WO2011093302A1 - 難燃性ポリ乳酸系フィルム又はシート、及びその製造方法 - Google Patents
難燃性ポリ乳酸系フィルム又はシート、及びその製造方法 Download PDFInfo
- Publication number
- WO2011093302A1 WO2011093302A1 PCT/JP2011/051409 JP2011051409W WO2011093302A1 WO 2011093302 A1 WO2011093302 A1 WO 2011093302A1 JP 2011051409 W JP2011051409 W JP 2011051409W WO 2011093302 A1 WO2011093302 A1 WO 2011093302A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- temperature
- crystallization
- resin composition
- sheet
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C43/00—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
- B29C43/003—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C43/00—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
- B29C43/22—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
- B29C43/24—Calendering
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2067/00—Use of polyesters or derivatives thereof, as moulding material
- B29K2067/04—Polyesters derived from hydroxycarboxylic acids
- B29K2067/046—PLA, i.e. polylactic acid or polylactide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/0005—Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
- B29K2105/0026—Flame proofing or flame retarding agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/0058—Liquid or visquous
- B29K2105/0067—Melt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/0088—Blends of polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/0041—Crystalline
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2007/00—Flat articles, e.g. films or sheets
- B29L2007/008—Wide strips, e.g. films, webs
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/04—Polyesters derived from hydroxy carboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2423/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2423/26—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2427/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
- C08J2427/02—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
- C08J2427/12—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08J2427/18—Homopolymers or copolymers of tetrafluoroethylene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2427/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
- C08J2427/22—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers modified by chemical after-treatment
- C08J2427/24—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers modified by chemical after-treatment halogenated
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/014—Additives containing two or more different additives of the same subgroup in C08K
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/5399—Phosphorus bound to nitrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/02—Flame or fire retardant/resistant
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
Definitions
- the present invention relates to a flame retardant polylactic acid film or sheet excellent in flame retardancy, heat resistance, mechanical properties (breaking strength, tear strength, etc.) and roll lubricity.
- polylactic acid resin is a biomass polymer, it has attracted attention in recent years against the background of oil depletion and carbon dioxide emission reduction. However, since polylactic acid itself is easily combusted, it has been difficult to use it for members that require flame retardancy, such as electrical and electronic applications. In addition, since polylactic acid has a low crystallization rate and is hardly crystallized by ordinary film forming means, for example, a film made of a resin composition containing polylactic acid has a glass transition temperature of polylactic acid of about 60 ° C. In the above, there has been a problem of heat resistance that causes thermal deformation and the film shape cannot be maintained.
- the thinner the film or sheet the more difficult it is to satisfy a flame retardant standard (eg, UL-94 VTM standard). Therefore, the flame retardant is blended in a larger amount.
- a flame retardant standard eg, UL-94 VTM standard
- the flame retardant is a foreign matter for the polylactic acid resin, there is a problem that it becomes a factor of reducing the breaking strength and tear strength of the polylactic acid resin.
- the resin composition when a resin composition containing polylactic acid is melt-formed on a film or sheet using a metal roll, the resin composition has poor roll peelability, so that the resin composition adheres to the metal roll. It was also a problem that it was difficult to make a sheet.
- the problem to be solved by the present invention is a polylactic acid-based film imparted with excellent flame retardancy, heat resistance and roll lubricity while maintaining the original mechanical properties (breaking strength, tearing strength, etc.) of the polylactic acid resin.
- it is to provide a sheet and a method for producing such a film and sheet.
- the present invention is as follows.
- Polylactic acid (A) An acidic functional group-modified olefin polymer (B) containing an acidic functional group, having an acid value of 10 to 70 mgKOH / g and a weight average molecular weight of 10,000 to 80,000, Tetrafluoroethylene-based polymer (C), and Containing an aromatic cyclic phosphazene-based flame retardant (D) containing a compound represented by the following general formula (I), A resin composition in which the content of the aromatic cyclic phosphazene flame retardant (D) is 10 to 70 parts by weight with respect to 100 parts by weight of the polylactic acid (A) (hereinafter abbreviated as polylactic acid (A) -containing resin composition). Or a film or sheet (hereinafter sometimes abbreviated as the film or sheet of the present invention).
- a 1 and A 2 each independently represents an aryl group having 6 to 10 carbon atoms which may be substituted with 1 to 4 alkyl groups having 1 to 4 carbon atoms; n represents an integer of 3 to 6.
- the content of the tetrafluoroethylene-based polymer (C) is 0.5 to 15.0 parts by weight with respect to 100 parts by weight of the polylactic acid (A). Or a sheet.
- the content of the acidic functional group-modified olefin polymer (B) is 0.1 to 10.0 parts by weight with respect to 100 parts by weight of the polylactic acid (A).
- the resin composition further contains a crystallization accelerator (E), The film according to any one of [1] to [4], wherein the content of the crystallization accelerator (E) is 0.1 to 5.0 parts by weight with respect to 100 parts by weight of the polylactic acid (A). Or a sheet.
- Relative crystallization rate (%) ( ⁇ Hm ⁇ Hc) / ⁇ Hm ⁇ 100 (1)
- ⁇ Hc represents the calorific value of the exothermic peak accompanying crystallization in the temperature rising process of the film or sheet sample after film formation
- ⁇ Hm represents the calorific value associated with melting.
- the resin composition that has been melt-formed is subjected to a crystallization promotion step at a temperature between the crystallization temperature (Tc) -25 ° C. and the crystallization temperature (Tc) + 10 ° C.
- a method for producing a film or sheet, characterized by being cooled and solidified after passing. [9] The method for producing a film or sheet according to any one of the above [1] to [7], comprising film-forming the resin composition by a melt film-forming method, The temperature of the resin composition at the time of melt film formation is between the crystallization temperature (Tc) + 15 ° C. in the temperature lowering process of the resin composition and the melting temperature (Tm) ⁇ 5 ° C. in the temperature rising process.
- the resin composition that has been melt-formed is subjected to a crystallization promotion step at a temperature between the crystallization temperature (Tc) -25 ° C. and the crystallization temperature (Tc) + 10 ° C.
- the melt film formation method is a method in which a molten resin composition is formed into a desired thickness by passing through a gap between two metal rolls.
- a polylactic acid film or sheet imparted with excellent flame retardancy, heat resistance and roll lubricity while maintaining the original mechanical properties (breaking strength, tear strength, etc.) of polylactic acid. obtain.
- the film or sheet of the present invention comprises a resin composition containing polylactic acid (A), an acidic functional group-modified olefin polymer (B), a tetrafluoroethylene polymer (C), and an aromatic cyclic phosphazene flame retardant (D). Consists of.
- the film or sheet of the present invention includes transparent, translucent and opaque ones.
- the thickness of the film or sheet of the present invention is not particularly limited, but is usually 10 to 500 ⁇ m, preferably 20 to 400 ⁇ m, more preferably 30 to 300 ⁇ m.
- polylactic acid (A) Since lactic acid, which is a raw material monomer for polylactic acid, has an asymmetric carbon atom, there are L and D isomers of optical isomers.
- the polylactic acid (A) used in the present invention is a polymer composed mainly of L-form lactic acid. The smaller the content of lactic acid in the D-form that is mixed as an impurity during production, the higher the crystalline and high-melting polymer. Therefore, it is preferable to use a L-form having a purity as high as possible, and the L-form purity is 95%. It is more preferable to use the above.
- the polylactic acid (A) used by this invention may contain other copolymerization components other than lactic acid.
- Other monomer units include ethylene glycol, propylene glycol, butanediol, heptanediol, hexanediol, octanediol, nonanediol, decanediol, 1,4-cyclohexanedimethanol, neopentyl glycol, glycerin, pentaerythritol, bisphenol.
- -Glycol compounds such as A, polyethylene glycol, polypropylene glycol, polytetramethylene glycol; oxalic acid, adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, malonic acid, glutaric acid, cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid Phthalic acid, naphthalenedicarboxylic acid, bis (p-carboxyphenyl) methane, anthracene dicarboxylic acid, 4,4′-diphenyl ether dicarboxylic acid, Dicarboxylic acids such as 5-sodium sulfoisophthalic acid and 5-tetrabutylphosphonium isophthalic acid; hydroxycarboxylic acids such as glycolic acid, hydroxypropionic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxycaproic acid, hydroxybenzoic acid; caprolactone,
- the weight average molecular weight of the polylactic acid (A) is, for example, 10,000 to 400,000, preferably 50,000 to 300,000, and more preferably 80,000 to 150,000.
- the melt flow rate [JIS K-7210 (Test condition 4)] of polylactic acid (A) at 190 ° C. and a load of 21.2 N is, for example, 0.1 to 50 g / 10 minutes, preferably 0.2 to 20 g. / 10 minutes, more preferably 0.5 to 10 g / 10 minutes, and particularly preferably 1 to 7 g / 10 minutes. If the melt flow rate is too high, the mechanical properties and heat resistance of the film or sheet obtained by film formation may be inferior. On the other hand, if the value of the melt flow rate is too low, the load during film formation may become too high.
- weight average molecular weight refers to that measured by gel permeation chromatography (GPC) (in terms of polystyrene).
- GPC gel permeation chromatography
- the measurement conditions of GPC are as follows. Column: TSKgel SuperHZM-H / HZ2000 / HZ1000 Column size: 4.6 mm I.D. D. ⁇ 150mm Eluent: Chloroform Flow rate: 0.3 ml / min Detector: RI Column temperature: 40 ° C Injection volume: 10 ⁇ l
- the production method of polylactic acid is not particularly limited, but typical production methods include lactide method, direct polymerization method and the like.
- lactide method lactic acid is heated and dehydrated and condensed to give low molecular weight polylactic acid, which is then thermally decomposed under reduced pressure to obtain lactide, which is a cyclic dimer of lactic acid, and this lactide is converted into tin (II) octanoate or the like.
- high molecular weight polylactic acid is obtained by ring-opening polymerization in the presence of a metal salt catalyst.
- the direct polymerization method is a method in which polylactic acid is directly obtained by heating lactic acid in a solvent such as diphenyl ether under reduced pressure and polymerizing it while removing water in order to suppress hydrolysis.
- a commercially available product can be used as polylactic acid (A).
- polylactic acid (A) For example, trade names “Lacia H-400”, “Lacia H-100” (manufactured by Mitsui Chemicals), trade names “Terramac TP-4000”, “Terramac TE-4000” (above, Unitika Ltd.) Manufactured) and the like.
- polylactic acid (A) you may use what was manufactured by the well-known thru
- Acid functional group-modified olefin polymer (B) For production of the film or sheet of the present invention, for example, it is necessary to form a film by causing the polylactic acid (A) -containing resin composition to be in a molten state and passing through a gap between metal rolls using a calender film forming machine or the like. For this reason, such a resin composition must be easily peelable from the surface of the metal roll.
- the acidic functional group-modified olefin polymer (B) contained in the film or sheet of the present invention has an effect as a lubricant that imparts desired roll lubricity to the polylactic acid (A) -containing resin composition.
- Examples of the acidic functional group of the acidic functional group-modified olefin polymer (B) include a carboxyl group or a derivative group thereof.
- a derivative group of a carboxyl group is chemically derived from a carboxyl group, and examples thereof include an acid anhydride group, an ester group, an amide group, an imide group, and a cyano group of carboxylic acid.
- it is a carboxylic anhydride group.
- the acidic functional group-modified olefin polymer (B) may be abbreviated as an unsaturated compound containing the above “acidic functional group” (hereinafter referred to as an acidic functional group-containing unsaturated compound) in an unmodified polyolefin polymer, for example. Obtained by graft polymerization.
- Examples of the unmodified polyolefin polymer include high density polyethylene, medium density polyethylene, low density polyethylene, polypropylene, polybutene, poly-4-methylpentene-1, a copolymer of ethylene and ⁇ -olefin, and propylene and ⁇ - Polymers of polyolefins such as olefin copolymers or oligomers thereof; ethylene-propylene rubber, ethylene-propylene-diene copolymer rubber, butyl rubber, butadiene rubber, low crystalline ethylene-propylene copolymer, propylene-butene Copolymer, ethylene-vinyl ester copolymer, ethylene-methyl (meth) acrylate copolymer, ethylene-ethyl (meth) acrylate copolymer, ethylene-maleic anhydride copolymer, polypropylene and ethylene-propylene rubber Blend etc.
- Examples include polyolefin elastomers and mixtures of two or more of these.
- Preferable are polypropylene, a copolymer of propylene and ⁇ -olefin, low-density polyethylene and oligomers thereof, and particularly preferable is polypropylene, a copolymer of propylene and ⁇ -olefin and oligomers thereof.
- examples of the “oligomers” include those obtained from a corresponding polymer by a molecular weight degradation method by thermal decomposition. Such oligomers can also be obtained by a polymerization method.
- Examples of the acidic functional group-containing unsaturated compound include a carboxyl group-containing unsaturated compound and a carboxyl group derivative-containing unsaturated compound.
- Examples of the carboxyl group-containing unsaturated compound include maleic acid, itaconic acid, chloroitaconic acid, chloromaleic acid, citraconic acid, and (meth) acrylic acid.
- carboxyl group derivative-containing unsaturated compound examples include, for example, maleic anhydride, itaconic anhydride, chloroitaconic anhydride, chloromaleic anhydride, citraconic anhydride and other carboxylic anhydride group-containing unsaturated compounds; (Meth) acrylate, glycidyl (meth) acrylate, (meth) acrylic acid ester such as 2-hydroxyethyl (meth) acrylate; (meth) acrylamide, maleimide, (meth) acrylonitrile and the like.
- the acidic functional group-modified olefin polymer (B) has a weight average molecular weight of 10,000 to 80,000, preferably 15,000 to 70,000, more preferably 20,000. ⁇ 60,000.
- weight average molecular weight is less than 10,000, it causes bleed out after the film or sheet is formed, and when it exceeds 80,000, it separates from polylactic acid during roll kneading.
- bleed-out refers to a phenomenon in which a low molecular weight component emerges on the film or sheet surface over time after the film or sheet is formed.
- “weight average molecular weight” refers to that measured by gel permeation chromatography (GPC).
- the acidic functional group in the acidic functional group-modified olefin polymer (B) may be bonded to any position of the olefin polymer, and the modification ratio is not particularly limited, but the acidic functional group-modified olefin polymer (B).
- the acid value of is usually 10 to 70 mgKOH / g, preferably 20 to 60 mgKOH / g. If the acid value is less than 10 mgKOH / g, the effect of improving roll lubricity cannot be obtained, and if it exceeds 70 mgKOH / g, plate-out to the roll is caused.
- the plate-out to the roll means that when the resin composition is melt-formed using the metal roll, the components blended in the resin composition or the oxidized, decomposed, combined or deteriorated product is the metal roll. It adheres to or deposits on the surface.
- the “acid value” means a value measured according to the neutralization titration method of JIS K0070-1992.
- the acidic functional group-modified olefin polymer (B) is obtained by reacting an acidic functional group-containing unsaturated compound with an unmodified polyolefin polymer in the presence of an organic peroxide.
- an organic peroxide those generally used as an initiator in radical polymerization can be used.
- Such a reaction can be performed by either a solution method or a melting method.
- an acidic functional group-modified olefin polymer (B) is obtained by dissolving a mixture of an unmodified polyolefin polymer and an acidic functional group-containing unsaturated compound in an organic solvent together with an organic peroxide and heating. Can do.
- the reaction temperature is preferably about 110 to 170 ° C.
- an acidic functional group-modified olefin polymer (B) is obtained by mixing a mixture of an unmodified polyolefin-based polymer and an acidic functional group-containing unsaturated compound with an organic peroxide, melt-mixing and reacting. be able to. Melt mixing can be performed with various mixers such as an extruder, a plastic bender, a kneader, a Banbury mixer, and the kneading temperature is usually in the temperature range of the melting point of the unmodified polyolefin polymer to 300 ° C.
- the acidic functional group-modified olefin polymer (B) is preferably maleic anhydride group-modified polypropylene.
- “Yumex 1010” maleic anhydride group-modified polypropylene, acid value: 52 mgKOH / g, manufactured by Sanyo Chemical Industries, Ltd., Weight average molecular weight: 32,000, modification ratio: 10% by weight
- “Yumex 1001” maleic anhydride group-modified polypropylene, acid value: 26 mg KOH / g, weight average molecular weight: 49,000, modification ratio: 5% by weight
- “Yumex 2000” maleic anhydride group-modified polyethylene, acid value: 30 mg KOH / g, weight average molecular weight: 20,000, modification ratio: 5% by weight
- the content of the acidic functional group-modified olefin polymer (B) is not particularly limited, and is usually 0.1 to 10.0 parts by weight per 100 parts by weight of the polylactic acid (A), and there is no plate-out to the roll. From the viewpoint of sustaining the roll slip effect and maintaining the degree of biomass, the amount is preferably 0.1 to 5.0 parts by weight, particularly preferably 0.3 to 3.0 parts by weight. If the content is less than 0.1 parts by weight, the effect of improving roll lubricity is difficult to obtain, and if it exceeds 10.0 parts by weight, the effect according to the amount added cannot be obtained, and a decrease in the degree of biomass is a problem. It becomes.
- the biomass degree is the ratio of the dry weight of the used biomass to the dry weight of the film or sheet.
- the tetrafluoroethylene-based polymer (C) contained in the film or sheet of the present invention improves the melt tension of the polylactic acid (A) -containing resin composition and enables oriented crystallization in the flow field during the melt film formation process. By making it, crystallization of polylactic acid (A) can be promoted.
- the tetrafluoroethylene-based polymer (C) has an effect as a crystal nucleating agent for polylactic acid (A)
- the temperature of the resin composition immediately after film formation is set near the crystallization temperature. The crystallization of (A) can be further promoted.
- the tetrafluoroethylene-based polymer (C) can impart heat resistance to the film or sheet of the present invention by promoting crystallization of the polylactic acid (A). Furthermore, the tetrafluoroethylene-based polymer (C) is also effective for preventing drip when evaluating the flame retardancy of the film or sheet of the present invention described later.
- the tetrafluoroethylene-based polymer (C) used in the present invention is a tetrafluoroethylene homopolymer or a copolymer of tetrafluoroethylene and another monomer, such as polytetrafluoroethylene, perfluoroalkoxy.
- Alkane copolymer of tetrafluoroethylene and perfluoroalkyl vinyl ether
- perfluoroethylene propene copolymer copolymer of tetrafluoroethylene and hexafluoropropylene
- ethylene-tetrafluoroethylene copolymer tetrafluoroethylene and ethylene
- a copolymer of tetrafluoroethylene and perfluorodioxol, and the like is polytetrafluoroethylene.
- the effect of the tetrafluoroethylene polymer (C) as a crystal nucleating agent on the polylactic acid (A) is considered to depend on the crystal structure of the tetrafluoroethylene polymer (C).
- the plane spacing of the polylactic acid (A) crystal lattice was 4.8 angstroms, whereas that of the tetrafluoroethylene polymer was 4.9 angstroms. From this, it is considered that the tetrafluoroethylene-based polymer (C) can act as a crystal nucleating agent for the polylactic acid (A) by having an epitaxy action.
- the epitaxy action means that polylactic acid (A) grows on the surface of the tetrafluoroethylene polymer (C) and aligns with the crystal surface of the crystal surface of the tetrafluoroethylene polymer (C).
- A) refers to the growth pattern arranged.
- the surface spacing of the tetrafluoroethylene-based polymer (C) is governed by the crystal form of the tetrafluoroethylene portion, even if it is a copolymer of tetrafluoroethylene and other monomers. The same. Accordingly, the amount of other monomer components in the copolymer is not particularly limited as long as the crystal form of polytetrafluoroethylene can be maintained and the physical properties are not greatly changed. Usually, a tetrafluoroethylene polymer ( The ratio in C) is desirably 5% by weight or less.
- the method for polymerizing the tetrafluoroethylene-based polymer (C) is not particularly limited, but emulsion polymerization is particularly preferable. Since the tetrafluoroethylene polymer (C) obtained by emulsion polymerization is easy to fiberize, it becomes easy to take a network structure in polylactic acid (A) and improves the melt tension of the resin composition containing polylactic acid (A). It is considered effective for promoting the crystallization of polylactic acid (A) in the flow field during the melt film formation process.
- the weight average molecular weight of the tetrafluoroethylene polymer (C) is not particularly limited, and is usually 1 million to 10 million, preferably 2 million to 8 million.
- the particles of the “tetrafluoroethylene polymer (C)” are converted into polylactic acid (A) such as a (meth) acrylic acid ester polymer.
- a polymer modified with a polymer having good affinity may be used.
- examples of such tetrafluoroethylene-based polymer (C) include acrylic-modified polytetrafluoroethylene.
- a commercially available product may be used. For example, as a commercially available product of polytetrafluoroethylene, “Fluon CD-014”, “Fluon CD-1”, “Fluon CD-1” manufactured by Asahi Glass Co., Ltd.
- the content of the tetrafluoroethylene-based polymer (C) is usually 0.5 to 15.0 parts by weight with respect to 100 parts by weight of the polylactic acid (A), the effect of improving the melt tension and maintaining the degree of biomass, and good surface condition. From the viewpoint of obtaining, it is preferably 0.7 to 10.0 parts by weight, particularly preferably 1.0 to 5.0 parts by weight. If the content is less than 0.5 parts by weight, the effect of improving the melt tension is difficult to obtain, and if it exceeds 15.0 parts by weight, the effect according to the amount added cannot be obtained, and the decrease in the degree of biomass is a problem. It becomes.
- the aromatic cyclic phosphazene flame retardant (D) contained in the film or sheet of the present invention has an effect as a flame retardant that imparts desired flame retardancy to the resin composition containing polylactic acid (A).
- the aromatic cyclic phosphazene-based flame retardant (D) includes a compound represented by the following general formula (I).
- a 1 and A 2 each independently represents an aryl group having 6 to 10 carbon atoms which may be substituted with 1 to 4 alkyl groups having 1 to 4 carbon atoms; n represents an integer of 3 to 6.
- the “aryl group having 6 to 10 carbon atoms” may be substituted with the same or different alkyl group having 1 to 4 carbon atoms.
- alkyl group having 1 to 4 carbon atoms means a linear or branched saturated hydrocarbon group having 1 to 4 carbon atoms, and examples thereof include a methyl group, an ethyl group, a propyl group, and an isopropyl group.
- an alkyl group having 1 to 3 carbon atoms is preferable, and methyl is particularly preferable. It is a group.
- a 1 and A 2 are preferably unsubstituted or 1 to 4 (preferably 1 to 3, more preferably 1) carbon from the viewpoint of ensuring the phosphorus and nitrogen contents in the compound.
- a phenyl group which may be substituted with an alkyl group having 1 to 4 carbon atoms (preferably an alkyl group having 1 to 3 carbon atoms, particularly preferably a methyl group), particularly preferably a phenyl group or a tolyl group (o- Tolyl group, p-tolyl group, m-tolyl group).
- a 1 and A 2 may be the same or different and are preferably the same.
- N represents an integer of 3 to 6, preferably an integer of 3 to 5, and more preferably 3.
- the compound represented by the general formula (I) is preferably a compound represented by the following general formula (I ′).
- X 1 and X 2 each independently represents an alkyl group having 1 to 4 carbon atoms; m1 and m2 each independently represents an integer of 0 to 4; n is as defined above.
- alkyl group having 1 to 4 carbon atoms represented by X 1 or X 2
- the same as the “alkyl group having 1 to 4 carbon atoms” of “an aryl group having 6 to 10 carbon atoms” is preferable, and an alkyl group having 1 to 3 carbon atoms is preferable, and a methyl group is particularly preferable.
- . m1 and m2 are each independently preferably an integer of 0 to 3, more preferably 0 or 1.
- X 1 and X 2 are each 3 to 6 in number, and each X 1 and X 2 may be the same or different, preferably the same.
- X 1 and X 2 may be the same or different and are preferably the same.
- the compound represented by the general formula (I) is preferably A 1 and A 2 are each independently an aryl group having 6 to 10 carbon atoms which may be substituted with 1 to 3 alkyl groups having 1 to 3 carbon atoms [preferably a phenyl group, a tolyl group ( o-tolyl group, p-tolyl group, m-tolyl group)]; n is an integer of 3 to 5 (preferably 3) It is a compound which is.
- Examples of the compound represented by the general formula (I) include 2,2,4,4,6,6-hexaphenoxycyclotriphosphazene, 2,2,4,4,6,6-hexakis (p-tolyloxy). ) Cyclotriphosphazene, 2,2,4,4,6,6-hexakis (m-tolyloxy) cyclotriphosphazene, 2,2,4,4,6,6-hexakis (o-tolyloxy) cyclotriphosphazene, 2 , 4,6-Triphenoxy-2,4,6-tris (p-tolyloxy) cyclotriphosphazene, 2,4,6-triphenoxy-2,4,6-tris (m-tolyloxy) cyclotriphosphazene, 2, , 4,6-Triphenoxy-2,4,6-tris (o-tolyloxy) cyclotriphosphazene, 2,4,6-triphenoxy-2,4,6-tris (2 Ethylphenoxy) cyclotriphosphazene, 2,4,6-triphenoxy-2
- 2,2,4,4,6,6-hexaphenoxycyclotriphosphazene, 2,4,6-triphenoxy-2,4,6-tris from the viewpoint of compatibility with polylactic acid and flame retardant effect P-Tolyloxy
- 2,4,6-triphenoxy-2,4,6-tris (O-Tolyloxy) cyclotriphosphazene is preferred.
- These compounds can be produced by known methods.
- the aromatic cyclic phosphazene flame retardant (D) contains at least one compound represented by the general formula (I) as a main component. Specifically, it usually contains 90% by weight or more, preferably 95% by weight to 100% by weight. Other components of the aromatic cyclic phosphazene flame retardant (D) are not particularly limited as long as the object of the present invention is not impaired.
- aromatic cyclic phosphazene flame retardant (D) commercially available products may be used. Examples of such commercially available products include “Ravitor FP-110” and “Ravitor FP-390” manufactured by Fushimi Pharmaceutical Co., Ltd. Can be mentioned.
- Such aromatic cyclic phosphazene-based flame retardant (D) has a high flame retardant effect due to the high content of phosphorus and nitrogen in the molecule, and is suitable for flame retardant of a polylactic acid (A) -containing resin composition. Yes. Moreover, since it is excellent in hydrolysis resistance, the flame retardancy does not decrease even after long-term use.
- the aromatic cyclic phosphazene flame retardant (D) melts in a temperature range in which the polylactic acid (A) -containing resin composition is melt-kneaded and has good compatibility with the polylactic acid (A). Even when blended, it is difficult to cause a decrease in the original mechanical properties (breaking strength, tear strength, etc.) of polylactic acid (A).
- the aromatic cyclic phosphazene flame retardant (D) since the aromatic cyclic phosphazene flame retardant (D) has good compatibility with the polylactic acid (A), it also has a plasticizing effect to improve the brittleness of the polylactic acid (A). This also has the effect of suppressing the bleed out.
- the content of the aromatic cyclic phosphazene flame retardant (D) is usually 10 to 70 parts by weight with respect to 100 parts by weight of the polylactic acid (A), while maintaining the flame retardancy of UL94 VTM-0 standard. From the viewpoint of suppressing a decrease in crystallization rate and an increase in heat deformation rate, the amount is preferably 15 to 50 parts by weight, more preferably 20 to 40 parts by weight. When the content is less than 10 parts by weight, a flame retarding effect cannot be obtained, and a plasticizing effect is hardly obtained. If it exceeds 70 parts by weight, mechanical properties (breaking strength, tearing strength, etc.) are reduced and bleeding is caused.
- the aromatic cyclic phosphazene-based flame retardant (D) has good compatibility with the polylactic acid (A), and thus may inhibit the crystal formation of the polylactic acid (A). In the addition amount range, there is almost no influence on the crystal formation of polylactic acid (A), and it does not inhibit the heat resistance imparted to the film or sheet of the present invention.
- the resin composition of the present invention may contain other crystallization accelerator (E) in addition to the tetrafluoroethylene-based polymer (C).
- the crystallization accelerator (E) is not particularly limited as long as the effect of promoting crystallization is recognized, but a substance having a crystal structure having a face spacing close to the face spacing of the crystal lattice of polylactic acid (A). It is desirable to choose. This is because a substance having a crystal lattice spacing close to that of polylactic acid (A) is more effective as a crystal nucleating agent for polylactic acid (A).
- crystallization accelerator (E) examples include organic substances such as melamine polyphosphate, melamine cyanurate, zinc phenylphosphonate, calcium phenylphosphonate, magnesium phenylphosphonate, talc of inorganic substances, and clay. Etc. Among them, zinc phenylphosphonate is most preferable because the plane spacing is most similar to the plane spacing of polylactic acid (A) and a good crystallization promoting effect is obtained.
- a commercial item can be used for the crystallization accelerator (E).
- a commercially available product of zinc phenylphosphonate includes “Eco Promote” manufactured by Nissan Chemical Industries, Ltd.
- the content of the crystallization accelerator (E) is usually 0.1 to 5.0 parts by weight with respect to 100 parts by weight of the polylactic acid (A), from the viewpoint of better crystallization promoting effect and maintaining the degree of biomass.
- the amount is preferably 0.3 to 3.0 parts by weight.
- the content is less than 0.1 parts by weight, it is difficult to obtain the effect of promoting crystallization.
- the content exceeds 5.0 parts by weight, the effect according to the amount added cannot be obtained, and a decrease in the degree of biomass is a problem. It becomes.
- the polylactic acid (A) -containing resin composition may contain various additives as necessary within the range not impairing the object of the present invention.
- additives include known antioxidants, ultraviolet absorbers, plasticizers, stabilizers, mold release agents, antistatic agents, coloring agents, and anti-drip agents.
- the flame retardancy of the film or sheet of the present invention is evaluated by conducting a flammability test in accordance with the UL94 VTM test (thin material vertical flammability test) method, and VTM-0, VTM-1, VTM-2, NOTVTM. This is done by categorizing by category. Refer to “Safety Standard UL94 Flammability Test for Plastic Materials for Parts of Equipment, Fifth Edition” (Underwriters Laboratories Inc.) for classification by category.
- the film or sheet of the present invention is preferably classified as VTM-0 in the above test, that is, satisfies the UL94 VTM-0 standard.
- the tear strength of the film or sheet of the present invention is measured according to “Paper—Tear Strength Test Method—Elmendorf Tear Test Method” described in JISP8116.
- the film or sheet of the present invention preferably has a tear strength of 2.7 N / mm or more. More preferably, the film or sheet of the present invention has a thickness of 10 to 500 ⁇ m, flame retardancy satisfies UL94 VTM-0 standard, and tear strength of 2.7 N / mm or more.
- the film or sheet of the present invention having flame retardancy satisfying UL94 VTM-0 standard and having a tear strength of 2.7 N / mm or more comprises polylactic acid (A), acidic functional group-modified olefin polymer (B), This can be realized by setting the contents of the tetrafluoroethylene-based polymer (C) and the aromatic cyclic phosphazene-based flame retardant (D) within the ranges specified in the present invention.
- the heat deformation rate of the film or sheet of the present invention is measured according to the heat deformation test method described in JISC3005.
- the film or sheet of the present invention preferably has a deformation rate of 40% or less when a 10 N load is applied for 30 minutes in a 120 ° C. temperature atmosphere.
- the relative crystallization rate of the film or sheet of the present invention is determined by DSC.
- Relative crystallization rate (%) ( ⁇ Hm ⁇ Hc) / ⁇ Hm ⁇ 100 (1)
- the film or sheet of the present invention preferably has a relative crystallization rate of 50% or more. More preferably, according to the heating test method of JISC3005, the film or sheet of the present invention has a deformation rate of 40% or less when a load of 10 N is applied for 30 minutes in a temperature atmosphere of 120 ° C., The relative crystallization rate obtained by the formula (1) is 50% or more.
- the film or sheet of the present invention having such a deformation rate of 40% or less and a relative crystallization rate of 50% or more includes polylactic acid (A), acidic functional group-modified olefin polymer (B), and tetrafluoroethylene polymer.
- the method includes forming a polylactic acid (A) -containing resin composition by a melt film formation method, and the temperature of the resin composition at the time of melt film formation is such that the resin composition
- the resin composition which is a temperature between the crystallization temperature (Tc) + 15 ° C.
- the temperature of the resin composition is between the crystallization temperature (Tc) -25 ° C. and the crystallization temperature (Tc) + 10 ° C. [preferably, the crystallization temperature (Tc) ⁇ 10 ° C.]
- the film or sheet of the present invention can be used for the same use as a generally used film or sheet, but can be particularly suitably used as a base material for an adhesive film or sheet.
- the method for producing the film or sheet of the present invention is not particularly limited, and a method of forming a polylactic acid (A) -containing resin composition by a melt film forming method is preferable.
- the film or sheet of the present invention is a polylactic acid in which each component is uniformly dispersed by a continuous melt kneader such as a twin screw extruder or a batch type melt kneader such as a pressure kneader, a Banbury mixer, or a roll kneader.
- the resin composition can be prepared by producing a film and cooling and solidifying it by an extrusion method such as a T-die method or an inflation method, a calendar method, a polishing method, or the like.
- Such a melt film formation method is preferably a method in which a molten resin composition is formed into a desired thickness by passing through a gap between two metal rolls, and particularly preferably a calendar method. This is a polishing method.
- the thickness of the film or sheet of the present invention is appropriately adjusted depending on the application, but is usually 10 to 500 ⁇ m, preferably 20 to 400 ⁇ m, particularly preferably 30 to 300 ⁇ m.
- the temperature of the resin composition at the time of melt film formation is not particularly limited, but the crystallization temperature ( A temperature between Tc) + 15 ° C. and a melting temperature (Tm) ⁇ 5 ° C. in the temperature raising process is preferable.
- Tc crystallization temperature
- Tm melting temperature
- the temperature of the resin composition at the time of calender roll rolling is changed from the crystallization temperature (Tc) + 15 ° C. in the temperature lowering process of the resin composition.
- the melting temperature (Tm) in the temperature raising process is set to a temperature between -5 ° C.
- Tm melting temperature
- oriented crystallization is promoted.
- This effect of promoting orientation crystallization is markedly improved when the resin composition contains the tetrafluoroethylene-based polymer (C). It is considered that the tetrafluoroethylene-based polymer (C) promotes oriented crystallization by fibrillating and networking in the resin composition and a synergistic effect of its effect as a crystal nucleating agent. Therefore, by rolling in the above temperature range, the film or sheet of the present invention can obtain good heat resistance due to the effect of promoting orientation crystallization as well as a smooth surface state.
- the method for producing a polylactic acid film or sheet of the present invention further comprises a step of controlling the temperature conditions after melt film formation in order to make the crystallization promoting effect of the tetrafluoroethylene polymer (C) more effective. It may be. Specifically, the melt-formed resin composition is heated at a temperature between the crystallization temperature (Tc) ⁇ 25 ° C. and the crystallization temperature (Tc) + 10 ° C. Preferably, it may be cooled and solidified after a step of promoting crystallization by holding at a crystallization temperature (Tc) ⁇ 10 ° C. (hereinafter sometimes simply referred to as “crystallization promotion step”). Good.
- the crystallization promotion step refers to the resin composition that has been melt-deposited from a temperature of crystallization temperature (Tc) of ⁇ 25 ° C. in the temperature lowering process of the resin composition to a temperature of crystallization temperature (Tc) + 10 ° C.
- the resin composition is crystallized while maintaining a smooth surface state after the melt film formation, in which the temperature is controlled to a temperature in the range [preferably, crystallization temperature (Tc) ⁇ 10 ° C.].
- the temperature control method is not particularly limited, and examples thereof include a method in which the resin composition that has been melt-formed is brought into direct contact with a roll or belt that can be heated to a predetermined temperature.
- the time for the crystallization promoting step is preferably as long as possible, and ultimately depends on the degree of crystallization of the resin composition, and thus cannot be specified in general, but usually 2 to 10 seconds, preferably 3 to 8 Seconds.
- the crystallization temperature (Tc) in the temperature-decreasing process of the resin composition changes due to addition of another crystal nucleating agent, etc.
- measurement is performed in advance by DSC, and crystallization in the temperature-decreasing process is performed.
- the maximum temperature of the exothermic peak accompanying the above it is possible to always obtain the optimum temperature condition for the crystallization promotion process.
- the shape change of the film or sheet obtained by heating at the temperature hardly needs to be considered, but it is preferably a temperature at which the heat deformation rate of the obtained film or sheet is 40% or less. .
- the method for producing the polylactic acid film or sheet of the present invention is preferably a method comprising forming a polylactic acid (A) -containing resin composition by a melt film formation method,
- the temperature of the resin composition at the time of melt film formation is between the crystallization temperature (Tc) + 15 ° C. in the temperature lowering process of the resin composition and the melting temperature (Tm) ⁇ 5 ° C. in the temperature rising process.
- Temperature, and / or The resin composition that has been melt-formed has a crystallization temperature (Tc) in the process of lowering the temperature of the resin composition of ⁇ 25 ° C. to a crystallization temperature (Tc) + 10 ° C. [preferably, crystallization It is a method characterized by cooling and solidifying after a crystallization promoting step at a temperature (Tc) ⁇ 10 ° C.].
- the highly crystallized film or sheet of the present invention formed by the above manufacturing method can maintain the shape up to the vicinity of the melting point of polylactic acid, and can be used sufficiently even in applications requiring heat resistance that could not be used so far. Is possible. Furthermore, since the inefficient process of heating once again after cooling and solidification is not required, the above manufacturing method can be said to be a very useful method in terms of economy and productivity.
- FIG. 1 shows a schematic diagram of a calendar film forming machine of one embodiment used in such a manufacturing method. In the following, FIG. 1 will be described in detail.
- the resin composition in a molten state is rolled between four calender rolls, ie, the first roll (1), the second roll (2), the third roll (3), and the fourth roll (4), and gradually thinned. It is prepared to have a desired thickness when it finally passes between the third roll (3) and the fourth roll (4).
- film formation of the resin composition in the first to fourth rolls (1) to (4) corresponds to a “melt film formation step”.
- the temperature of the resin composition in the process of lowering the temperature is between crystallization temperature (Tc) -25 ° C. and crystallization temperature (Tc) + 10 ° C. [preferably, crystallization temperature (Tc) ⁇ 10 ° C.].
- the set take-off roll (5) indicates a roll group to which the resin composition (8) that has been melt-deposited first contacts, and is composed of one or two (three in FIG. 1) roll groups. And it plays the role which peels this resin composition (8) of a molten state from a 4th roll (4).
- the take-off roll (5) is composed of a plurality of rolls and the temperature of each roll can be adjusted, the temperature of each roll is preferably the same, but within the desired temperature range. It may be different. The larger the number of take-off rolls (5), the longer the isothermal crystallization time is, and it is advantageous for promoting crystallization.
- FIG. 2 shows a schematic diagram of a polishing film forming machine of one embodiment used in such a manufacturing method.
- An extruder tip (10) of an extruder (not shown) is disposed between the heated second roll (2) and third roll (3), and the second roll is set at a preset extrusion speed.
- the molten resin composition (8) is continuously extruded between (2) and the third roll (3).
- the extruded resin composition (8) is rolled and thinned between the second roll (2) and the third roll (3), and finally the third roll (3) and the fourth roll (4). It is prepared to have a desired thickness when passing between them.
- film formation of the resin composition (8) on the second to fourth rolls (2) to (4) corresponds to a “melt film formation step”. Thereafter, a temperature between the crystallization temperature (Tc) -25 ° C. in the temperature lowering process of the resin composition (8) and the crystallization temperature (Tc) + 10 ° C. [Preferably, the crystallization temperature (Tc) ⁇ 10 It passes through the three take-off rolls (5) set to [° C.] and finally passes through the cooling rolls (6) and (7) to produce a solidified film or sheet. In the case of polishing film formation, the step of passing through the take-off roll (5) corresponds to the “crystallization promotion step”.
- Example 1 After preparing a resin composition in which the above raw materials are blended at the blending ratios shown in Table 1 below, melt-kneading with a Banbury mixer, calendering so that the thickness is 100 ⁇ m with an inverted L-shaped four-calender. Membrane was performed. Next, as shown in FIG. 1, immediately after the melt film formation step, three rolls (take-off rolls) that can be heated to an arbitrary temperature are arranged so that the melt-formed resin composition can pass alternately up and down. By doing so, it was set as the crystallization promotion process. Thereafter, the resin composition was solidified by passing through a cooling roll to prepare a film.
- the temperature of the resin composition at the time of melt film formation is regarded as the surface temperature of the roll corresponding to the fourth roll (4) in FIG. 1, and the temperature of the resin composition in the crystallization promoting step is the three take-offs in FIG.
- the surface temperature of the roll (5) was made substantially the same, and the temperature was taken as the crystallization acceleration temperature.
- the film formation rate was 5 m / min, and the substantial crystallization promotion step time (take-off roll passage time) was about 5 seconds.
- Examples 2 to 9 Resin compositions were prepared at the blending ratios shown in Table 1 below, and films of Examples 2 to 9 were prepared in the same manner as in Example 1.
- Comparative Examples 1-5 Resin compositions were prepared at the blending ratios shown in Table 1 below, and films of Comparative Examples 1 to 5 were prepared in the same manner as in Example 1.
- Tm melting temperature
- ⁇ Crystalization temperature> The temperature at the peak top of the exothermic peak accompanying the crystallization of the resin composition after film formation, measured by DSC, during the temperature lowering process from 200 ° C. was defined as the crystallization temperature (Tc; also referred to as crystallization peak temperature). .
- Relative crystallization rate It calculated using the following formula
- heat amount (DELTA) Hm accompanying subsequent melting. Note that Comparative Example 2 was not measured because it did not peel off. Relative crystallization rate (%) ( ⁇ Hm ⁇ Hc) / ⁇ Hm ⁇ 100 (1)
- the DSC and measurement conditions used in the measurement of melting temperature, crystallization temperature, and relative crystallization rate are as follows. Apparatus: DSC6220 manufactured by SII Nano Technology Co., Ltd. Conditions: Measurement temperature range 20 ° C. ⁇ 200 ° C. ⁇ 0 ° C. ⁇ 200 ° C. (That is, first, in the temperature rising process from 20 ° C. to 200 ° C., measurement is performed in the temperature lowering process from 200 ° C. to 0 ° C., and finally in the temperature rising process from 0 ° C. to 200 ° C.
- Heat deformation rate It measured according to the heat deformation test method of JISC3005.
- T Tear strength (N / mm)
- p Number of test specimens to be used as a reference for the scale of the pendulum (16 in this apparatus)
- n number of test pieces torn simultaneously
- t average thickness (mm) per test piece
- Acceptance / rejection determination A product having a measured value (2.7 N / mm) or more of Comparative Example 1 which is a flame retardant-free product is accepted.
- Table 2 and Table 3 show the evaluation results of Examples 1 to 9 and Comparative Examples 1 to 5, respectively.
- Examples 1 to 9 according to the present invention were all excellent in flame retardancy and high in tear strength. Further, it was confirmed that Examples 1 to 5, 7 and 8 had a high relative crystallization rate and suppressed the heat deformation rate. In Examples 1 to 5, both the peelability and the film surface state were good, and no plate-out to the roll occurred. On the other hand, in Comparative Examples 1 to 5 which are not components or blending ratios according to the present invention, films satisfying all of the desired flame retardancy and tear strength were not obtained, and the overall pass / fail judgment was x.
- Comparative Example 4 in which an aromatic-aliphatic cyclic phosphazene-based flame retardant was added, the resin composition caused a decrease in molecular weight due to hydrolysis during melt film formation, so the melt tension was not improved and the peelability was poor. Moreover, the tear strength also decreased due to the decrease in the molecular weight.
- Comparative Example 3 which is a tetrafluoroethylene-based polymer (C) non-added product, the melt tension of the resin composition was not improved at the time of melt film formation, so the peelability was poor. Moreover, since the crystallization promoting effect was not improved, sufficient heat resistance could not be obtained. Further, since Comparative Example 3 did not have a drip prevention effect, the drip during the flame retardancy test was not prevented, and the flame retardancy was VTM-2.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Biological Depolymerization Polymers (AREA)
Abstract
Description
しかし、ポリ乳酸は、それ自体燃焼し易いため、電気・電子用途など、難燃性が必要な部材には使用することが困難であった。また、ポリ乳酸は、結晶化速度が遅く、通常の成膜手段では殆ど結晶化しないため、例えば、ポリ乳酸を含有する樹脂組成物からなるフィルムは、ポリ乳酸のガラス転移温度である60℃程度以上では熱変形を起こし、フィルム形状を保持できないといった耐熱性の問題を有していた。
例えば、ポリ乳酸樹脂とポリカーボネート樹脂等の耐熱性高分子との混合物に、リン系や窒素系の難燃剤を添加することにより、難燃性及び耐熱性を付与する方法が提案されている(特許文献1及び2)。また、ポリ乳酸樹脂と非晶性樹脂又は低結晶性樹脂との混合物に難燃剤を添加した樹脂組成物を、射出成形中あるいは成形後に、特定の温度で熱処理することで、ポリ乳酸樹脂を高結晶化させることにより、難燃性及び耐熱性を付与する方法が提案されている(特許文献3)。
また、ポリ乳酸を含有する樹脂組成物を、金属ロールを用いてフィルム又はシートに溶融成膜する場合、該樹脂組成物のロール剥離性が不良であるために、金属ロールに粘着してフィルム又はシート化し難いことも問題であった。
例えば、ポリ乳酸樹脂を溶融押出法等でシート化した後に、二軸延伸して延伸配向結晶化を促進する方法が提案されている(特許文献4)。しかし、この方法では延伸時の内部応力のため、使用温度が高くなると熱収縮が非常に大きくなるという欠点がある。そのため、実際に使用できる温度はせいぜい100℃程度までとなる。
また、結晶核剤を添加して結晶化させる方法については、一般的なフィルム成形ではフィルムの形状を保持するために溶融成膜後すぐにガラス転移温度以下まで冷却を行うため、またフィルムが薄いこともあり、冷却速度が速くなり、結晶核剤の効果が得られ難いことが問題であった。当該問題については、フィルム成形後の工程で、60~100℃の加熱工程を設けることで、結晶化を促進する方法が提案されている(特許文献5)。しかし、この方法では一度冷却固化した後に、再度加熱するため、非効率であった。
酸性官能基を含み、その酸価が10~70mgKOH/gであり、かつ、重量平均分子量が10,000~80,000である、酸性官能基変性オレフィン系ポリマー(B)、
テトラフルオロエチレン系ポリマー(C)、及び、
下記一般式(I)で表される化合物を含む芳香族環状ホスファゼン系難燃剤(D)を含有し、
芳香族環状ホスファゼン系難燃剤(D)の含有量が、ポリ乳酸(A)100重量部に対し、10~70重量部である樹脂組成物(以下、ポリ乳酸(A)含有樹脂組成物と略記する場合がある)からなるフィルム又はシート(以下、本発明のフィルム又はシートと略記する場合がある)。
A1及びA2は、各々独立して、1~4個の炭素数1~4のアルキル基で置換されていてもよい炭素数6~10のアリール基を示し;
nは3~6の整数を示す。)
[2]酸性官能基変性オレフィン系ポリマー(B)に含まれる酸性官能基が、カルボン酸無水物基である、前記[1]記載のフィルム又はシート。
[3]テトラフルオロエチレン系ポリマー(C)の含有量が、ポリ乳酸(A)100重量部に対し、0.5~15.0重量部である、前記[1]又は[2]記載のフィルム又はシート。
[4]酸性官能基変性オレフィン系ポリマー(B)の含有量が、ポリ乳酸(A)100重量部に対し、0.1~10.0重量部である、前記[1]~[3]のいずれかに記載のフィルム又はシート。
[5]樹脂組成物が、さらに結晶化促進剤(E)を含有し、
結晶化促進剤(E)の含有量が、ポリ乳酸(A)100重量部に対し、0.1~5.0重量部である、前記[1]~[4]のいずれかに記載のフィルム又はシート。
[6]厚さ10~500μmであり、難燃性がUL94 VTM-0規格を満足し、かつ、引裂強度が2.7N/mm以上であることを特徴とする、前記[1]~[5]のいずれかに記載のフィルム又はシート。
[7]JISC3005の加熱変形試験方法に準じて、120℃の温度雰囲気下で30分間、10Nの荷重を加えたときの変形率が、40%以下であり、
下記式(1)で求められる相対結晶化率が50%以上であることを特徴とする、前記[1]~[6]のいずれかに記載のフィルム又はシート。
相対結晶化率(%)=(ΔHm-ΔHc)/ΔHm×100 (1)
(式中、ΔHcは成膜後のフィルム又はシートサンプルの昇温過程での結晶化に伴う発熱ピークの熱量を示し、ΔHmは融解に伴う熱量を示す。)
[8]樹脂組成物を溶融成膜法により成膜することを含む、前記[1]~[7]のいずれかに記載のフィルム又はシートの製造方法であって、
溶融成膜時の該樹脂組成物の温度が、該樹脂組成物の降温過程での結晶化温度(Tc)+15℃の温度から、昇温過程での融解温度(Tm)-5℃の間の温度であるか、又は、
溶融成膜された該樹脂組成物が、該樹脂組成物の降温過程での結晶化温度(Tc)-25℃の温度から結晶化温度(Tc)+10℃の間の温度における結晶化促進工程を経てから冷却固化されることを特徴とする、フィルム又はシートの製造方法。
[9]樹脂組成物を溶融成膜法により成膜することを含む、前記[1]~[7]のいずれかに記載のフィルム又はシートの製造方法であって、
溶融成膜時の該樹脂組成物の温度が、該樹脂組成物の降温過程での結晶化温度(Tc)+15℃の温度から、昇温過程での融解温度(Tm)-5℃の間の温度であり、かつ、
溶融成膜された該樹脂組成物が、該樹脂組成物の降温過程での結晶化温度(Tc)-25℃の温度から結晶化温度(Tc)+10℃の間の温度における結晶化促進工程を経てから冷却固化されることを特徴とする、フィルム又はシートの製造方法。
[10]溶融成膜法が、溶融状態の樹脂組成物が2本の金属ロール間の空隙を通過することで所望の厚さに成膜される手法である、前記[8]又は[9]に記載のフィルム又はシートの製造方法。
[11]結晶化促進工程が、溶融成膜された樹脂組成物を、所定の表面温度の金属ロールと接触させることを特徴とする、前記[8]~[10]のいずれかに記載のフィルム又はシートの製造方法。
本発明のフィルム又はシートは、ポリ乳酸(A)、酸性官能基変性オレフィン系ポリマー(B)、テトラフルオロエチレン系ポリマー(C)及び芳香族環状ホスファゼン系難燃剤(D)を含有する樹脂組成物からなる。本発明のフィルム又はシートは、透明、半透明及び不透明のものを含む。
本発明のフィルム又はシートの厚さは特に制限されないが、通常、10~500μm、好ましくは、20~400μm、より好ましくは、30~300μmである。
ポリ乳酸の原料モノマーである乳酸は、不斉炭素原子を有するため、光学異性体のL体とD体とが存在する。本発明で使用するポリ乳酸(A)は、L体の乳酸を主成分とした重合物である。製造時に不純物として混入するD体の乳酸の含有量が少ないものほど、高結晶性で高融点の重合物となるため、できるだけL体純度の高いものを用いるのが好ましく、L体純度が95%以上のものを用いるのがより好ましい。また、本発明で使用するポリ乳酸(A)は、乳酸以外の他の共重合成分を含んでいてもよい。他のモノマー単位としては、エチレングリコール、ブロピレングリコール、ブタンジオール、ヘプタンジオール、ヘキサンジオール、オクタンジオール、ノナンジオール、デカンジオール、1,4-シクロヘキサンジメタノール、ネオペンチルグリコール、グリセリン、ペンタエリスリトール、ビスフェノ-ルA、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコールなどのグリコール化合物;シュウ酸、アジピン酸、セバシン酸、アゼライン酸、ドデカンジオン酸、マロン酸、グルタル酸、シクロヘキサンジカルボン酸、テレフタル酸、イソフタル酸、フタル酸、ナフタレンジカルボン酸、ビス(p-カルボキシフェニル)メタン、アントラセンジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、5-ナトリウムスルホイソフタル酸、5-テトラブチルホスホニウムイソフタル酸などのジカルボン酸;グリコール酸、ヒドロキシプロピオン酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸、ヒドロキシ安息香酸などのヒドロキシカルボン酸;カプロラクトン、バレロラクトン、プロピオラクトン、ウンデカラクトン、1,5-オキセパン-2-オンなどのラクトン類を挙げることができる。このような他の共重合成分は、全モノマー成分に対し、0~30モル%であることが好ましく、0~10モル%である
ことが好ましい。
カラム:TSKgel SuperHZM-H/HZ2000/HZ1000
カラムサイズ:4.6mmI.D.×150mm
溶離液:クロロホルム
流量:0.3ml/min
検出器:RI
カラム温度:40℃
注入量:10μl
本発明のフィルム又はシートの製造には、例えば、カレンダー成膜機等により、ポリ乳酸(A)含有樹脂組成物を溶融状態にし、金属ロール間の空隙を通過させて成膜することが必要であるため、かかる樹脂組成物は、金属ロール表面から容易に剥離できなくてはならない。本発明のフィルム又はシートに含有される酸性官能基変性オレフィン系ポリマー(B)は、ポリ乳酸(A)含有樹脂組成物に所望のロール滑性を付与する滑剤としての効果を有する。
酸性官能基変性オレフィン系ポリマー(B)の酸性官能基としては、例えば、カルボキシル基又はその誘導体基等が挙げられる。カルボキシル基の誘導体基とは、カルボキシル基から化学的に誘導されるものであって、例えば、カルボン酸の酸無水物基、エステル基、アミド基、イミド基、シアノ基等が挙げられる。好ましくは、カルボン酸無水物基である。
未変性ポリオレフィン系重合体としては、例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、ポリプロピレン、ポリブテン、ポリ-4-メチルペンテン-1、エチレンとα-オレフィンの共重合体、プロピレンとα-オレフィンの共重合体等のポリオレフィン類のポリマー又はそれらのオリゴマー類;エチレン-プロピレンゴム、エチレン-プロピレン-ジエン共重合体ゴム、ブチルゴム、ブタジエンゴム、低結晶性エチレン-プロピレン共重合体、プロピレン-ブテン共重合体、エチレン-ビニルエステル共重合体、エチレン-メチル(メタ)アクリレート共重合体、エチレン-エチル(メタ)アクリレート共重合体、エチレン-無水マレイン酸共重合体、ポリプロピレンとエチレン-プロピレンゴムのブレンド等のポリオレフィン系エラストマー類及びこれらの2種以上の混和物等が挙げられる。好ましくは、ポリプロピレン、プロピレンとα-オレフィンの共重合体、低密度ポリエチレン及びそれらのオリゴマー類であり、特に好ましくは、ポリプロピレン、プロピレンとα-オレフィンの共重合体及びそれらのオリゴマー類である。上記「オリゴマー類」としては、対応するポリマーから、熱分解による分子量減成法によって得られるもの等が挙げられる。かかるオリゴマー類は、重合法によっても得ることができる。
溶液法では、未変性ポリオレフィン系重合体及び酸性官能基含有不飽和化合物の混合物を有機過酸化物とともに有機溶媒に溶解し、加熱することにより、酸性官能基変性オレフィン系ポリマー(B)を得ることができる。反応温度は、好ましくは、110~170℃程度である。
溶融法では、未変性ポリオレフィン系重合体及び酸性官能基含有不飽和化合物の混合物を有機過酸化物と混合し、溶融混合して反応させることによって、酸性官能基変性オレフィン系ポリマー(B)を得ることができる。溶融混合は、押し出し機、プラベンダー、ニーダー、バンバリミキサー等の各種混合機で行うことができ、混練温度は通常、未変性ポリオレフィン系重合体の融点~300℃の温度範囲である。
本発明のフィルム又はシートに含有されるテトラフルオロエチレン系ポリマー(C)は、ポリ乳酸(A)含有樹脂組成物の溶融張力を向上させ、溶融成膜過程の流動場での配向結晶化を可能にすることで、ポリ乳酸(A)の結晶化を促進することができる。また、テトラフルオロエチレン系ポリマー(C)はポリ乳酸(A)の結晶核剤としての効果を持ち合わせることから、成膜直後の樹脂組成物の温度を結晶化温度付近に設定することで、ポリ乳酸(A)の結晶化をさらに促進することができる。よって、テトラフルオロエチレン系ポリマー(C)は、ポリ乳酸(A)の結晶化を促進することにより、本発明のフィルム又はシートに耐熱性を付与することが可能である。さらに、テトラフルオロエチレン系ポリマー(C)は、後述の本発明のフィルム又はシートの難燃性評価時のドリップ防止にも有効である。
テトラフルオロエチレン系ポリマー(C)の重量平均分子量は特に制限されず、通常100万~1000万、好ましくは200万~800万である。
テトラフルオロエチレン系ポリマー(C)は、市販品を用いてもよく、例えば、ポリテトラフルオロエチレンの市販品としては、旭硝子株式会社製の「フルオンCD-014」、「フルオンCD-1」、「フルオンCD-145」等が挙げられる。アクリル変性ポリテトラフルオロエチレンの市販品としては、例えば、三菱レイヨン株式会社製の、メタブレン(登録商標)Aシリーズ(「メタブレンA-3000」、「メタブレンA-3800」等)が挙げられる。
本発明のフィルム又はシートに含有される芳香族環状ホスファゼン系難燃剤(D)は、ポリ乳酸(A)を含有する樹脂組成物に所望の難燃性を付与する難燃剤としての効果を有する。芳香族環状ホスファゼン系難燃剤(D)は、下記一般式(I)で表される化合物を含む。
A1及びA2は、各々独立して、1~4個の炭素数1~4のアルキル基で置換されていてもよい炭素数6~10のアリール基を示し;
nは3~6の整数を示す。)
A1又はA2で示される「1~4個の炭素数1~4のアルキル基で置換されていてもよい炭素数6~10のアリール基」の「炭素数6~10のアリール基」とは、炭素数6~10の芳香族炭化水素基を意味し、例えば、フェニル基、ナフチル基(例、1-ナフチル基、2-ナフチル基)等が挙げられ、好ましくは、フェニル基である。
該「炭素数6~10のアリール基」は、同一又は異なった1~4個の炭素数1~4のアルキル基で置換されていてもよい。
ここで、「炭素数1~4のアルキル基」とは、炭素数1~4の直鎖または分枝鎖状の飽和炭化水素基を意味し、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基等が挙げられる。化合物中のリン及び窒素の含有量が低下すると難燃効果が低減し、ポリ乳酸(A)との相溶性も低下するため、好ましくは炭素数1~3のアルキル基であり、特に好ましくはメチル基である。
A1及びA2は、化合物中のリン及び窒素の含有量を担保する観点から、好ましくは、無置換の、又は1~4個(好ましくは1~3個、より好ましくは1個)の炭素数1~4のアルキル基(好ましくは炭素数1~3のアルキル基、特に好ましくは、メチル基)で置換されていてもよいフェニル基であり、特に好ましくは、フェニル基、トリル基(o-トリル基、p-トリル基、m-トリル基)である。
A1及びA2は各々3~6個存在し、各々のA1及びA2は同一でも異なっていてもよく、同一であることが好ましい。
また、A1及びA2は、同一でも異なっていてもよく、同一であることが好ましい。
X1及びX2は、各々独立して、炭素数1~4のアルキル基を示し;
m1及びm2は、各々独立して、0~4の整数を示し;
nは上記と同意義を示す。)
m1及びm2は、各々独立して、好ましくは0~3の整数であり、より好ましくは0又は1である。
X1及びX2は各々3~6個存在し、各々のX1及びX2は同一でも異なっていてもよく、同一であることが好ましい。
また、X1及びX2は、同一でも異なっていてもよく、同一であることが好ましい。
A1及びA2が、各々独立して、1~3個の炭素数1~3のアルキル基で置換されていてもよい炭素数6~10のアリール基[好ましくは、フェニル基、トリル基(o-トリル基、p-トリル基、m-トリル基)]であり;
nが、3~5の整数(好ましくは、3)
である化合物である。
また、芳香族環状ホスファゼン系難燃剤(D)は、ポリ乳酸(A)含有樹脂組成物を溶融混練する温度範囲で溶融し、ポリ乳酸(A)との相溶性が良好であるため、多量に配合された場合であっても、ポリ乳酸(A)本来の機械物性(破断強度、引裂強度等)の低下を引き起こしにくい。また、芳香族環状ホスファゼン系難燃剤(D)は、ポリ乳酸(A)との相溶性が良好であるため、ポリ乳酸(A)の脆性を改善する可塑化効果をも有し、成膜後のブリードアウトを抑制する効果も有する。
芳香族環状ホスファゼン系難燃剤(D)は、ポリ乳酸(A)と相溶性が良いため、ポリ乳酸(A)の結晶形成を阻害する可能性もあるが、難燃性付与に必要な上記の添加量範囲では、ポリ乳酸(A)の結晶形成に殆ど影響はなく、本発明のフィルム又はシートへの耐熱性の付与を阻害するものではない。
本発明の樹脂組成物は、テトラフルオロエチレン系ポリマー(C)以外に、他の結晶化促進剤(E)を含んでもよい。結晶化促進剤(E)は、結晶化促進の効果が認められるものであれば、特に限定されないが、ポリ乳酸(A)の結晶格子の面間隔に近い面間隔を持つ結晶構造を有する物質を選択することが望ましい。結晶格子の面間隔がポリ乳酸(A)の結晶格子の面間隔に近い物質ほど、ポリ乳酸(A)の結晶核剤としての効果が高いからである。そのような結晶化促進剤(E)としては、例えば、有機系物質であるポリリン酸メラミン、メラミンシアヌレート、フェニルホスホン酸亜鉛、フェニルホスホン酸カルシウム、フェニルホスホン酸マグネシウム、無機系物質のタルク、クレー等が挙げられる。中でも、最も面間隔がポリ乳酸(A)の面間隔に類似し、良好な結晶化促進効果が得られるフェニルホスホン酸亜鉛が好ましい。
結晶化促進剤(E)は、市販品を用いることができる。例えば、フェニルホスホン酸亜鉛の市販品としては、日産化学工業株式会社製の「エコプロモート」等が挙げられる。
本発明のフィルム又はシートは、上記試験においてVTM-0に分類される、すなわち、UL94 VTM-0規格を満たすことが好ましい。
本発明のフィルム又はシートは、引裂強度が2.7N/mm以上であることが好ましい。
より好ましくは、本発明のフィルム又はシートは、厚さ10~500μmであり、難燃性がUL94 VTM-0規格を満足し、かつ、引裂強度が2.7N/mm以上である。
難燃性がUL94 VTM-0規格を満足し、かつ、引裂強度2.7N/mm以上である本発明のフィルム又はシートは、ポリ乳酸(A)、酸性官能基変性オレフィン系ポリマー(B)、テトラフルオロエチレン系ポリマー(C)及び芳香族環状ホスファゼン系難燃剤(D)の含有量をそれぞれ本発明で規定する範囲内にすることで実現できる。特に、難燃剤として芳香族環状ホスファゼン系難燃剤(D)を用い、その含有量を本発明で規定する範囲内にすることが重要である。
本発明のフィルム又はシートは、120℃の温度雰囲気下で30分間、10Nの荷重を加えたときの変形率が40%以下であることが好ましい。
相対結晶化率(%)=(ΔHm-ΔHc)/ΔHm×100 (1)
より好ましくは、本発明のフィルム又はシートは、JISC3005の加熱試験方法に準じて、120℃の温度雰囲気下で、30分間、10Nの荷重を加えたときの変形率が40%以下であり、上記式(1)で求められる相対結晶化率が50%以上である。
かかる変形率が40%以下であり、相対結晶化率が50%以上である本発明のフィルム又はシートは、ポリ乳酸(A)、酸性官能基変性オレフィン系ポリマー(B)、テトラフルオロエチレン系ポリマー(C)及び芳香族環状ホスファゼン系難燃剤(D)の含有量をそれぞれ本発明で規定する範囲内にすることで実現できる。特に、テトラフルオロエチレン系ポリマー(C)を含有し、その含有量を本発明で規定する範囲内にすることが重要であり、さらに結晶促進剤(E)を本発明で規定する範囲内で含有させることでも実現が容易となる。
また、その製造方法として、ポリ乳酸(A)含有樹脂組成物を溶融成膜法により成膜することを含む方法であって、溶融成膜時の該樹脂組成物の温度が、該樹脂組成物の降温過程での結晶化温度(Tc)+15℃の温度から、昇温過程での融解温度(Tm)-5℃の間の温度であるか、又は/かつ、溶融成膜された該樹脂組成物が、該樹脂組成物の降温過程での結晶化温度(Tc)-25℃の温度から結晶化温度(Tc)+10℃の間の温度[好ましくは、結晶化温度(Tc)±10℃]における結晶化促進工程を経てから冷却固化されることを特徴とする製造方法(後述)を用いることで、さらに実現が容易となる。
本発明のフィルム又はシートの厚さはその用途に応じ、適宜調整されるが、通常10~500μm、好ましくは20~400μm、特に好ましくは30~300μmである。
例えば、該樹脂組成物をカレンダー法により溶融成膜する場合は、カレンダーロール圧延時の該樹脂組成物の温度を、該樹脂組成物の降温過程での結晶化温度(Tc)+15℃の温度から昇温過程での融解温度(Tm)-5℃の間の温度に設定する。このように融点以下の温度で圧延することにより、配向結晶化が促進される。この配向結晶化促進効果は、該樹脂組成物がテトラフルオロエチレン系ポリマー(C)を含有することにより格段に向上する。テトラフルオロエチレン系ポリマー(C)は、該樹脂組成物中でフィブリル化し、ネットワーク化すること、及びその結晶核剤としての効果の相乗効果により、配向結晶化を促進すると考えられる。従って、上記温度範囲で圧延することにより、本発明のフィルム又はシートは、平滑な表面状態とともに、配向結晶化促進効果により、良好な耐熱性を得ることができる。
特に、所定の温度に常に制御する観点から、溶融成膜された該樹脂組成物を、所定の表面温度の金属ロールと接触させることが望ましい。従って、当該工程においても、ポリ乳酸(A)含有樹脂組成物を金属ロールから簡単に剥離できる組成にすることが望ましく、この観点からも上述の酸性官能基変性オレフィン系ポリマー(B)の添加が必要となる。
溶融成膜時の該樹脂組成物の温度が、該樹脂組成物の降温過程での結晶化温度(Tc)+15℃の温度から、昇温過程での融解温度(Tm)-5℃の間の温度であるか、又は/かつ、
溶融成膜された該樹脂組成物が、該樹脂組成物の降温過程での結晶化温度(Tc)-25℃の温度から結晶化温度(Tc)+10℃の間の温度[好ましくは、結晶化温度(Tc)±10℃]における結晶化促進工程を経てから冷却固化されることを特徴とする方法である。
さらに、一度冷却固化した後に再度加熱するといった非効率な工程が不要となるため、上記製造方法は、経済性、生産性の面でも非常に有用な手法といえる。
図1に、かかる製造方法に用いられる一実施形態のカレンダー成膜機の模式図を示す。以下に、図1を詳細に説明する。
第1ロール(1)、第2ロール(2)、第3ロール(3)、第4ロール(4)という、4本のカレンダーロール間で溶融状態の樹脂組成物を圧延して徐々に薄くしていき、最終的に第3ロール(3)と第4ロール(4)の間を通過した時に所望の厚さになるよう調製される。カレンダー成膜の場合、第1~第4ロール(1)~(4)における樹脂組成物の成膜が「溶融成膜工程」に相当する。また、該樹脂組成物の降温過程での結晶化温度(Tc)-25℃の温度から結晶化温度(Tc)+10℃の間の温度[好ましくは、結晶化温度(Tc)±10℃]に設定したテイクオフロール(5)は、溶融成膜された該樹脂組成物(8)が最初に接触するロール群を示し、1つまたは2つ以上(図1では3本)のロール群で構成され、第4ロール(4)から溶融状態の該樹脂組成物(8)を剥離する役割を果たす。このように、テイクオフロール(5)が複数のロールから構成され、各々のロールの温度調節が可能である場合、各々のロールの温度は同じであることが好ましいが、所望の温度範囲内であれば、異なっていても良い。テイクオフロール(5)の本数は多いほうが、等温結晶化時間が長くなり、結晶化を促進するのに有利である。カレンダー成膜の場合、テイクオフロール(5)において、溶融成膜された該樹脂組成物(8)の結晶化が促進されるので、該樹脂組成物(8)がテイクオフロール(5)を通過する工程が「結晶化促進工程」に相当する。
二本の冷却ロール(6)および(7)は、それらの間に該樹脂組成物(8)を通過させることにより該樹脂組成物(8)を冷却し、固化させるとともにその表面を所望の形状に成形する役割を果たす。そのため、通常は一方のロール(例えば、冷却ロール(6))が金属ロールで、該樹脂組成物(8)の表面形状を出すためにロール表面がデザインされたものであり、他方のロール(例えば、冷却ロール(7))としてゴムロールが使用される。なお、図中の矢印はロールの回転方向を示す。
押出機(図示せず。)の押出機先端部(10)を、加熱した第2ロール(2)および第3ロール(3)の間に配置し、予め設定された押出し速度で、第2ロール(2)および第3ロール(3)の間に溶融状態の樹脂組成物(8)を連続的に押し出す。押し出された樹脂組成物(8)は、第2ロール(2)および第3ロール(3)の間で圧延されて薄くなり、最終的に第3ロール(3)と第4ロール(4)の間を通過した時に所望の厚さになるよう調製される。ポリッシング成膜の場合、第2~第4ロール(2)~(4)における樹脂組成物(8)の成膜が「溶融成膜工程」に相当する。その後、該樹脂組成物(8)の降温過程での結晶化温度(Tc)-25℃の温度から結晶化温度(Tc)+10℃の間の温度[好ましくは、結晶化温度(Tc)±10℃]に設定された3本のテイクオフロール(5)を通過し、最後に冷却ロール(6)および(7)を通過することで、固化したフィルム又はシートが作製される。ポリッシング成膜の場合、テイクオフロール(5)を通過する工程が「結晶化促進工程」に相当する。
A1:レイシアH-400(三井化学株式会社製)
B1:無水マレイン酸基変性ポリプロピレン(重量平均分子量=49,000、酸価=26mgKOH/g):ユーメックス1001(三洋化成工業株式会社製)
B2:無水マレイン酸基変性ポリプロピレン(重量平均分子量=32,000、酸価=52mgKOH/g):ユーメックス1010(三洋化成工業株式会社製)
(B1)成分及び(B2)成分との比較のため、以下の(B’)成分を検討した。
B’:未変性の低分子量ポリプロピレン(重量平均分子量=23,000、酸価=0mgKOH/g):ビスコール440P(三洋化成工業株式会社製)
C1:ポリテトラフルオロエチレン:フルオンCD-014(旭硝子社製)
C2:アクリル変性ポリテトラフルオロエチレン:メタブレンA-3000(三菱レイヨン株式会社製)
D1:2,2,4,4,6,6-ヘキサフェノキシシクロトリホスファゼン:ラビトル
FP-110(株式会社伏見製薬所製)
D2:2,4,6-トリフェノキシ-2,4,6-トリス(p-トリルオキシ)シクロトリホスファゼン:ラビトル FP-390(株式会社伏見製薬所製)
(D1)成分及び(D2)成分との比較のため、以下の(D’)成分を検討した。
D’:2,4,6-トリメトキシ-2,4,6-トリフェノキシシクロトリホスファゼン:ラビトル FP-200(株式会社伏見製薬所製)
E1:フェニルホスホン酸亜鉛:エコプロモート(日産化学工業株式会社製)
上記の原材料が下記表1に示す配合割合で配合された樹脂組成物を調製し、バンバリミキサーにて溶融混練を行った後、逆L型4本カレンダーにて厚さ100μmになるようにカレンダー成膜を行った。次に、図1のように溶融成膜工程の直後に、任意の温度に加熱可能なロール(テイクオフロール)を3本配し、溶融成膜された樹脂組成物が上下交互に通過できるようにすることで結晶化促進工程とした。その後に冷却ロールを通過することで樹脂組成物を固化し、フィルムを作成した。溶融成膜時の樹脂組成物の温度は、図1における第4ロール(4)に相当するロールの表面温度とみなし、結晶化促進工程における樹脂組成物の温度は、図1の3本のテイクオフロール(5)の表面温度を略同一とし、その温度を結晶化促進温度とした。成膜速度は5m/minとし、実質的な結晶化促進工程の時間(テイクオフロール通過時間)は約5秒間であった。
下記表1に示す配合割合で樹脂組成物を調製し、実施例1と同様の操作により実施例2~9のフィルムをそれぞれ作成した。
下記表1に示す配合割合で樹脂組成物を調製し、実施例1と同様の操作により比較例1~5のフィルムをそれぞれ作成した。
DSCにて測定した、成膜後の樹脂組成物の再昇温過程での融解に伴う吸熱ピークのトップ時の温度を融解温度(Tm;結晶融解ピーク温度ともいう)とした。
DSCにて測定した、成膜後の樹脂組成物の200℃からの降温過程での結晶化に伴う発熱ピークのピークトップ時の温度を結晶化温度(Tc;結晶化ピーク温度ともいう)とした。
(1)ロールへのプレートアウト: ロール表面の汚れを目視により評価し、ロール表面の汚れがない状態を「なし」、ロール表面の汚れがある状態を「あり」と判断した。また、一部にのみロール表面の汚れがある状態を「可」と判断した。
(2)剥離性: 図1の第4ロール(4)からの溶融成膜された樹脂組成物の剥離性により評価し、テイクオフロール(5)で引き取り可能である状態を「良好」、テイクオフロール(5)で引き取り不可である状態を「不良」と判断した。なお、比較例2は、剥離しなかった。
(3)フィルム面状態: 目視により評価し、フィルム表面に粗さがなく平滑である状態を「良好」、バンクマーク(樹脂の流れムラによる凹凸)やサメ肌、ピンホールがある状態を「不良」と判断した。また、バンクマークやサメ肌が目立たない程度にある状態を「可」と判断した。なお、比較例2については、剥離しなかったため、評価していない。
DSCにて測定した、成膜後のフィルムサンプルの昇温過程での結晶化に伴う発熱ピークの熱量ΔHcと、その後の融解に伴う熱量ΔHmから、以下の式(1)を用い算出した。なお、比較例2については、剥離しなかったため、測定をしていない。
相対結晶化率(%)=(ΔHm-ΔHc)/ΔHm×100 (1)
装置:エスアイアイ・ナノテクノロジー株式会社製 DSC6220
条件:測定温度域 20℃→200℃→0℃→200℃
(すなわち、まず20℃から200℃への昇温過程での測定に続けて、200℃から0℃への降温過程での測定を行い、最後に0℃から200℃への再昇温過程での測定を行った。)
昇温/降温速度:2℃/min
測定雰囲気:窒素雰囲気下(200ml/min)
なお、再昇温過程で、結晶化に伴う発熱ピークが無かったことから、2℃/minの昇温速度で結晶化可能領域が100%結晶化するものと判断し、相対結晶化率の算出式の妥当性を確認した。
JISC3005の加熱変形試験方法に準じ測定した。使用した測定装置及び測定条件は、以下のとおりである。
装置:テスター産業株式会社製 加熱変形試験機
条件:試料サイズ:厚さ1mm×幅25mm×長さ40mm(フィルムを総厚1mmに重ねた)
測定温度:120℃
荷重:10N
測定時間:30分(再結晶化を考慮し、エージングなしで試験開始)
加熱変形率算出方法:試験前の厚みT1と試験後の厚みT2を測定し、以下の式(2)を用い算出した。なお、比較例2については、剥離しなかったため、測定をしていない。
加熱変形率(%)=(T1-T2)/T1×100 (2)
JISP8116の紙-引裂強さ試験方法-エルメンドルフ形引裂試験機法に準じ測定した。使用した測定装置及び測定条件は、以下のとおりである。
装置:テスター産業株式会社製 エルメンドルフ形引裂試験機
条件:試料サイズ:厚さ1mm程度×幅76mm×長さ63mm(フィルムを総厚1mm程度になるように重ねた)
なお、長さ方向に平行な方向がフィルム成膜時の流れ方向(以下、MD方向という。)となるように切り出した。
引裂強度算出方法:以下の式(3)を用い算出した。なお、比較例2については、剥離しなかったため、測定をしていない。
T=(A×p)/(n×t×1000) (3)
A:目盛りの読み値(mN)
p:振子の目盛の基準となる試験片の重ね枚数(この装置では16)
n:同時に引き裂かれる試験片の枚数
t:試験片1枚あたりの平均厚さ(mm)
UL94のVTM試験方法(薄肉材料の垂直燃焼試験)に準じて測定した。なお、比較例2については、剥離しなかったため、測定をしていない。
合否判定:VTM-0規格を満足するものを合格とする。
総合的な評価結果として、引裂強度及び難燃性試験(UL-94 VTM)が合格基準を満たすものを○、さらに、その他の全ての評価結果が合格基準を満たすものを◎、引裂強度及び難燃性試験(UL-94 VTM)のうち一つでも合格基準を満たさないものは×、として合否判定を行った。
一方、本発明に係る成分又は配合割合でない比較例1~5では、所望の難燃性及び引裂強度を全て満足するフィルムが得られず、総合的な合否判定はいずれも×であった。
芳香族-脂肪族環状ホスファゼン系難燃剤を添加した比較例4は、溶融成膜時に樹脂組成物が加水分解による分子量低下を起こしたため、溶融張力が向上せず、剥離性が不良であった。また、かかる分子量低下が原因で、引裂強度も低下した。
テトラフルオロエチレン系ポリマー(C)未添加品である比較例3は、溶融成膜時に樹脂組成物の溶融張力が向上しなかったため、剥離性が不良であった。また、結晶化促進効果も向上しなかったため、十分な耐熱性が得られなかった。さらに、比較例3はドリップ防止効果を有しないことから、難燃性試験時のドリップが防止されず、難燃性はVTM-2であった。
2 第2ロール
3 第3ロール
4 第4ロール
5 テイクオフロール
6 冷却ロール
7 冷却ロール
8 樹脂組成物
9 バンク(樹脂だまり)
10 押出機先端部
Claims (11)
- ポリ乳酸(A)、
酸性官能基を含み、その酸価が10~70mgKOH/gであり、かつ、重量平均分子量が10,000~80,000である、酸性官能基変性オレフィン系ポリマー(B)、
テトラフルオロエチレン系ポリマー(C)、及び、
下記一般式(I)で表される化合物を含む芳香族環状ホスファゼン系難燃剤(D)を含有し、
芳香族環状ホスファゼン系難燃剤(D)の含有量が、ポリ乳酸(A)100重量部に対し、10~70重量部である樹脂組成物からなるフィルム又はシート。
A1及びA2は、各々独立して、1~4個の炭素数1~4のアルキル基で置換されていてもよい炭素数6~10のアリール基を示し;
nは3~6の整数を示す。) - 酸性官能基変性オレフィン系ポリマー(B)に含まれる酸性官能基が、カルボン酸無水物基である、請求項1記載のフィルム又はシート。
- テトラフルオロエチレン系ポリマー(C)の含有量が、ポリ乳酸(A)100重量部に対し、0.5~15.0重量部である、請求項1又は2記載のフィルム又はシート。
- 酸性官能基変性オレフィン系ポリマー(B)の含有量が、ポリ乳酸(A)100重量部に対し、0.1~10.0重量部である、請求項1~3のいずれか1項に記載のフィルム又はシート。
- 樹脂組成物が、さらに結晶化促進剤(E)を含有し、
結晶化促進剤(E)の含有量が、ポリ乳酸(A)100重量部に対し、0.1~5.0重量部である、請求項1~4のいずれか1項に記載のフィルム又はシート。 - 厚さ10~500μmであり、難燃性がUL94 VTM-0規格を満足し、かつ、引裂強度が2.7N/mm以上であることを特徴とする、請求項1~5のいずれか1項に記載のフィルム又はシート。
- JISC3005の加熱変形試験方法に準じて、120℃の温度雰囲気下で30分間、10Nの荷重を加えたときの変形率が、40%以下であり、
下記式(1)で求められる相対結晶化率が50%以上であることを特徴とする、請求項1~6のいずれか1項に記載のフィルム又はシート。
相対結晶化率(%)=(ΔHm-ΔHc)/ΔHm×100 (1)
(式中、ΔHcは成膜後のフィルム又はシートサンプルの昇温過程での結晶化に伴う発熱ピークの熱量を示し、ΔHmは融解に伴う熱量を示す。) - 樹脂組成物を溶融成膜法により成膜することを含む、請求項1~7のいずれか1項に記載のフィルム又はシートの製造方法であって、
溶融成膜時の該樹脂組成物の温度が、該樹脂組成物の降温過程での結晶化温度(Tc)+15℃の温度から、昇温過程での融解温度(Tm)-5℃の間の温度であるか、又は、
溶融成膜された該樹脂組成物が、該樹脂組成物の降温過程での結晶化温度(Tc)-25℃の温度から結晶化温度(Tc)+10℃の間の温度における結晶化促進工程を経てから冷却固化されることを特徴とする、フィルム又はシートの製造方法。 - 樹脂組成物を溶融成膜法により成膜することを含む、請求項1~7のいずれか1項に記載のフィルム又はシートの製造方法であって、
溶融成膜時の該樹脂組成物の温度が、該樹脂組成物の降温過程での結晶化温度(Tc)+15℃の温度から、昇温過程での融解温度(Tm)-5℃の間の温度であり、かつ、
溶融成膜された該樹脂組成物が、該樹脂組成物の降温過程での結晶化温度(Tc)-25℃の温度から結晶化温度(Tc)+10℃の間の温度における結晶化促進工程を経てから冷却固化されることを特徴とする、フィルム又はシートの製造方法。 - 溶融成膜法が、溶融状態の樹脂組成物が2本の金属ロール間の空隙を通過することで所望の厚さに成膜される手法である、請求項8又は9に記載のフィルム又はシートの製造方法。
- 結晶化促進工程が、溶融成膜された樹脂組成物を、所定の表面温度の金属ロールと接触させることを特徴とする、請求項8~10のいずれか1項に記載のフィルム又はシートの製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/260,780 US8956719B2 (en) | 2010-01-28 | 2011-01-26 | Flame-retardant poly lactic acid-containing film or sheet, and method for manufacturing thereof |
EP20110737015 EP2530110B1 (en) | 2010-01-28 | 2011-01-26 | Flame-retardant polylactic acid film or sheet, and process for production thereof |
CN201180001494.XA CN102361918B (zh) | 2010-01-28 | 2011-01-26 | 阻燃性聚乳酸系薄膜或薄片及其制造方法 |
JP2011526164A JP5658667B2 (ja) | 2010-01-28 | 2011-01-26 | 難燃性ポリ乳酸系フィルム又はシート、及びその製造方法 |
US14/581,020 US10138336B2 (en) | 2010-01-28 | 2014-12-23 | Flame-retardant poly lactic acid-containing film or sheet, and method for manufacturing thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-016907 | 2010-01-28 | ||
JP2010016907 | 2010-01-28 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/260,780 A-371-Of-International US8956719B2 (en) | 2010-01-28 | 2011-01-26 | Flame-retardant poly lactic acid-containing film or sheet, and method for manufacturing thereof |
US14/581,020 Division US10138336B2 (en) | 2010-01-28 | 2014-12-23 | Flame-retardant poly lactic acid-containing film or sheet, and method for manufacturing thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011093302A1 true WO2011093302A1 (ja) | 2011-08-04 |
Family
ID=44319289
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/051409 WO2011093302A1 (ja) | 2010-01-28 | 2011-01-26 | 難燃性ポリ乳酸系フィルム又はシート、及びその製造方法 |
Country Status (5)
Country | Link |
---|---|
US (2) | US8956719B2 (ja) |
EP (1) | EP2530110B1 (ja) |
JP (1) | JP5658667B2 (ja) |
CN (1) | CN102361918B (ja) |
WO (1) | WO2011093302A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140377540A1 (en) * | 2012-02-10 | 2014-12-25 | Nitto Denko Corporation | Protection film |
JP2015030751A (ja) * | 2013-07-31 | 2015-02-16 | 三菱樹脂株式会社 | ポリアミド系樹脂組成物、及びそれを成形してなるフィルム、射出成形体 |
JP5726077B2 (ja) * | 2010-03-30 | 2015-05-27 | 日東電工株式会社 | 難燃性ポリ乳酸系フィルム又はシート、及びその製造方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2345691B1 (en) * | 2008-10-02 | 2015-01-14 | Nitto Denko Corporation | Polylactic acid-based film or sheet |
EP2644643B1 (en) * | 2010-11-26 | 2019-01-30 | Nitto Denko Corporation | Polylactic acid-based film or sheet |
CN103228713A (zh) * | 2010-11-26 | 2013-07-31 | 日东电工株式会社 | 聚乳酸系薄膜或片 |
US20130317141A1 (en) | 2012-05-24 | 2013-11-28 | Sabic Innovative Plastics Ip B.V. | Flame retardant polycarbonate compositions, methods of manufacture thereof and articles comprising the same |
US9023922B2 (en) | 2012-05-24 | 2015-05-05 | Sabic Global Technologies B.V. | Flame retardant compositions, articles comprising the same and methods of manufacture thereof |
CN103102655A (zh) * | 2012-12-31 | 2013-05-15 | 杭州福斯特光伏材料股份有限公司 | 一种阻燃聚酯薄膜及其制备方法 |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0330712A (ja) | 1989-06-28 | 1991-02-08 | Suupearl-N Kk | 風船販売スタンド |
JPH0971708A (ja) * | 1995-06-26 | 1997-03-18 | Mitsubishi Chem Corp | 難燃性樹脂組成物 |
JP2001226574A (ja) * | 2000-02-17 | 2001-08-21 | Otsuka Chem Co Ltd | 難燃性ポリカーボネート樹脂組成物 |
JP2002322478A (ja) * | 2001-04-24 | 2002-11-08 | Chemiprokasei Kaisha Ltd | 難燃剤、それを含む難燃性樹脂組成物および成形品 |
JP2005054152A (ja) * | 2003-08-07 | 2005-03-03 | Daicel Polymer Ltd | 熱可塑性樹脂組成物及び成形品 |
JP2005272696A (ja) * | 2004-03-25 | 2005-10-06 | Asahi Kasei Chemicals Corp | 脂肪族ポリエステル成形体 |
JP2006182994A (ja) | 2004-12-28 | 2006-07-13 | Toray Ind Inc | ポリ乳酸樹脂組成物 |
JP2007130894A (ja) | 2005-11-10 | 2007-05-31 | Kao Corp | 生分解性樹脂成形品の製造法。 |
JP2007308660A (ja) | 2006-05-22 | 2007-11-29 | Mitsubishi Plastics Ind Ltd | 樹脂組成物および射出成形体 |
JP2008302584A (ja) * | 2007-06-07 | 2008-12-18 | Fujifilm Corp | 延伸熱可塑性樹脂フィルムの製造方法及び延伸熱可塑性樹脂フィルム及び光学フィルム |
JP2008303320A (ja) | 2007-06-08 | 2008-12-18 | Sumitomo Bakelite Co Ltd | 電子機器向けポリ乳酸系難燃薄物シート |
JP2009161716A (ja) * | 2007-12-12 | 2009-07-23 | Fushimi Pharm Co Ltd | 難燃性樹脂組成物 |
JP2009275121A (ja) * | 2008-05-15 | 2009-11-26 | Mitsubishi Engineering Plastics Corp | 電気安全性に優れた難燃性ポリアミド樹脂組成物 |
JP2010006965A (ja) * | 2008-06-27 | 2010-01-14 | Toray Ind Inc | 難燃性熱可塑性ポリエステル樹脂組成物 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3330712B2 (ja) | 1994-01-11 | 2002-09-30 | 三菱樹脂株式会社 | ポリ乳酸系フィルムの製造方法 |
EP1792941B1 (en) * | 2004-09-17 | 2011-05-18 | Toray Industries, Inc. | Resin composition and molded article comprising the same |
JPWO2007069473A1 (ja) * | 2005-12-12 | 2009-05-21 | コニカミノルタオプト株式会社 | 偏光板保護フィルム、フィルム製造方法、偏光板及び液晶表示装置 |
JP5154823B2 (ja) * | 2007-04-17 | 2013-02-27 | 日東電工株式会社 | 難燃性ポリオレフィン系樹脂組成物及び該組成物よりなる粘着テープ基材、並びに、粘着テープ |
JP4850206B2 (ja) * | 2008-05-16 | 2012-01-11 | リョービ株式会社 | 真空ダイカスト用金型及び真空ダイカスト法 |
EP2345691B1 (en) | 2008-10-02 | 2015-01-14 | Nitto Denko Corporation | Polylactic acid-based film or sheet |
EP2522696B1 (en) | 2010-01-08 | 2018-03-07 | Nitto Denko Corporation | Flame-retardant poly lactic acid-containing film or sheet, and method for manufacturing thereof |
-
2011
- 2011-01-26 WO PCT/JP2011/051409 patent/WO2011093302A1/ja active Application Filing
- 2011-01-26 JP JP2011526164A patent/JP5658667B2/ja active Active
- 2011-01-26 CN CN201180001494.XA patent/CN102361918B/zh active Active
- 2011-01-26 EP EP20110737015 patent/EP2530110B1/en active Active
- 2011-01-26 US US13/260,780 patent/US8956719B2/en active Active
-
2014
- 2014-12-23 US US14/581,020 patent/US10138336B2/en active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0330712A (ja) | 1989-06-28 | 1991-02-08 | Suupearl-N Kk | 風船販売スタンド |
JPH0971708A (ja) * | 1995-06-26 | 1997-03-18 | Mitsubishi Chem Corp | 難燃性樹脂組成物 |
JP2001226574A (ja) * | 2000-02-17 | 2001-08-21 | Otsuka Chem Co Ltd | 難燃性ポリカーボネート樹脂組成物 |
JP2002322478A (ja) * | 2001-04-24 | 2002-11-08 | Chemiprokasei Kaisha Ltd | 難燃剤、それを含む難燃性樹脂組成物および成形品 |
JP2005054152A (ja) * | 2003-08-07 | 2005-03-03 | Daicel Polymer Ltd | 熱可塑性樹脂組成物及び成形品 |
JP2005272696A (ja) * | 2004-03-25 | 2005-10-06 | Asahi Kasei Chemicals Corp | 脂肪族ポリエステル成形体 |
JP2006182994A (ja) | 2004-12-28 | 2006-07-13 | Toray Ind Inc | ポリ乳酸樹脂組成物 |
JP2007130894A (ja) | 2005-11-10 | 2007-05-31 | Kao Corp | 生分解性樹脂成形品の製造法。 |
JP2007308660A (ja) | 2006-05-22 | 2007-11-29 | Mitsubishi Plastics Ind Ltd | 樹脂組成物および射出成形体 |
JP2008302584A (ja) * | 2007-06-07 | 2008-12-18 | Fujifilm Corp | 延伸熱可塑性樹脂フィルムの製造方法及び延伸熱可塑性樹脂フィルム及び光学フィルム |
JP2008303320A (ja) | 2007-06-08 | 2008-12-18 | Sumitomo Bakelite Co Ltd | 電子機器向けポリ乳酸系難燃薄物シート |
JP2009161716A (ja) * | 2007-12-12 | 2009-07-23 | Fushimi Pharm Co Ltd | 難燃性樹脂組成物 |
JP2009275121A (ja) * | 2008-05-15 | 2009-11-26 | Mitsubishi Engineering Plastics Corp | 電気安全性に優れた難燃性ポリアミド樹脂組成物 |
JP2010006965A (ja) * | 2008-06-27 | 2010-01-14 | Toray Ind Inc | 難燃性熱可塑性ポリエステル樹脂組成物 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2530110A4 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5726077B2 (ja) * | 2010-03-30 | 2015-05-27 | 日東電工株式会社 | 難燃性ポリ乳酸系フィルム又はシート、及びその製造方法 |
US20140377540A1 (en) * | 2012-02-10 | 2014-12-25 | Nitto Denko Corporation | Protection film |
US10118999B2 (en) | 2012-02-10 | 2018-11-06 | Nitto Denko Corporation | Polylactic acid film or sheet, and pressure-sensitive adhesive tape or sheet |
JP2015030751A (ja) * | 2013-07-31 | 2015-02-16 | 三菱樹脂株式会社 | ポリアミド系樹脂組成物、及びそれを成形してなるフィルム、射出成形体 |
Also Published As
Publication number | Publication date |
---|---|
EP2530110A4 (en) | 2014-01-15 |
EP2530110B1 (en) | 2015-04-15 |
US10138336B2 (en) | 2018-11-27 |
EP2530110A1 (en) | 2012-12-05 |
CN102361918A (zh) | 2012-02-22 |
JPWO2011093302A1 (ja) | 2013-06-06 |
US20150108679A1 (en) | 2015-04-23 |
CN102361918B (zh) | 2015-08-12 |
US8956719B2 (en) | 2015-02-17 |
US20120021202A1 (en) | 2012-01-26 |
JP5658667B2 (ja) | 2015-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5658667B2 (ja) | 難燃性ポリ乳酸系フィルム又はシート、及びその製造方法 | |
JP5543750B2 (ja) | ポリ乳酸系フィルムまたはシート | |
JP5694165B2 (ja) | 難燃性ポリ乳酸系フィルム又はシート、及びその製造方法 | |
JP5726077B2 (ja) | 難燃性ポリ乳酸系フィルム又はシート、及びその製造方法 | |
JP5726078B2 (ja) | ポリ乳酸系フィルム又はシート、及びその製造方法 | |
WO2013118407A1 (ja) | セパレータ | |
JP6041550B2 (ja) | ポリ乳酸系樹脂組成物及びそれを用いたフィルム又はシート | |
JP5913798B2 (ja) | ポリ乳酸系フィルム又はシート | |
JP5731174B2 (ja) | ポリ乳酸系フィルム又はシート | |
JP2012111914A (ja) | ポリ乳酸系フィルム又はシート | |
JP2012116887A (ja) | ポリ乳酸系フィルム又はシート | |
JP2012111205A (ja) | セパレータ | |
JP2012111204A (ja) | セパレータ | |
JP2012116012A (ja) | セパレータ | |
JP2012111203A (ja) | セパレータ | |
JP2012111919A (ja) | 粘着テープ又はシート |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180001494.X Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011526164 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11737015 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13260780 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011737015 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |