WO2011092934A1 - 発光素子搭載用支持体及び発光装置 - Google Patents

発光素子搭載用支持体及び発光装置 Download PDF

Info

Publication number
WO2011092934A1
WO2011092934A1 PCT/JP2010/071297 JP2010071297W WO2011092934A1 WO 2011092934 A1 WO2011092934 A1 WO 2011092934A1 JP 2010071297 W JP2010071297 W JP 2010071297W WO 2011092934 A1 WO2011092934 A1 WO 2011092934A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting element
mounting
light
insulating base
Prior art date
Application number
PCT/JP2010/071297
Other languages
English (en)
French (fr)
Inventor
勝寿 中山
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to KR1020127011375A priority Critical patent/KR20120125452A/ko
Priority to JP2011551691A priority patent/JP5673561B2/ja
Priority to CN2010800597648A priority patent/CN102714258A/zh
Priority to EP10844688A priority patent/EP2533310A1/en
Publication of WO2011092934A1 publication Critical patent/WO2011092934A1/ja
Priority to US13/562,723 priority patent/US8727585B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages

Definitions

  • the present invention relates to a light-emitting element mounting support and a light-emitting device using the same, and more particularly to a light-emitting element mounting support excellent in the reliability of an insulating base on which a light-emitting element is mounted and a light-emitting device using the same. .
  • a metal-resin package As a support for mounting a light emitting element used in such a light emitting device, for example, a metal-resin package is known (see, for example, Patent Document 1).
  • the metal-resin package is formed by integrally forming a lead frame made of a conductive metal such as aluminum, copper, iron / copper alloy, or iron / nickel alloy, and a filler-containing resin in which a reflective filler is dispersed in the resin. Is.
  • the filler-containing resin used in the metal-resin package has a large refractive index difference between the reflective filler and the resin, so that a high reflectance can be obtained and the raw material cost is low. Widely used.
  • the metal-resin package heat denaturation is likely to occur in the resin part, and when a high-power light-emitting diode element (chip) is mounted, damage such as resin burning is likely to occur, and reliability as a light-emitting device There is a problem that it is inferior.
  • the metal-resin package has a problem that it cannot be applied to a light emitting device in which an ultraviolet LED is mounted as a light emitting element because the resin portion is immediately damaged when irradiated with ultraviolet rays.
  • a ceramic substrate such as an alumina substrate is increasingly used as a support for mounting a light emitting element.
  • the alumina substrate has a firing temperature of 1500 to 1600 ° C.
  • a conductive metal such as aluminum, copper, iron / copper alloy, or iron / nickel alloy
  • the conductive metal may be oxidized or dissolved.
  • a glass material is mentioned as such inorganic materials other than ceramics.
  • the softening point (Ts) needs to be 655 ° C. or lower.
  • a glass material having a softening point (Ts) of 655 ° C. or less for example, a material mainly composed of bismuth is known.
  • those containing bismuth as a main component usually develop color and cannot be transparent. Therefore, when this is employed as a support for mounting a light emitting element, the reflectance with respect to light of a desired wavelength is lowered, and light from the light emitting element may not be extracted efficiently.
  • the present invention has been made in order to solve the above-described problems, and has excellent heat dissipation, and even when a high-power light-emitting element is mounted, light emission that suppresses damage to the base due to heat and deterioration of hermeticity.
  • An object is to provide a support for mounting elements.
  • Another object of the present invention is to provide a light emitting device using the light emitting element mounting support.
  • the present inventors have found that the above problems can be solved by the support for mounting a light emitting element and the light emitting device of the present invention, and have completed the present invention.
  • the light emitting element mounting support of the present invention is formed by integrally molding an insulating base having a mounting portion on which a light emitting element is mounted and a lead frame for mounting the light emitting element mounted on the insulating base.
  • the ceramic filler is preferably composed of one or a mixture of two or more selected from alumina powder, zirconia powder and titania powder.
  • the lead frame is preferably a conductive metal or alloy selected from aluminum, copper, iron / copper alloy, or iron / nickel alloy.
  • the glass ceramic composition preferably has a low melting point glass powder content of 60% by volume to 80% by volume and a ceramic filler content of 20% by volume to 40% by volume.
  • the insulating base has a mounting portion on which a light emitting element recessed in a mortar shape is mounted, and a lead frame penetrates the insulating base and is exposed on a bottom surface of the mounting portion.
  • the softening point (Ts) of the low melting glass powder is preferably 450 ° C. or higher and 630 ° C. or lower.
  • the 50% particle size (D50) of the low-melting glass powder is preferably 0.5 ⁇ m or more and 4 ⁇ m or less.
  • the light-emitting device of the present invention includes the above-described support for mounting a light-emitting element of the present invention, and a light-emitting element mounted on a mounting portion of the support for mounting a light-emitting element.
  • the present invention by using a predetermined glass ceramic composition as an insulating base on which a light-emitting element is mounted, light emission that has high heat resistance and suppresses damage to the base and airtightness due to heat.
  • An element mounting support is obtained.
  • the support for mounting a light emitting element of the present invention is excellent in heat dissipation because the lead frame is integrally formed with the insulating base.
  • by adopting such a light emitting element mounting support even if a high output light emitting element is mounted, damage to the base due to heat and a decrease in hermeticity are suppressed, A light-emitting device that can quickly release heat generated from the light-emitting element to the outside can be obtained.
  • the light emitting element mounting support of the present invention is a light emitting element in which an insulating base having a mounting portion on which the light emitting element is mounted and a lead frame for mounting the light emitting element mounted on the insulating base are integrally formed.
  • an insulating base on which a light emitting element is mounted is a glass ceramic composition mainly composed of a low melting point glass powder having a softening point (Ts) of 630 ° C. or less and a ceramic filler as described above.
  • Ts softening point
  • a ceramic filler as described above.
  • FIG. 1 is a cross-sectional view showing an example of a light-emitting element mounting support 1 according to the present invention.
  • the light emitting element mounting support 1 includes an insulating base 2 on which the light emitting element is mounted, and a substantially flat lead frame 3 provided between the insulating base 2.
  • the insulating base 2 is composed of a side surface portion 4 and a support portion 5, and the entire insulating base 2 is a sintered body of a glass ceramic composition containing a low melting point glass powder and a ceramic filler. Is formed.
  • the insulating base 2 has a recess 6 surrounded by the side surface 4.
  • the bottom surface of the concave portion 6 is formed by a surface that appears inside the concave portion 6 among the upper surface of the support portion 5 in the figure, and this bottom surface is a mounting portion 6a on which the light emitting element is mounted.
  • the lead frame 3 is for mounting the light emitting element, and is provided integrally with the insulating base 2 so as to penetrate between the side surface portion 4 and the support portion 5.
  • the lead frame 3 is made of a thin metal plate, and is installed in a state where the two lead frames 3a and 3b are exposed on the mounting portion 6a and face each other with an interval of about several mm. .
  • the insulating base 2 on which the light emitting element is mounted is manufactured by mixing a low-melting glass powder and a ceramic filler into a glass ceramic composition and firing it.
  • the low melting point glass powder that is the main component of the glass ceramic composition has a softening point (Ts) of 630 ° C. or lower.
  • Ts softening point
  • the softening point (Ts) of the low-melting glass powder is preferably 610 ° C. or lower.
  • the softening point (Ts) of the low melting point glass powder is less than 450 ° C.
  • the light emitting element is mounted by wire bonding to the light emitting element mounting support 1, or the light emitting element is mounted to form a light emitting device.
  • the insulating base 2 may be deformed by heat. Therefore, the softening point (Ts) of the low-melting glass powder is preferably 450 ° C. or higher.
  • the low melting point glass powder preferably has a glass transition point (Tg) of 350 ° C. or higher and 500 ° C. or lower.
  • Tg glass transition point
  • the glass transition point (Tg) is less than 350 ° C., the insulating base 2 may be deformed when the light emitting element is mounted.
  • the glass transition point (Tg) exceeds 500 ° C., the conductive metal composing the lead frame 3 is oxidized and the thermal conductivity of the lead frame 3 is remarkably lowered when fired integrally with the lead frame 3. Or deformation due to heat during firing.
  • SiO 2 is 40 mol% or more and 50 mol% or less
  • B 2 O 3 is 38 mol% or more and 48 mol% or less
  • ZrO 2 is 0 mol% or more in the following oxide conversion mol% display. 5 mol% or less
  • ZnO of 0 mol% or more 10 mol% or less comprising at least one selected from K 2 O and Na 2 O, K 2 O, Na 2 O, or K 2 O and Na 2 O and more than 2 mol% 10 mol % Or less is preferable.
  • SiO 2 is a component forming a glass skeleton.
  • the content of SiO 2 is preferably 40.5 mol% or more, more preferably 42 mol% or more.
  • the content of SiO 2 is preferably 48 mol% or less, more preferably 47 mol% or less.
  • B 2 O 3 has an effect of lowering the softening point (Ts). If the content of B 2 O 3 is less than 38 mol%, there may not be enough to lower the softening point (Ts) or glass transition temperature (Tg). On the other hand, when the content of B 2 O 3 exceeds 48 mol%, it is difficult to obtain a stable glass and the chemical durability may be lowered.
  • the content of B 2 O 3 is preferably 39 mol% or more, more preferably 41 mol% or more. Further, the content of B 2 O 3 is preferably 45 mol% or less, more preferably 43 mol% or less.
  • ZrO 2 may be contained in a range of 5 mol% or less in order to increase the stability of the glass. When the content of ZrO 2 exceeds 5 mol%, the softening point (Ts) may be increased.
  • the content of ZrO 2 is preferably 4 mol% or less.
  • ZnO may be added to lower the softening point (Ts). If the ZnO content exceeds 10 mol%, the strength of the insulating base 2 may be reduced.
  • the content of ZnO is preferably 9 mol% or less, and more preferably less than 4 mol%.
  • the ZnO content is preferably 1 mol% or more.
  • Na 2 O and K 2 O are added to promote vitrification and lower the softening point (Ts) and the glass transition point (Tg).
  • the total content of Na 2 O and K 2 O is preferably 2 mol% or more and 10 mol% or less. When the total content of Na 2 O and K 2 O is less than 2 mol%, the softening point (Ts) and the glass transition point (Tg) increase, or the glass becomes unstable and phase separation is likely to occur. To do. On the other hand, when the total content of Na 2 O and K 2 O exceeds 10 mol%, the oxidation resistance is lowered, and the strength of the insulating base 2 is lowered.
  • the total content of Na 2 O and K 2 O is more preferably 6 mol% or more and 8 mol% or less.
  • the low-melting glass powder used for the glass ceramic composition is not necessarily limited to the above components, and can contain other components as long as various properties such as a softening point (Ts) and a glass transition point (Tg) are satisfied.
  • Ts softening point
  • Tg glass transition point
  • the total content is preferably 10 mol% or less.
  • Al 2 O 3 may be added in a range not exceeding 5 mol% in order to increase the stability, chemical durability, and strength of the glass.
  • the content of Al 2 O 3 exceeds 5 mol%, the softening point (Ts) or the glass transition point (Tg) is likely to be too high.
  • the content of Al 2 O 3 is preferably 3 mol% or less.
  • CaO may be added in a range not exceeding 5 mol% in order to increase the stability of the glass and lower the softening point (Ts) and the glass transition point (Tg).
  • the content of CaO is preferably 3 mol% or less, more preferably 1 mol% or less.
  • MgO may be contained in a range of 5 mol% or less in order to stabilize the glass. If it exceeds 5 mol%, the softening point (Ts) may be increased.
  • the content of MgO is preferably 3 mol% or less.
  • BaO can also be added to stabilize the glass, but its content is preferably 1% or less.
  • the low melting point glass powder used for the glass ceramic composition is prepared by mixing and mixing glass raw materials so as to have the glass composition as described above, and manufacturing the glass raw material by a melting method. It is obtained by pulverization by a pulverization method. In the case of the wet grinding method, it is preferable to use water as a solvent.
  • the pulverization is performed using a pulverizer such as a roll mill, a ball mill, or a jet mill.
  • the 50% particle size (D50) of the low melting glass powder used for the insulating base 2 is preferably 0.5 ⁇ m or more and 4 ⁇ m or less.
  • the 50% particle size of the low-melting glass powder is less than 0.5 ⁇ m, the low-melting glass powder tends to agglomerate, making handling difficult, and the time required for pulverization may be too long.
  • the 50% particle size of the low-melting glass powder exceeds 4 ⁇ m, the temperature at which the glass powder softens may increase or the low-melting glass powder may be insufficiently sintered. Adjustment of the particle size is performed by classification as necessary after pulverization, for example.
  • the 50% particle size (D50) refers to a value measured using a laser diffraction / scattering particle size distribution analyzer.
  • the maximum particle size of the low melting glass powder is preferably 20 ⁇ m or less. If the maximum particle size exceeds 20 ⁇ m, the sinterability of the low-melting glass powder is lowered, and undissolved components remain in the sintered body, which may reduce the reflectivity of the insulating base 2.
  • the maximum particle size of the low melting glass powder is more preferably 10 ⁇ m or less.
  • the ceramic filler those having a melting point of 1500 ° C. or higher and those conventionally used can be used without particular limitation, and for example, alumina powder, zirconia powder, titania powder, or a mixture thereof can be suitably used.
  • the 50% particle size (D50) of the ceramic filler is preferably, for example, from 0.5 ⁇ m to 4 ⁇ m.
  • white ceramic fillers are present, but they may cause problems with the light-emitting element mounting support and should be avoided. Examples of this defect include a decrease in light reflectance, a decrease in strength, a decrease in sinterability, and an increase in the difference in thermal expansion coefficient from the lead frame due to a decrease in thermal expansion coefficient.
  • the low melting glass powder is 60% by volume or more and 80% by volume or less and the ceramic filler is 20% by volume or more and 40% by volume or less.
  • a ceramic composition is obtained.
  • the ceramic filler is less than 20% by volume, there is a possibility that sufficient reflectance cannot be obtained in the sintered body of the glass ceramic composition.
  • the ceramic filler exceeds 40% by volume, the sinterability of the glass ceramic composition is lowered, and the strength of the sintered body may be reduced.
  • the lead frame 3 can be a conductive metal plate having a thickness of about 0.1 to 0.5 mm.
  • the metal plate those conventionally used can be used without particular limitation, and for example, a conductive metal such as aluminum, copper, iron / copper alloy, or iron / nickel alloy can be suitably used.
  • the lead frame 3 may be one in which a plating layer is provided by laminating nickel, gold, titanium, silver, or the like on the surface of the conductive metal plate to about several ⁇ m.
  • the light emitting element mounting support 1 of the present invention has been described by way of an example, but the configuration thereof can be appropriately changed as long as it is not contrary to the gist of the present invention.
  • FIG. 2 is a cross-sectional view showing a state where the light emitting element 7 is mounted on the light emitting element mounting support 1 of the present invention.
  • the light emitting element 7 is fixed to the surface of the end portion of the lead frame 3a exposed on the mounting portion 6a using a conductive adhesive, and the upper side surface in the drawing is the light emitting surface 7a.
  • An electrode (anode) is provided on a part of the light emitting surface 7a.
  • the other electrode (cathode) is provided on a contact surface 7b (lower side in the figure) that contacts the lead frame 3a.
  • the electrode (anode) on the light emitting surface 7 a side is connected to the opposing lead frame 3 b by a bonding wire 8.
  • the electrode (anode) on the light emitting surface 7a side is connected to the lead frame 3b, and the electrode (anode) on the contact surface 7b side is connected to the lead frame 3a.
  • the heat generated from the light emitting element 7 when energized is transmitted to the lead frame 3a on which the light emitting element 7 is mounted, and is quickly released to the outside of the light emitting device 10, and is also transmitted to the bonding wire 8 to form the lead frame. Also emitted from the light emitting device 10 from 3b.
  • the light-emitting device 10 of the present invention is one in which a light-emitting element 7 such as a light-emitting diode is mounted on the mounting portion 6a of the light-emitting element mounting support 1 as described in FIG.
  • a sealing material 9 is injected into the recess 6 of the light emitting element mounting support 1 so as to cover the light emitting element 7 and the bonding wire 8, thereby forming a light emitting device 10.
  • a silicone resin or an epoxy resin can be used, and a silicone resin is particularly preferable because it is excellent in light resistance and heat resistance.
  • a phosphor or the like By adding a phosphor or the like to the resin component, the color of light obtained as the light emitting device 10 can be adjusted as appropriate.
  • the light emitting device of the present invention is not limited to the one in which the sealing material 9 is injected into the recess 6.
  • a lid-like member is provided at the opening of the recess 6.
  • the inside of the recess 6 may be hollow, or as shown in FIG. 2, the light emitting element 7 may be simply mounted on the light emitting element mounting support 1.
  • the light emitting device of the present invention by using the light emitting element mounting support 1 with high heat resistance, even when the amount of heat generated from the light emitting element 7 is large, the insulating base 2 portion on which the light emitting element 7 is mounted.
  • the light emitting device 10 can maintain stable performance without causing any damage such as burning or cracking due to heat.
  • the lead frame 3 is provided integrally with the insulating base 2 without being oxidized, the heat generated from the light emitting element 7 is quickly released to the outside of the light emitting device 10 through the lead frame 3. Therefore, even if the light-emitting element 7 with high output is mounted, it is possible to emit light with high luminance while suppressing a decrease in light emission efficiency due to an excessive temperature rise.
  • Such a light emitting device 10 of the present invention can be suitably used as, for example, a backlight such as a liquid crystal display, an operation button light emitting portion of a small information terminal, illumination for automobiles or decoration, and other light sources.
  • the light emitting element mounting support 1 of the present invention is manufactured as follows. In the following description, the members used for the manufacture will be described with the same reference numerals as those of the finished product.
  • FIGS. 4 to 9 are cross-sectional views showing an example of the manufacturing process of the light emitting element mounting support 1 of the present invention.
  • the light emitting element mounting support 1 is manufactured by manufacturing the unfired side surface member 4A and the unfired support member 5A in the molds 40 and 50, and then attaching them to the lead frame 3.
  • the unburned light emitting element mounting support 1 is sandwiched and stacked to be fired while being housed in the molds 40 and 50 and then cooled.
  • a powder 40 made of a glass ceramic composition is filled into a mold 40 for producing the side surface portion 4.
  • the powder filled in the mold 40 is press-molded so as to be pressed and hardened by a press plate P using a press molding machine.
  • a frame 41 for separating and removing the side member 4 obtained after firing the non-fired side member 4 ⁇ / b> A from the mold 40 is fitted to the bottom surface of the mold 40.
  • an adhesive is applied to the upper surface of the unfired side member 4A, and the lead frames 3a and 3b are placed thereon and fixed to the surface of the unfired side member 4A.
  • a mold 50 for producing the support portion 5 is filled with powder made of a glass ceramic composition.
  • the powder filled in the mold 50 is press-molded by the press plate P using a press molding machine.
  • a frame 51 for separating and removing the support member 5 obtained after firing the unfired support member 5 ⁇ / b> A from the mold 50 is fitted to the bottom surface of the mold 50.
  • the lead frame mounting surface of the unfired side member 4A is brought into contact with the surface of the unfired support member 5A.
  • the unfired light emitting element mounting support 1A is formed by superimposing the unfired side member 4A and the unfired support member 5A. Thereafter, the unsintered light emitting element mounting support 1A is fired while being accommodated in the mold, and then the mold is removed from the sintered body to obtain the light emitting element mounting support.
  • the baking is performed at a temperature of 550 ° C. to 630 ° C. for 30 minutes to 60 minutes. In particular, it is preferably performed at a temperature of 580 ° C. or higher and 600 ° C. or lower. If the firing temperature exceeds 630 ° C., the conductive metal constituting the lead frame 3 may be oxidized, and the thermal conductivity of the lead frame 3 may be reduced or the conductivity may be reduced. Moreover, when the lead frame 3 has aluminum as a main component, there is a possibility that the aluminum melts and the lead frame 3 is deformed. On the other hand, if the firing temperature is lower than 550 ° C., the sintering does not proceed sufficiently and the dense insulating base 2 may not be obtained.
  • the sintered body is cooled for a certain period, and then a pressure of 3 kPa is applied to the frame body 41 in the direction toward the side surface portion 4 as shown in FIG. Thereby, the side surface portion 4 is pressed in the downward direction in the figure on the contact surface with the projection portion 410 of the frame body 41, and is separated from the mold 40. Further, a pressure of 3 kPa is also applied to the frame body 51 in the direction toward the support portion 5. Thereby, the support part 5 is pressed in the upward direction in the figure on the contact surface with the projection part 510 of the frame 51, and is separated from the mold 50.
  • the sintered body is molded into the mold 40.
  • 50 is not necessarily required, but, for example, the molds 40, 50 are separated from the unfired side surface member 4A and the unfired support member 5A at a stage before firing, and thereafter The unfired light emitting element mounting support 1A may be fired. Further, the order of forming each part can be appropriately changed as long as the light emitting element mounting support 1 can be manufactured.
  • Example 1 First, a low melting glass powder was produced. That is, in mol% in terms of oxide, the SiO 2 45mol%, B 2 O 3 to 41.5Mol%, a ZrO 2 4mol%, 1.5mol% of ZnO, 2 mol% of Na 2 O, K 2 The raw materials were blended and mixed so that O would be 6 mol%. The raw material mixture was put in a platinum crucible and melted at 1300 to 1400 ° C. for 60 minutes, and then the molten glass was poured out and cooled. This glass was pulverized with an alumina ball mill for 20 to 60 hours to produce a low-melting glass powder. In addition, ethyl alcohol was used as a solvent for pulverization.
  • the glass transition point (Tg) of the obtained low-melting glass powder was measured up to 1000 ° C. under a temperature rising rate of 10 ° C./min using a thermal analyzer TG-DTA2000 manufactured by Mac Science Co. Tg) was 443 ° C. The softening point (Ts) was 602 ° C.
  • the 50% particle size (D50) of the low-melting glass powder thus obtained was 2.8 ⁇ m when measured using a laser diffraction / scattering type particle size distribution analyzer.
  • This low-melting glass powder was mixed and mixed so that 65% by mass of alumina powder (50% particle size (D50) was 2.8 ⁇ m, Showa Denko, trade name: AL-47H) was 35% by mass. Thus, a glass ceramic composition was produced.
  • the glass ceramic composition was filled in the side surface mold 40 and the support mold 50, and the powder was press molded using a press molding machine (see FIGS. 4 and 6).
  • an adhesive is applied to the surface of the unfired side surface member 4A of the side surface mold 40, and as shown in FIG. 3b was placed and fixed.
  • the side part mold 40 and the support part mold 50 were overlapped and fired as shown in FIG. Firing was performed at 590 ° C. for 40 minutes.
  • the sintered bodies in the side surface mold 40 and the support mold 50 are removed from the molds 40 and 50 by the frame body 41 and the frame body 51 (see FIG. 9), and light emission is performed.
  • An element mounting support 1 was obtained.
  • the lead frame 3 of the obtained light emitting element mounting support 1 was not oxidized and could be applied as the light emitting device 10.
  • the present invention by using a predetermined glass ceramic composition as an insulating base on which a light-emitting element is mounted, light emission that has high heat resistance and suppresses damage to the base and airtightness due to heat.
  • An element mounting support is obtained.
  • a light emitting device capable of quickly releasing heat generated from the element to the outside can be obtained.
  • SYMBOLS 1 Light emitting element mounting support body, 2 ... Insulating base, 3 ... Lead frame, 4 ... Side surface part, 4A ... Unsintered side member, 5 ... Support part, 5A ... Unsintered support member, 6 ... Recessed part, 6a DESCRIPTION OF SYMBOLS ... Mounting part, 7 ... Light emitting element, 8 ... Bonding wire, 9 ... Sealing material, 10 ... Light emitting device, 40, 50 ... Mold, 41, 51 ... Frame

Abstract

 放熱性に優れ、且つ高出力の発光素子を搭載しても、熱による基台の損傷や気密性の低下を抑制する発光素子搭載用支持体を提供する。 発光素子が搭載される搭載部を有する絶縁性基台2と、絶縁性基台2に搭載される発光素子7を実装するリードフレーム3とを一体成形した発光素子搭載用支持体1であって、前記絶縁性基台2が、低融点ガラス粉末とセラミックスフィラーとを含むガラスセラミックス組成物の焼結体からなり、前記低融点ガラス粉末の軟化点(Ts)が630℃以下であることを特徴とする発光素子搭載用支持体1。

Description

発光素子搭載用支持体及び発光装置
 本発明は、発光素子搭載用支持体およびこれを用いた発光装置に係り、特に発光素子が搭載される絶縁性基台の信頼性に優れる発光素子搭載用支持体およびこれを用いた発光装置に関する。
 近年、発光ダイオード素子(チップ)の高輝度、白色化に伴い、照明、各種ディスプレイ、大型液晶TVのバックライト等として発光ダイオード素子を用いた発光装置が使用されている。発光ダイオード素子を搭載する発光素子搭載用の支持体としては、一般に、素子から発せられる光を効率よく反射する高反射性が求められる。これに加え、近年の発光ダイオード素子は、高輝度化に伴って発熱量が増加し、その温度が過度に上昇するために、発光素子から発生する熱を速やかに放散する放熱性や、熱による損傷等を抑えられる高信頼性を得られるものが求められている。特に、照明等の発光装置の場合には、発光素子から発生する大量の熱を素早く外部に放出することが必要である。
 このような発光装置に用いる発光素子搭載用の支持体として、例えばメタル-樹脂パッケージが知られている(例えば、特許文献1参照。)。
 メタル-樹脂パッケージは、アルミニウム、銅、鉄/銅合金、又は鉄/ニッケル合金等の導電性金属からなるリードフレームと、樹脂中に反射性フィラーを分散させたフィラー含有樹脂とを一体として形成したものである。このリードフレーム上に発光素子を搭載することにより、発光素子から生じた熱が速やかに放散される。メタル-樹脂パッケージに用いられるフィラー含有樹脂は、反射性フィラーと樹脂との屈折率差が大きいため、高い反射率を得ることができ、また原料コストも安価なため、発光素子搭載用の支持体として、広く用いられている。
 しかしながら、メタル-樹脂パッケージは、樹脂部分において、熱に対する変性が起きやすく、高出力の発光ダイオード素子(チップ)を搭載した場合には、樹脂焼け等の損傷が生じ易く、発光装置としての信頼性に劣るという問題がある。特にメタル-樹脂パッケージでは、紫外線が照射されると樹脂部分が即座に損傷するため、紫外LEDを発光素子として搭載する発光装置には適用できないという問題がある。
特開2008-41699号公報
 このような問題を解決するために、発光素子搭載用支持体として、アルミナ基板等のセラミックス基板の採用が増えている。しかしながら、アルミナ基板は、焼成温度が1500~1600℃であるため、アルミニウム、銅、鉄/銅合金、又は鉄/ニッケル合金等の導電性金属(リードフレーム)と一体として焼成した場合には、大抵の導電性金属は酸化したり溶解したりするおそれがある。
 一方、このようなセラミックス以外の無機材料として、ガラス素材が挙げられる。上記発光素子搭載用支持体としてガラス素材を用いる場合、軟化点(Ts)が655℃を超えるものを用いると、導電性金属(リードフレーム)の酸化や溶解が生じるおそれがある。従って、発光素子搭載用支持体としてガラス素材を用いる場合には、軟化点(Ts)が655℃以下のものであることが必要である。
 655℃以下の軟化点(Ts)を有するガラス素材としては、例えばビスマスを主成分とするものが知られている。しかしながら、ビスマスを主成分とするものは、通常発色してしまい、透明なものが得られない。したがって、これを発光素子搭載用支持体として採用すると、所望の波長の光に対する反射率が低下し、発光素子からの光を効率的に取り出せない場合がある。
 本発明は、上記課題を解決するためになされたものであって、放熱性に優れ、且つ高出力の発光素子を搭載しても、熱による基台の損傷や気密性の低下を抑制する発光素子搭載用支持体の提供を目的とする。
 また、本発明は、上記発光素子搭載用支持体を用いた発光装置の提供を目的とする。
 本発明者らは、鋭意検討した結果、本発明の発光素子搭載用支持体及び発光装置により、上記問題を解決することができることを見出し、本発明を完成したものである。
 すなわち、本発明の発光素子搭載用支持体は、発光素子が搭載される搭載部を有する絶縁性基台と、前記絶縁性基台に搭載される発光素子を実装するリードフレームとを一体成形した発光素子搭載用支持体であって、前記絶縁性基台が、低融点ガラス粉末とセラミックスフィラーとを含むガラスセラミックス組成物の焼結体からなり、前記低融点ガラス粉末の軟化点(Ts)が630℃以下であることを特徴とする。
 前記セラミックスフィラーは、アルミナ粉末、ジルコニア粉末及びチタニア粉末から選択される1種又は2種以上の混合物からなることが好ましい。
 前記リードフレームは、アルミニウム、銅、鉄/銅合金、又は鉄/ニッケル合金から選択される導電性金属又は合金であることが好ましい。
 前記ガラスセラミックス組成物は、低融点ガラス粉末の含有比率が60体積%以上80体積%以下であり、セラミックスフィラーの含有比率が20体積%以上40体積%以下であることが好ましい。
 前記絶縁性基台は、すり鉢状に凹陥する発光素子の搭載される搭載部を有し、リードフレームが前記絶縁性基台を貫通して前記搭載部の底面に露出していることが好ましい。
 前記低融点ガラス粉末の軟化点(Ts)は、450℃以上630℃以下であることが好ましい。
 前記低融点ガラス粉末の50%粒径(D50)は、0.5μm以上4μm以下であることが好ましい。
 また、本発明の発光装置は、上記した本発明の発光素子搭載用支持体と、前記発光素子搭載用支持体の搭載部に搭載される発光素子と、を有することを特徴とする。
 本発明によれば、発光素子が搭載される絶縁性基台として、所定のガラスセラミックス組成物を用いることで、耐熱性が高く、熱による基台の損傷や気密性の低下が抑制された発光素子搭載用支持体が得られる。さらに、本発明の発光素子搭載用支持体は、リードフレームが絶縁性基台と一体成形されているため、放熱性に優れている。
 また、本発明によれば、このような発光素子搭載用支持体の採用により、高出力の発光素子を搭載しても、熱による基台の損傷や、気密性の低下が抑制され、また、発光素子から生じる熱を、外部に速やかに放出できる発光装置が得られる。
本発明の発光素子搭載用支持体の一例を示す断面図である。 本発明の発光素子搭載用支持体に発光素子が搭載された状態を示す断面図である。 本発明の発光装置の一例を示す断面図である。 本発明の発光素子搭載用支持体の製造工程の一例を示す断面図である。 本発明の発光素子搭載用支持体の製造工程の一例を示す断面図である。 本発明の発光素子搭載用支持体の製造工程の一例を示す断面図である。 本発明の発光素子搭載用支持体の製造工程の一例を示す断面図である。 本発明の発光素子搭載用支持体の製造工程の一例を示す断面図である。 本発明の発光素子搭載用支持体の製造工程の一例を示す断面図である。
 以下、本発明について詳細に説明する。
 本発明の発光素子搭載用支持体は、発光素子が搭載される搭載部を有する絶縁性基台と、この絶縁性基台に搭載される発光素子を実装するリードフレームとを一体成形した発光素子搭載用支持体であって、該絶縁性基台が、低融点ガラス粉末とセラミックスフィラーとを含むガラスセラミックス組成物の焼結体からなり、該低融点ガラス粉末の軟化点(Ts)が630℃以下であることを特徴とする。
 本発明によれば、発光素子が搭載される絶縁性基台を、上記したような軟化点(Ts)が630℃以下の低融点ガラス粉末とセラミックフィラーとを主成分とするガラスセラミックス組成物で構成することにより、従来に比べて耐熱性を向上できる。したがって、高出力の発光素子が搭載されたときも、熱による基台部分の損傷が殆ど生じない。
 また、発光素子が搭載される絶縁性基台として、上述したガラスセラミックス組成物を採用することにより、比較的低温度で焼成できるため、導電性金属からなるリードフレームの酸化や溶解を生じさせることなく、この絶縁性基台とリードフレームとを一体として焼成して製造できる。したがって、耐熱性と共に、優れた放熱性を有する発光素子搭載用支持体が得られる。
 図1は、本発明の発光素子搭載用支持体1の一例を示す断面図である。
 発光素子搭載用支持体1は、発光素子が搭載される絶縁性基台2と、この絶縁性基台2の間に設けられた略平板状のリードフレーム3を有している。絶縁性基台2は、側面部4と、支持部5とで構成されており、この絶縁性基台2全体が、低融点ガラス粉末とセラミックスフィラーとを含むガラスセラミックス組成物の焼結体で形成されている。
 絶縁性基台2は、側面部4で囲まれた凹部6を有している。凹部6の底面は、支持部5の図中の上側表面のうち、凹部6の内側に現れた面によって形成され、この底面が、発光素子が搭載される搭載部6aとなっている。
 リードフレーム3は、発光素子を実装するためのものであり、側面部4と、支持部5との間を貫通して、絶縁性基台2と一体として設けられている。リードフレーム3は、薄型の金属板からなるものであり、二枚のリードフレーム3a及び3bを、搭載部6a上で露出させて数mm程度の間隔を設けて対向させた状態で設置されている。
 発光素子が搭載される絶縁性基台2は、低融点ガラス粉末とセラミックスフィラーとを混合してガラスセラミックス組成物とし、これを焼成して製造する。
 ガラスセラミックス組成物の主成分となる低融点ガラス粉末は、軟化点(Ts)が630℃以下のものである。
 低融点ガラス粉末の軟化点(Ts)が630℃を超えると、リードフレーム3と一体として焼成したときに、リードフレーム3を構成する導電性金属の酸化が進行してリードフレーム3の熱伝導性が著しく低下したり、焼成時の熱による変形が生じたりする。
 低融点ガラス粉末の軟化点(Ts)は、好ましくは610℃以下である。
 一方、低融点ガラス粉末の軟化点(Ts)が450℃未満であると、発光素子搭載用支持体1にワイヤボンディングして発光素子を実装したり、発光素子を搭載して発光装置としたものを照明器具等にハンダ付けする際に、熱によって絶縁性基台2が変形するおそれがある。
 したがって、低融点ガラス粉末の軟化点(Ts)は、450℃以上であることが好ましい。
 また、低融点ガラス粉末は、ガラス転移点(Tg)が350℃以上500℃以下のものが好ましい。ガラス転移点(Tg)が350℃未満の場合、発光素子を実装する際に絶縁性基台2の変形が生じるおそれがある。一方、ガラス転移点(Tg)が500℃を超えると、リードフレーム3と一体として焼成したときに、リードフレーム3を構成する導電性金属が酸化してリードフレーム3の熱伝導性が著しく低下したり、焼成時の熱による変形が生じたりする。
 このような低融点ガラス粉末としては、例えば、下記酸化物換算のmol%表示で、SiOを40mol%以上50mol%以下、Bを38mol%以上48mol%以下、ZrOを0mol%以上5mol%以下、ZnOを0mol%以上10mol%以下、KOとNaOから選ばれる少なくとも一方を含み、KO、NaO、またはKOとNaOとを2mol%以上10mol%以下、含有するものが好ましい。
 ここで、SiOはガラスの骨格をなす成分である。SiOの含有量が40mol%未満の場合、安定なガラスを得ることが難しく、また化学的耐久性も低下するおそれがある。
 一方、SiOの含有量が50mol%を超える場合、軟化点(Ts)やガラス転移点(Tg)が過度に高くなるおそれある。SiOの含有量は、好ましくは40.5mol%以上、より好ましくは42mol%以上である。また、SiOの含有量は、好ましくは48mol%以下、より好ましくは47mol%以下である。
 Bは、軟化点(Ts)を低下させる効果を有するものである。Bの含有量が38mol%未満の場合、軟化点(Ts)やガラス転移点(Tg)を十分に低下させられないおそれがある。一方、Bの含有量が48mol%を超える場合、安定なガラスを得ることが難しく、また化学的耐久性も低下するおそれがある。Bの含有量は、好ましくは39mol%以上、より好ましくは41mol%以上である。また、Bの含有量は、好ましくは45mol%以下、より好ましくは43mol%以下である。
 ZrOは、ガラスの安定性を高めるために5mol%以下の範囲で含有させてもよい。ZrOの含有量が5mol%を超えると、軟化点(Ts)が高くなるおそれがある。ZrOの含有量は、好ましくは4mol%以下である。
 ZnOは軟化点(Ts)を低下させるために添加してもよい。ZnOの含有量が10mol%を超えると、絶縁性基台2の強度が低下するおそれがある。ZnOの含有量は、好ましくは9mol%以下であり、4mol%未満であることがより好ましい。また、ZnOの含有量は、好ましくは、1mol%以上である。
 NaO、KOは、ガラス化を促進すると共に、軟化点(Ts)、ガラス転移点(Tg)を低下させるために添加される。
 NaOおよびKOの含有量の合計は、2mol%以上10mol%以下であることが好ましい。NaOおよびKOの含有量の合計が2mol%未満であると、軟化点(Ts)やガラス転移点(Tg)が高くなったり、ガラスが不安定となって分相しやすくなったりする。一方、NaOおよびKOの含有量の合計が10mol%を超えると、耐酸化性が低下したり、絶縁性基台2の強度が低下したりする。NaOおよびKOの含有量の合計は、より好ましくは6mol%以上、8mol%以下である。
 なお、ガラスセラミックス組成物に用いる低融点ガラス粉末は、必ずしも上記成分に限定されず、軟化点(Ts)、ガラス転移点(Tg)等の諸特性を満たす範囲で他の成分を含有できる。他の成分を含有する場合、その合計した含有量は10mol%以下とすることが好ましい。
 Alは、ガラスの安定性、化学的耐久性、および強度を高めるために5mol%を超えない範囲で添加してもよい。
 Alの含有量が5mol%を超える場合、軟化点(Ts)やガラス転移点(Tg)が過度に高くなるおそれがある。Alの含有量は、好ましくは3mol%以下である。
 CaOは、ガラスの安定性を高めると共に、軟化点(Ts)やガラス転移点(Tg)を低下させるために、5mol%を超えない範囲で添加してもよい。CaOの含有量が5mol%を超える場合、ガラスが不安定となるおそれがある。CaOの含有量は、好ましくは3mol%以下、より好ましくは1mol%以下である。
 MgOは、ガラスを安定化するために、含有量5mol%以下の範囲で含有してもよい。5mol%を超えると、軟化点(Ts)が高くなるおそれがある。MgOの含有量は、好ましくは3mol%以下である。
 BaOも、ガラスを安定化するために添加できるが、その含有量は、1%以下が好ましい。
 ガラスセラミックス組成物に用いる低融点ガラス粉末は、上記したようなガラス組成となるようにガラス原料を配合、混合し、このガラス原料を溶融法によって製造し、製造されたガラスを乾式粉砕法や湿式粉砕法によって粉砕することにより得られる。湿式粉砕法の場合、溶媒として水の使用が好ましい。粉砕は、例えばロールミル、ボールミル、ジェットミル等の粉砕機を用いて行う。
 絶縁性基台2に用いる低融点ガラス粉末の50%粒径(D50)は0.5μm以上4μm以下が好ましい。低融点ガラス粉末の50%粒径が0.5μm未満の場合、低融点ガラス粉末が凝集しやすく、取り扱いが困難となると共に、粉末化に要する時間が長くなりすぎるおそれもある。一方、低融点ガラス粉末の50%粒径が4μmを超える場合、ガラス粉末が軟化する温度の上昇や低融点ガラス粉末の焼結不足が発生するおそれがある。粒径の調整は、例えば粉砕後に必要に応じて分級により行う。なお、本明細書において、50%粒径(D50)は、レーザー回折/散乱式粒度分布測定装置を用いて測定したものをいう。
 また、低融点ガラス粉末の最大粒径は20μm以下であることが好ましい。最大粒径が20μmを超えると、低融点ガラス粉末の焼結性が低下し、焼結体中に未溶解成分が残留して、絶縁性基台2の反射性を低下させるおそれがある。
 低融点ガラス粉末の最大粒径は、より好ましくは10μm以下である。
 一方、セラミックスフィラーとしては、融点が1500℃以上であって、従来から用いられるものを特に制限なく使用でき、例えばアルミナ粉末、ジルコニア粉末、チタニア粉末、またはこれらの混合物を好適に使用できる。セラミックスフィラーの50%粒径(D50)は、例えば0.5μm以上4μm以下であることが好ましい。上記以外にも白色セラミックスフィラーは存在するが、発光素子搭載用支持体への不具合を生じるおそれがあるため、使用は避けた方がよい。この不具合には、例えば、光反射率の低下、強度の低下、焼結性の低下、熱膨張係数の低下によるリードフレームとの熱膨張係数差の増大である。
 このような低融点ガラス粉末とセラミックスフィラーとを、例えば低融点ガラス粉末が60体積%以上80体積%以下、セラミックスフィラーが20体積%以上40体積%以下となるように配合、混合することによりガラスセラミックス組成物が得られる。
 セラミックスフィラーが20体積%未満であると、ガラスセラミックス組成物の焼結体において、十分な反射率を得られないおそれがある。一方、セラミックスフィラーが40体積%を超えると、ガラスセラミックス組成物の焼結性が低くなり、焼結体の強度が低下するおそれがある。
 リードフレーム3は、0.1~0.5mm程度の厚みを有する導電性金属板を使用できる。金属板としては、従来から用いられるものを特に制限なく使用でき、例えば、アルミニウム、銅、鉄/銅合金、又は鉄/ニッケル合金等の導電性金属を好適に使用できる。また、リードフレーム3は、この導電性金属板の表面に、ニッケル、金、チタン、又は銀などを、数μm程度積層してめっき層を設けたものであってもよい。
 以上、本発明の発光素子搭載用支持体1について一例を挙げて説明したが、本発明の趣旨に反しない限度において、また必要に応じて、その構成を適宜変更することができる。
 図2は、本発明の発光素子搭載用支持体1に発光素子7が搭載された状態を示す断面図である。図2に示すように、発光素子7は、搭載部6a上に露出したリードフレーム3aの端部の表面に、導電性接着剤を用いて固定されており、図中の上側面が発光面7aとされ、この発光面7aの一部に電極(アノード)が設けられている。また、他方の電極(カソード)は、リードフレーム3aと接触する接触面7b(図中の下側)に設けられている。そして、発光面7a側の電極(アノード)は、ボンディングワイヤ8によって、対向側のリードフレーム3bに接続されている。これにより、発光面7a側の電極(アノード)は、リードフレーム3bに接続され、接触面7b側の電極(アノード)は、リードフレーム3aに接続される。
 このため、通電時に発光素子7から生じた熱は、発光素子7が搭載されたリードフレーム3aを伝わって、発光装置10の外部に速やかに放出されるとともに、ボンディングワイヤ8を伝わって、リードフレーム3bからも、発光装置10の外部に放出される。
 本発明の発光装置10は、図2で説明したようにして、発光素子搭載用支持体1の搭載部6aに、発光ダイオード等の発光素子7が搭載されたものである。そして、例えば図3に示すように、この発光素子搭載用支持体1の凹部6に、発光素子7、ボンディングワイヤ8を覆うように、封止材9が注入されて、発光装置10が構成されている。
 封止材9の主成分としては、例えばシリコーン樹脂やエポキシ樹脂を用いることができ、特にシリコーン樹脂は、耐光性、耐熱性の点で優れているため好ましい。
 この樹脂成分に、蛍光体等を添加することにより、発光装置10として得られる光の色を、適宜調整することができる。
 なお、本発明の発光装置は、図3に示すように、凹部6内に封止材9を注入したものに限定されるものではなく、例えば、凹部6の開口部に蓋状の部材を設けて、凹部6内を中空としたものであってもよく、また、図2で示すように、発光素子搭載用支持体1上に発光素子7を搭載したのみの構成であってもよい。
 本発明の発光装置によれば、耐熱性の高い発光素子搭載用支持体1を用いることで、発光素子7からの発熱量が多い場合でも、発光素子7が搭載される絶縁性基台2部分の熱による焼け、ひび割れ等の損傷を殆ど生じさせず、発光装置10として、安定した性能を維持できる。
 また、リードフレーム3が、酸化されることなく絶縁性基台2と一体として設けられているため、リードフレーム3を通して、発光素子7から生じた熱が速やかに発光装置10外部に放出される。したがって、高出力の発光素子7を搭載したものであっても、過度な温度上昇による発光効率の低下を抑制して、高輝度に発光させることができる。
 このような本発明の発光装置10は、例えば液晶ディスプレイ等のバックライト、小型情報端末の操作ボタン発光部、自動車用あるいは装飾用の照明、その他の光源として好適に使用できる。
 本発明の発光素子搭載用支持体1は、以下のようにして製造する。
 なお、以下の説明では、その製造に用いる部材について、完成品の部材と同一の符号を付して説明する。
 図4~9は、本発明の発光素子搭載用支持体1の製造工程の一例を示す断面図である。
 発光素子搭載用支持体1は、例えば図4~図9に示すように、金型40、50内で、未焼成側面部材4A及び未焼成支持部材5Aを製造した後、これらをリードフレーム3を挟んで重ね合わせて未焼成発光素子搭載用支持体1とし、これらを金型40、50内に収容した状態のまま焼成した後、冷却して得られる。
 まず、ガラスセラミックス組成物からなる粉体を、図4に示すように、側面部4を作製するための金型40に充填する。次に、金型40に充填された粉体を、プレス成型機を用いて、プレス板Pで押し固めるようにして押圧成型する。次いで、図5に示すように、未焼成側面部材4Aを焼成した後に得られる側面部材4を、金型40から分離して取り外すための枠体41を、金型40の底面に嵌合させる。その後、未焼成側面部材4Aの上面に接着剤を塗布し、その上にリードフレーム3a、3bを載置して、未焼成側面部材4Aの表面に固定する。
 一方、図6に示すように、支持部5を作製するための金型50にガラスセラミックス組成物からなる粉体を充填する。次いで、側面部4のときと同様に、金型50に充填された粉体を、プレス成型機を用いて、プレス板Pにより押圧成型する。次いで、図7に示すように、未焼成支持部材5Aを焼成した後に得られる支持部材5を、金型50から分離して取り外すための枠体51を、金型50の底面に嵌合させる。
 次いで、図8に示すように、未焼成支持部材5Aの表面に接着剤を塗布した後、未焼成支持部材5A表面に、未焼成側面部材4Aのリードフレーム載置面を接触させるようにして、未焼成側面部材4Aと未焼成支持部材5Aとを重ね合わせて、未焼成発光素子搭載用支持体1Aとする。その後、金型に収容した状態のまま、未焼成発光素子搭載用支持体1Aの焼成を行い、その後、焼結体から金型を取り外して、発光素子搭載用支持体が得られる。
 焼成は、例えば550℃以上630℃以下の温度で30分以上60分以下の時間保持する。特に580℃以上600℃以下の温度で行うことが好ましい。
 焼成温度が630℃を超えると、リードフレーム3を構成する導電性金属が酸化して、リードフレーム3の熱伝導性が低下したり導電性が低下したりするおそれがある。また、リードフレーム3がアルミニウムを主成分とする場合には、アルミニウムが溶解して、リードフレーム3が変形するおそれがある。一方、焼成温度が550℃未満であると、焼結が十分進行せず、緻密な絶縁性基台2を得られないおそれがある。
 焼成が終了した後、焼結体を一定期間冷却させ、その後、図9に示すように、枠体41に対して、側面部4に向かう方向に3kPaの圧力を加える。これにより、側面部4は、枠体41の突起部410との接触面において、図中の下向きの方向に押圧され、金型40から分離される。
 また、枠体51に対しても、支持部5に向かう方向に、3kPaの圧力を加える。これにより、支持部5は、枠体51の突起部510との接触面において、図中の上向きの方向に押圧され、金型50から分離される。
 なお、上述した発光素子搭載用支持体1の製造方法では、未焼成側面部材4A及び未焼成支持部材5Aを金型40、50内に収容した状態で焼成した後、焼結体から金型40、50を分離することとしたが、必ずしもこのような方法である必要はなく、例えば、焼成前の段階で未焼成側面部材4A及び未焼成支持部材5Aから金型40、50を分離し、その後、未焼成発光素子搭載用支持体1Aの焼成を行うようにしてもよい。また、各部の形成順序等についても、発光素子搭載用支持体1の製造が可能な限度において適宜変更することが可能である。
 以下、本発明を実施例によりさらに詳細に説明する。
(実施例1)
 まず、低融点ガラス粉末を製造した。すなわち、下記酸化物換算のmol%表示で、SiOを45mol%、Bを41.5mol%、ZrOを4mol%、ZnOを1.5mol%、NaOを2mol%、KOを6mol%となるように原料を配合、混合し、この原料混合物を白金ルツボに入れて1300~1400℃で60分間溶融させた後、この溶融状態のガラスを流し出し冷却した。このガラスをアルミナ製ボールミルにより20~60時間粉砕して低融点ガラス粉末を製造した。なお、粉砕時の溶媒にはエチルアルコールを用いた。
 得られた低融点ガラス粉末のガラス転移点(Tg)を、マックサイエンス社製熱分析装置TG-DTA2000を用い、昇温速度10℃/分の条件で1000℃まで測定したところ、ガラス転移点(Tg)は443℃であった。また、軟化点(Ts)は602℃であった。
 このようにして得られた低融点ガラス粉末の50%粒径(D50)をレーザー回折/散乱式粒度分布測定装置を用いて測定したところ、2.8μmであった。
 この低融点ガラス粉末が65質量%、アルミナフィラー(50%粒径(D50)は、2.8μm、昭和電工社製、商品名:AL-47H)が35質量%となるように配合し、混合することによりガラスセラミックス組成物を製造した。
 このガラスセラミックス組成物を、側面部金型40、及び支持部金型50に充填し、プレス成型機を用いて、粉体をプレス成型した(図4及び図6参照。)。次いで、各金型の底面に枠体41、51を嵌合させた後、側面部金型40の未焼成側面部材4A表面に接着剤を塗布し、図5に示すように、リードフレーム3a、3bを載置して固定した。この側面部金型40及び支持部金型50を、図8に示すようにして重ねあわせ、焼成を行った。焼成は、590℃で40分行った。その後、120分冷却させた後、側面部金型40及び支持部金型50内の焼結体を、枠体41及び枠体51によって金型40及び50から取り外し(図9参照。)、発光素子搭載用支持体1を得た。
 得られた発光素子搭載用支持体1のリードフレーム3は、酸化されておらず、発光装置10として適用できるものであった。
 本発明によれば、発光素子が搭載される絶縁性基台として、所定のガラスセラミックス組成物を用いることで、耐熱性が高く、熱による基台の損傷や気密性の低下が抑制された発光素子搭載用支持体が得られ、かかる発光素子搭載用支持体の採用により、高出力の発光素子を搭載しても、熱による基台の損傷や、気密性の低下が抑制され、また、発光素子から生じる熱を、外部に速やかに放出できる発光装置が得られる。
 なお、2010年2月1日に出願された日本特許出願2010-020240号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
1…発光素子搭載用支持体、2…絶縁性基台、3…リードフレーム、4…側面部、4A…未焼成側面部材、5…支持部、5A…未焼成支持部材、6…凹部、6a…搭載部、7…発光素子、8…ボンディングワイヤ、9…封止材、10…発光装置、40,50…金型、41,51…枠体

Claims (8)

  1.  発光素子が搭載される搭載部を有する絶縁性基台と、前記絶縁性基台に搭載される発光素子を実装するリードフレームとを一体成形した発光素子搭載用支持体であって、
     前記絶縁性基台が、低融点ガラス粉末とセラミックスフィラーとを含むガラスセラミックス組成物の焼結体からなり、前記低融点ガラス粉末の軟化点(Ts)が630℃以下であることを特徴とする発光素子搭載用支持体。
  2.  前記セラミックスフィラーは、アルミナ粉末、ジルコニア粉末及びチタニア粉末から選択される1種又は2種以上の混合物からなることを特徴とする請求項1に記載の発光素子搭載用支持体。
  3.  前記リードフレームが、アルミニウム、銅、鉄/銅合金、又は鉄/ニッケル合金から選択される導電性金属又は合金であることを特徴とする請求項1又は2に記載の発光素子搭載用支持体。
  4.  前記ガラスセラミックス組成物において、低融点ガラス粉末の含有比率が60体積%以上80体積%以下であり、セラミックスフィラーの含有比率が20体積%以上40体積%以下であることを特徴とする請求項1乃至3のいずれか1項に記載の発光素子搭載用支持体。
  5.  前記絶縁性基台がすり鉢状に凹陥する発光素子の搭載される搭載部を有し、リードフレームが前記絶縁性基台を貫通して前記搭載部の底面に露出していることを特徴とする請求項1乃至4のいずれか1項に記載の発光素子搭載用支持体。
  6.  前記低融点ガラス粉末の軟化点(Ts)が450℃以上630℃以下であることを特徴とする請求項1乃至4のいずれか1項に記載の発光素子搭載用支持体。
  7.  前記低融点ガラス粉末の50%粒径(D50)が0.5μm以上4μm以下であることを特徴とする請求項1乃至4のいずれか1項に記載の発光素子搭載用支持体。
  8.  請求項1乃至7のいずれか1項に記載の発光素子搭載用支持体と、
     前記発光素子搭載用支持体の搭載部に搭載される発光素子と、
    を有することを特徴とする発光装置。
PCT/JP2010/071297 2010-02-01 2010-11-29 発光素子搭載用支持体及び発光装置 WO2011092934A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020127011375A KR20120125452A (ko) 2010-02-01 2010-11-29 발광 소자 탑재용 지지체 및 발광 장치
JP2011551691A JP5673561B2 (ja) 2010-02-01 2010-11-29 発光素子搭載用支持体及び発光装置並びに発光素子搭載用支持体の製造方法
CN2010800597648A CN102714258A (zh) 2010-02-01 2010-11-29 发光元件搭载用支承体及发光装置
EP10844688A EP2533310A1 (en) 2010-02-01 2010-11-29 Supporting body for mounting light emitting element, and light emitting device
US13/562,723 US8727585B2 (en) 2010-02-01 2012-07-31 Support for mounting light-emitting element, and light-emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-020240 2010-02-01
JP2010020240 2010-02-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/562,723 Continuation US8727585B2 (en) 2010-02-01 2012-07-31 Support for mounting light-emitting element, and light-emitting device

Publications (1)

Publication Number Publication Date
WO2011092934A1 true WO2011092934A1 (ja) 2011-08-04

Family

ID=44318935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071297 WO2011092934A1 (ja) 2010-02-01 2010-11-29 発光素子搭載用支持体及び発光装置

Country Status (7)

Country Link
US (1) US8727585B2 (ja)
EP (1) EP2533310A1 (ja)
JP (1) JP5673561B2 (ja)
KR (1) KR20120125452A (ja)
CN (1) CN102714258A (ja)
TW (1) TW201131832A (ja)
WO (1) WO2011092934A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101548223B1 (ko) * 2013-10-11 2015-08-31 (주)포인트엔지니어링 방열 물질이 내재된 칩 실장 기판용 방열체 제조 방법

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012015015A1 (ja) * 2010-07-29 2012-02-02 旭硝子株式会社 ガラスセラミックス組成物、発光素子用基板、および発光装置
CN102403418A (zh) * 2011-11-09 2012-04-04 东莞勤上光电股份有限公司 一种大功率led的散热结构的制作方法
CN110277476A (zh) * 2018-03-14 2019-09-24 青岛杰生电气有限公司 一种直插式侧发光深紫外led支架及其制作工艺

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07326835A (ja) * 1994-05-30 1995-12-12 Kyocera Corp 低温焼成セラミック回路基板
JP2004259898A (ja) * 2003-02-25 2004-09-16 Kyocera Corp 多層配線基板およびその製造方法
JP2006278761A (ja) * 2005-03-29 2006-10-12 Tdk Corp グリーン基板の製造方法、セラミック基板の切断方法およびチップ状電子部品の製造方法
JP2007207464A (ja) * 2006-01-31 2007-08-16 Toray Ind Inc プラズマディスプレイ用背面板およびその製造方法
JP2008153553A (ja) * 2006-12-19 2008-07-03 Nichia Chem Ind Ltd 発光装置およびその製造方法
JP2009081430A (ja) * 2007-09-04 2009-04-16 Toyoda Gosei Co Ltd 発光装置
JP2009135543A (ja) * 2009-03-17 2009-06-18 Toyoda Gosei Co Ltd 発光装置の製造方法
JP2010003941A (ja) * 2008-06-23 2010-01-07 Mitsubishi Electric Corp Led光源、面状光源装置および表示装置
JP2010020240A (ja) 2008-07-14 2010-01-28 Konica Minolta Business Technologies Inc カラー画像形成装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517211A (ja) * 1991-03-07 1993-01-26 Sumitomo Metal Ind Ltd 基板材料及び回路基板
JP2002198626A (ja) * 2000-12-27 2002-07-12 Kyocera Corp 低温焼成セラミック回路基板の製造方法
US6548895B1 (en) * 2001-02-21 2003-04-15 Sandia Corporation Packaging of electro-microfluidic devices
JP2002299831A (ja) * 2001-03-30 2002-10-11 Kyocera Corp 回路基板
US6874910B2 (en) * 2001-04-12 2005-04-05 Matsushita Electric Works, Ltd. Light source device using LED, and method of producing same
US7655957B2 (en) * 2006-04-27 2010-02-02 Cree, Inc. Submounts for semiconductor light emitting device packages and semiconductor light emitting device packages including the same
JP2008041699A (ja) 2006-08-01 2008-02-21 Showa Denko Kk Ledパッケージ
KR101047778B1 (ko) * 2010-04-01 2011-07-07 엘지이노텍 주식회사 발광 소자 패키지 및 이를 구비한 라이트 유닛
KR20120108437A (ko) * 2011-03-24 2012-10-05 삼성전자주식회사 발광소자 패키지

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07326835A (ja) * 1994-05-30 1995-12-12 Kyocera Corp 低温焼成セラミック回路基板
JP2004259898A (ja) * 2003-02-25 2004-09-16 Kyocera Corp 多層配線基板およびその製造方法
JP2006278761A (ja) * 2005-03-29 2006-10-12 Tdk Corp グリーン基板の製造方法、セラミック基板の切断方法およびチップ状電子部品の製造方法
JP2007207464A (ja) * 2006-01-31 2007-08-16 Toray Ind Inc プラズマディスプレイ用背面板およびその製造方法
JP2008153553A (ja) * 2006-12-19 2008-07-03 Nichia Chem Ind Ltd 発光装置およびその製造方法
JP2009081430A (ja) * 2007-09-04 2009-04-16 Toyoda Gosei Co Ltd 発光装置
JP2010003941A (ja) * 2008-06-23 2010-01-07 Mitsubishi Electric Corp Led光源、面状光源装置および表示装置
JP2010020240A (ja) 2008-07-14 2010-01-28 Konica Minolta Business Technologies Inc カラー画像形成装置
JP2009135543A (ja) * 2009-03-17 2009-06-18 Toyoda Gosei Co Ltd 発光装置の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101548223B1 (ko) * 2013-10-11 2015-08-31 (주)포인트엔지니어링 방열 물질이 내재된 칩 실장 기판용 방열체 제조 방법

Also Published As

Publication number Publication date
CN102714258A (zh) 2012-10-03
US8727585B2 (en) 2014-05-20
US20120294019A1 (en) 2012-11-22
JPWO2011092934A1 (ja) 2013-05-30
JP5673561B2 (ja) 2015-02-18
TW201131832A (en) 2011-09-16
EP2533310A1 (en) 2012-12-12
KR20120125452A (ko) 2012-11-15

Similar Documents

Publication Publication Date Title
JP4905009B2 (ja) 発光装置の製造方法
JP5371359B2 (ja) 蛍光体含有ガラス板及び発光装置の製造方法
JP5061236B2 (ja) 発光ダイオードパッケージ及び発光素子搭載用基板
JP5307364B2 (ja) 蛍光体含有ガラスの製造方法及び固体素子デバイスの製造方法
WO2010021367A1 (ja) 発光装置
JP5035241B2 (ja) 発光装置の製造方法および発光装置
JP2006156668A (ja) 発光装置及びその製造方法
JP2008270563A (ja) 発光装置、光源装置及び発光装置の製造方法
EP2017899A1 (en) Light emitting device
WO2010150830A1 (ja) 発光装置
TW201143167A (en) Substrate for mounting light emitting element, and light emitting device
JP2008153553A (ja) 発光装置およびその製造方法
JP5673561B2 (ja) 発光素子搭載用支持体及び発光装置並びに発光素子搭載用支持体の製造方法
WO2012014853A1 (ja) 発光素子用基板、発光装置及び発光素子用基板の製造方法
WO2012005308A1 (ja) 発光素子用反射枠体、発光素子用基板、および発光装置
JP5644771B2 (ja) 発光素子用基板および発光装置
JP2012049512A (ja) 発光素子搭載用基板とその製造方法および発光装置
JP5725029B2 (ja) 発光素子搭載用基板および発光装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080059764.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844688

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011551691

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127011375

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010844688

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE