図3)と同等であり、説明を省略する。また、本実施形態の空気調和装置1における運転制御は、圧縮機回転数および圧縮機動力に基づき冷媒抜けを判断するものであり、第1の実施形態または第2の実施形態の運転制御に付加して実施されるものである。
 図10は、第3の実施形態に係る空気調和装置1における運転制御のフローチャートである。図中の結合子Q1~結合子Q2間の処理ステップは、第1の実施形態または第2の実施形態において、各種データの取得(図4のステップS102または図8のステップS202)後に挿入される。
 まず、取得した圧縮機回転数NCを所定の圧縮機回転数閾値Nth3と比較し(ステップS301)、圧縮機回転数NCが圧縮機回転数閾値Nth3を下回っていれば、そのまま第1の実施形態または第2の実施形態の処理に戻る。
 また、圧縮機回転数NCが圧縮機回転数閾値Nth3を超えているときには、圧縮機動力PCを所定の圧縮機動力閾関数値Pth(NC)と比較して(ステップS302)、圧縮機動力PCが圧縮機動力閾関数値Pth(NC)以上であれば、そのまま第1の実施形態または第2の実施形態の処理に戻る。
 また、ステップS302において、圧縮機動力PCが圧縮機動力閾関数値Pth(NC)を下回っているときには、冷媒抜けが発生していると判断して、ステップS303に進んで圧縮機5を停止する。
 冷凍サイクル2の外部に冷媒が漏れて冷却サイクル2の冷媒量が少なくなった場合など、冷媒循環量が少なくなっているときには、圧縮機5の動力が異常に少なくなり、ガスロー状態で圧縮機5の吐出温度が上昇する。そのため、圧縮機回転数が一定値以上で、異常に圧縮機5の動力が低下しているときには、冷媒抜けと判断して圧縮機5を停止し、吐出温度の過熱保護を行うものである。
 図11には、圧縮機回転数に対する圧縮機動力の特性を例示し、圧縮機動力閾関数PTHを例示する。図11の例では、冷却サイクル2の冷媒量が40[%]未満となった状況を冷媒抜けと判断するように、圧縮機動力閾関数PTHが設定されている。なお、ステップS302で使用する圧縮機動力閾関数値Pth(NC)は、圧縮機動力閾関数PTHに圧縮機回転数NCを代入して求められる。
 以上説明したように、本実施形態に係る空気調和装置では、圧縮機回転数および圧縮機動力に基づき冷媒抜けを判断することとし、圧縮機回転数NCが圧縮機回転数閾値Nth3を超え、圧縮機動力PCが圧縮機動力閾関数値Pth(NC)を下回っている場合には、冷媒抜け(外部への冷媒漏れ)と判断して、圧縮機5を停止するので、ガスロー状態で圧縮機5の吐出温度が上昇することを防ぐことができる。
〔第4の実施形態〕
 次に、本発明の第4の実施形態に係る空気調和装置について説明する。本実施形態に係る空気調和装置の構成は第1の実施形態(図1~図3)と同等であり、説明を省略する。また、本実施形態の空気調和装置1における運転制御は、インバータの検出温度(IGBT温度)に基づきフロストを判断するものであり、第1の実施形態または第2の実施形態の運転制御に付加して実施されるものである。
 フロストは、冷却能力が過多で、高湿度時に、エバポレータ4に空気中の水分が凍結(フロスト)してしまう現象である。フロストによって空気が通らなくなり、空気との熱交換量が少なくなる。そのため、通常は空気と熱交換され気化されて圧縮機5に戻ってくる冷媒が、気化されずに液冷媒のまま戻ることとなる。液冷媒は摺動部の潤滑油を洗い流すなどの作用があり、圧縮機5を破損させるおそれがある。
 フロスト時の圧縮機5に液冷媒が大量に戻ってくる状況下では、液冷媒の潜熱により電力用半導体スイッチング素子74の発熱が通常よりも余計に冷やされることとなる。したがって、インバータの検出温度(IGBT温度)が正常時よりも異常に下がっている場合には、液冷媒が圧縮機5に戻ってきているとして、フロストと判断することとした。
 図12は、第4の実施形態の空気調和装置1における運転制御のフローチャートである。図中の結合子Q3~結合子Q4間の処理ステップは、第1の実施形態または第2の実施形態において、各種データの取得(図4のステップS102または図8のステップS202)後に挿入される。
 まず、IGBT温度と所定のIGBT温度閾値Tth3と比較する(ステップS401)。IGBT温度がIGBT温度閾値Tth3を超えているときは、そのまま第1の実施形態または第2の実施形態の処理に戻る。
 また、IGBT温度がIGBT温度閾値Tth3以下のときは、ステップS402に進んでカウンタをインクリメントし、該カウンタ値を所定回数閾値Cth1と比較する(ステップS403)。ここで、カウンタは連続してIGBT温度が異常低下していると判断された回数を計数するもので、回数閾値Cth1はタイマ処理(図4のステップS101、図8のステップS201)のインターバルに応じて設定すれば良い。
 カウンタ値が所定回数閾値Cth1未満のときには、圧縮機回転数を上昇させて(ステップS404)、そのまま第1の実施形態または第2の実施形態に戻る。また、カウンタ値が所定回数閾値Cth1以上のときには、改善されないと判断し、ステップS405に進んで圧縮機5を停止する。
 以上説明したように、本実施形態の空気調和装置では、インバータの検出温度(IGBT温度)に基づきフロストを判断することとし、IGBT温度がIGBT温度閾値Tth3を下回ったときには圧縮機回転数を上昇させ、所定期間改善されなければ圧縮機5を停止するので、エバポレータ4のフロストに伴う圧縮機5の損傷を防止することができる。
 1 空気調和装置
 2 冷凍サイクル
 3 制御装置(制御手段)
 4 エバポレータ
 5 圧縮機
 6 電動モータ
 7 インバータ
 8 コンデンサ
 9 膨張弁
 10 インバータ一体型電動圧縮機
 11 温度センサ(温度検知手段)
 31 記憶装置
 32 演算装置
 52 ハウジング
 61 インバータ収容部
 74 半導体スイッチング素子
 75 パワー回路基板
 76 制御基板

