WO2011092879A1 - 弾性表面波フィルタ装置 - Google Patents

弾性表面波フィルタ装置 Download PDF

Info

Publication number
WO2011092879A1
WO2011092879A1 PCT/JP2010/062152 JP2010062152W WO2011092879A1 WO 2011092879 A1 WO2011092879 A1 WO 2011092879A1 JP 2010062152 W JP2010062152 W JP 2010062152W WO 2011092879 A1 WO2011092879 A1 WO 2011092879A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonator
acoustic wave
surface acoustic
wave filter
resonators
Prior art date
Application number
PCT/JP2010/062152
Other languages
English (en)
French (fr)
Inventor
高峰 裕一
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to EP10844637.8A priority Critical patent/EP2530837A4/en
Priority to CN201080062605.3A priority patent/CN102725958B/zh
Priority to JP2011551662A priority patent/JP5354028B2/ja
Priority to KR1020127018859A priority patent/KR101387447B1/ko
Publication of WO2011092879A1 publication Critical patent/WO2011092879A1/ja
Priority to US13/558,402 priority patent/US8436697B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0547Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a vertical arrangement
    • H03H9/0557Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a vertical arrangement the other elements being buried in the substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves

Definitions

  • the present invention relates to a surface acoustic wave filter device.
  • the present invention relates to a surface acoustic wave filter device including a surface acoustic wave filter chip that is flip-chip mounted on a wiring board.
  • Patent Document 1 various surface acoustic wave filter devices using surface acoustic waves have been proposed as band-pass filters mounted on RF (Radio Frequency) circuits in communication devices such as mobile phones. ing.
  • RF Radio Frequency
  • FIG. 14 is a schematic cross-sectional view of the surface acoustic wave filter device described in Patent Document 1.
  • the surface acoustic wave filter device 100 includes a package 101 and a surface acoustic wave filter element 102 disposed in the package 101.
  • the package 101 includes a base substrate 101a, a side wall 101b, and a cap member 101c.
  • the surface acoustic wave filter element 102 is flip-chip mounted on the base substrate 101a.
  • FIG. 15 is a schematic plan view of the surface acoustic wave filter element 102.
  • FIG. 16 is a schematic circuit diagram of the surface acoustic wave filter device 100.
  • FIG. 17 is a schematic plan view of the base substrate 101a.
  • the surface acoustic wave filter element 102 includes a piezoelectric substrate 102a and a ladder-type surface acoustic wave filter portion 102b formed on the piezoelectric substrate 102a.
  • the surface acoustic wave filter device 100 connects the serial arm resonators 104 a and 104 b connected in series in the serial arm 103 (see FIG. 16), and the serial arm 103 and the ground potential.
  • Inductors L101 to L103 are provided between the parallel arm resonators 105a to 105c and the ground potential.
  • the series arm 103 is provided with inductors L104 and L105.
  • the series arm resonators 104a and 104b and the parallel arm resonators 105a to 105c are formed on the piezoelectric substrate 102a as shown in FIG.
  • the inductors L101 to L105 are formed on the base substrate 101a as shown in FIG.
  • the inductors L101 to L105 are configured by wirings 107a to 107e formed on the base substrate 101a. Since the surface acoustic wave filter element 102 is flip-chip mounted on the base substrate 101a, the surface of the base substrate 101a is a die attach surface.
  • the inductor may be composed of a chip-type inductor mounted on a base substrate or the like, but is preferably composed of wiring formed on the base substrate from the viewpoint of downsizing the surface acoustic wave filter device.
  • the base substrate as the place where the wiring constituting the inductor is formed, the inside of the base substrate and the die attach surface of the base substrate can be considered.
  • the wiring configuring the inductor is formed inside the base substrate, the distance between the wiring configuring the inductor and the ground potential is shortened. For this reason, it becomes difficult to form an inductor having a large inductance value. Therefore, it is preferable that the wiring constituting the inductor is formed on the die attach surface of the base substrate that is located farthest from the ground potential.
  • the wiring that constitutes the inductor is formed on the die attach surface of the base substrate, electromagnetic coupling or capacitive coupling occurs between the wiring that constitutes the inductor and the resonator formed on the piezoelectric substrate. May deteriorate. Therefore, for example, as shown in FIGS. 15 to 17, in the surface acoustic wave filter device 100, the wirings 107a to 107e constituting the inductors L101 to L105 are connected to the series arm resonators 104a and 104b on the piezoelectric substrate 102a. It is formed on the peripheral edge of the surface of the base substrate 101a so as not to face the parallel arm resonators 105a to 105c.
  • the surface acoustic wave filter device 100 it is necessary to enlarge the base substrate 101a in order to secure a region for providing the wirings 107a to 107e constituting the inductors L101 to L105, and the surface acoustic wave filter device is increased in size.
  • a region for providing wiring constituting the inductor is secured at the peripheral portion of the surface of the base substrate. It was difficult.
  • the present invention has been made in view of such points, and an object thereof is to provide a small surface acoustic wave filter device having good filter characteristics.
  • the present inventor has found that the filter characteristics deteriorate so much even if a specific inductor provided on the die attach surface of the wiring board faces a specific resonator provided on the piezoelectric substrate. I found it not. Specifically, it has been found that if the resonator is connected to the input pad or the output pad and the inductor connected to the resonator, the filter characteristics do not deteriorate so much even if they face each other. As a result, the present invention has been made.
  • the surface acoustic wave filter device includes a wiring board having a die attach surface and a surface acoustic wave filter chip.
  • the surface acoustic wave filter chip is flip-chip mounted on the die attach surface of the wiring board.
  • the surface acoustic wave filter chip includes a piezoelectric substrate and a ladder-type surface acoustic wave filter portion formed on the piezoelectric substrate.
  • the ladder-type surface acoustic wave filter unit includes an input pad and an output pad, a series arm connected between the input pad and the output pad, and a plurality of resonators.
  • the plurality of resonators includes at least one first resonator connected to the input pad or the output pad.
  • An inductor connected to the first resonator is formed on the die attach surface of the wiring board.
  • the inductor is provided so that at least a part thereof faces the first resonator, but does not face a resonator other than the first resonator among the plurality of resonators.
  • the wiring board has an input terminal to which the input pad is connected and an output terminal to which the output pad is connected.
  • the plurality of resonators include a plurality of series arm resonators and at least one parallel arm resonator.
  • the plurality of series arm resonators are connected in series in the series arm.
  • At least one parallel arm resonator is connected between the series arm and the ground potential.
  • the first resonator is a series arm resonator.
  • the inductor is connected between the first resonator and the input terminal or between the first resonator and the output terminal.
  • the wiring board has an input terminal to which the input pad is connected and an output terminal to which the output pad is connected.
  • the plurality of resonators include a plurality of series arm resonators and at least one parallel arm resonator.
  • the plurality of series arm resonators are connected in series in the series arm.
  • At least one parallel arm resonator is connected between the series arm and the ground potential.
  • the first resonator is a parallel arm resonator.
  • the inductor is connected between the first resonator and the input terminal or between the first resonator and the output terminal.
  • the wiring board has an input terminal to which the input pad is connected and an output terminal to which the output pad is connected.
  • the plurality of resonators include a plurality of series arm resonators and at least one parallel arm resonator.
  • the plurality of series arm resonators are connected in series in the series arm.
  • At least one parallel arm resonator is connected between the series arm and the ground potential.
  • the first resonator is a series arm resonator.
  • the inductor is connected in parallel with the first resonator.
  • the wiring board has an input terminal to which the input pad is connected and an output terminal to which the output pad is connected.
  • the plurality of resonators include a plurality of series arm resonators and at least one parallel arm resonator.
  • the plurality of series arm resonators are connected in series in the series arm.
  • At least one parallel arm resonator is connected between the series arm and the ground potential.
  • the first resonator is a parallel arm resonator.
  • the inductor is connected between the first resonator and the ground potential.
  • the surface acoustic wave filter device is a duplexer.
  • the inductor connected to the at least one first resonator connected to the input pad or the output pad is at least partially opposed to the first resonator, These are provided so as not to face the resonators other than the first resonator. For this reason, the area
  • FIG. 1 is a schematic circuit diagram of a duplexer according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a duplexer according to an embodiment of the present invention.
  • FIG. 3 is a schematic perspective plan view showing the electrode structure of the transmitting surface acoustic wave filter chip in the duplexer according to the embodiment of the present invention.
  • FIG. 4 is a schematic plan view of the die attach surface of the wiring board in the duplexer according to the embodiment of the present invention.
  • FIG. 5 is a schematic perspective plan view of a duplexer according to an embodiment of the present invention.
  • FIG. 6 is a schematic plan view of a die attach surface of a wiring board in a duplexer according to a comparative example.
  • FIG. 1 is a schematic circuit diagram of a duplexer according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a duplexer according to an embodiment of the present invention.
  • FIG. 3 is
  • FIG. 7 is a schematic perspective plan view of a duplexer according to a comparative example.
  • FIG. 8 is a graph showing pass characteristics of a transmission filter in a duplexer according to an embodiment of the present invention, and pass characteristics of a transmission filter in a duplexer according to a comparative example.
  • FIG. 9 is a graph showing the isolation characteristics of the duplexer according to one embodiment of the present invention and the isolation characteristics of the duplexer according to the comparative example.
  • FIG. 10 is a schematic circuit diagram of the transmission filter in the duplexer according to the first modification.
  • FIG. 11 is a schematic circuit diagram of a transmission-side filter in a duplexer according to a second modification.
  • FIG. 12 is a schematic circuit diagram of a transmission-side filter in a duplexer according to a third modification.
  • FIG. 13 is a schematic circuit diagram of a transmission-side filter in a duplexer according to a fourth modification.
  • FIG. 14 is a schematic cross-sectional view of the surface acoustic wave filter device described in Patent Document 1.
  • FIG. 15 is a schematic plan view of the surface acoustic wave filter element 102.
  • FIG. 16 is a schematic circuit diagram of the surface acoustic wave filter device 100.
  • FIG. 17 is a schematic plan view of the base substrate 101a.
  • the duplexer 1 shown in FIGS. 1 and 2 as a type of surface acoustic wave filter device as an example.
  • the duplexer 1 is merely an example.
  • the surface acoustic wave filter device according to the present invention is not limited to the duplexer 1.
  • the surface acoustic wave filter device according to the present invention may have, for example, only one filter unit, or may be a duplexer other than a duplexer, such as a triplexer.
  • the duplexer 1 of the present embodiment is, for example, an RF (Radio Frequency) circuit that is an RF (Radio Frequency) circuit such as a mobile phone that supports a CDMA (Code Division Multiple Access) system such as UMTS (Universal Mobile Telecommunications System).
  • the duplexer 1 is a duplexer corresponding to UMTS-BAND2.
  • the transmission frequency band of UMTS-BAND2 is 1850 to 1910 MHz, and the reception frequency band is 1930 to 1990 MHz.
  • FIG. 1 is a schematic circuit diagram of the duplexer 1 of the present embodiment.
  • FIG. 2 is a schematic cross-sectional view of the duplexer 1 of the present embodiment.
  • the duplexer 1 includes a wiring board 10, a transmission-side surface acoustic wave filter chip 14, and a reception-side surface acoustic wave filter chip 15.
  • the transmission-side surface acoustic wave filter chip 14 and the reception-side surface acoustic wave filter chip 15 are flip-chip mounted on the die attach surface 10 a of the wiring substrate 10.
  • a sealing resin layer 16 is formed on the wiring substrate 10 so as to cover the transmission-side surface acoustic wave filter chip 14 and the reception-side surface acoustic wave filter chip 15. That is, the duplexer 1 of the present embodiment is a CSP type surface acoustic wave filter device.
  • the reception-side surface acoustic wave filter chip 15 includes a longitudinally coupled resonator type surface acoustic wave filter unit 15A formed on a piezoelectric substrate (not shown).
  • a reception-side filter is configured by the longitudinally coupled resonator-type surface acoustic wave filter unit 15A.
  • the longitudinally coupled resonator type surface acoustic wave filter unit 15A is a filter unit having a balance-unbalance conversion function, and the unbalanced signal terminal 15a of the longitudinally coupled resonator type surface acoustic wave filter unit 15A is formed on the wiring board 10.
  • the first and second balanced signal terminals 15b and 15c are connected to the first and second receiving-side signal terminals 22a and 22b formed on the wiring board 10, respectively. ing.
  • the impedance of the unbalanced signal terminal 15a is 50 ⁇ .
  • the impedances of the first and second balanced signal terminals 15b and 15c are 100 ⁇ .
  • the reception-side filter is configured by the longitudinally coupled resonator-type surface acoustic wave filter unit 15A, but the reception-side filter may be configured by a ladder-type surface acoustic wave filter unit.
  • a matching inductor L1 is connected between the connection point between the antenna terminal 21 and the unbalanced signal terminal 15a and the ground potential.
  • the transmitting surface acoustic wave filter chip 14 includes a ladder type surface acoustic wave filter section 14A.
  • the ladder-type surface acoustic wave filter unit 14A constitutes a transmission-side filter.
  • the ladder-type surface acoustic wave filter unit 14 ⁇ / b> A is connected between an antenna terminal 21 formed on the wiring board 10 and a transmission-side signal terminal 24 formed on the wiring board 10. Yes.
  • the ladder-type surface acoustic wave filter unit 14 ⁇ / b> A includes a series arm 33 that connects the antenna terminal 21 and the transmission-side signal terminal 24. In the series arm 33, the series arm resonators S1 to S3 are connected in series.
  • the series arm resonator S1 is composed of surface acoustic wave resonators S11 to S13.
  • the series arm resonator S2 includes surface acoustic wave resonators S21 to S23.
  • the series arm resonator S3 includes surface acoustic wave resonators S31 to S33.
  • the series arm resonators S1 to S3 are each composed of a plurality of surface acoustic wave resonators, but each function as one resonator.
  • the ladder-type surface acoustic wave filter unit 14A has high power durability. Note that each of the series arm resonators S1 to S3 may be composed of one surface acoustic wave resonator.
  • Capacitors C1 to C5 are connected in parallel to the surface acoustic wave resonators S21 to S23 constituting the series arm resonator S2. These capacitors C1 to C5 shift the antiresonance frequency of the series arm resonator S2 to the low frequency side. Therefore, by providing the capacitors C1 to C5, the steepness of the filter characteristics of the transmission side filter is enhanced.
  • An LC resonance circuit 34 in which an inductor L3 and a capacitor C6 are connected in parallel is connected between the series arm resonator S3 and the transmission-side signal terminal 24.
  • the attenuation pole formed by the LC resonance circuit 34 is located on the high pass band side of the transmission filter. Therefore, by providing the LC resonance circuit 34, the amount of attenuation on the high pass band side of the transmission filter is increased.
  • the ladder-type surface acoustic wave filter unit 14A has parallel arms 37 to 39 connected between the series arm 33 and the ground potential.
  • the parallel arms 37 to 39 are provided with parallel arm resonators P1 to P3.
  • the parallel arm resonator P1 is composed of surface acoustic wave resonators P11 and P12.
  • the parallel arm resonator P2 includes surface acoustic wave resonators P21 and P22.
  • the parallel arm resonator P3 includes surface acoustic wave resonators P31 and P32.
  • the parallel arm resonators P1 to P3 are each composed of a plurality of surface acoustic wave resonators, but each function as one resonator.
  • each of the parallel arm resonators P1 to P3 may be composed of one surface acoustic wave resonator.
  • An inductor L2 is connected between the parallel arm resonators P1 and P2 and the ground potential. This inductor L2 can increase the attenuation on the low pass band side of the transmission filter.
  • FIG. 3 is a schematic perspective plan view showing the electrode structure of the transmission-side surface acoustic wave filter chip 14 in the duplexer 1 of the present embodiment. Specifically, FIG. 3 shows the electrode structure of the transmission-side surface acoustic wave filter chip 14 in a state where the transmission-side surface acoustic wave filter chip 14 is seen through from above the duplexer 1.
  • FIG. 4 is a schematic plan view of the die attach surface 10a of the wiring board 10 in the duplexer 1 of the present embodiment.
  • FIG. 5 is a schematic perspective plan view of the duplexer 1 of the present embodiment. Specifically, FIG. 5 shows a state seen through from above the duplexer 1.
  • the transmission-side surface acoustic wave filter chip 14 includes a piezoelectric substrate 30.
  • an output pad 32 connected to the antenna terminal 21, an input pad 31 connected to the transmission side signal terminal 24, series arm resonators S1 to S3, and a parallel arm resonator P1.
  • capacitors C1 to C6, ground pads 41 to 43 connected to the ground potential, electrode pads 44, and dummy pads 45 are formed.
  • the surface acoustic wave resonators S11 to S13, S21 to S23, S31 to S33 constituting the series arm resonators S1 to S3 and the surface acoustic wave resonators P11, P12 constituting the parallel arm resonators P1 to P3, P21, P22, P31, and P32 are configured by one interdigital transducer and a set of reflectors disposed on both sides of the interdigital transducer.
  • the capacitors C1 to C6 are composed of comb-like electrodes. Bumps are formed on the input pad 31, the output pad 32, the ground pads 41 to 43, the electrode pad 44, and the dummy pad 45.
  • the circles in FIG. 3 indicate bumps.
  • the piezoelectric substrate 30 can be configured by a piezoelectric single crystal substrate such as LiNbO 3 or LiTaO 3 .
  • a plurality of electrodes and inductors L2 and L3 made of wiring are formed on the die attach surface 10a of the wiring substrate 10.
  • the plurality of electrodes are connected to the electrode patterns of the transmission-side surface acoustic wave filter chip 14 and the reception-side surface acoustic wave filter chip 15 by bumps.
  • the inductor L2 is formed so as not to face the transmission-side surface acoustic wave filter chip 14.
  • the inductor L3 is formed so that a part of the inductor L3 faces the transmission-side surface acoustic wave filter chip 14.
  • the inductor L3 is provided so that a part of the inductor L3 faces the series arm resonator S3 and the parallel arm resonator P3 connected to the input pad 31. Yes.
  • the inductors L2 and L3 are formed on the die attach surface 10a of the wiring board 10 that is located farthest from the ground potential. For this reason, for example, compared with the case where the inductors L2 and L3 are formed inside the wiring substrate 10, the inductance values of the inductors L2 and L3 can be increased without increasing the size of the inductors L2 and L3.
  • the inductor L3 is formed so as to face the series arm resonator S3 and the parallel arm resonator P3. For this reason, compared with the case where the inductor L3 is disposed so as not to face the transmission-side surface acoustic wave filter chip 14 including the series arm resonator S3 and the parallel arm resonator P3, the wiring substrate 10 is not increased in size. The region where the inductor L3 is formed can be increased. Therefore, the inductance value of the inductor L3 can be increased.
  • the inductor L3 faces the series arm resonator S3 and the parallel arm resonator P3 connected to the input pad 31, but other resonators S1, S2, P1, P2 and capacitors C1 to C6. Is not opposite. Accordingly, it is possible to suppress the deterioration of the filter characteristics of the transmission side filter. Hereinafter, this effect will be described in more detail with reference to specific examples.
  • FIG. 6 is a schematic plan view of the die attach surface 201a of the wiring board 201 in the duplexer 200 of the comparative example.
  • FIG. 7 is a schematic perspective plan view of the duplexer 200 of the comparative example. Specifically, FIG. 7 shows a state seen through from above the duplexer 200 of the comparative example. As shown in FIGS.
  • the inductor L3 includes a part of the inductor L3 not only in the series arm resonator S3 and the parallel arm resonator P3 but also in the parallel arm resonator P2. It is formed so as to face each other.
  • FIG. 8 shows the transmission characteristics of the transmission filter in the duplexer 1 of the present embodiment and the transmission characteristics of the transmission filter in the duplexer 200 of the comparative example.
  • the minimum value of the attenuation amount was about 45.4 dB in the reception frequency band of 1930 to 1990 MHz.
  • the minimum value of attenuation is about 49.8 dB in the reception frequency band of 1930 to 1990 MHz, which is the minimum value of attenuation compared to the duplexer 200 of the comparative example. Is about 4.4 dB larger.
  • the amount of attenuation on the high pass band side is larger than that of the transmission side filter in the duplexer 200 of the comparative example.
  • FIG. 9 shows the isolation characteristics of the duplexer 1 of the present embodiment and the isolation characteristics of the duplexer 200 of the comparative example.
  • the isolation characteristic shown in FIG. 9 is an isolation characteristic between the transmission-side signal terminal 24 and the first and second reception-side signal terminals 22a and 22b.
  • the minimum attenuation value was about 53 dB in the reception frequency band of 1930 to 1990 MHz.
  • the minimum value of attenuation is about 60 dB in the reception frequency band of 1930 to 1990 MHz, and the isolation characteristic is about 7 dB better than that of the duplexer 200 of the comparative example.
  • the elastic surface It can be seen that good filter characteristics can be realized without increasing the size of the wave filter device.
  • the inductor L3 formed on the die attach surface 201a of the wiring board 201 is parallel arm resonator P2 formed on the piezoelectric substrate 30 of the transmission surface acoustic wave filter chip 14. Therefore, capacitive coupling and electromagnetic coupling occur between the inductor L3 and the parallel arm resonator P2. As a result, a path by capacitive coupling or electromagnetic coupling is formed between the inductor L3 and the parallel arm resonator P2. With this path, a part of the signal flows directly from the input pad 31 to the parallel arm resonator P2 without passing through the series arm resonator S3.
  • the attenuation on the high-pass band side of the transmission side filter in the duplexer 200 of the comparative example is reduced, and the isolation characteristics of the duplexer 200 of the comparative example are degraded, and the filter characteristics are degraded.
  • the inductor L3 formed on the die attach surface 10a of the wiring substrate 10 is a series arm resonator formed on the piezoelectric substrate 30 of the transmission-side surface acoustic wave filter chip 14. It is formed so as to face S3 and the parallel arm resonator P3 but not to face the other resonators S1, S2, P1, P2 and the capacitors C1 to C6. Therefore, even if capacitive coupling or electromagnetic coupling occurs between the inductor L3 and the series arm resonator S3 and between the inductor L3 and the parallel arm resonator P3, the other resonators S1, S2, P1.
  • P2 and capacitors C1 to C6 do not cause capacitive coupling or electromagnetic coupling. Therefore, a path in which a part of the signal flows directly from the input pad 31 to the other resonators S1, S2, P1, P2 and the capacitors C1 to C6 without passing through a desired path is not formed. Therefore, in the duplexer 1 of the present embodiment, the filter characteristics such as the attenuation amount and the isolation characteristic on the high side of the pass band of the transmission filter are unlikely to deteriorate.
  • the inductor L3 includes a part of the inductor L3 in series arm resonance. It may be formed so as to face only one of the child S3 and the parallel arm resonator P3.
  • FIG. 10 is a schematic circuit diagram of the transmission filter in the duplexer according to the first modification.
  • FIG. 11 is a schematic circuit diagram of a transmission-side filter in a duplexer according to a second modification.
  • FIG. 12 is a schematic circuit diagram of a transmission-side filter in a duplexer according to a third modification.
  • FIG. 13 is a schematic circuit diagram of a transmission-side filter in a duplexer according to a fourth modification.
  • the inductor formed on the die attach surface of the wiring board facing the resonator formed on the piezoelectric substrate is an inductor constituting the LC resonance circuit.
  • An inductor such as
  • the impedance matching inductor L4 connected to the series arm resonator S3 and the parallel arm resonator P3 and also connected to the transmission side signal terminal 24 which is the input terminal of the transmission side filter is provided.
  • the inductor L4 may be disposed on the die attach surface 10a of the wiring board 10 so that at least a part of the inductor L4 faces one or both of the series arm resonator S3 and the parallel arm resonator P3.
  • the inductor L5 connected in parallel with the series arm resonator S3 is arranged such that at least a part of the inductor L5 faces one or both of the series arm resonator S3 and the parallel arm resonator P3.
  • the wiring board 10 may be disposed on the die attach surface 10a.
  • an inductor L6 connected between the parallel arm resonator P3 and the ground potential has at least a part of the inductor L6, one of the series arm resonator S3 and the parallel arm resonator P3. Or you may arrange
  • an inductor L7 connected between the connection point of the parallel arm resonator P3 and the parallel arm resonator P2 and the ground potential is replaced by at least a part of the inductor L7.
  • the inductor is connected to the resonator formed on the piezoelectric substrate and connected to the input pad, and at least a part of the inductor is connected to the resonator.
  • this invention is not limited to such a structure.
  • An inductor is connected to a resonator formed on a piezoelectric substrate and connected to an output pad, and at least a part of the inductor is formed on the die attach surface of the wiring substrate so as to face the resonator. Even so, good filter characteristics can be realized without increasing the size of the surface acoustic wave filter device.
  • the transmission filter of the duplexer is configured by a ladder-type surface acoustic wave filter
  • the ladder-type surface acoustic wave filter may constitute a duplexer reception-side filter.
  • a duplexer is given as an example of the surface acoustic wave filter device embodying the present invention.
  • the surface acoustic wave filter device according to the present invention includes: Instead of the duplexer, an interstage filter mounted on the RF circuit may be used.
  • sealing resin layer 21 ... antenna terminal 22a ... first receiving side signal terminal 22b ... first 2 reception side signal terminals 24 ... transmission side signal terminals 30 ... piezoelectric substrate 31 ... input pad 32 ... output pad 33 ... series arm 34 ... LC resonance circuit 7-39 ... parallel arms 41-43 ... grounding pad 44 ... electrode pad 45 ... dummy pads

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

 フィルタ特性が良好である小型な弾性表面波フィルタ装置を提供する。 弾性表面波フィルタ装置1は、圧電基板30上に形成されているラダー型弾性表面波フィルタ部14Aを有する、送信側弾性表面波フィルタチップ14を備えている。ラダー型弾性表面波フィルタ部14Aは、入力パッド31と出力パッド32との間に接続されている直列腕33と、入力パッド31または出力パッド32に接続されている少なくともひとつの第1の共振子S3,P3を含む複数の共振子S1~S3,P1~P3を備えている。ダイアタッチ面10aには、第1の共振子S3,P3に接続されているインダクタL3が形成されている。インダクタL3は、少なくとも一部が第1の共振子S3,P3と対向する一方、複数の共振子S1~S3,P1~P3のうち、第1の共振子S3,P3以外の共振子とは対向しないように設けられている。

Description

弾性表面波フィルタ装置
 本発明は、弾性表面波フィルタ装置に関する。特に、本発明は、配線基板にフリップチップ実装されている弾性表面波フィルタチップを備える弾性表面波フィルタ装置に関する。
 従来、例えば、下記の特許文献1などにおいて、携帯電話機などの通信機におけるRF(Radio Frequency)回路に搭載される帯域通過フィルタなどとして、弾性表面波を利用した弾性表面波フィルタ装置が種々提案されている。
 図14は、特許文献1に記載されている弾性表面波フィルタ装置の略図的断面図である。図14に示すように、弾性表面波フィルタ装置100は、パッケージ101と、パッケージ101内に配置されている弾性表面波フィルタ素子102とを備えている。パッケージ101は、ベース基板101aと、側壁101bと、キャップ部材101cとを有する。弾性表面波フィルタ素子102は、ベース基板101a上にフリップチップ実装されている。
 図15は、弾性表面波フィルタ素子102の略図的平面図である。図16は、弾性表面波フィルタ装置100の略図的回路図である。図17は、ベース基板101aの略図的平面図である。図15に示すように、弾性表面波フィルタ素子102は、圧電基板102aと、圧電基板102a上に形成されているラダー型弾性表面波フィルタ部102bとを有する。図16に示すように、弾性表面波フィルタ装置100は、直列腕103(図16を参照)において直列に接続されている直列腕共振子104a,104bと、直列腕103とグラウンド電位とを接続する並列腕106a~106cに設けられている並列腕共振子105a~105cとを有する。並列腕共振子105a~105cとグラウンド電位との間には、インダクタL101~L103(図16を参照)が設けられている。直列腕103には、インダクタL104,L105が設けられている。直列腕共振子104a,104b及び並列腕共振子105a~105cは、図15に示すように、圧電基板102a上に形成されている。一方、インダクタL101~L105は、図17に示すように、ベース基板101a上に形成されている。具体的には、インダクタL101~L105は、ベース基板101a上に形成されている配線107a~107eにより構成されている。なお、弾性表面波フィルタ素子102がベース基板101a上にフリップチップ実装されるため、ベース基板101aの表面はダイアタッチ面である。
特開2002-141771号公報
 ところで、従来、ラダー型弾性表面波フィルタにおいて、直列腕共振子や並列腕共振子に直列または並列にインダクタを接続することにより、フィルタ特性を改善できることが知られている。具体的には、通過帯域を広くしたり、通過帯域近傍における減衰量を大きくしたりすることができる。このことに鑑み、例えば上記特許文献1に記載の弾性表面波フィルタ装置100においても、フィルタ特性を改善する観点から、インダクタL101~L105が設けられている。
 インダクタは、ベース基板などに実装されるチップ型インダクタにより構成されていてもよいが、弾性表面波フィルタ装置を小型化する観点から、ベース基板に形成された配線により構成されていることが好ましい。ベース基板において、インダクタを構成する配線を形成する場所としては、ベース基板の内部、ベース基板のダイアタッチ面が考えられる。しかしながら、ベース基板の内部にインダクタを構成する配線を形成した場合、インダクタを構成する配線とグラウンド電位との間の距離が短くなる。このため、大きなインダクタンス値を有するインダクタを形成することが難しくなる。従って、インダクタを構成する配線は、グラウンド電位から最も離れた位置にある、ベース基板のダイアタッチ面に形成されていることが好ましい。
 しかしながら、インダクタを構成する配線をベース基板のダイアタッチ面に形成した場合、インダクタを構成する配線と、圧電基板上に形成された共振子との間で電磁界結合や容量結合が生じ、フィルタ特性が劣化するおそれがある。このため、例えば、図15~図17に示すように、弾性表面波フィルタ装置100においては、インダクタL101~L105を構成する配線107a~107eは、圧電基板102a上の直列腕共振子104a,104b及び並列腕共振子105a~105cと対向しないように、ベース基板101aの表面の周縁部に形成されている。従って、弾性表面波フィルタ装置100では、インダクタL101~L105を構成する配線107a~107eを設けるための領域を確保するために、ベース基板101aを大きくする必要があり、弾性表面波フィルタ装置が大型化してしまうという問題があった。また、特に、CSP(Chip Size Package)型の弾性表面波フィルタ装置などの小型の弾性表面波フィルタ装置においては、インダクタを構成する配線を設けるための領域をベース基板の表面の周縁部に確保することが困難であった。
 本発明は、かかる点に鑑みて成されたものであり、その目的は、フィルタ特性が良好である小型な弾性表面波フィルタ装置を提供することにある。
 本発明者は、鋭意研究の結果、配線基板のダイアタッチ面に設けられている特定のインダクタが、圧電基板上に設けられている特定の共振子と対向していても、フィルタ特性がそれほど劣化しないことを発見した。具体的には、入力パッドまたは出力パッドに接続されている共振子と、当該共振子に接続されているインダクタとであれば、対向していても、フィルタ特性がそれほど劣化しないことを見出した。その結果、本発明をなすに至った。
 すなわち、本発明に係る弾性表面波フィルタ装置は、ダイアタッチ面を有する配線基板と、弾性表面波フィルタチップとを備えている。弾性表面波フィルタチップは、配線基板のダイアタッチ面にフリップチップ実装されている。弾性表面波フィルタチップは、圧電基板と、圧電基板上に形成されているラダー型弾性表面波フィルタ部とを有する。ラダー型弾性表面波フィルタ部は、入力パッド及び出力パッドと、入力パッドと出力パッドとの間に接続されている直列腕と、複数の共振子とを備えている。複数の共振子は、入力パッドまたは出力パッドに接続されている少なくともひとつの第1の共振子を含む。配線基板のダイアタッチ面には、第1の共振子に接続されているインダクタが形成されている。インダクタは、少なくとも一部が第1の共振子と対向する一方、複数の共振子のうち、第1の共振子以外の共振子とは対向しないように設けられている。
 本発明に係る弾性表面波フィルタ装置のある特定の局面では、配線基板は、入力パッドが接続されている入力端子と、出力パッドが接続されている出力端子とを有する。複数の共振子は、複数の直列腕共振子と、少なくともひとつの並列腕共振子とを含む。複数の直列腕共振子は、直列腕において直列に接続されている。少なくともひとつの並列腕共振子は、直列腕とグラウンド電位との間に接続されている。第1の共振子は直列腕共振子である。インダクタは、第1の共振子と入力端子との間または第1の共振子と出力端子との間に接続されている。
 本発明に係る弾性表面波フィルタ装置の他の特定の局面では、配線基板は、入力パッドが接続されている入力端子と、出力パッドが接続されている出力端子とを有する。複数の共振子は、複数の直列腕共振子と、少なくともひとつの並列腕共振子とを含む。複数の直列腕共振子は、直列腕において直列に接続されている。少なくともひとつの並列腕共振子は、直列腕とグラウンド電位との間に接続されている。第1の共振子は並列腕共振子である。インダクタは、第1の共振子と入力端子との間または第1の共振子と出力端子との間に接続されている。
 本発明に係る弾性表面波フィルタ装置の別の特定の局面では、配線基板は、入力パッドが接続されている入力端子と、出力パッドが接続されている出力端子とを有する。複数の共振子は、複数の直列腕共振子と、少なくともひとつの並列腕共振子とを含む。複数の直列腕共振子は、直列腕において直列に接続されている。少なくともひとつの並列腕共振子は、直列腕とグラウンド電位との間に接続されている。第1の共振子は直列腕共振子である。インダクタは、第1の共振子と並列に接続されている。
 本発明に係る弾性表面波フィルタ装置のさらに他の特定の局面では、配線基板は、入力パッドが接続されている入力端子と、出力パッドが接続されている出力端子とを有する。複数の共振子は、複数の直列腕共振子と、少なくともひとつの並列腕共振子とを含む。複数の直列腕共振子は、直列腕において直列に接続されている。少なくともひとつの並列腕共振子は、直列腕とグラウンド電位との間に接続されている。第1の共振子は並列腕共振子である。インダクタは、第1の共振子とグラウンド電位との間に接続されている。
 本発明に係る弾性表面波フィルタ装置のさらに別の特定の局面では、弾性表面波フィルタ装置は、分波器である。
 本発明では、入力パッドまたは出力パッドに接続されている少なくともひとつの第1の共振子に接続されているインダクタは、少なくとも一部が第1の共振子と対向する一方、複数の共振子のうち、第1の共振子以外の共振子とは対向しないように設けられている。このため、弾性表面波フィルタ装置を大型化させることなく、配線基板のダイアタッチ面におけるインダクタを形成する領域を大きくすることができ、インダクタのインダクタンス値を大きくすることができる。従って、良好なフィルタ特性の実現と、弾性表面波フィルタ装置の小型化とを図ることができる。
図1は、本発明を実施した一実施形態に係るデュプレクサの略図的回路図である。 図2は、本発明を実施した一実施形態に係るデュプレクサの模式的断面図である。 図3は、本発明を実施した一実施形態に係るデュプレクサにおける送信側弾性表面波フィルタチップの電極構造を表す模式的透視平面図である。 図4は、本発明を実施した一実施形態に係るデュプレクサにおける配線基板のダイアタッチ面の模式的平面図である。 図5は、本発明を実施した一実施形態に係るデュプレクサの模式的透視平面図である。 図6は、比較例に係るデュプレクサにおける配線基板のダイアタッチ面の模式的平面図である。 図7は、比較例に係るデュプレクサの模式的透視平面図である。 図8は、本発明を実施した一実施形態に係るデュプレクサにおける送信側フィルタの通過特性と、比較例に係るデュプレクサにおける送信側フィルタの通過特性とを示すグラフである。 図9は、本発明を実施した一実施形態に係るデュプレクサにおけるアイソレーション特性と、比較例に係るデュプレクサにおけるアイソレーション特性とを示すグラフである。 図10は、第1の変形例に係るデュプレクサにおける送信側フィルタの略図的回路図である。 図11は、第2の変形例に係るデュプレクサにおける送信側フィルタの略図的回路図である。 図12は、第3の変形例に係るデュプレクサにおける送信側フィルタの略図的回路図である。 図13は、第4の変形例に係るデュプレクサにおける送信側フィルタの略図的回路図である。 図14は、特許文献1に記載されている弾性表面波フィルタ装置の略図的断面図である。 図15は、弾性表面波フィルタ素子102の略図的平面図である。 図16は、弾性表面波フィルタ装置100の略図的回路図である。 図17は、ベース基板101aの略図的平面図である。
 以下、本発明を実施した好ましい形態について、弾性表面波フィルタ装置の一種である図1及び図2に示すデュプレクサ1を例に挙げて説明する。但し、デュプレクサ1は、単なる例示である。本発明に係る弾性表面波フィルタ装置は、デュプレクサ1に何ら限定されない。本発明に係る弾性表面波フィルタ装置は、例えば、フィルタ部をひとつのみ有するものであってもよいし、例えばトリプレクサなどの、デュプレクサ以外の分波器であってもよい。
 本実施形態のデュプレクサ1は、例えば、UMTS(Universal Mobile Telecommunications System)のようなCDMA(Code Division Multiple Access)方式に対応する携帯電話機などのRF(Radio Frequency)回路に搭載されるものである。デュプレクサ1は、UMTS-BAND2に対応するデュプレクサである。UMTS-BAND2の送信周波数帯は、1850~1910MHzであり、受信周波数帯は、1930~1990MHzである。
 図1は、本実施形態のデュプレクサ1の略図的回路図である。図2は、本実施形態のデュプレクサ1の模式的断面図である。図1及び図2に示すように、デュプレクサ1は、配線基板10と、送信側弾性表面波フィルタチップ14と、受信側弾性表面波フィルタチップ15とを備えている。送信側弾性表面波フィルタチップ14と、受信側弾性表面波フィルタチップ15とは、配線基板10のダイアタッチ面10aにフリップチップ実装されている。配線基板10の上には、送信側弾性表面波フィルタチップ14と受信側弾性表面波フィルタチップ15とを覆うように、封止樹脂層16が形成されている。すなわち、本実施形態のデュプレクサ1は、CSP型の弾性表面波フィルタ装置である。
 受信側弾性表面波フィルタチップ15は、図示しない圧電基板上に形成されている縦結合共振子型弾性表面波フィルタ部15Aを備えている。本実施形態のデュプレクサ1では、この縦結合共振子型弾性表面波フィルタ部15Aにより受信側フィルタが構成されている。縦結合共振子型弾性表面波フィルタ部15Aは、平衡-不平衡変換機能を有するフィルタ部であり、縦結合共振子型弾性表面波フィルタ部15Aの不平衡信号端子15aは、配線基板10に形成されているアンテナ端子21に接続されており、第1及び第2の平衡信号端子15b,15cは、配線基板10に形成されている第1及び第2の受信側信号端子22a,22bに接続されている。なお、本実施形態において、不平衡信号端子15aのインピーダンスは50Ωである。第1及び第2の平衡信号端子15b,15cのインピーダンスは100Ωである。本実施形態のデュプレクサ1では、縦結合共振子型弾性表面波フィルタ部15Aにより受信側フィルタが構成されているが、ラダー型弾性表面波フィルタ部により受信側フィルタが構成されていてもよい。
 アンテナ端子21と不平衡信号端子15aとの間の接続点と、グラウンド電位との間には、整合用のインダクタL1が接続されている。
 送信側弾性表面波フィルタチップ14は、ラダー型弾性表面波フィルタ部14Aを備えている。本実施形態のデュプレクサ1では、このラダー型弾性表面波フィルタ部14Aにより送信側フィルタが構成されている。図1に示すように、ラダー型弾性表面波フィルタ部14Aは、配線基板10に形成されているアンテナ端子21と、配線基板10に形成されている送信側信号端子24との間に接続されている。ラダー型弾性表面波フィルタ部14Aは、アンテナ端子21と送信側信号端子24との間を接続している直列腕33を有する。直列腕33において、直列腕共振子S1~S3が直列に接続されている。直列腕共振子S1は、弾性表面波共振子S11~S13により構成されている。直列腕共振子S2は、弾性表面波共振子S21~S23により構成されている。直列腕共振子S3は、弾性表面波共振子S31~S33により構成されている。直列腕共振子S1~S3は、それぞれ複数の弾性表面波共振子により構成されているが、それぞれひとつの共振子として機能する。このように、直列腕共振子S1~S3が、複数の弾性表面波共振子によって構成されていることで、ラダー型弾性表面波フィルタ部14Aは高い耐電力性を有する。なお、直列腕共振子S1~S3は、それぞれ1つの弾性表面波共振子により構成されていてもよい。
 直列腕共振子S2を構成する弾性表面波共振子S21~S23には、キャパシタC1~C5が並列に接続されている。これらキャパシタC1~C5により、直列腕共振子S2の反共振周波数が低周波数側にシフトする。従って、キャパシタC1~C5を設けることにより、送信側フィルタのフィルタ特性の急峻性が高められている。
 直列腕共振子S3と送信側信号端子24との間には、インダクタL3とキャパシタC6とが並列に接続されてなるLC共振回路34が接続されている。このLC共振回路34により形成される減衰極は、送信側フィルタの通過帯域高域側に位置する。よって、LC共振回路34を設けることにより、送信側フィルタの通過帯域高域側における減衰量が大きくされている。
 ラダー型弾性表面波フィルタ部14Aは、直列腕33とグラウンド電位との間に接続されている並列腕37~39を有する。並列腕37~39には、並列腕共振子P1~P3が設けられている。並列腕共振子P1は、弾性表面波共振子P11,P12により構成されている。並列腕共振子P2は、弾性表面波共振子P21,P22により構成されている。並列腕共振子P3は、弾性表面波共振子P31,P32により構成されている。並列腕共振子P1~P3は、それぞれ複数の弾性表面波共振子により構成されているが、それぞれひとつの共振子として機能する。このように、並列腕共振子P1~P3が、複数の弾性表面波共振子によって構成されていることで、ラダー型弾性表面波フィルタ部14Aは高い耐電力性を有する。なお、並列腕共振子P1~P3は、それぞれ1つの弾性表面波共振子により構成されていてもよい。
 並列腕共振子P1,P2とグラウンド電位との間には、インダクタL2が接続されている。このインダクタL2により、送信側フィルタの通過帯域低域側における減衰量を大きくすることができる。
 次に、図3~図5を主として参照しながら、ラダー型弾性表面波フィルタ部14Aの具体的構成について説明する。図3は、本実施形態のデュプレクサ1における送信側弾性表面波フィルタチップ14の電極構造を表す模式的透視平面図である。詳細には、図3は、デュプレクサ1の上方から送信側弾性表面波フィルタチップ14を透視した状態における、送信側弾性表面波フィルタチップ14の電極構造を示している。図4は、本実施形態のデュプレクサ1における配線基板10のダイアタッチ面10aの模式的平面図である。図5は、本実施形態のデュプレクサ1の模式的透視平面図である。詳細には、図5は、デュプレクサ1の上方から透視した状態を示している。
 図3に示すように、送信側弾性表面波フィルタチップ14は、圧電基板30を備えている。圧電基板30の上には、アンテナ端子21に接続されている出力パッド32と、送信側信号端子24に接続されている入力パッド31と、直列腕共振子S1~S3と、並列腕共振子P1~P3と、キャパシタC1~C6と、グラウンド電位に接続される接地用パッド41~43と、電極パッド44と、ダミーパッド45とが形成されている。
 直列腕共振子S1~S3を構成している弾性表面波共振子S11~S13,S21~S23,S31~S33及び並列腕共振子P1~P3を構成している弾性表面波共振子P11,P12,P21,P22,P31,P32は、1つのインターデジタルトランスデューサと、インターデジタルトランスデューサの両側に配置されている1組の反射器により構成されている。キャパシタC1~C6は、櫛歯状電極により構成されている。入力パッド31と、出力パッド32と、接地用パッド41~43と、電極パッド44と、ダミーパッド45の上には、バンプが形成される。図3中の○印はバンプを示している。なお、圧電基板30は、LiNbOやLiTaOなどの圧電単結晶基板により構成することができる。
 図4に示すように、配線基板10のダイアタッチ面10aには、複数の電極と、配線からなるインダクタL2,L3が形成されている。複数の電極は、バンプにより、送信側弾性表面波フィルタチップ14及び受信側弾性表面波フィルタチップ15の電極パターンと接続される。インダクタL2は、送信側弾性表面波フィルタチップ14と対向しないように形成されている。一方、インダクタL3は、インダクタL3の一部が、送信側弾性表面波フィルタチップ14と対向するように形成されている。具体的には、図5に示すように、インダクタL3は、インダクタL3の一部が、入力パッド31に接続されている直列腕共振子S3及び並列腕共振子P3と対向するように設けられている。
 本実施形態では、インダクタL2,L3が、グラウンド電位から最も離れた位置にある、配線基板10のダイアタッチ面10aに形成されている。このため、例えば、インダクタL2,L3を配線基板10の内部に形成した場合と比較して、インダクタL2,L3を大型化することなく、インダクタL2,L3のインダクタンス値を大きくすることができる。
 また、インダクタL3の一部が、直列腕共振子S3及び並列腕共振子P3と対向するように形成されている。このため、インダクタL3を直列腕共振子S3及び並列腕共振子P3を含む、送信側弾性表面波フィルタチップ14と対向しないように配置した場合と比較して、配線基板10を大型化させることなく、インダクタL3を形成する領域を大きくすることができる。よって、インダクタL3のインダクタンス値を大きくすることができる。
 また、インダクタL3は、入力パッド31に接続されている直列腕共振子S3及び並列腕共振子P3とは対向しているものの、他の共振子S1,S2,P1,P2や、キャパシタC1~C6とは対向していない。従って、送信側フィルタのフィルタ特性の劣化を抑制することができる。以下、この効果について、具体例を参照しつつ、さらに詳細に説明する。
 本実施形態のデュプレクサ1を作製すると共に、デュプレクサ1に対する比較例として、インダクタL3の形状のみが異なるデュプレクサ200を作製した。図6は、比較例のデュプレクサ200における配線基板201のダイアタッチ面201aの模式的平面図である。図7は、比較例のデュプレクサ200の模式的透視平面図である。詳細には、図7は、比較例のデュプレクサ200の上方から透視した状態を示している。図6及び図7に示すように、比較例のデュプレクサ200では、インダクタL3は、インダクタL3の一部が、直列腕共振子S3及び並列腕共振子P3のみならず、並列腕共振子P2にも対向するように形成されている。
 図8に、本実施形態のデュプレクサ1における送信側フィルタの通過特性と、比較例のデュプレクサ200における送信側フィルタの通過特性とを示す。
 図8に示す結果から明らかなように、比較例のデュプレクサ200における送信側フィルタでは、受信周波数帯である1930~1990MHzにおいて、減衰量の最小値が約45.4dBであった。それに対して、本実施形態のデュプレクサ1における送信側フィルタでは、受信周波数帯である1930~1990MHzにおいて、減衰量の最小値が約49.8dBであり、比較例のデュプレクサ200より減衰量の最小値が約4.4dB大きい。すなわち、本実施形態のデュプレクサ1における送信側フィルタでは、比較例のデュプレクサ200における送信側フィルタよりも通過帯域高域側の減衰量が大きくなっている。この結果から、インダクタL3と、入力パッド31に接続されている直列腕共振子S3及び並列腕共振子P3とが対向することによっては、通過帯域高域側の減衰量が小さくならないが、インダクタL3が直列腕共振子S3及び並列腕共振子P3以外の共振子と対向している場合は、通過帯域高域側の減衰量が大幅に小さくなることが分かる。
 図9に、本実施形態のデュプレクサ1におけるアイソレーション特性と、比較例のデュプレクサ200におけるアイソレーション特性とを示す。なお、図9に示すアイソレーション特性は、送信側信号端子24と、第1及び第2の受信側信号端子22a,22bとの間のアイソレーション特性である。
 図9に示す結果から明らかなように、比較例のデュプレクサ200では、受信周波数帯である1930~1990MHzにおいて、減衰量の最小値が約53dBであった。それに対して、本実施形態のデュプレクサ1では、受信周波数帯である1930~1990MHzにおいて、減衰量の最小値が約60dBであり、比較例のデュプレクサ200よりアイソレーション特性が約7dB良好であった。この結果から、インダクタL3と、入力パッド31に接続されている直列腕共振子S3及び並列腕共振子P3とが対向することによっては、アイソレーション特性は劣化しないが、インダクタL3が直列腕共振子S3及び並列腕共振子P3以外の共振子と対向している場合は、アイソレーション特性が大きく劣化することが分かる。
 以上より、入力パッドまたは出力パッドに接続されている共振子に接続されているインダクタを、少なくとも一部が当該共振子と対向するように、配線基板のダイアタッチ面に形成することにより、弾性表面波フィルタ装置を大型化することなく、良好なフィルタ特性を実現できることが分かる。
 なお、入力パッドまたは出力パッドに接続されている共振子に接続されているインダクタが当該共振子と対向するように配置されている場合であってもフィルタ特性が劣化しないのは、以下の理由によるものと考えられる。
 圧電基板上の共振子と、配線基板上のインダクタとが対向している場合、共振子とインダクタとの間に容量結合や電磁界結合が生じる。このため、共振子とインダクタとの間の空間を介して、共振子とインダクタとの間に、容量結合や電磁界結合によるパスが形成される場合がある。一般的に、このパスが形成されると、一部の信号が、所望の経路を経由せずに流れるため、フィルタ特性が劣化する。例えば、比較例のデュプレクサ200の場合では、配線基板201のダイアタッチ面201aに形成されているインダクタL3が、送信側弾性表面波フィルタチップ14の圧電基板30に形成されている並列腕共振子P2と対向しているため、インダクタL3と並列腕共振子P2との間に容量結合や電磁界結合が生じる。この結果、インダクタL3と並列腕共振子P2との間に、容量結合や電磁界結合によるパスが形成される。このパスにより、一部の信号が、直列腕共振子S3を経由せずに、入力パッド31から並列腕共振子P2に直接流れることとなる。これにより、比較例のデュプレクサ200における送信側フィルタの通過帯域高域側の減衰量が小さくなると共に、比較例のデュプレクサ200のアイソレーション特性が劣化するなど、フィルタ特性が劣化する。
 それに対して、本実施形態のデュプレクサ1では、配線基板10のダイアタッチ面10aに形成されているインダクタL3は、送信側弾性表面波フィルタチップ14の圧電基板30に形成されている直列腕共振子S3及び並列腕共振子P3と対向するものの、他の共振子S1,S2,P1,P2や、キャパシタC1~C6とは対向しないように形成されている。このため、インダクタL3と直列腕共振子S3との間及びインダクタL3と並列腕共振子P3との間に容量結合や電磁界結合が生じることがあっても、他の共振子S1,S2,P1,P2や、キャパシタC1~C6との間に容量結合や電磁界結合が生じることはない。よって、一部の信号が、所望の経路を経由せずに、入力パッド31から他の共振子S1,S2,P1,P2並びにキャパシタC1~C6に直接流れるようなパスが形成されない。従って、本実施形態のデュプレクサ1では、送信側フィルタの通過帯域高域側の減衰量やアイソレーション特性などのフィルタ特性が劣化しにくい。
 なお、本実施形態では、インダクタL3の一部が直列腕共振子S3及び並列腕共振子P3と対向している場合について説明したが、インダクタL3は、例えば、インダクタL3の一部が直列腕共振子S3及び並列腕共振子P3の一方のみと対向するように形成されていてもよい。
 以下、上記実施形態の変形例について説明する。なお、以下の変形例の説明において、上記第1の実施形態と実質的に共通の機能を有する部材を共通の符号で参照し、説明を省略する。
 図10は、第1の変形例に係るデュプレクサにおける送信側フィルタの略図的回路図である。図11は、第2の変形例に係るデュプレクサにおける送信側フィルタの略図的回路図である。図12は、第3の変形例に係るデュプレクサにおける送信側フィルタの略図的回路図である。図13は、第4の変形例に係るデュプレクサにおける送信側フィルタの略図的回路図である。
 上記実施形態では、圧電基板に形成されている共振子と対向する、配線基板のダイアタッチ面に形成されているインダクタが、LC共振回路を構成しているインダクタである例について説明したが、以下のようなインダクタであってもよい。
 図10に示すように、直列腕共振子S3及び並列腕共振子P3と接続されており、送信側フィルタの入力端子である送信側信号端子24とも接続されている、インピーダンス整合用のインダクタL4を、インダクタL4の少なくとも一部が、直列腕共振子S3及び並列腕共振子P3の一方又は両方と対向するように、配線基板10のダイアタッチ面10aに配置してもよい。
 また、図11に示すように、直列腕共振子S3と並列に接続されているインダクタL5を、インダクタL5の少なくとも一部が、直列腕共振子S3及び並列腕共振子P3の一方又は両方と対向するように、配線基板10のダイアタッチ面10aに配置してもよい。
 また、図12に示すように、並列腕共振子P3とグラウンド電位との間に接続されているインダクタL6を、インダクタL6の少なくとも一部が、直列腕共振子S3及び並列腕共振子P3の一方又は両方と対向するように、配線基板10のダイアタッチ面10aに配置してもよい。
 また、図13に示すように、並列腕共振子P3と並列腕共振子P2との接続点と、グラウンド電位との間に接続されているインダクタL7を、インダクタL7の少なくとも一部が、直列腕共振子S3及び並列腕共振子P3の一方又は両方と対向するように、配線基板10のダイアタッチ面10aに配置してもよい。
 上記第1の実施形態及び第1~第4の変形例では、圧電基板に形成され、入力パッドに接続されている共振子にインダクタが接続されており、インダクタの少なくとも一部が当該共振子と対向するように、配線基板のダイアタッチ面に形成されている構成であったが、本発明はこのような構成に限定されるものではない。圧電基板に形成され、出力パッドに接続されている共振子にインダクタが接続されており、インダクタの少なくとも一部が当該共振子と対向するように、配線基板のダイアタッチ面に形成されている構成であっても、弾性表面波フィルタ装置を大型化することなく、良好なフィルタ特性を実現できる。
 上記第1の実施形態及び第1~第4の変形例では、デュプレクサの送信側フィルタがラダー型弾性表面波フィルタにより構成されている例について説明した。但し、本発明においては、ラダー型弾性表面波フィルタは、デュプレクサの受信側フィルタを構成していてもよい。
 また、上記第1の実施形態及び第1~第4の変形例では、本発明を実施した弾性表面波フィルタ装置の一例として、デュプレクサを挙げたが、本発明に係る弾性表面波フィルタ装置は、分波器ではなく、RF回路に搭載される段間フィルタであってもよい。
L1~L7…インダクタ
1…デュプレクサ
S1~S3…直列腕共振子
P1~P3…並列腕共振子
S11~S13、S21~S23、S31~S33、P11,P12、P21,P22、P31,P32…弾性表面波共振子
C1~C6…キャパシタ
10…配線基板
10a…ダイアタッチ面
14…送信側弾性表面波フィルタチップ
14A…ラダー型弾性表面波フィルタ部
15…受信側弾性表面波フィルタチップ
15A…縦結合共振子型弾性表面波フィルタ部
15a…不平衡信号端子
15b…第1の平衡信号端子
15c…第2の平衡信号端子
16…封止樹脂層
21…アンテナ端子
22a…第1の受信側信号端子
22b…第2の受信側信号端子
24…送信側信号端子
30…圧電基板
31…入力パッド
32…出力パッド
33…直列腕
34…LC共振回路
37~39…並列腕
41~43…接地用パッド
44…電極パッド
45…ダミーパッド

Claims (6)

  1.  ダイアタッチ面を有する配線基板と、
     前記配線基板の前記ダイアタッチ面にフリップチップ実装されている弾性表面波フィルタチップとを備える弾性表面波フィルタ装置であって、
     前記弾性表面波フィルタチップは、圧電基板と、前記圧電基板上に形成されているラダー型弾性表面波フィルタ部とを有し、
     前記ラダー型弾性表面波フィルタ部は、入力パッド及び出力パッドと、前記入力パッドと前記出力パッドとを接続している直列腕と、前記入力パッドまたは前記出力パッドに接続されている少なくともひとつの第1の共振子を含む複数の共振子とを備え、
     前記配線基板の前記ダイアタッチ面には、前記第1の共振子に接続されているインダクタが形成されており、
     前記インダクタは、少なくとも一部が前記第1の共振子と対向する一方、前記複数の共振子のうち、前記第1の共振子以外の共振子とは対向しないように設けられている、弾性表面波フィルタ装置。
  2.  前記配線基板は、前記入力パッドが接続されている入力端子と、前記出力パッドが接続されている出力端子とを有し、
     前記複数の共振子は、前記直列腕において直列に接続されている複数の直列腕共振子と、前記直列腕とグラウンド電位との間に接続されている少なくともひとつの並列腕共振子とを含み、
     前記第1の共振子は前記直列腕共振子であり、
     前記インダクタは、前記第1の共振子と前記入力端子との間または前記第1の共振子と前記出力端子との間に接続されている、請求項1に記載の弾性表面波フィルタ装置。
  3.  前記配線基板は、前記入力パッドが接続されている入力端子と、前記出力パッドが接続されている出力端子とを有し、
     前記複数の共振子は、前記直列腕において直列に接続されている複数の直列腕共振子と、前記直列腕とグラウンド電位との間に接続されている少なくともひとつの並列腕共振子とを含み、
     前記第1の共振子は前記並列腕共振子であり、
     前記インダクタは、前記第1の共振子と前記入力端子との間または前記第1の共振子と前記出力端子との間に接続されている、請求項1に記載の弾性表面波フィルタ装置。
  4.  前記配線基板は、前記入力パッドが接続されている入力端子と、前記出力パッドが接続されている出力端子とを有し、
     前記複数の共振子は、前記直列腕において直列に接続されている複数の直列腕共振子と、前記直列腕とグラウンド電位との間に接続されている少なくともひとつの並列腕共振子とを含み、
     前記第1の共振子は前記直列腕共振子であり、
     前記インダクタは、前記第1の共振子と並列に接続されている、請求項1に記載の弾性表面波フィルタ装置。
  5.  前記配線基板は、前記入力パッドが接続されている入力端子と、前記出力パッドが接続されている出力端子とを有し、
     前記複数の共振子は、前記直列腕において直列に接続されている複数の直列腕共振子と、前記直列腕とグラウンド電位との間に接続されている少なくともひとつの並列腕共振子とを含み、
     前記第1の共振子は並列腕共振子であり、
     前記インダクタは、前記第1の共振子とグラウンド電位との間に接続されている、請求項1に記載の弾性表面波フィルタ装置。
  6.  分波器である、請求項1~5のいずれか一項に記載の弾性表面波フィルタ装置。
PCT/JP2010/062152 2010-01-28 2010-07-20 弾性表面波フィルタ装置 WO2011092879A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10844637.8A EP2530837A4 (en) 2010-01-28 2010-07-20 SURFACE ACOUSTIC WAVE FILTER DEVICE
CN201080062605.3A CN102725958B (zh) 2010-01-28 2010-07-20 弹性表面波滤波装置
JP2011551662A JP5354028B2 (ja) 2010-01-28 2010-07-20 弾性表面波フィルタ装置
KR1020127018859A KR101387447B1 (ko) 2010-01-28 2010-07-20 탄성표면파 필터장치
US13/558,402 US8436697B2 (en) 2010-01-28 2012-07-26 Surface acoustic wave filter device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-017234 2010-01-28
JP2010017234 2010-01-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/558,402 Continuation US8436697B2 (en) 2010-01-28 2012-07-26 Surface acoustic wave filter device

Publications (1)

Publication Number Publication Date
WO2011092879A1 true WO2011092879A1 (ja) 2011-08-04

Family

ID=44318883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062152 WO2011092879A1 (ja) 2010-01-28 2010-07-20 弾性表面波フィルタ装置

Country Status (6)

Country Link
US (1) US8436697B2 (ja)
EP (1) EP2530837A4 (ja)
JP (1) JP5354028B2 (ja)
KR (1) KR101387447B1 (ja)
CN (1) CN102725958B (ja)
WO (1) WO2011092879A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012112571B3 (de) * 2012-12-18 2014-06-05 Epcos Ag Schaltungsanordnung
DE102013104842A1 (de) * 2013-05-10 2014-11-13 Epcos Ag Zur Miniaturisierung geeignetes HF-Bauelement mit verringerter Kopplung
CN104303418A (zh) * 2012-07-19 2015-01-21 株式会社村田制作所 双工器及具备该双工器的模块
WO2015104938A1 (ja) * 2014-01-07 2015-07-16 株式会社村田製作所 フィルタ装置
JP2016510963A (ja) * 2013-03-15 2016-04-11 エプコス アクチエンゲゼルシャフトEpcos Ag 音響波で動作する共鳴器を備えるリアクタンスフィルタ
JP2017011635A (ja) * 2015-06-26 2017-01-12 太陽誘電株式会社 ラダー型フィルタ、デュプレクサおよびモジュール
JPWO2015098240A1 (ja) * 2013-12-24 2017-03-23 株式会社村田製作所 デュプレクサ
JP2017522782A (ja) * 2014-07-31 2017-08-10 エプコス アクチエンゲゼルシャフトEpcos Ag 改善された反射率を有するデュプレクサ
WO2018186093A1 (ja) * 2017-04-05 2018-10-11 株式会社村田製作所 マルチプレクサ、高周波フロントエンド回路及び通信装置
WO2023058584A1 (ja) * 2021-10-07 2023-04-13 株式会社村田製作所 フィルタ装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105453428B (zh) * 2013-04-11 2018-08-28 株式会社村田制作所 高频模块
JP6323348B2 (ja) 2015-01-23 2018-05-16 株式会社村田製作所 フィルタ装置
US9608595B1 (en) * 2015-11-13 2017-03-28 Resonant Inc. Acoustic wave filter with enhanced rejection
US10305447B2 (en) 2015-11-13 2019-05-28 Resonant Inc. Acoustic wave filter with enhanced rejection
WO2017145473A1 (ja) * 2016-02-22 2017-08-31 株式会社村田製作所 モジュール装置
US10230418B2 (en) * 2017-05-19 2019-03-12 Murata Manufacturing Co., Ltd. Multiplexer, high-frequency front end circuit, and communication device
KR102424038B1 (ko) * 2017-12-04 2022-07-22 가부시키가이샤 무라타 세이사쿠쇼 멀티플렉서
JP6888606B2 (ja) * 2018-12-21 2021-06-16 株式会社村田製作所 高周波モジュール

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141771A (ja) 2000-08-21 2002-05-17 Murata Mfg Co Ltd 弾性表面波フィルタ装置
JP2003332885A (ja) * 2002-05-16 2003-11-21 Murata Mfg Co Ltd 弾性表面波分波器およびそれを有する通信装置
JP2005130341A (ja) * 2003-10-27 2005-05-19 Murata Mfg Co Ltd 圧電部品及びその製造方法、通信装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2673993B2 (ja) * 1990-07-02 1997-11-05 日本無線株式会社 表面弾性波装置
JP2004364041A (ja) * 2003-06-05 2004-12-24 Fujitsu Media Device Kk 弾性表面波デバイス及びその製造方法
WO2006137248A1 (ja) * 2005-06-21 2006-12-28 Murata Manufacturing Co., Ltd. Saw分波器
JP5039290B2 (ja) * 2005-08-25 2012-10-03 太陽誘電株式会社 フィルタおよびアンテナ分波器
WO2007094139A1 (ja) * 2006-02-13 2007-08-23 Murata Manufacturing Co., Ltd. Sawフィルタ装置
JP2010011300A (ja) * 2008-06-30 2010-01-14 Murata Mfg Co Ltd 共振器、該共振器を用いるフィルタ及びデュプレクサ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141771A (ja) 2000-08-21 2002-05-17 Murata Mfg Co Ltd 弾性表面波フィルタ装置
JP2003332885A (ja) * 2002-05-16 2003-11-21 Murata Mfg Co Ltd 弾性表面波分波器およびそれを有する通信装置
JP2005130341A (ja) * 2003-10-27 2005-05-19 Murata Mfg Co Ltd 圧電部品及びその製造方法、通信装置

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104303418A (zh) * 2012-07-19 2015-01-21 株式会社村田制作所 双工器及具备该双工器的模块
DE102012112571B3 (de) * 2012-12-18 2014-06-05 Epcos Ag Schaltungsanordnung
US10049812B2 (en) 2012-12-18 2018-08-14 Snaptrack, Inc. Circuit arrangement
JP2016510963A (ja) * 2013-03-15 2016-04-11 エプコス アクチエンゲゼルシャフトEpcos Ag 音響波で動作する共鳴器を備えるリアクタンスフィルタ
US9614494B2 (en) 2013-03-15 2017-04-04 Snaptrack, Inc. Reactance filter comprising acoustic waves resonators
DE102013104842A1 (de) * 2013-05-10 2014-11-13 Epcos Ag Zur Miniaturisierung geeignetes HF-Bauelement mit verringerter Kopplung
WO2014180633A1 (de) 2013-05-10 2014-11-13 Epcos Ag Zur miniaturisierung geeignetes hf-bauelement mit verringerter kopplung
DE102013104842B4 (de) * 2013-05-10 2015-11-12 Epcos Ag Zur Miniaturisierung geeignetes HF-Bauelement mit verringerter Kopplung
JP2016518792A (ja) * 2013-05-10 2016-06-23 エプコス アクチエンゲゼルシャフトEpcos Ag 低減されたカップリングを有する小型化に適したhfデバイス。
US9577605B2 (en) 2013-05-10 2017-02-21 Epcos Ag RF component with reduced coupling and suitable for miniaturization
JPWO2015098240A1 (ja) * 2013-12-24 2017-03-23 株式会社村田製作所 デュプレクサ
US9948278B2 (en) 2014-01-07 2018-04-17 Murata Manufacturing Co., Ltd. Filter device having a filter connection conductor line including parallel connected conductor lines
WO2015104938A1 (ja) * 2014-01-07 2015-07-16 株式会社村田製作所 フィルタ装置
JP2017522782A (ja) * 2014-07-31 2017-08-10 エプコス アクチエンゲゼルシャフトEpcos Ag 改善された反射率を有するデュプレクサ
US10270582B2 (en) 2014-07-31 2019-04-23 Snaptrack, Inc. Duplexer having improved reflectivity
JP2017011635A (ja) * 2015-06-26 2017-01-12 太陽誘電株式会社 ラダー型フィルタ、デュプレクサおよびモジュール
WO2018186093A1 (ja) * 2017-04-05 2018-10-11 株式会社村田製作所 マルチプレクサ、高周波フロントエンド回路及び通信装置
KR20190112106A (ko) * 2017-04-05 2019-10-02 가부시키가이샤 무라타 세이사쿠쇼 멀티플렉서, 고주파 프론트 엔드 회로 및 통신 장치
JPWO2018186093A1 (ja) * 2017-04-05 2019-11-07 株式会社村田製作所 マルチプレクサ、高周波フロントエンド回路及び通信装置
KR102186689B1 (ko) 2017-04-05 2020-12-07 가부시키가이샤 무라타 세이사쿠쇼 멀티플렉서, 고주파 프론트 엔드 회로 및 통신 장치
US10951196B2 (en) 2017-04-05 2021-03-16 Murata Manufacturing Co., Ltd. Multiplexer, high-frequency front-end circuit, and communication device
WO2023058584A1 (ja) * 2021-10-07 2023-04-13 株式会社村田製作所 フィルタ装置

Also Published As

Publication number Publication date
US20120286896A1 (en) 2012-11-15
EP2530837A1 (en) 2012-12-05
JPWO2011092879A1 (ja) 2013-05-30
EP2530837A4 (en) 2014-02-26
US8436697B2 (en) 2013-05-07
JP5354028B2 (ja) 2013-11-27
CN102725958B (zh) 2015-03-11
CN102725958A (zh) 2012-10-10
KR20120094522A (ko) 2012-08-24
KR101387447B1 (ko) 2014-04-21

Similar Documents

Publication Publication Date Title
JP5354028B2 (ja) 弾性表面波フィルタ装置
CN106253877B (zh) 梯型弹性波滤波器和天线共用器
JP5429384B2 (ja) 高周波モジュール及び通信機
US9013247B2 (en) Elastic wave demultiplexer
CN108023568A (zh) 滤波器装置、多路复用器、高频前置电路以及通信装置
US9083314B2 (en) Elastic wave filter device and antenna duplexer using same
JP5333403B2 (ja) 弾性表面波フィルタ装置
WO2011086717A1 (ja) マルチプレクサ
JP2010011300A (ja) 共振器、該共振器を用いるフィルタ及びデュプレクサ
US9184728B2 (en) Elastic-wave filter device
JP6835041B2 (ja) マルチプレクサ
US20130229242A1 (en) Elastic wave filter device
CN209881752U (zh) 弹性波滤波器装置以及多工器
US9595938B2 (en) Elastic wave device
KR100799438B1 (ko) 분파기 및 래더형 필터
WO2006040927A1 (ja) 分波器
WO2006040923A1 (ja) 分波器
JP4207836B2 (ja) 弾性表面波分波器
JP5168360B2 (ja) 分波器
KR102680261B1 (ko) 필터 장치, 멀티플렉서, 고주파 프론트엔드 회로 및 통신 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080062605.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844637

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011551662

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127018859

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010844637

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE