WO2011096417A1 - シリコンウェーハおよび半導体装置 - Google Patents
シリコンウェーハおよび半導体装置 Download PDFInfo
- Publication number
- WO2011096417A1 WO2011096417A1 PCT/JP2011/052107 JP2011052107W WO2011096417A1 WO 2011096417 A1 WO2011096417 A1 WO 2011096417A1 JP 2011052107 W JP2011052107 W JP 2011052107W WO 2011096417 A1 WO2011096417 A1 WO 2011096417A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silicon wafer
- sample
- temperature
- heat treatment
- mosfet
- Prior art date
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 53
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 51
- 239000010703 silicon Substances 0.000 title claims abstract description 51
- 239000004065 semiconductor Substances 0.000 title claims description 14
- 238000000034 method Methods 0.000 claims description 30
- 230000003647 oxidation Effects 0.000 claims description 17
- 238000007254 oxidation reaction Methods 0.000 claims description 17
- 239000000758 substrate Substances 0.000 claims description 10
- 239000013078 crystal Substances 0.000 claims description 7
- 239000011261 inert gas Substances 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 description 29
- 230000000052 comparative effect Effects 0.000 description 16
- 238000011156 evaluation Methods 0.000 description 16
- 229910004298 SiO 2 Inorganic materials 0.000 description 10
- 238000000089 atomic force micrograph Methods 0.000 description 10
- 239000010410 layer Substances 0.000 description 10
- 230000001186 cumulative effect Effects 0.000 description 9
- 230000007547 defect Effects 0.000 description 7
- 238000000605 extraction Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 238000004140 cleaning Methods 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 239000012670 alkaline solution Substances 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- OHVLMTFVQDZYHP-UHFFFAOYSA-N 1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-2-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound N1N=NC=2CN(CCC=21)C(CN1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)=O OHVLMTFVQDZYHP-UHFFFAOYSA-N 0.000 description 2
- WZFUQSJFWNHZHM-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 WZFUQSJFWNHZHM-UHFFFAOYSA-N 0.000 description 2
- 238000004854 X-ray topography Methods 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 238000012876 topography Methods 0.000 description 2
- 229910021642 ultra pure water Inorganic materials 0.000 description 2
- 239000012498 ultrapure water Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/324—Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/06—Silicon
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B33/00—After-treatment of single crystals or homogeneous polycrystalline material with defined structure
- C30B33/02—Heat treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02002—Preparing wafers
- H01L21/02005—Preparing bulk and homogeneous wafers
- H01L21/02008—Multistep processes
- H01L21/0201—Specific process step
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67126—Apparatus for sealing, encapsulating, glassing, decapsulating or the like
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/677—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
- H01L21/67739—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
- H01L21/67757—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber vertical transfer of a batch of workpieces
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/7624—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/30—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
- H01L29/34—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being on the surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
Definitions
- the present invention relates to a silicon wafer for producing a semiconductor device such as an IC or LSI, and also relates to a semiconductor device such as an IC or LSI.
- Non-Patent Document 1 Unevenness on the surface of a silicon wafer for producing a semiconductor device such as an IC or LSI is a factor that degrades the current drive capability of a MOSFET (Metal / Oxide / Semiconductor / Field / Effect / Transistor) as shown in Non-Patent Document 1, for example. Therefore, it is required to make the surface as flat as possible (Non-Patent Document 1).
- MOSFET Metal / Oxide / Semiconductor / Field / Effect / Transistor
- Non-patent Document 2 it has been reported that when a silicon wafer is processed in an Ar atmosphere at 1200 ° C., an ultimate flat surface in which atomic steps and terrace structures appear can be formed.
- Non-Patent Document 2 when a silicon wafer having a large diameter of 200 mm ⁇ is heat-treated at a high temperature of 1200 ° C., crystal defects called slip lines are formed on the silicon wafer, and MOSFETs formed on the wafer are formed. Yield significantly decreases.
- FIG. 1 (a) shows an X-ray topography analysis result when the present applicant heat-treats a silicon wafer at 1100 ° C. in an Ar atmosphere. It can be seen that a slip line has been formed in a portion surrounded by a white circle.
- the present invention has been made in view of the above problems, and an object of the present invention is to provide a silicon wafer capable of manufacturing a MOSFET and a circuit composed thereof with high yield even when the surface is flat with a single atom and has a large diameter. Is to provide.
- a semiconductor device characterized by being formed using the silicon wafer described in the first aspect is obtained.
- a semiconductor device formed on a silicon substrate having atomic order steps and terraces and having no slip line is obtained.
- a method of planarizing a silicon wafer at an atomic level in an inert gas atmosphere at a temperature of 900 ° C. or lower and 800 ° C. or higher can be obtained.
- the present invention it is possible to provide a silicon wafer capable of manufacturing a MOSFET and a circuit composed of the MOSFET with a high yield even when the surface is flat on the atomic order and has a large diameter.
- FIG. 5 is a cross-sectional view in the source-drain direction of FIG. 4.
- 2 is a temperature profile during heat treatment in Example 1.
- FIG. 3 is an AFM image of the sample surface before and after oxidation (before and after treatment) in Example 5 and Comparative Examples 3 to 5.
- Example 6 is a graph showing drain voltage-drain current characteristics of Example 6 and Comparative Example 6. It is sectional drawing which shows the outline of a heat processing apparatus. It is an AFM image of the sample surface of Example 4-1. It is a figure which shows the evaluation result (evaluation area: 1 mm x 1 mm) of the cumulative failure rate (Cumulative Failure “%”). It is a figure which shows the evaluation result (evaluation area: 4 mm x 4 mm) of the cumulative failure rate (Cumulative Failure “%”).
- the silicon wafer of the present invention has a plurality of terraces formed on the surface in steps of one atomic layer, and has no slip line.
- the “slip line” means a “crystal defect” which occurs when silicon atoms regularly arranged are displaced due to high temperature when the silicon wafer is heat-treated.
- a white circle in FIG. As shown in the enclosed part, it has a shape like a crack.
- the silicon wafer of the present invention has a structure free from crystal defects.
- the state in which a plurality of terraces that are stepped in atomic order steps is formed on the surface means a state as shown in FIG. 2 and FIG.
- the surface of the silicon wafer according to the present embodiment is inclined from the Just (100) plane by an off angle ( ⁇ ).
- the crystal on the substrate surface is the (100) plane, and the off-angle is relative to the (100) plane inclined by 36 ° in the ⁇ 011> direction with respect to the ⁇ 01-1> direction.
- the case where the surface orientation is tilted by 0.06 ° is shown.
- the lattice points of the surface are different.
- the positions where the lattice points on the surface are switched are steps S A and S B.
- the height of this step is 0.13 nm, which is one atomic step on the silicon (100) surface.
- the terrace width varies by several atoms at the atomic level. However, the variation is small on the order of nm, and the influence on the characteristics can be ignored or the influence is within a small range. Therefore, it can be said that the terrace width is substantially the same width. Also, the direction of the step is not a straight line, and there are irregularities of several atoms at the atomic level, but the irregularities are also small on the order of nm, and the influence on the characteristics can be ignored or within a small range. Accordingly, since the steps are substantially straight and can be regarded as one direction, it can be said that the steps are formed in substantially the same direction.
- the relationship between the terrace width L obtained from the AFM image and the off angle obtained by the X-ray diffraction measurement agrees well with the result of the equation (1). That is, the step formed on the silicon surface is an atomic layer. Furthermore, it can be said that the off-angle is substantially the same as an average angle. In the following description, the step direction is simply described as being the same direction, the terrace width being the same width, and the off-angle being the same angle.
- the temperature during the heat treatment is set to 900 degrees or less. It is desirable to do. By setting the heat treatment temperature to 900 ° C. or less, even when the silicon wafer has a large diameter of 200 mm ⁇ or more, a wafer having no slip line can be obtained.
- the temperature during the heat treatment is preferably 800 ° C. or higher.
- a MOSFET can be formed with good yield.
- the surface of the semiconductor substrate 1 (silicon wafer, silicon substrate) that has been subjected to the above-described treatment (heat treatment at 900 ° C. or lower) is washed by a washing method that does not use an alkaline solution.
- the SiO 2 film 2 is formed by a radical oxidation method in which the substrate surface is directly oxidized by oxygen radicals generated by plasma
- the SiO 2 film 3 is formed by a CVD method or the like.
- an activation region in which the MOS transistor is formed is opened by using a photolithography method or the like.
- the direction parallel to the step is the carrier traveling direction so that there is no step in the source-drain direction (so that the step does not cross the carrier traveling direction).
- FIG. 4 illustrates the case where the source and drain are set in a direction inclined by 54 ° in the ⁇ 011> direction with respect to the ⁇ 01-1> direction.
- the SiO 2 film 2 and the SiO 2 film 3 in the opening are removed, and the photoresist is removed.
- the openings are formed in a plurality (a large number) of portions where the transistors are to be provided. In FIGS. 4 and 5, one opening portion and one transistor are shown.
- the exposed semiconductor surface is cleaned by a cleaning method that does not use an alkaline solution, and then a SiO 2 film 4 is formed as a gate insulating film by radical oxidation, and polycrystalline polysilicon is formed as a gate electrode 5.
- the isotropic oxidation method such as the radical oxidation method, the interface flatness does not deteriorate regardless of the film thickness.
- the gate insulating film may be formed by radical nitridation, or may be formed by combining radical oxidation and radical nitridation.
- MOSFET is formed by a known MOSFET forming method.
- a MOSFET as shown in FIG. 5 is formed.
- MOSFET MOSFET
- a method for forming the gate insulating film for example, a method of oxidizing a semiconductor substrate isotropically or a method of nitriding may be used.
- element isolation methods between a large number of formed transistors may use STI (Shallow trench Isolation), LOCOS (Local Oxidation of Silicon) method, etc., and the active region surface cleaning method, oxide film, nitride film forming method, The film thickness should just be comparable.
- the silicon wafer is formed such that a plurality of terraces stepped on the surface are formed on the surface, and no slip line exists.
- sample 1 a silicon wafer having a diameter of 200 mm ⁇ and a surface of (100) orientation was prepared, and the silicon wafer surface was cleaned by the following procedure. First, the surface of the silicon wafer was washed with O 3 water for 10 minutes, washed with dilute HF (0.5 wt%) for 1 minute, and finally rinsed with ultrapure water for 3 minutes. Thereafter, the silicon wafer is placed in a heat treatment apparatus as shown in FIG. 9, and a heat treatment temperature of 850 ° C. and a heat treatment time of 180 minutes are performed while flowing 20 L / min of Ar with moisture of 0.2 ppb or less and O 2 of 0.1 ppb or less.
- the heat treatment was performed under the conditions of Specifically, the silicon wafer was first heated from the state of 30 ° C. to 850 ° C. by the temperature sequence shown in FIG. 6, and held at 850 ° C. for 180 minutes. Thereafter, the temperature of the silicon wafer was lowered to 30 ° C. by the temperature sequence shown in FIG. A sample was prepared by the above procedure.
- Example 2 A sample was prepared under the same conditions as in Example 1 except that the Ar flow rate was 10 L / min and the heat treatment time (holding time) was 540 minutes.
- Example 3 A sample was produced under the same conditions as in Example 1 except that the Ar flow rate was 10 L / min and the heat treatment time (holding time) was 270 minutes.
- Example 4-1 A sample was prepared under the same conditions as in Example 1 except that the Ar flow rate was 10 L / min, the heat treatment temperature was 900 ° C., and the heat treatment time was (holding time) 60 minutes.
- Example 4-2 A sample was prepared under the same conditions as in Example 1 except that the Ar flow rate was 14 L / min, the heat treatment temperature was 800 ° C., and the heat treatment time was (holding time) 90 minutes.
- Example 1 A sample was prepared under the same conditions as in Example 1 except that the Ar flow rate was 10 L / min, the heat treatment temperature (holding temperature) was 1100 ° C., and the heat treatment time (holding time) was 60 minutes.
- Example 2 A sample was prepared under the same conditions as in Example 1 except that the Ar flow rate was 10 L / min, the heat treatment temperature (holding temperature) was 1200 ° C., and the heat treatment time (holding time) was 60 minutes.
- the surface of the sample was observed using AFM (SPI400 manufactured by Seiko Instruments Inc.).
- the off-angle and direction of the sample were measured using an X-ray diffractometer (X'pert Pro manufactured by PANalitycal).
- FIG. 10 shows an AFM image of Example 4-2.
- the AFM images at the top, bottom, left, and right ends are each at a location 5 mm from the edge of the wafer, and the center AFM image is at the center (100 mm from the wafer edge).
- the AFM images between the lower end, the left end, and the right end are each 50 mm from the edge of the wafer.
- Example 5 The sample of Example 1 was subjected to radical oxidation using a microwave-excited plasma apparatus manufactured by Tokyo Electron Ltd. at a temperature of 400 ° C., 133 Pa, and a Kr / O 2 flow rate ratio of 98/2 to form a 6 nm oxide layer. did. Thereafter, the oxide film was removed using a solution in which 36 wt% HCl and 50 wt% HF were mixed in 19/1. Whether or not the oxide film was removed was judged by confirming that it became hydrophobic.
- Example 3 The surface was thermally oxidized by heating the sample for 10 minutes at a temperature of 900 ° C. in an O 2 atmosphere using ⁇ -8 manufactured by Tokyo Electron Co., Ltd. for the sample of Example 1 to form a 6 nm oxide layer. . Thereafter, the oxide film was removed using a solution in which 36 wt% HCl and 50 wt% HF were mixed in 19/1. Whether or not the oxide film was removed was judged by confirming that it became hydrophobic.
- Example 4 The surface of the sample of Example 1 was thermally oxidized using ⁇ -8 manufactured by Tokyo Electron Ltd. in an O 2 atmosphere at 1000 ° C. for 10 minutes to thermally oxidize the surface to form a 17 nm oxide layer. Thereafter, the oxide film was removed using a solution in which 36 wt% HCl and 50 wt% HF were mixed in 19/1. Whether or not the oxide film was removed was judged by confirming that it became hydrophobic.
- Example 5 The sample of Example 1 was washed with a solution of 36 wt% HCl and 50 wt% HF mixed at 19/1 for 1 minute, and then rinsed with ultrapure water for 5 minutes (that is, the surface was not oxidized). ).
- Example 5 was a 1 ⁇ m square.
- a MOSFET as shown in FIG. 4 and FIG. 5 was fabricated by the following procedure, and the drain current-drain voltage (I D -V D ) characteristics were evaluated.
- Example 6 (1) Preparation of sample (Example 6) First, the surface of the sample of Example 1 was prepared by T. Ohmi, “Total room temperature wet cleaning Si substrate surface,” J. Electrochem. Soc., Vol. 143, No. 9, pp. 2957-2964, Sep. 1996. It was washed by a washing method not using an alkaline solution described in. Next, a 7 nm SiO 2 film 2 is formed at a temperature of 400 ° C. by a radical oxidation method in which the substrate surface is directly oxidized by oxygen radicals generated by plasma, and then a 300 nm SiO 2 film 3 is formed by a CVD method. did. Next, an activation region in which a MOS transistor is formed is opened by photolithography.
- the source diffusion layer 6 and the drain diffusion layer 7 are formed, the interlayer insulating film 8 is formed, the contact holes are opened, the gate extraction electrode 9, the source extraction electrode 10 and the drain extraction electrode 11 are formed by a known method. As a result, a MOSFET as shown in FIG. 5 was completed.
- the MOSFET of Example 6 having a flat interface has a larger drain current than that of Comparative Example 6 at the same gate voltage and drain voltage, and a good MOSFET is formed. I understood that.
- FIG. 11 is a diagram showing the results of evaluating the cumulative failure rate with the evaluation area set to 1 mm ⁇ 1 mm.
- the horizontal axis is the charge to breakdown Qbd, and the vertical axis is the cumulative failure rate. The more the graph is to the right, the better the performance.
- FIG. 11 shows the case where the heat treatment temperature is set to 1100 ° C. and the surface is made flat at the atomic level, and (b) shows the case where the heat treatment temperature is set to 800 ° C. and the surface is made flat at the atomic level.
- C is a case where no leveling treatment is performed at the atomic level, and (d) is a case where the surface roughness is increased by APM after the leveling treatment. The results of forming and measuring a MOS diode by forming an oxide film are shown respectively.
- FIG. 12 is a diagram similarly showing the result of evaluating the cumulative failure rate with the evaluation area set to 4 mm ⁇ 4 mm.
- (a) sets the heat treatment temperature to 1100 ° C. and makes the surface flat at the atomic level
- (b) sets the heat treatment temperature to 800 ° C. and makes the surface flat at the atomic level
- (C) shows a case in which a process for flattening to the atomic level is not performed, and a measurement result obtained by forming a MOS diode by forming a 5.8 nm oxide film on each sample by a radical oxidation method is shown.
- the present invention is not limited to this and can be applied to all structures using a silicon wafer having a flat surface. .
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Chemistry (AREA)
- Thermal Sciences (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
最初に、本実施形態に係るシリコンウェーハについて簡単に説明する。
L=0.13/tanθ (nm) …(1)
L:テラス幅、θ:(100)面からのオフ角
表面が(100)配向のシリコンウェーハを種々の熱処理温度で加熱した試料を作成し、スリップラインの有無を評価した。具体的な手順は以下の通りである。
(実施例1)
まず、口径200mmφ、表面が(100)配向のシリコンウェーハを用意し、以下の手順でシリコンウェーハ表面の洗浄を行った。
まず、O3水を用いてシリコンウェーハ表面を10分間洗浄し、希HF(0.5wt%)を用いて1分間洗浄し、最後に、超純水リンスを3分行った。
その後、シリコンウェーハを図9に示すような熱処理装置内に載置し、水分が0.2ppb以下、O2が0.1ppb以下のArを20L/min流しながら熱処理温度850℃、熱処理時間180分の条件下で熱処理を行った。
具体的には、まずシリコンウェーハが30℃の状態から図6に示す温度シーケンスでシリコンウェーハを850℃まで昇温し、850℃で180分保持した。その後、図6に示す温度シーケンスでシリコンウェーハが30℃になるまで降温した。
以上の手順により、試料を作製した。
Ar流量を10L/min、熱処理時間(保持時間)を540分としたこと以外は実施例1と同様の条件で試料を作製した。
Ar流量を10L/minとし、熱処理時間(保持時間)を270分としたこと以外は実施例1と同様の条件で試料を作製した。
Ar流量を10L/min、熱処理温度を900℃、熱処理時間を(保持時間)60分としたこと以外は実施例1と同様の条件で試料を作製した。
Ar流量を14L/minとし、熱処理温度を800℃とし、熱処理時間を(保持時間)90分としたこと以外は実施例1と同様の条件で試料を作製した。
Ar流量を10L/min、熱処理温度(保持温度)を1100℃、熱処理時間(保持時間)を60分としたこと以外は実施例1と同様の条件で試料を作製した。
Ar流量を10L/min、熱処理温度(保持温度)を1200℃、熱処理時間(保持時間)を60分としたこと以外は実施例1と同様の条件で試料を作製した。
X線トポグラフィー(X-ray diffraction topography)を用いて、作製した試料のスリップラインの有無を評価した。なお、評価には理学電機社製RU-300を用い、透過X線のトポグラフより、スリップラインの有無を評価した。
また、実施例1、4-1、比較例1、2のAFM像を図3に示す。
得られた試料の表面に種々の処理を施し、平坦面の形状を評価した。具体的な手順は以下の通りである。
(実施例5)
実施例1の試料に対して東京エレクトロン社製マイクロ波励起プラズマ装置を用いて温度400℃、133Pa、Kr/O2の流量比98/2の条件にてラジカル酸化を行い、6nmの酸化層を形成した。
その後に36wt%HClと50wt%HFを19/1で混合した溶液を用いて酸化膜を除去した。
なお、酸化膜が除去されたかどうかは疎水性になったことを確認することにより判断した。
実施例1の試料に対して東京エレクトロン社製α-8を用いてO2雰囲気下で、温度900℃で10分間、試料を加熱することにより表面を熱酸化し、6nmの酸化層を形成した。
その後に36wt%HClと50wt%HFを19/1で混合した溶液を用いて酸化膜を除去した。
なお、酸化膜が除去されたかどうかは疎水性になったことを確認することにより判断した。
実施例1の試料に対して東京エレクトロン社製α-8を用いてO2雰囲気下で、1000℃で10分間、試料を加熱することにより表面を熱酸化し、17nmの酸化層を形成した。
その後に36wt%HClと50wt%HFを19/1で混合した溶液を用いて酸化膜を除去した。
なお、酸化膜が除去されたかどうかは疎水性になったことを確認することにより判断した。
実施例1の試料に対して36wt%HClと50wt%HFを19/1で混合した溶液で1分洗浄を行い、その後に超純水リンスを5分間行った(即ち、表面を酸化しなかった)。
次に、実施例5および比較例3~5の酸化前後(比較例5は洗浄前後)の表面形状をAFMで観察した。結果を図7に示す。なお、図7のAFM像は1μm角である。
以下に示す手順で図4および図5に示すようなMOSFETを作製し、ドレイン電流-ドレイン電圧(ID-VD)特性を評価した。
(実施例6)
まず、実施例1の試料の表面を、T. Ohmi, "Total room temperature wet cleaning Si substrate surface,” J. Electrochem. Soc., Vol. 143, No. 9, pp.2957-2964, Sep. 1996.に記載されたアルカリ溶液を用いない洗浄法によって洗浄した。
次にプラズマによって発生させた酸素ラジカルによって基板表面を直接酸化するラジカル酸化法により、温度400℃の条件にて7nmのSiO2膜2を形成したのち、CVD法によって300nmのSiO2膜3を形成した。
次に、フォトリソグラフィー法によって、MOSトランジスタが作成される活性化領域を開口した。
次に、フォトレジストをマスク材料としてHCl/HF=19/1の溶液で開口部分のSiO2膜2およびSiO2膜3を除去し、フォトレジストをH2SO4/H2O2=4:1溶液で除去した。その後、上述したアルカリ溶液を用いない洗浄法で露出半導体表面を洗浄したのち、ラジカル酸化によってゲート絶縁膜としてSiO2膜4を5.6nm形成し、ゲート電極5として多結晶ポリシリコンを形成した。この後は、公知の手法によりソース拡散層6およびドレイン拡散層7の形成、層間絶縁膜8の成膜、コンタクトホールの開口、ゲート取り出し電極9、ソース取り出し電極10およびドレイン取り出し電極11の形成を行い、図5に示すようなMOSFETが完成した。
平坦化処理を行わず、Ra=0.06nmとしたほかは実施例5と同様の条件でMOSFETを作製した。
作製した試料に-3V~3Vの範囲で0.5V単位でドレイン電圧を印加し、ドレイン電流を測定した。
結果を図8に示す。
図11は、評価面積 を1mm× 1mmに設定して、累積故障率の評価を行った結果を示す図である。横軸は、破壊までに流れる電荷量(charges to breakdown)Qbdであり、縦軸は累積故障率である。グラフが右寄りにあるほど、性能が良いことになる。
Claims (8)
- 表面に原子一層のステップで段状とされた複数のテラスが形成されているシリコンウェーハにおいて、スリップラインが存在しないことを特徴とするシリコンウェーハ。
- 口径が200mmφ以上であることを特徴とする請求項1に記載のシリコンウェーハ。
- 900℃以下の温度、不活性ガス雰囲気において、熱処理されたことを特徴とする請求項1又は2に記載のシリコンウェーハ。
- 表面の面方位が(100)結晶面であることを特徴とする請求項1~3のシリコンウェーハ。
- 請求項1乃至4の一つに記載されたシリコンウェーハを用いて形成されたことを特徴とする半導体装置。
- 原子一層のステップおよびテラスを有し、かつスリップラインが存在しないシリコン基板上に形成されている半導体装置。
- 900℃以下の温度において、不活性ガス雰囲気において作成され、ラジカル酸化および/またはラジカル窒化によってゲート絶縁膜を形成した請求項5又は6の半導体装置。
- 900℃以下の温度、不活性ガス雰囲気においてシリコンウェーハを原子レベルで平坦化する方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011800081821A CN102741977A (zh) | 2010-02-04 | 2011-02-02 | 硅晶片和半导体装置 |
EP11739765A EP2533270A1 (en) | 2010-02-04 | 2011-02-02 | Silicon wafer and semiconductor device |
KR1020127021469A KR20130007555A (ko) | 2010-02-04 | 2011-02-02 | 실리콘 웨이퍼 및 반도체 장치 |
JP2011552791A JPWO2011096417A1 (ja) | 2010-02-04 | 2011-02-02 | シリコンウェーハおよび半導体装置 |
US13/565,868 US9157681B2 (en) | 2010-02-04 | 2012-08-03 | Surface treatment method for atomically flattening a silicon wafer and heat treatment apparatus |
US14/856,885 US20160276171A1 (en) | 2010-02-04 | 2015-09-17 | Surface Treatment Method for Atomically Flattening a Silicon Wafer and Heat Treatment Apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-023101 | 2010-02-04 | ||
JP2010023101 | 2010-02-04 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/059374 Continuation-In-Part WO2013150636A1 (ja) | 2010-02-04 | 2012-04-05 | シリコンウェーハの原子オーダー平坦化表面処理方法及び熱処理装置 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/059374 Continuation-In-Part WO2013150636A1 (ja) | 2010-02-04 | 2012-04-05 | シリコンウェーハの原子オーダー平坦化表面処理方法及び熱処理装置 |
US13/565,868 Continuation-In-Part US9157681B2 (en) | 2010-02-04 | 2012-08-03 | Surface treatment method for atomically flattening a silicon wafer and heat treatment apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011096417A1 true WO2011096417A1 (ja) | 2011-08-11 |
Family
ID=44355413
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/052107 WO2011096417A1 (ja) | 2010-02-04 | 2011-02-02 | シリコンウェーハおよび半導体装置 |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP2533270A1 (ja) |
JP (1) | JPWO2011096417A1 (ja) |
KR (1) | KR20130007555A (ja) |
CN (1) | CN102741977A (ja) |
TW (1) | TWI539045B (ja) |
WO (1) | WO2011096417A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013073671A1 (ja) * | 2011-11-17 | 2013-05-23 | 国立大学法人東北大学 | 半導体装置及びその製造方法 |
WO2013150636A1 (ja) | 2012-04-05 | 2013-10-10 | 国立大学法人東北大学 | シリコンウェーハの原子オーダー平坦化表面処理方法及び熱処理装置 |
US9157681B2 (en) | 2010-02-04 | 2015-10-13 | National University Corporation Tohoku University | Surface treatment method for atomically flattening a silicon wafer and heat treatment apparatus |
JPWO2013150636A1 (ja) * | 2012-04-05 | 2015-12-14 | 国立大学法人東北大学 | シリコンウェーハの原子オーダー平坦化表面処理方法及び熱処理装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3046877B1 (fr) * | 2016-01-14 | 2018-01-19 | Soitec | Procede de lissage de la surface d'une structure |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002255700A (ja) * | 2001-12-26 | 2002-09-11 | Canon Inc | 半導体基材の製造方法 |
JP2003324106A (ja) * | 2002-03-01 | 2003-11-14 | Hitachi Kokusai Electric Inc | 熱処理装置、半導体デバイスの製造方法及び基板の製造方法 |
JP2005142445A (ja) * | 2003-11-07 | 2005-06-02 | National Institute Of Advanced Industrial & Technology | シリコン基板の表面処理方法 |
JP2006080294A (ja) * | 2004-09-09 | 2006-03-23 | Hitachi Kokusai Electric Inc | 基板の製造方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4190906B2 (ja) * | 2003-02-07 | 2008-12-03 | 信越半導体株式会社 | シリコン半導体基板及びその製造方法 |
JP4731849B2 (ja) * | 2004-07-16 | 2011-07-27 | 株式会社アドバンテスト | 半導体集積回路の製造方法 |
JP5183910B2 (ja) * | 2005-11-23 | 2013-04-17 | 株式会社半導体エネルギー研究所 | 半導体素子の作製方法 |
-
2011
- 2011-02-02 WO PCT/JP2011/052107 patent/WO2011096417A1/ja active Application Filing
- 2011-02-02 JP JP2011552791A patent/JPWO2011096417A1/ja active Pending
- 2011-02-02 CN CN2011800081821A patent/CN102741977A/zh active Pending
- 2011-02-02 KR KR1020127021469A patent/KR20130007555A/ko not_active Application Discontinuation
- 2011-02-02 EP EP11739765A patent/EP2533270A1/en not_active Withdrawn
- 2011-02-08 TW TW100104141A patent/TWI539045B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002255700A (ja) * | 2001-12-26 | 2002-09-11 | Canon Inc | 半導体基材の製造方法 |
JP2003324106A (ja) * | 2002-03-01 | 2003-11-14 | Hitachi Kokusai Electric Inc | 熱処理装置、半導体デバイスの製造方法及び基板の製造方法 |
JP2005142445A (ja) * | 2003-11-07 | 2005-06-02 | National Institute Of Advanced Industrial & Technology | シリコン基板の表面処理方法 |
JP2006080294A (ja) * | 2004-09-09 | 2006-03-23 | Hitachi Kokusai Electric Inc | 基板の製造方法 |
Non-Patent Citations (3)
Title |
---|
L. ZHONG; A. HOJO; Y. MATSUSHITA; Y AIBA; K. HAYASHI; R. TAKEDA; H. SHIRAI; H. SAITO, PHY. REV. B., vol. 54, 1996, pages 2304 |
T. OHMI: "Total room temperature wet cleaning Si substrate surface", J. ELECTROCHEM. SOC., vol. 143, no. 9, September 1996 (1996-09-01), pages 2957 - 2964 |
T. OHMI; K. KOTANI; A. TERAMOTO; M. MIYASHITA, IEEE ELEC. DEV. LETT., vol. 12, 1991, pages 652 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9157681B2 (en) | 2010-02-04 | 2015-10-13 | National University Corporation Tohoku University | Surface treatment method for atomically flattening a silicon wafer and heat treatment apparatus |
WO2013073671A1 (ja) * | 2011-11-17 | 2013-05-23 | 国立大学法人東北大学 | 半導体装置及びその製造方法 |
US20140312399A1 (en) * | 2011-11-17 | 2014-10-23 | Tohoku University | Semiconductor device and method of manufacturing the same |
JPWO2013073671A1 (ja) * | 2011-11-17 | 2015-04-02 | 国立大学法人東北大学 | 半導体装置及びその製造方法 |
US9153658B2 (en) | 2011-11-17 | 2015-10-06 | Tohoku University | Semiconductor device and method of manufacturing the same |
WO2013150636A1 (ja) | 2012-04-05 | 2013-10-10 | 国立大学法人東北大学 | シリコンウェーハの原子オーダー平坦化表面処理方法及び熱処理装置 |
JPWO2013150636A1 (ja) * | 2012-04-05 | 2015-12-14 | 国立大学法人東北大学 | シリコンウェーハの原子オーダー平坦化表面処理方法及び熱処理装置 |
Also Published As
Publication number | Publication date |
---|---|
TW201200648A (en) | 2012-01-01 |
CN102741977A (zh) | 2012-10-17 |
TWI539045B (zh) | 2016-06-21 |
EP2533270A1 (en) | 2012-12-12 |
JPWO2011096417A1 (ja) | 2013-06-10 |
KR20130007555A (ko) | 2013-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100865596B1 (ko) | 반도체장치의 제조방법 | |
TWI250578B (en) | Semiconductor device and manufacturing method therefor | |
US7411274B2 (en) | Silicon semiconductor substrate and its manufacturing method | |
Kuroda et al. | Atomically flat silicon surface and silicon/insulator interface formation technologies for (100) surface orientation large-diameter wafers introducing high performance and low-noise metal–insulator–silicon FETs | |
WO2011096417A1 (ja) | シリコンウェーハおよび半導体装置 | |
US11018223B2 (en) | Methods for forming device isolation for semiconductor applications | |
TWI623022B (zh) | 半導體裝置的製作方法 | |
Li et al. | Formation speed of atomically flat surface on Si (1 0 0) in ultra-pure argon | |
JPWO2005101518A1 (ja) | 半導体装置の製造方法 | |
WO2013150636A1 (ja) | シリコンウェーハの原子オーダー平坦化表面処理方法及び熱処理装置 | |
JPWO2005074037A1 (ja) | 半導体装置の製造方法 | |
KR101536020B1 (ko) | 반도체 기판 및 반도체 장치 | |
JP2749030B2 (ja) | 電界効果トランジスタおよびその製造方法 | |
US9157681B2 (en) | Surface treatment method for atomically flattening a silicon wafer and heat treatment apparatus | |
JP2006245306A (ja) | 半導体装置の製造方法 | |
JPWO2013150636A1 (ja) | シリコンウェーハの原子オーダー平坦化表面処理方法及び熱処理装置 | |
JP2006516362A (ja) | 歪みシリコンプロセス用にシャロートレンチ絶縁体を形成するプロセス | |
JPH10308361A (ja) | 半導体装置及びその製造方法 | |
JP2005093562A (ja) | 半導体装置の製造方法 | |
JP2013254982A (ja) | 半導体基板および半導体装置 | |
JP2005136241A (ja) | 半導体装置およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180008182.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11739765 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011552791 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20127021469 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011739765 Country of ref document: EP |