Claims (7)

  1.  ガス冷媒を圧縮する電動圧縮機と、高圧のガス冷媒を外気と熱交換して凝縮させるコンデンサと、高温高圧の液冷媒を低温低圧の液冷媒にする膨張弁と、低温低圧の液冷媒を外気と熱交換して気化させるエバポレータとを備えた冷凍サイクルと、制御部とを有する空気調和装置において、
     前記電動圧縮機は、圧縮機と、前記圧縮機を駆動する電動モータと、半導体スイッチング素子近傍の温度を検知する温度検知部を備えたインバータとを一体にして備えたインバータ一体型電動圧縮機であって、
     前記制御部は、前記インバータの検出温度、前記圧縮機の回転数および前記圧縮機の動力に基づき、前記圧縮機の吐出温度を推定する空気調和装置。
  2.  前記制御部は、前記インバータの検出温度、前記圧縮機の動力および前記圧縮機の吐出温度それぞれの前記冷凍サイクルにおける圧力負荷特性の相関関係に基づき、前記圧縮機の吐出温度を推定する請求項1に記載の空気調和装置。
  3.  ガス冷媒を圧縮する電動圧縮機と、高圧のガス冷媒を外気と熱交換して凝縮させるコンデンサと、高温高圧の液冷媒を低温低圧の液冷媒にする膨張弁と、低温低圧の液冷媒を外気と熱交換して気化させるエバポレータとを備えた冷凍サイクルと、制御部とを有する空気調和装置において、
     前記電動圧縮機は、圧縮機と、前記圧縮機を駆動する電動モータと、半導体スイッチング素子近傍の温度を検知する温度検知部を備えたインバータとを一体にして備えたインバータ一体型電動圧縮機であって、
     前記制御部は、前記インバータの検出温度、前記圧縮機の回転数および前記圧縮機の動力に基づき、前記電動モータのモータコイル温度を推定する空気調和装置。
  4.  前記制御部は、前記インバータの検出温度、前記圧縮機の動力および前記電動モータのモータコイル温度それぞれの前記冷凍サイクルにおける圧力負荷特性の相関関係に基づき、前記電動モータのモータコイル温度を推定する請求項3に記載の空気調和装置。
  5.  前記温度検知部は、前記電動圧縮機を流れる冷媒流の中流域から下流域に対応した位置に配置される請求項1から請求項4のいずれかに記載の空気調和装置。
  6.  前記制御部は、前記圧縮機の回転数および前記圧縮機の動力に基づき、冷媒抜けを判断する請求項1から請求項5のいずれかに記載の空気調和装置。
  7.  前記制御部は、前記インバータの検出温度に基づき、フロストを判断する請求項1から請求項6のいずれかに記載の空気調和装置。
PCT/JP2010/064464 2010-02-15 2010-08-26 空気調和装置 WO2011099190A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080054436.9A CN102639943B (zh) 2010-02-15 2010-08-26 空气调节装置
US13/512,442 US9791196B2 (en) 2010-02-15 2010-08-26 Air conditioning apparatus
EP10845782.1A EP2538149B1 (en) 2010-02-15 2010-08-26 Air conditioner
US15/707,589 US10488093B2 (en) 2010-02-15 2017-09-18 Air conditioning apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010029988A JP5398571B2 (ja) 2010-02-15 2010-02-15 空気調和装置
JP2010-029988 2010-02-15

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/512,442 A-371-Of-International US9791196B2 (en) 2010-02-15 2010-08-26 Air conditioning apparatus
US15/707,589 Division US10488093B2 (en) 2010-02-15 2017-09-18 Air conditioning apparatus

Publications (1)

Publication Number Publication Date
WO2011099190A1 true WO2011099190A1 (ja) 2011-08-18

Family

ID=44367485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064464 WO2011099190A1 (ja) 2010-02-15 2010-08-26 空気調和装置

Country Status (5)

Country Link
US (2) US9791196B2 (ja)
EP (1) EP2538149B1 (ja)
JP (1) JP5398571B2 (ja)
CN (1) CN102639943B (ja)
WO (1) WO2011099190A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103307654A (zh) * 2012-03-12 2013-09-18 松下电器产业株式会社 热泵式热水供暖装置
WO2022239836A1 (ja) * 2021-05-12 2022-11-17 三菱重工サーマルシステムズ株式会社 電動コンプレッサ制御装置、電動コンプレッサおよび電動コンプレッサ制御方法
JP7491861B2 (ja) 2021-03-04 2024-05-28 トヨタ自動車株式会社 燃料電池システム

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013060130A (ja) * 2011-09-14 2013-04-04 Panasonic Corp インバータ一体型電動圧縮機及び車輌
JP5403112B2 (ja) * 2012-06-13 2014-01-29 ダイキン工業株式会社 冷凍装置
GB201321614D0 (en) * 2013-12-06 2014-01-22 Eaton Ltd Onboard inert gas generation system
JP6228066B2 (ja) * 2014-04-18 2017-11-08 サンデンホールディングス株式会社 冷凍装置
CN105270132A (zh) * 2014-06-04 2016-01-27 上海通用汽车有限公司 车用制冷系统及使用其的汽车
US20170328584A1 (en) * 2015-02-27 2017-11-16 Mitsubishi Electric Corporation Air-conditioner control system and control method for air conditioner
JP6387911B2 (ja) * 2015-06-30 2018-09-12 株式会社デンソー 電子装置
DE102015221881A1 (de) * 2015-11-06 2017-05-11 BSH Hausgeräte GmbH Haushaltskältegerät mit einem Kältemittelkreislauf und Verfahren zum Betreiben eines Haushaltskältegeräts mit einem Kältemittelkreislauf
CN106286256B (zh) * 2016-08-26 2018-01-02 珠海格力电器股份有限公司 一种压缩机的保护性调节方法、装置和空调系统
CN106152428B (zh) * 2016-09-29 2019-04-19 广东美的制冷设备有限公司 冷媒泄露保护控制方法、控制器及空调
JP6767841B2 (ja) 2016-10-14 2020-10-14 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
WO2018179190A1 (ja) * 2017-03-29 2018-10-04 株式会社日立産機システム 給液式気体圧縮機
CN107255340B (zh) * 2017-06-14 2020-02-04 青岛海尔空调器有限总公司 防止变频空调器的压缩机过热的控制方法及控制系统
CN110375466B (zh) * 2018-04-13 2022-10-28 开利公司 用于空气源热泵系统的制冷剂泄露的检测装置和方法
CN109861623B (zh) * 2019-02-28 2021-02-02 宁波奥克斯电气股份有限公司 防止电机过载保护的控制方法、装置及空调器
US20210207831A1 (en) * 2019-09-12 2021-07-08 Carrier Corporation Refrigerant leak detection and mitigation
US11728757B2 (en) 2019-11-07 2023-08-15 Carrier Corporation System and method for controlling temperature inside electrical and electronics system
CN111043709B (zh) * 2019-12-20 2021-06-25 四川长虹空调有限公司 制冷剂缺氟状态的检测方法
DE102020132713A1 (de) * 2020-12-09 2022-06-09 Vaillant Gmbh Verfahren und Vorrichtungen zur Temperaturregelung einer Leistungselektronik an einer Klima- und/oder Heizanlage
JP7361959B2 (ja) 2021-02-04 2023-10-16 三菱電機株式会社 冷熱源ユニットおよび冷凍サイクル装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11281213A (ja) * 1998-03-27 1999-10-15 Matsushita Electric Ind Co Ltd 空気調和機の除霜制御装置
JP2004116920A (ja) * 2002-09-27 2004-04-15 Daikin Ind Ltd 空気調和機
JP2006291878A (ja) 2005-04-12 2006-10-26 Sanden Corp 電動圧縮機の制御方法および制御装置
JP2007198230A (ja) * 2006-01-25 2007-08-09 Sanden Corp 電動圧縮機

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4023249B2 (ja) * 2002-07-25 2007-12-19 ダイキン工業株式会社 圧縮機内部状態推定装置及び空気調和装置
JP4075831B2 (ja) 2004-03-24 2008-04-16 株式会社デンソー 車両用空調装置
JP4403300B2 (ja) * 2004-03-30 2010-01-27 日立アプライアンス株式会社 冷凍装置
DE102006029973B4 (de) * 2005-06-30 2016-07-28 Denso Corporation Ejektorkreislaufsystem
JP4557031B2 (ja) * 2008-03-27 2010-10-06 株式会社デンソー 車両用空調装置
EP2703748B1 (en) * 2011-04-28 2020-07-29 Mitsubishi Electric Corporation Heat pump device, and a method for controlling an inveter in a heat pump device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11281213A (ja) * 1998-03-27 1999-10-15 Matsushita Electric Ind Co Ltd 空気調和機の除霜制御装置
JP2004116920A (ja) * 2002-09-27 2004-04-15 Daikin Ind Ltd 空気調和機
JP2006291878A (ja) 2005-04-12 2006-10-26 Sanden Corp 電動圧縮機の制御方法および制御装置
JP2007198230A (ja) * 2006-01-25 2007-08-09 Sanden Corp 電動圧縮機

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103307654A (zh) * 2012-03-12 2013-09-18 松下电器产业株式会社 热泵式热水供暖装置
EP2639516A3 (en) * 2012-03-12 2014-03-26 Panasonic Corporation Heat pump hydronic heater
CN103307654B (zh) * 2012-03-12 2017-05-31 松下电器产业株式会社 热泵式热水供暖装置
JP7491861B2 (ja) 2021-03-04 2024-05-28 トヨタ自動車株式会社 燃料電池システム
WO2022239836A1 (ja) * 2021-05-12 2022-11-17 三菱重工サーマルシステムズ株式会社 電動コンプレッサ制御装置、電動コンプレッサおよび電動コンプレッサ制御方法
EP4296515A4 (en) * 2021-05-12 2024-05-01 Mitsubishi Heavy Ind Thermal Systems Ltd ELECTRIC COMPRESSOR CONTROL DEVICE, ELECTRIC COMPRESSOR AND ELECTRIC COMPRESSOR CONTROL METHOD

Also Published As

Publication number Publication date
JP2011163728A (ja) 2011-08-25
US20180003424A1 (en) 2018-01-04
US10488093B2 (en) 2019-11-26
EP2538149A4 (en) 2014-10-15
CN102639943A (zh) 2012-08-15
US20120234030A1 (en) 2012-09-20
JP5398571B2 (ja) 2014-01-29
EP2538149B1 (en) 2021-07-21
EP2538149A1 (en) 2012-12-26
CN102639943B (zh) 2014-12-03
US9791196B2 (en) 2017-10-17

Similar Documents

Publication Publication Date Title
JP5398571B2 (ja) 空気調和装置
KR101492590B1 (ko) 압축기 과열을 모니터하는 시스템 및 그 방법
EP2876385B1 (en) Air conditioner
JP5316683B2 (ja) 輸送用冷凍装置
JP6594698B2 (ja) 冷凍・空調装置
CN104566823A (zh) 并联多联机的冷媒控制方法
CN104819595A (zh) 制冷系统、控制方法及装置和空调器
JP5053527B2 (ja) ショーケース冷却装置
WO2015068638A1 (ja) 冷凍装置の熱源ユニット
JP4155084B2 (ja) 電動圧縮機
WO2017086343A1 (ja) 車両用空調装置の冷凍サイクル及びこれを搭載した車両
JP2007322022A (ja) 圧縮機装置および冷媒循環装置
JP4949926B2 (ja) 車両用空気調和装置
JPH07180933A (ja) 冷凍サイクル装置
JP2014055771A (ja) 空気調和機
JP2009192096A (ja) 空気調和装置
JP4857866B2 (ja) 冷凍装置
JP2007253901A (ja) 車両用空調装置
KR20170040406A (ko) 차량용 공조장치
JP2014204576A (ja) 車両駆動用電気機器の冷却システム
WO2021149162A1 (ja) ヒートポンプ装置、ヒートポンプシステム、空気調和機および冷凍機
JP2006308221A (ja) 空気調和装置の運転制御方法
JP2007040278A (ja) 圧縮機
JP2004052583A (ja) ポンプ用制御盤
CN117073131A (zh) 空调设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080054436.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845782

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13512442

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010845782

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE