WO2011092236A2 - Badabscheidungslösung zur nasschemischen abscheidung einer metallsulfidschicht und zugehörige herstellungsverfahren - Google Patents

Badabscheidungslösung zur nasschemischen abscheidung einer metallsulfidschicht und zugehörige herstellungsverfahren Download PDF

Info

Publication number
WO2011092236A2
WO2011092236A2 PCT/EP2011/051117 EP2011051117W WO2011092236A2 WO 2011092236 A2 WO2011092236 A2 WO 2011092236A2 EP 2011051117 W EP2011051117 W EP 2011051117W WO 2011092236 A2 WO2011092236 A2 WO 2011092236A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
wet
metal
concentration
deposition
Prior art date
Application number
PCT/EP2011/051117
Other languages
English (en)
French (fr)
Other versions
WO2011092236A3 (de
Inventor
Linda BÜRKERT
Dimitrios Hariskos
Torsten Kolb
Bettina Schnell
Original Assignee
Würth Solar Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Würth Solar Gmbh & Co. Kg filed Critical Würth Solar Gmbh & Co. Kg
Priority to US13/575,670 priority Critical patent/US9181437B2/en
Priority to KR1020127021644A priority patent/KR101757897B1/ko
Priority to CN201180017116.0A priority patent/CN103025916B/zh
Priority to EP11701263.3A priority patent/EP2539486B1/de
Priority to ES11701263.3T priority patent/ES2647609T3/es
Publication of WO2011092236A2 publication Critical patent/WO2011092236A2/de
Publication of WO2011092236A3 publication Critical patent/WO2011092236A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02469Group 12/16 materials
    • H01L21/02472Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02469Group 12/16 materials
    • H01L21/02474Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02483Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02557Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This invention relates to a bath deposition solution for wet-chemical deposition of a metal sulfide layer, to a process for producing such a bath deposition solution, and to a process for producing a metal sulfide layer on a substrate by using such a bath deposition solution.
  • the invention is particularly suitable for wet-chemical deposition (CBD) of a zinc sulfide layer (so-called CBD zinc sulfide layer) as a buffer layer on an absorber layer in the manufacture of thin-film photovoltaic devices , in addition to zinc and sulfur preparation, also oxygen in a manner dependent on the preparation conditions content may include, for which reason the layers in the literature formally as Zn (S, 0) - layers or ZnSi -x O x layers with 0 ⁇ x ⁇ 1 or Zn (S, O, OH) layers or ZnS (O, OH) layers.
  • ZnS buffer layers have recently proven to be an alternative to cadmium sulfide (CdS) buffer layers. Thus, from an environmental point of view, ZnS buffer layers are less problematic than CdS buffer layers, and thus more transparent buffer layers can be achieved. Because in comparison to CdS ZnS has a higher band gap and hardly absorbs in the wavelength range between 300nm to 500nm. Thus, more light reaches the photovoltaic active absorber layer, which leads to a higher current density and to a potentially higher efficiency. On the other hand, the commercial production of large-area photovoltaic modules, for example of the so-called CIS or CIGS type, has recently become increasingly in demand.
  • CBD zinc sulfide layers are also of particular interest if, as described above, they contain oxygen as a result of the preparation. Because of this, the conduction band offset to adjacent CIS absorber layer material of about 1, 6eV can be reduced to about 1, 0eV or less.
  • any hydrogen or hydroxide content may be binary compounds of the elements Zn and S, or ternary compounds of the elements Zn, O and S or the constituents Zn, S and OH, quaternary Compounds of the constituents Zn, S, O and OH or the constituents Zn, S, O and H or act on oxygen and / or hydrogen-doped ZnS layers, of course, sliding transitions between these types of compounds depending on the proportion or doping concentration of component are possible.
  • a ZnS buffer layer deposition method is disclosed in which a weakly acidic solution with a pH of about 5 containing zinc chloride (ZnC-), nitrilotriacetic acid (NTA), thioacetamide (TAA) and for adjusting the pH of sodium hydroxide (NaOH) is used as the bathing solution ,
  • ZnC- zinc chloride
  • NTA nitrilotriacetic acid
  • TAA thioacetamide
  • NaOH sodium hydroxide
  • the publication US 2007/0020400 A1 discloses a method for the continuous deposition of thin layers, such as ZnS and CdS layers, using a micromixer and a microchannel applicator.
  • the micromixer two preferably liquid reactants are mixed to provide the deposition material desired for deposition, for example, for the deposition of a CdS layer, a solution of cadmium chloride, ammonium chloride and ammonium hydroxide as the first reactant and aqueous urea as the second reactant.
  • the microchannel applicator With the microchannel applicator, the deposited deposition material, e.g. in the form of appropriate CdS particles for the deposition of a CdS layer, directed jet-shaped onto the surface to be coated.
  • the invention is based on the technical problem of providing a bath separation solution, an associated method for producing the solution and a metal sulfide layer production method using the same, which provide for the electroless, wet-chemical deposition of a metal sulfide layer of good quality, as required, for example, for ZnS buffer layers in solar cell applications. allow for a short deposition time and in particular are also suitable for large-scale deposits, such as those for ZnS - -
  • Buffer layers are needed in the manufacture of large-scale photovoltaic modules.
  • the invention solves this problem by providing a bath separation solution having the features of claim 1, a bath release solution manufacturing method having the features of claim 5 and a metal sulfide layer manufacturing method having the features of claim 9.
  • a bath separation solution having the features of claim 1
  • a bath release solution manufacturing method having the features of claim 5
  • a metal sulfide layer manufacturing method having the features of claim 9.
  • the wet-deposition solution for wet-chemical deposition of a metal sulfide layer according to claim 1 contains, in addition to a salt of the metal required for the metal sulfide layer, an organosulfide as a sulfur source for the metal sulfide layer, a chelating agent forming a chelate complex with metal ions of the metal salt, and ammonium hydroxide.
  • one or more other ingredients may be included at a lower concentration.
  • composition of the bath deposit solution for example, ZnS buffer layers with a thickness of about 25 nm during a deposit.
  • - - Deposition time of less than about 10 min, in particular only about 4 min, can be deposited with good layer quality.
  • Zn salt is used as the metal salt for the deposition of ZnS layers, such as said buffer layers for solar cell applications
  • other metal sulfide layers e.g. of In or combinations of metals Zn and In, are wet-chemically deposited using appropriate metal salts.
  • thioacetamide (TAA) is used as organosulfide. It has been shown that, for example, a faster release of sulfur can be achieved in comparison to thiourea, which can be explained by a higher sensitivity to hydrolysis of TAA. Too rapid metal sulfide formation reaction associated with undesirable colloidal precipitates of metal sulfide or poor coverage / morphology characteristics is prevented by the controlled slowing down of sulfur attachment to the metal ion due to the shielding effect of the chelating agent and the ammonium hydroxide or ammonia.
  • nitrilotriacetic acid or iminodiacetic acid (IDA) or a corresponding salt of these acids, eg a sodium salt, ammonium salt, etc.
  • NTA nitrilotriacetic acid
  • IDA iminodiacetic acid
  • a corresponding salt of these acids eg a sodium salt, ammonium salt, etc.
  • TAA a suitable organosulfide
  • a good adaptation of the rate of release of sulfur by the organosulfide and the slowing down of sulfur by the chelate complexing agent to the metal ion can be achieved such that the Metal sulfide layer can be deposited with comparatively very good quality and high deposition rate of, for example, about 6 nm / min. - -
  • the metal salt in a concentration of about 1 mM to about 50 mM and / or the organosulfide in a concentration of about 1 mM to about 150 mM and / or the chelate complexing agent in a concentration of about 5 mM in the Badabscheidungsling. 0.01M to about 1.0M and / or the ammonium hydroxide in a concentration of about 0.01M to about 3.0M. These concentration ranges have proved to be particularly suitable for obtaining metal sulfide layers of good quality with a sufficiently high deposition rate and at the same time a comparatively low use of material.
  • a pH in the basic range is adjusted to the neutral range for the bath separation solution. It turns out that a favorable wet-chemical deposition of the metal sulfide layer can be achieved.
  • the Badabscheidungssell invention can be prepared according to the invention with little effort by simply mixing the constituents involved in distilled water.
  • the bath-removal solution according to the invention it is possible to deposit metal sulfide layers on a substrate with comparatively good layer quality and high deposition rate by wet-chemical means.
  • the deposition of a ZnS buffer layer on a photovoltaic absorber layer substrate with this inventive method is possible, which readily required for such a buffer layer layer quality and a layer thickness of about 25nm with very short deposition periods of at most about 10min and preferably at most about 4min or can be achieved under it.
  • the bath solution is maintained at a temperature of about 40 ° C to about 90 ° C during the deposition process.
  • bringing the substrate into contact with the bath-removal solution involves immersing the substrate in the bath-deposit solution or an equivalent surface-contacting of the substrate surface to be coated with the bath-deposit solution by means of a corresponding wetting or spraying technique.
  • FIG. 1 is a schematic representation of a plant for wet-chemical deposition of a metal sulfide layer
  • FIG. 2 is a scanning electron micrograph of a fracture edge of a prepared with the plant of Fig. 1 CBD zinc sulfide layer on a CIGS substrate and
  • FIG. 3 is a current-voltage characteristic diagram for a solar cell module having a CBD zinc sulfide layer produced in the plant of FIG. 1.
  • FIG. 3 is a current-voltage characteristic diagram for a solar cell module having a CBD zinc sulfide layer produced in the plant of FIG. 1.
  • the coating system shown in FIG. 1 is used for wet-chemical deposition of metal sulfide layers on associated substrates or substrates.
  • the coating system in a conventional manner a reactor vessel 1, in which a substrate 2 to be coated is introduced.
  • a chemical bath 3 is provided, in which the substrate 2 to be coated is immersed in total or at least with its surface 2a to be coated - - becomes.
  • the surface 2a to be coated can be suitably brought into contact with the chemical bath 3, for example by a conventional spraying or wetting technique such that a liquid film of the bath solution 3 on the surface to be coated 2a is formed.
  • the chemical bath 3 is supplied to the reactor vessel 1 via a mixing vessel 4, in which the various bath components are mixed to prepare a corresponding chemical bath solution 5.
  • the ingredients are a metal salt, an organosulfide, a chelating agent forming a chelate complex with metal ions of the metal salt, and ammonium hydroxide.
  • each of these four components is provided as a corresponding solution in deionized water in a respective associated container 6, 7, 8, 9, ie as a metal salt solution 10, a chelating agent solution 11, an organosulfide solution 12 and an ammonium hydroxide solution 13.
  • Each of these four solutions can be supplied to the mixing container 4 via an associated supply line 14, 15, 16, 17.
  • a solution of zinc sulfate (ZnS0 4 ) in deionized water as chelating agent solution 1 the preparation of a solution of nitrilotriacetic acid trisodium salt (NasNTA) or another salt of nitrilotriacetic acid in deionized water and as organosulfide solution 12, the preparation of a solution of thioacetamide (TAA) in deionized water called.
  • a salt of iminodiacetic acid can also be used.
  • the four solution components 10 to 13 are mixed in the mixing container 4 at room temperature in predeterminable volume ratios, wherein these volume ratios are determined so that the various chemical components in the mixing container 4, ie in the bath solution 5, have certain predetermined concentrations or proportions.
  • the chelate complexing agent, eg NasNTA in a concentration of about 0, 01 M to 1, 0M is included, for example, in a concentration of 0, 1 M
  • the organosulfide, eg TAA in a concentration of about 1 mM to about 150mM is contained, for example, in a concentration of 5mM
  • the ammonium hydroxide (NH 4 OH) in a concentration of about 0.01 M to 3.0 M, for example in a concentration of 1 M is included.
  • the bath solution 5 mixed in the mixing tank 4 is put into the reactor tank 1 immediately after mixing to cause wet-chemical deposition on the substrate surface 2a to be coated.
  • the chemical bath 3 is maintained at a temperature of about 40 ° C to about 90 ° C during the wet-chemical deposition process. In the plant of Fig. 1, this is accomplished by placing the reactor vessel 1 in a suitably tempered, e.g. dipped at a temperature of about 60 ° C held water bath 18, which is located in an associated Wasserbad matterser 19.
  • the reactor vessel 1 is moved uniformly up and down during the wet-chemical deposition process, for which purpose a corresponding reciprocating lifting motor 20 is provided.
  • a ZnS layer is wet-chemically deposited on the substrate surface 2 a to be coated under the conditions mentioned.
  • this layer deposits on the substrate surface 2a, for example the surface of a CIS or CIGS absorber layer, as a CBD zinc sulfide layer having the properties mentioned above.
  • a very homogeneous metal sulfide layer on the substrate surface 2a to be coated over a relatively large area can be achieved by a uniform stroke movement of the reactor 1 and thus of the substrate surface 2a to be coated, eg for module surfaces of 0.1 m 2 to 1 m 2 .
  • the selected concentration ratios of the components in the chemical bath 3 and the selected water bath temperature influence the duration of the deposition process, the layer thickness and the layer quality of the deposited CBD metal sulfide layer, such as in terms of crystallinity, coverage and pinhole density.
  • a deposition / reaction time of clearly less than 10 minutes can be sufficient to form, for example, a CBD zinc sulfide layer as a buffer layer with a sufficient thickness of, for example, about 40 nm on an absorber layer of a photovoltaic module.
  • the substrate 2 is removed from the reactor 1, rinsed, for example with distilled water, and dried, for example by dry-blowing with nitrogen.
  • a CBD zinc sulphide layer having a thickness of about 40 nm, which is sufficient as a buffer layer can be used even with a very short deposition / reaction time of significantly less than 10 min, eg of only about 4 min or even even less deposited on the photovoltaic absorber layer.
  • the CBD zinc sulfide layer thus deposited, for example, on a CIS or CIGS absorber layer has good buffer layer properties. This can also be seen from the scanning microscopy image of FIG. 2, from which it can be seen that the wet-chemically deposited zinc sulfide buffer layer is completely closed on the typically relatively rough CIGS absorber layer surface and a perfect graduation is achieved. - - provides cover.
  • the ZnS buffer layer shows grains with typical dimensions in the nanometer range.
  • metal sulfide layers of comparable quality can be achieved alternatively to the mentioned immersion technique in that the substrate surface to be coated is brought into contact with the bath solution by means of a conventional wetting or spraying technique, that is to say forming a corresponding liquid film of the bath separation solution on the substrate surface to be coated.
  • a desired heterogeneous deposition of the metal sulfide layer by means of this surface contact of the area to be coated with the bath deposition solution.
  • This heterogeneous deposition behavior contributes to a high layer quality without noticeable particle formation, as is typical for homogeneous deposition techniques, whereby the particle formation of homogeneous deposition techniques proves to be of a quality-impairing nature in the present case.
  • the chelate complexing agent plays an important role in establishing a desired reaction / deposition kinetics.
  • Figure 3 illustrates in the characteristic diagram important electrical characteristics as measured on a photovoltaic module with a surface dimension of 30cm x 30cm incorporating a CBD zinc sulfide buffer layer formed on a CIGS absorber layer made by the described rapid wet-chemical deposition method.
  • the example considered module has a layer structure of a glass substrate or glass substrate, a back contact layer of molybdenum on the glass substrate, a CIGS absorber layer on the back contact layer, said, applied according to the invention CBD zinc sulfide buffer layer on the absorber layer, a ZnMgO layer as a further buffer layer the CBD zinc sulfide buffer layer layer and a ZnO: Al front contact layer on the ZnMgO layer.
  • CBD zinc sulfide buffer layer produced according to the invention, this is a per se conventional photovoltaic thin-film structure, as described, for example, in the literature mentioned above.
  • the deposition of the CBD zinc sulfide buffer layer was carried out for this module in a production plant of the type shown in FIG. 1 on a 60 cm x 120 cm glass substrate onto which the molybdenum back contact layer and the CIGS absorber layer were previously applied.
  • a very good homogeneity of the CBD zinc sulphide buffer layer applied in a thickness of about 30 nm during considerably less than 10 minutes resulted.
  • the 60cm x 120cm glass substrate with the CBD zinc sulphide buffer layer deposited in accordance with the invention was then cut into 30cm x 30cm modules.
  • Fig. 3 shows the characteristics of such 30cmx30cm large CIGS module.
  • photovoltaic properties for this module such as 13.6% efficiency, an open circuit voltage of 641, 9 mV per single cell, a fill factor of 70.4%, and a short circuit current density of 30.1 mA / cm 2 .
  • CBD zinc sulfide layers with a significantly smaller thickness or significantly greater thickness than the above-mentioned thickness of about 40 nm, and in the same way also other metal sulfide layers on a photovoltaic absorber layer or any one of them can be deposited to other substrate surface to be coated.
  • Characteristic in each case is the short deposition time or high deposition rate achievable by the bath removal solution according to the invention in combination with good layer properties of the wet-chemically deposited layer, as required, for example, for photovoltaic module buffer layers.

Abstract

Badabscheidungslösung zur nasschemischen Abscheidung einer Metallsulfidschicht und zugehörige Herstellungsverfahren. Die Erfindung bezieht sich auf eine Badabscheidungslösung zur nasschemischen Abscheidung einer Metallsulfidschicht, auf ein Verfahren zur Herstellung einer derartigen Badabscheidungslösung sowie auf ein Verfahren zur Herstellung einer Metallsulfidschicht auf einem Substrat unter Verwendung einer solchen Badabscheidungslösung. Eine erfindungsgemäße Badabscheidungslösung enthält ein Metallsalz, ein Organosulfid, einen Chelatkomplexbildner, der mit Metallionen des Metallsalzes einen Chelatkomplex bildet, und Ammoniumhydroxid. Verwendung z.B. zur nasschemischen Abscheidung von ZnS- Pufferschichten auf Absorberschichten bei der Fertigung von photovoltaischen Dünnschichtbauelementen.

Description

Badabscheidungslösung zur nasschemischen Abscheidung einer Metallsulfidschicht und zugehörige Herstellungsverfahren
Die Erfindung bezieht sich auf eine Badabscheidungslösung zur nasschemischen Abscheidung einer Metallsulfidschicht, auf ein Verfahren zur Herstellung einer derartigen Badabscheidungslösung sowie auf ein Verfahren zur Herstellung einer Metallsulfidschicht auf einem Substrat unter Verwendung einer solchen Badabscheidungslösung. Die Erfindung eignet sich insbesondere zur nasschemischen Abscheidung („chemical bath deposition"; CBD) einer Zinksulfidschicht (sog. CBD-Zinksulfid- schicht) als Pufferschicht auf einer Absorberschicht bei der Fertigung von photovoltaischen Dünnschichtbauelementen. Unter derartigen CBD- Zinksulfidschichten sind vorliegend Schichten zu verstehen, die neben Zink und Schwefel herstellungsbedingt auch Sauerstoff in einem von den Präparationsbedingungen abhängigen Anteil enthalten können, weshalb die Schichten in der Fachliteratur formell auch als Zn(S,0)- Schichten oder ZnSi-xOx-Schichten mit 0<x<1 oder Zn(S,0,OH)- Schichten oder ZnS(0,OH)-Schichten, bezeichnet werden.
Es sind speziell für die besagte ZnS-Pufferschichtabscheidung bei Solarzellenanwendungen bereits verschiedene Vorgehensweisen vorge- - - schlagen worden. So ist es beispielsweise aus den Offenlegungsschriften WO 2006/018013 A1 und DE 10 2006 039 331 A1 bekannt, hierfür eine Badabscheidungslösung zu verwenden, die in einer speziellen Weise aus Zinksulfat, Thioharnstoff und Ammoniak gelöst in destilliertem Wasser bereitet wird, wobei die Temperatur der Abscheidungslösung während des Abscheidungsprozesses auf 70°C bis 90°C gehalten oder auf einen derartigen Temperaturwert rampenförmig hochgefahren wird. Erfahrungsgemäß ist unter Verwendung dieses Abscheidungsprozesses zur Erzielung einer ZnS-Pufferschicht mit einer typischen benötigten Schichtdicke in der Größenordnung von 25nm eine Abscheidungsdauer von mindestens ca. 15 Minuten erforderlich.
ZnS-Pufferschichten haben sich als Alternative zu Cadmiumsulfid(CdS)- Pufferschichten in jüngerer Zeit sehr bewährt. So sind ZnS- Pufferschichten unter Umweltgesichtspunkten bekanntermaßen weniger problematisch als CdS-Pufferschichten, und es lassen sich damit transparentere Pufferschichten erzielen. Denn im Vergleich zu CdS hat ZnS einen höheren Bandabstand und absorbiert im Wellenlängenbereich zwischen 300nm bis 500nm kaum. Damit erreicht mehr Licht die photo- voltaisch aktive Absorberschicht, was zu einer höheren Stromdichte und zu einem potentiell höheren Wirkungsgrad führt. Andererseits wird die kommerzielle Fertigung großflächiger Photovoltaikmodule z.B. vom sogenannten CIS- bzw. CIGS-Typ in jüngerer Zeit immer stärker nachgefragt. Es besteht daher großes Interesse an einem schnellen und kostengünstigen Prozess, mit dem ZnS-Pufferschichten in der benötigten Schichtqualität großflächig auf einem entsprechenden Substrat, d.h. einer entsprechenden Solarzellen-Absorberschicht, abgeschieden werden können. Dazu sind CBD-Zinksulfidschichten besonders auch dann von Interesse, wenn sie wie oben erläutert herstellungsbedingt Sauerstoff enthalten. Denn dadurch kann der Leitungsbandoffset gegenüber benachbartem CIS-Absorberschichtmaterial von etwa 1 ,6eV auf etwa 1 ,0eV oder weniger gesenkt werden. Je nach Sauerstoffgehalt und - - eventuellem Wasserstoff- bzw. Hydroxidgehalt kann es sich somit bei den CBD-Zinksulfidschichten um binäre Verbindungen aus den Elementen Zn und S, um ternäre Verbindungen aus den Elementen Zn, O und S bzw. den Bestandteilen Zn, S und OH, um quaternäre Verbindungen aus den Bestandteilen Zn, S, O und OH bzw. den Bestandteilen Zn, S, O und H oder um Sauerstoff- und/oder wasserstoffdotierte ZnS-Schichten handeln, wobei natürlich auch gleitende Übergänge zwischen diesen Verbindungstypen je nach Anteil bzw. Dotierkonzentration des betreffenden Bestandteils möglich sind.
In dem Zeitschriftenaufsatz R. Sahraei et al., Compositional, structural, and optical study of noncrystalline ZnS thin films prepared by a new chemical bath deposition route, J. of Alloys and Compounds 466 (2008), Seite 488 ist ein ZnS-Pufferschichtabscheidungsverfahren offenbart, bei dem als Badabscheidungslösung eine schwach saure Lösung mit einem pH-Wert von etwa 5 verwendet wird, die Zinkchlorid (ZnC- ), Nitrilotries- sigsäure (NTA), Thioacetamid (TAA) und zur Einstellung des pH-Werts Natriumhydroxid (NaOH) enthält. Die Deposition erfolgt bis zu etwa 6 Stunden bei einer Temperatur von ca. 70°C, um eine Schichtdicke von ca. 80nm zu erzielen, wobei dieser Abscheidungsprozess bei Bedarf zur Erzielung höherer Schichtdicken wiederholt wird.
In dem Zeitschriftenaufsatz A. Goudarzi et al., Ammonia-free chemical bath deposition of nanocrystalline ZnS thin film buffer layer for solar cells, Thin Solid Films, 516 (2008), Seite 4953 ist ein ZnS-Pufferschicht- abscheidungsverfahren offenbart, bei dem eine ammoniakfreie, schwach saure Badabscheidungslösung mit einem pH-Wert von ca. 6,0 verwendet wird, die Zinkacetat, TAA, NaOH zur Einstellung des pH-Werts und ein Natriumsalz von Ethylendiamintetraessigsäure (Na2EDTA) gelöst in destilliertem Wasser enthält. Mit dieser Badabscheidungslösung werden Schichtdicken von ca. 20nm bis 140nm während Depositionsdauern von ca. 30min bis 7h für die abgeschiedene ZnS-Schicht erzielt. - -
In dem Zeitschriftenaufsatz S. Nagalingam et al., The Effect of EDTA on the Deposition of ZnS Thin Film, Z. Phys. Chem. 222 (2008), Seite 1703 wird als Alternative zur stromlosen nasschemischen Badabscheidung eine Elektrodeposition einer ZnS-Pufferschicht in einer deutlich sauren Abscheidungslösung mit einem pH-Wert von höchstens 4 und bevorzugt von ca. 1 ,26 vorgeschlagen, wobei die Abscheidungslösung ZnC , Na2S203, NaEDTA und Salzsäure (HCl) zur Einstellung des pH-Werts gelöst in destilliertem Wasser enthält.
In der Offenlegungsschrift US 2007/0020400 A1 wird ein Verfahren zur kontinuierlichen Abscheidung dünner Schichten, wie beispielsweise ZnS- und CdS-Schichten, unter Verwendung eines Mikromischers und eines Mikrokanalapplikators offenbart. Im Mikromischer werden zwei vorzugsweise flüssige Reaktanden gemischt, um das für die Abscheidung gewünschte Depositionsmaterial bereitzustellen, beispielsweise für die Abscheidung einer CdS-Schicht eine Lösung aus Cadmiumchlorid, Ammoniumchlorid und Ammoniumhydroxid als erster Reaktand und wässrigen Harnstoff als zweiten Reaktand. Mit dem Mikrokanalapplikator wird dann das bereitgestellte Depositionsmaterial, z.B. in Form entsprechender CdS-Partikel für die Abscheidung einer CdS-Schicht, strahlför- mig auf die zu beschichtende Fläche gerichtet.
Der Erfindung liegt als technisches Problem die Bereitstellung einer Badabscheidungslösung, eines zugehörigen Verfahrens zur Herstellung der Lösung sowie eines diese verwendenden Metallsulfidschicht- Herstellungsverfahrens zugrunde, welche die stromlose, nasschemische Abscheidung einer Metallsulfidschicht guter Qualität, wie sie beispielsweise für ZnS-Pufferschichten bei Solarzellenanwendungen benötigt wird, mit kurzer Depositionsdauer ermöglichen und sich insbesondere auch für großflächige Abscheidungen eignen, wie sie z.B. für ZnS- - -
Pufferschichten bei der Fertigung großflächiger Photovoltaikmodule benötigt werden.
Die Erfindung löst dieses Problem durch die Bereitstellung einer Badab- scheidungslösung mit den Merkmalen des Anspruchs 1 , eines Badab- scheidungslösungs-Herstellungsverfahrens mit den Merkmalen des Anspruchs 5 und eines Metallsulfidschicht-Herstellungsverfahrens mit den Merkmalen des Anspruchs 9. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.
Charakteristischerweise beinhaltet die Badabscheidungslösung zur nasschemischen Abscheidung einer Metallsulfidschicht gemäß Anspruch 1 neben einem Salz des für die Metallsulfidschicht benötigten Metalls ein Organosulfid als Schwefelquelle für die Metallsulfidschicht, einen Chelatkomplexbildner, der mit Metallionen des Metallsalzes einen Chelatkomplex bildet, und Ammoniumhydroxid. Gegebenenfalls können ein oder mehrere weitere Bestandteile in geringerer Konzentration enthalten sein.
Es zeigt sich, dass durch die Anwesenheit des Organosulfids als Schwefellieferant einerseits und sowohl des Chelatkomplexbildners als auch von Ammoniumhydroxid andererseits eine sehr vorteilhafte, schnelle Abscheidung einer Metallsulfidschicht auch auf größeren Flächen mit guter Qualität möglich ist, wofür das Zusammenspiel des Chelatkomplexbildners, der durch seine starke Abschirmwirkung die Zugänglichkeit der Metallionen für die aus dem Organosulfid freigesetzten Schwefelionen erschwert, und des Ammoniumhydroxids verantwortlich gemacht wird, wobei das Ammoniumhydroxid neben seiner Eigenschaft als den pH-Wert einstellendes Agens zusätzlich als schwache Metallio- nenabschirmkomponente fungiert. Die Erfinder haben festgestellt, dass sich mit dieser Zusammensetzung der Badabscheidungslösung z.B. ZnS-Pufferschichten mit einer Dicke von ca. 25nm während einer Depo- - - sitionsdauer von weniger als ca. 10 min, insbesondere nur etwa ca. 4 min, mit guter Schichtqualität abscheiden lassen.
Während zur Abscheidung von ZnS-Schichten, wie den besagten Pufferschichten für Solarzellenanwendungen, ein Zn-Salz als Metallsalz verwendet wird, können erfindungsgemäß in gleicher Weise andere Metallsulfidschichten, z.B. von In oder Kombinationen der Metalle Zn und In, unter Verwendung entsprechender Metallsalze nasschemisch abgeschieden werden.
In einer vorteilhaften Weiterbildung wird Thioacetamid (TAA) als Orga- nosulfid eingesetzt. Es zeigt sich, dass damit beispielsweise im Vergleich zu Thioharnstoff eine schnellere Schwefelfreisetzung erreichbar ist, was mit einer höheren Hydrolyseempfindlichkeit des TAA erklärt werden kann. Eine zu rasche Metallsulfidbildungsreaktion verbunden mit unerwünschten kolloidalen Ausscheidungen des Metallsulfids bzw. schlechten Bedeckungs-/Morphologiecharakteristika wird durch die kontrollierte Verlangsamung der Schwefelanlagerung an das Metallion aufgrund der Abschirmwirkung des Chelatkomplexbildners und des Ammoniumhydroxids bzw. Ammoniaks verhindert.
In einer vorteilhaften Weiterbildung der Erfindung wird Nitrilotriessigsäu- re (NTA) oder Iminodiessigsäure (IDA) bzw. ein entsprechendes Salz dieser Säuren, z.B. ein Natriumsalz, Ammoniumsalz etc., als Chelat- komplexbildner eingesetzt. Es zeigt sich, dass mit einem solchen Che- latkomplexbildner in Kombination mit einem geeigneten Organosulfid, z.B. TAA, eine gute Anpassung der Freisetzungsgeschwindigkeit von Schwefel durch das Organosulfid und der durch den Chelatkomplexbild- ner verlangsamten Schwefelanlagerung an das Metallion derart erzielbar ist, dass sich die Metallsulfidschicht mit vergleichsweise sehr guter Qualität und hoher Depositionsrate von z.B. ca. 6nm/min abscheiden lässt. - -
In Ausgestaltung der Erfindung ist in der Badabscheidungslösung das Metallsalz in einer Konzentration von ca. 1 mM bis ca. 50mM und/oder das Organosulfid in einer Konzentration von ca. 1 mM bis ca. 150mM und/oder der Chelatkomplexbildner in einer Konzentration von ca. 0,01 M bis ca. 1 ,0M und/oder das Ammoniumhydroxid in einer Konzentration von ca. 0,01 M bis ca. 3,0M enthalten. Diese Konzentrationsbereiche haben sich zur Erzielung von Metallsulfidschichten guter Qualität mit ausreichend hoher Depositionsrate bei gleichzeitig vergleichsweise geringem Materialeinsatz als besonders geeignet erwiesen.
In weiterer Ausgestaltung der Erfindung wird für die Badabscheidungslösung ein pH-Wert im basischen Bereich bis in den neutralen Bereich eingestellt. Es zeigt sich, dass damit eine günstige nasschemische Ab- scheidung der Metallsulfidschicht erreicht werden kann.
Die erfindungsgemäße Badabscheidungslösung kann erfindungsgemäß mit geringem Aufwand durch einfaches Mischen der beteiligten Bestandteile in destilliertem Wasser hergestellt werden.
Unter Verwendung der erfindungsgemäßen Badabscheidungslösung lassen sich, wie erwähnt, Metallsulfidschichten auf einem Substrat mit vergleichsweise guter Schichtqualität und hoher Depositionsrate nasschemisch abscheiden. So ist beispielsweise die Deposition einer ZnS- Pufferschicht auf einem photovoltaischen Absorberschichtsubstrat mit diesem erfindungsgemäßen Verfahren möglich, wobei ohne Weiteres die für eine derartige Pufferschicht geforderte Schichtqualität und eine Schichtdicke von ca. 25nm mit sehr kurzen Depositionsdauern von höchstens etwa 10min und bevorzugt höchstens etwa 4min oder darunter erzielt werden können. - -
In Ausgestaltung dieses Metallsulfidschicht-Herstellungsverfahrens der Erfindung wird die Badlösung während des Abscheidungsprozesses auf einer Temperatur von ca. 40°C bis ca. 90°C gehalten.
In einer Weiterbildung der Erfindung beinhaltet das Inkontaktbringen des Substrats mit der Badabscheidungslösung ein Eintauchen des Substrats in die Badabscheidungslösung oder ein äquivalentes flächiges Inkontaktbringen der zu beschichtenden Substratfläche mit der Badabscheidungslösung durch eine entsprechende Benetzungs- oder Besprühtechnik.
Vorteilhafte Ausführungsformen der Erfindung sind in den Zeichnungen dargestellt und werden nachfolgend beschrieben. Hierbei zeigen:
Fig. 1 eine schematische Darstellung einer Anlage zur nasschemischen Abscheidung einer Metallsulfidschicht,
Fig. 2 eine Rasterelektronenmikroskopaufnahme einer Bruchkante einer mit der Anlage von Fig. 1 hergestellten CBD- Zinksulfidschicht auf einem CIGS-Substrat und
Fig. 3 ein Strom-Spannungs-Kennliniendiagramm für ein Solarzellenmodul mit einer in der Anlage von Fig. 1 hergestellten CBD-Zinksulfidschicht.
Die in Fig. 1 gezeigte Beschichtungsanlage dient zur nasschemischen Abscheidung von Metallsulfidschichten auf zugehörigen Unterlagen bzw. Substraten. Dazu weist die Beschichtungsanlage in an sich üblicher Weise einen Reaktorbehälter 1 auf, in den ein zu beschichtendes Substrat 2 eingebracht wird. Im Reaktorbehälter 1 wird ein chemisches Bad 3 bereitgestellt, in welches das zu beschichtende Substrat 2 insgesamt oder jedenfalls mit seiner zu beschichtenden Fläche 2a eingetaucht - - wird. Es versteht sich, dass alternativ zum Eintauchen die zu beschichtende Fläche 2a in anderer Weise mit dem chemischen Bad 3 geeignet in Kontakt gebracht werden kann, z.B. durch eine übliche Besprüh- oder Benetzungstechnik derart, dass ein Flüssigkeitsfilm der Badlösung 3 auf der zu beschichtenden Fläche 2a gebildet wird.
Das chemische Bad 3 wird dem Reaktorbehälter 1 über einen Mischbehälter 4 zugeführt, in welchem die verschiedenen Badbestandteile zur Bereitung einer entsprechenden chemischen Badlösung 5 gemischt werden. Speziell handelt es sich bei den Bestandteilen um ein Metallsalz, ein Organosulfid, einen Chelatkomplexbildner, der mit Metallionen des Metallsalzes einen Chelatkomplex bildet, und Ammoniumhydroxid. Im Beispiel von Fig. 1 wird jeder dieser vier Bestandteile als entsprechende Lösung in deionisiertem Wasser in einem jeweils zugehörigen Behälter 6, 7, 8, 9 bereitgestellt, d.h. als eine Metallsalzlösung 10, eine Chelatkomplexbildnerlösung 1 1 , eine Organosulfidlösung 12 und eine Ammoniumhydroxidlösung 13. Jede dieser vier Lösungen kann über eine zugehörige Zufuhrleitung 14, 15, 16, 17 dem Mischbehälter 4 zugeführt werden. Lediglich als eines von vielen weiteren erfindungsgemäß möglichen Beispielen sei als Metallsalzlösung 10 die Bereitung einer Lösung von Zinksulfat (ZnS04) in deionisiertem Wasser, als Chelatkomplexbildnerlösung 1 1 die Bereitung einer Lösung von Nitrilotriessig- säuretrinatriumsalz (NasNTA) oder eines anderen Salzes von Nitri- lotriessigsäure in deionisiertem Wasser und als Organosulfidlösung 12 die Bereitung einer Lösung von Thioacetamid (TAA) in deionisiertem Wasser genannt. Anstelle des Salzes von Nitrilotriessigsäure ist auch ein Salz von Iminodiessigsäure einsetzbar. Die vier Lösungskomponenten 10 bis 13 werden im Mischbehälter 4 bei Raumtemperatur in vorgebbaren Volumenverhältnissen vermischt, wobei diese Volumenverhältnisse so bestimmt werden, dass die verschiedenen chemischen Bestandteile im Mischbehälter 4, d.h. in der Badlösung 5, bestimmte vorgebbare Konzentrationen bzw. Anteile haben. Speziell wird der Mi- - - schungsprozess so gewählt, dass das Metallsalz, z.B. ZnS04, in einer Konzentration von ca. 1 mM bis ca. 50mM enthalten ist, z.B. in einer Konzentration von 5mM, der Chelatkomplexbildner, z.B. NasNTA, in einer Konzentration von ca. 0,01 M bis 1 ,0M enthalten ist, z.B. in einer Konzentration von 0, 1 M, das Organosulfid, z.B. TAA, in einer Konzentration von ca. 1 mM bis ca. 150mM enthalten ist, z.B. in einer Konzentration von 5mM, und das Ammoniumhydroxid (NH4OH) in einer Konzentration von ca. 0,01 M bis 3,0M, z.B. in einer Konzentration von 1 M, enthalten ist.
Die im Mischbehälter 4 gemischte Badlösung 5 wird sofort nach dem Vermischen in den Reaktorbehälter 1 gegeben, um auf der zu beschichtenden Substratoberfläche 2a die nasschemische Abscheidung zu bewirken. Dazu wird das chemische Bad 3 während des nasschemischen Abscheidungsprozesses auf einer Temperatur von ca. 40°C bis ca. 90°C gehalten. In der Anlage von Fig. 1 wird dies dadurch bewirkt, dass der Reaktorbehälter 1 in ein entsprechend temperiertes, z.B. auf einer Temperatur von ca. 60°C gehaltenes Wasserbad 18 eintaucht, das sich in einem zugehörigen Wasserbadbehälter 19 befindet.
Wie weiter aus Fig. 1 ersichtlich, wird im dort gezeigten Ausführungsbeispiel der Reaktorbehälter 1 während des nasschemischen Abscheidungsprozesses gleichmäßig auf und ab bewegt, wozu ein entsprechender, reziprok arbeitender Hubmotor 20 vorgesehen ist.
Im genannten Beispiel einer ZnS04-Lösung als Metallsalzlösung scheidet sich unter den genannten Bedingungen auf der zu beschichtenden Substratoberfläche 2a nasschemisch eine ZnS-Schicht ab. Im Fall eines Photovoltaikmodulsubstrats scheidet sich diese Schicht als CBD- Zinksulfidschicht mit den oben erwähnten Eigenschaften auf der Substratoberfläche 2a ab, z.B. der Oberfläche einer CIS- bzw. CIGS- Absorberschicht. - -
Es zeigt sich, dass sich durch eine gleichmäßige Hubbewegung des Reaktors 1 und damit der zu beschichtenden Substratoberfläche 2a eine sehr homogene Metallsulfidschicht auf der zu beschichtenden Substratoberfläche 2a über eine relativ große Fläche hinweg erzielen lässt, z.B. für Modulflächen von 0,1 m2 bis 1 m2. Die gewählten Konzentrationsverhältnisse der Bestandteile im chemischen Bad 3 und die gewählte Wasserbadtemperatur beeinflussen die Dauer des Abscheidungsprozesses, die Schichtdicke und die Schichtqualität der abgeschiedenen CBD- Metallsulfidschicht, wie hinsichtlich Kristallinität, Bedeckungsgrad und Pinholedichte. Dabei zeigt sich, dass erfindungsgemäß bereits eine De- positions-/Reaktionszeit von deutlich weniger als 10min genügen kann, um beispielsweise eine CBD-Zinksulfidschicht als Pufferschicht mit einer ausreichenden Dicke von z.B. ca. 40nm auf einer Absorberschicht eines Photovoltaikmoduls zu bilden. Nach Beendigung des nasschemischen Abscheidungsprozesses wird das Substrat 2 aus dem Reaktor 1 entnommen, abgespült, z.B. mit destilliertem Wasser, und getrocknet, z.B. durch Trockenblasen mit Stickstoff.
Somit kann durch die Verwendung des chemischen Bades 3 mit der geschilderten Zusammensetzung eine CBD-Zinksulfidschicht mit einer als Pufferschicht ausreichenden Dicke von ca. 40nm schon mit einer sehr kurzen Depositions-/Reaktionszeit von deutlich kleiner als 10min, z.B. von nur ca. 4min oder sogar noch weniger, auf der photovoltaischen Absorberschicht abgeschieden werden. Es zeigt sich weiter, dass die solchermaßen z.B. auf einer CIS- bzw. CIGS-Absorberschicht abgeschiedene CBD-Zinksulfidschicht gute Pufferschichteigenschaften aufweist. Dies ist auch aus der Rastermikroskopieaufnahme von Fig. 2 ersichtlich, aus der erkennbar ist, dass die nasschemisch abgeschiedene Zinksulfid- Pufferschicht auf der typischerweise relativ rauen CIGS-Absorber- schichtoberfläche komplett geschlossen ist und eine perfekte Stufenab- - - deckung bereitstellt. Die ZnS-Pufferschicht zeigt dabei Körner mit typischen Abmessungen im Nanometerbereich.
Es zeigt sich weiter, das Metallsulfidschichten vergleichbarer Qualität alternativ zur erwähnten Eintauchtechnik auch dadurch erzielbar sind, dass die zu beschichtende Substratfläche mittels einer üblichen Benet- zungs- oder Besprühtechnik mit der Badabscheidungslösung flächig in Kontakt gebracht wird, das heißt unter Bildung eines entsprechenden Flüssigkeitsfilms der Badabscheidungslösung auf der zu beschichtenden Substratfläche. In jedem Fall lässt sich durch dieses flächige Inkon- taktbringen der zu beschichtenden Fläche mit der Badabscheidungslösung eine gewünschte heterogene Abscheidung der Metallsulfidschicht erzielen. Dieses heterogene Abscheidungsverhalten trägt zu einer hohen Schichtqualität ohne merkliche Partikelbildung bei, wie sie für homogene Abscheidungstechniken typisch ist, wobei sich die Partikelbildung homogener Abscheidungstechniken vorliegend als qualitätsbeein- trächtigend beweist. Beim vorliegenden Abscheidungsverfahren kommt dem Chelatkomplexbildner eine wichtige Rolle zur Einstellung einer gewünschten Reaktions-/Abscheidungskinetik zu.
Fig. 3 veranschaulicht im Kennliniendiagramm wichtige elektrische Kenngrößen, wie sie an einem Photovoltaikmodul mit einer Flächenabmessung von 30cmx30cm gemessen wurden, das eine nach dem geschilderten, schnellen, nasschemischen Abscheidungsverfahren hergestellte CBD-Zinksulfidpufferschicht auf einer CIGS-Absorberschicht beinhaltet. Das beispielhaft betrachtete Modul besitzt einen Schichtaufbau aus einem Glassubstrat bzw. Glasträger, einer Rückkontaktschicht aus Molybdän auf dem Glasträger, einer CIGS-Absorberschicht auf der Rückkontaktschicht, der besagten, erfindungsgemäß aufgebrachten CBD-Zinksulfidpufferschicht auf der Absorberschicht, einer ZnMgO- Schicht als weitere Pufferschichtlage auf der CBD-Zinksulfid- pufferschichtlage und einer ZnO:AI-Frontkontaktschicht auf der ZnMgO- - -
Schicht. Mit Ausnahme der erfindungsgemäß hergestellten CBD- Zinksulfidpufferschicht handelt es sich hierbei um einen an sich herkömmlichen photovoltaischen Dünnschichtaufbau, wie er beispielsweise in der eingangs erwähnten Literatur beschrieben ist.
Die Abscheidung der CBD-Zinksulfidpufferschicht erfolgte für dieses Modul in einer Produktionsanlage nach Art von Fig. 1 auf einem Glassubstrat der Größe 60cmx120cm, auf das zuvor die Molybdän- Rückkontaktschicht und die CIGS-Absorberschicht aufgebracht wurden. Mit dem schnellen erfindungsgemäßen Depositionsprozess ergab sich eine sehr gute Homogenität der in einer Dicke von ca. 30nm während deutlich weniger als 10min aufgebrachten CBD-Zinksulfidpufferschicht. Das 60cmx120cm große Glassubstrat mit der erfindungsgemäß abgeschiedenen CBD-Zinksulfidpufferschicht wurde dann in 30cmx30cm große Module zerteilt. Fig. 3 zeigt die Kenngrößen eines solchen 30cmx30cm großen CIGS-Moduls. Wie daraus ersichtlich, ergeben sich für dieses Modul sehr gute photovoltaische Eigenschaften, wie ein Wirkungsgrad von 13,6%, eine Leerlaufspannung von 641 ,9 mV pro Einzelzelle, ein Füllfaktor von 70,4% und eine Kurzschluss-stromdichte von 30,1 mA/cm2.
Es versteht sich, dass sich mit der Erfindung auch CBD-Zinksulfid- schichten mit deutlich geringerer Dicke oder deutlich größerer Dicke als der oben beispielhaft erwähnten Dicke von etwa 40nm abgeschieden werden können, und dass in gleicher Weise auch andere Metallsulfidschichten auf einer photovoltaischen Absorberschicht oder irgendeiner anderen zu beschichtenden Substratoberfläche abgeschieden werden können. Charakteristisch ist jeweils die durch die erfindungsgemäße Badabscheidungslösung erzielbare kurze Depositionsdauer bzw. hohe Depositionsrate in Kombination mit guten Schichteigenschaften der nasschemisch abgeschiedenen Schicht, wie sie beispielsweise für Pho- tovoltaikmodul-Pufferschichten gefordert werden. Wie sich für den - -
Fachmann versteht, sind die verschiedenen Depositionsparameter und insbesondere die Anteile der verschiedenen Konstituenten der erfindungsgemäßen Badabscheidungslösung für den jeweiligen Einzelfall geeignet festzulegen, z.B. empirisch.

Claims

Patentansprüche
1. Badabscheidungslösung zur nasschemischen Abscheidung einer Metallsulfidschicht, dadurch gekennzeichnet, dass sie enthält:
- ein Metallsalz,
- ein Organosulfid,
- einen Chelatkomplexbildner, der mit Metallionen des Metallsalzes einen Chelatkomplex bildet, und
- Ammoniumhydroxid.
2. Badabscheidungslösung nach Anspruch 1 , weiter dadurch gekennzeichnet, dass das Metallsalz ein Zn- und/oder In-Salz ist und/oder das Organosulfid Thioacetamid ist und/oder der Chelatkomplexbildner Nitrilotriessigsäure oder Iminodiessigsäure oder ein Metallsalz derselben ist.
3. Badabscheidungslösung nach Anspruch 1 oder 2, weiter dadurch gekennzeichnet, dass das Metallsalz in einer Konzentration von ca. 1 mM bis ca. 50mM enthalten ist und/oder das Organosulfid in einer Konzentration von ca. 1 mM bis ca. 150mM enthalten ist und/oder der Chelatkomplexbildner in einer Konzentration von ca. 0,01 M bis ca. 1 ,0M enthalten ist und/oder das Ammoniumhydroxid in einer Konzentration von ca. 0,01 M bis ca. 3,0M enthalten ist.
4. Badabscheidungslösung nach einem der Ansprüche 1 bis 4, weiter dadurch gekennzeichnet, dass sie einen pH-Wert im basischen Bereich bis in den neutralen Bereich aufweist.
5. Verfahren zur Herstellung einer Badabscheidungslösung zur nasschemischen Abscheidung einer Metallsulfidschicht, dadurch gekennzeichnet, dass ein Metallsalz, ein Organosulfid, ein Chelatkomplexbildner, der mit Metallionen des Metallsalzes einen Che- latkomplex bildet, und Ammoniumhydroxid in destilliertem Wasser gemischt werden.
6. Verfahren nach Anspruch 5, weiter dadurch gekennzeichnet, dass als Metallsalz ein Zn- und/oder In-Salz verwendet wird und/oder als Organosulfid Thioacetamid verwendet wird und/oder als Che- latkomplexbildner Nitrilotriessigsäure oder Iminodiessigsaure oder ein Metallsalz derselben verwendet wird.
7. Verfahren nach Anspruch 5 oder 6, weiter dadurch gekennzeichnet, dass das Metallsalz in einer Konzentration von ca. 1 mM bis ca. 50mM zugemischt wird und/oder das Organosulfid in einer Konzentration von ca. 1 mM bis 150mM zugemischt wird und/oder der Chelatkomplexbildner in einer Konzentration von ca. 0,01 M bis 1 ,0M zugemischt wird und/oder das Ammoniumhydroxid in einer Konzentration von ca. 0,01 M bis 3,0M zugemischt wird.
8. Verfahren nach einem der Ansprüche 5 bis 7, weiter dadurch gekennzeichnet, dass für die Badabscheidungslösung ein pH-Wert im basischen Bereich bis in den neutralen Bereich eingestellt wird.
9. Verfahren zur Herstellung einer Metallsulfidschicht auf einem Substrat, mit folgenden Schritten:
- Bereitstellen einer Badabscheidungslösung gemäß einem der Ansprüche 1 bis 4 und
- nasschemisches Abscheiden der Metallsulfidschicht auf dem Substrat durch Inkontaktbringen des Substrats mit der Badabscheidungslösung.
10. Verfahren nach Anspruch 9, weiter dadurch gekennzeichnet, dass das nasschemische Abscheiden zur Erzielung einer Schichtdicke der Metallsulfidschicht von ca. 25nm für eine Dauer von höchstens ca. 10min, insbesondere höchstens ca. 4min, vorgenommen wird.
1 1. Verfahren nach Anspruch 9 oder 10, weiter dadurch gekennzeichnet, dass die Badabscheidungslösung während des nasschemischen Abscheidens auf einer Temperatur von ca. 40°C bis ca. 90°C gehalten wird.
12. Verfahren nach einem der Ansprüche 9 bis 1 1 , weiter dadurch gekennzeichnet, dass als Metallsulfidschicht eine Zinksulfid- Pufferschicht auf einem photovoltaischen Absorberschichtsubstrat abgeschieden wird.
13. Verfahren nach einem der Ansprüche 9 bis 12, weiter dadurch gekennzeichnet, dass das Inkontaktbringen des Substrats mit der Badabscheidungslösung ein Eintauchen des Substrats in die Badabscheidungslösung oder ein flächiges Benetzen oder Besprühen des Substrats mit der Badabscheidungslösung beinhaltet.
PCT/EP2011/051117 2010-01-28 2011-01-27 Badabscheidungslösung zur nasschemischen abscheidung einer metallsulfidschicht und zugehörige herstellungsverfahren WO2011092236A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/575,670 US9181437B2 (en) 2010-01-28 2011-01-27 Bath deposition solution for the wet-chemical deposition of a metal sulfide layer and related production method
KR1020127021644A KR101757897B1 (ko) 2010-01-28 2011-01-27 금속 황화물층의 습식 화학 증착을 위한 습식 증착 용액 및 관련된 형성 방법들
CN201180017116.0A CN103025916B (zh) 2010-01-28 2011-01-27 用于金属硫化物层的湿化学沉积的浴沉积溶液及相关生产方法
EP11701263.3A EP2539486B1 (de) 2010-01-28 2011-01-27 Badabscheidungslösung zur nasschemischen abscheidung einer metallsulfidschicht und zugehörige herstellungsverfahren
ES11701263.3T ES2647609T3 (es) 2010-01-28 2011-01-27 Solución de deposición por baño para la deposición por baño químico de una capa de sulfuro metálico y métodos correspondientes de fabricación

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010006499.8 2010-01-28
DE102010006499A DE102010006499A1 (de) 2010-01-28 2010-01-28 Badabscheidungslösung zur nasschemischen Abscheidung einer Metallsulfidschicht und zugehörige Herstellungsverfahren

Publications (2)

Publication Number Publication Date
WO2011092236A2 true WO2011092236A2 (de) 2011-08-04
WO2011092236A3 WO2011092236A3 (de) 2013-08-15

Family

ID=44227559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/051117 WO2011092236A2 (de) 2010-01-28 2011-01-27 Badabscheidungslösung zur nasschemischen abscheidung einer metallsulfidschicht und zugehörige herstellungsverfahren

Country Status (7)

Country Link
US (1) US9181437B2 (de)
EP (1) EP2539486B1 (de)
KR (1) KR101757897B1 (de)
CN (1) CN103025916B (de)
DE (1) DE102010006499A1 (de)
ES (1) ES2647609T3 (de)
WO (1) WO2011092236A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2604721A3 (de) * 2011-12-14 2015-12-16 Industrial Technology Research Institute Chemiebadabscheidungsvorrichtung
CN109706437A (zh) * 2018-12-20 2019-05-03 德州易能新能源科技有限公司 制备金属硫化物薄膜的方法和由该方法制得的薄膜

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM418398U (en) * 2011-08-10 2011-12-11 Manz Taiwan Ltd Elevation Conveying type Chemical bath deposition apparatus
FR3014908B1 (fr) 2013-12-12 2016-01-29 Electricite De France Bain a persulfate et procede pour le depot chimique d'une couche.
TWI496304B (zh) * 2013-12-12 2015-08-11 Ind Tech Res Inst 太陽能電池與其形成方法及n型ZnS層的形成方法
FR3014909B1 (fr) * 2013-12-12 2016-01-29 Electricite De France Bain a morpholine et procede pour le depot chimique d'une couche.
DE102016100974A1 (de) * 2015-02-05 2016-08-11 Ford Global Technologies, Llc Verfahren zur Abscheidung von photolumineszierendem Material
KR102551214B1 (ko) 2016-01-05 2023-07-03 삼성전기주식회사 유전체 자기 조성물 및 이를 포함하는 적층 세라믹 커패시터
CN108521072B (zh) * 2018-03-29 2022-12-02 深圳瑞波光电子有限公司 半导体激光器件的谐振腔面钝化膜、制作方法及器件
CN108683074B (zh) * 2018-03-29 2022-12-02 深圳瑞波光电子有限公司 一种半导体激光器件及其谐振腔面钝化膜、制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006018013A1 (de) 2004-08-18 2006-02-23 Hahn-Meitner-Institut Berlin Gmbh Verfahren zum aufbringen einer zinksulfid-pufferschicht auf ein halbleitersubstrat mittels chemischer badabscheidung, insbesondere auf die absorberschicht einer chalkopyrit-dünnschicht-solarzelle
US20070020400A1 (en) 2005-07-22 2007-01-25 State of Oregon acting by and through the State Board of Higher Education on behalf of Oregon Method and apparatus for chemical deposition
DE102006039331A1 (de) 2006-08-15 2008-02-28 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Photovoltaik-Dünnschichtaufbau und Herstellungsverfahren

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7163835B2 (en) * 2003-09-26 2007-01-16 E. I. Du Pont De Nemours And Company Method for producing thin semiconductor films by deposition from solution
CN1977388A (zh) * 2004-06-28 2007-06-06 皇家飞利浦电子股份有限公司 通过湿法化学沉积制造的场效应晶体管
US20080299411A1 (en) 2007-05-30 2008-12-04 Oladeji Isaiah O Zinc oxide film and method for making
US8553333B2 (en) * 2009-01-23 2013-10-08 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Nanostructured anti-reflective coatings for substrates
CN101608304A (zh) * 2009-07-20 2009-12-23 北京工业大学 一种化学浴沉积硫化铟薄膜的方法
KR20110012550A (ko) * 2009-07-30 2011-02-09 삼성전자주식회사 박막 태양 전지의 제조방법 및 제조장치
JP4782880B2 (ja) * 2009-10-05 2011-09-28 富士フイルム株式会社 バッファ層とその製造方法、反応液、光電変換素子及び太陽電池
JP4745450B2 (ja) * 2009-10-06 2011-08-10 富士フイルム株式会社 バッファ層とその製造方法、反応液、光電変換素子及び太陽電池
US20110111129A1 (en) * 2009-11-10 2011-05-12 Jenn Feng New Energy Co., Ltd. Method for fabricating cadmium sulfide thin film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006018013A1 (de) 2004-08-18 2006-02-23 Hahn-Meitner-Institut Berlin Gmbh Verfahren zum aufbringen einer zinksulfid-pufferschicht auf ein halbleitersubstrat mittels chemischer badabscheidung, insbesondere auf die absorberschicht einer chalkopyrit-dünnschicht-solarzelle
US20070020400A1 (en) 2005-07-22 2007-01-25 State of Oregon acting by and through the State Board of Higher Education on behalf of Oregon Method and apparatus for chemical deposition
DE102006039331A1 (de) 2006-08-15 2008-02-28 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Photovoltaik-Dünnschichtaufbau und Herstellungsverfahren

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ZEITSCHRIFTENAUFSATZ A. GOUDARZI ET AL.: "Ammonia-free chemical bath deposition of nanocrystalline ZnS thin film buffer layer for solar cells", THIN SOLID FILMS, vol. 516, 2008, pages 4953
ZEITSCHRIFTENAUFSATZ R. SAHRAEI ET AL.: "Compositional, structural, and optical study of noncrystalline ZnS thin films prepared by a new chemical bath deposition route", J. OF ALLOYS AND COMPOUNDS, vol. 466, 2008, pages 488
ZEITSCHRIFTENAUFSATZ S. NAGALINGAM ET AL.: "The Effect of EDTA on the Deposition of ZnS Thin Film", Z. PHYS. CHEM., vol. 222, 2008, pages 1703

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2604721A3 (de) * 2011-12-14 2015-12-16 Industrial Technology Research Institute Chemiebadabscheidungsvorrichtung
US9249507B2 (en) 2011-12-14 2016-02-02 Industrial Technology Research Institute Chemical bath deposition (CBD) apparatus
CN109706437A (zh) * 2018-12-20 2019-05-03 德州易能新能源科技有限公司 制备金属硫化物薄膜的方法和由该方法制得的薄膜

Also Published As

Publication number Publication date
US9181437B2 (en) 2015-11-10
CN103025916B (zh) 2016-08-03
US20130084401A1 (en) 2013-04-04
WO2011092236A3 (de) 2013-08-15
DE102010006499A1 (de) 2011-08-18
ES2647609T3 (es) 2017-12-22
KR20120129915A (ko) 2012-11-28
EP2539486B1 (de) 2017-08-30
CN103025916A (zh) 2013-04-03
EP2539486A2 (de) 2013-01-02
KR101757897B1 (ko) 2017-07-26

Similar Documents

Publication Publication Date Title
EP2539486B1 (de) Badabscheidungslösung zur nasschemischen abscheidung einer metallsulfidschicht und zugehörige herstellungsverfahren
DE112011102300B4 (de) Verfahren zum ausbilden einer p-halbleiterschicht für eine photovoltaikeinheit
EP1792348B1 (de) Verfahren zum aufbringen einer zinksulfid-pufferschicht auf ein halbleitersubstrat mittels chemischer badabscheidung, insbesondere auf die absorberschicht einer chalkopyrit-dünnschicht-solarzelle
DE19630321A1 (de) Verfahren zur Herstellung eines Kupfer-Indium-Schwefel-Selen-Dünnfilms sowie Verfahren zur Herstellung eines Kupfer-Indium-Schwefel-Selen-Chalcopyrit-Kristalls
DE112012003297T5 (de) Deckschichten für verbesserte Kristallisation
CH618046A5 (de)
DE102011121798B4 (de) Elektrolyt und Verfahren zur elektrolytischen Abscheidung von Cu-Zn-Sn-Legierungsschichten und Verfahren zur Herstellung einer Dünnschichtsolarzelle
EP2394969A2 (de) Verwendung von Gläsern für Photovoltaik-Anwendungen
DE102009009550A1 (de) Verfahren zum nasschemischen Synthetisieren von Dikupfer-Zink-Zinn-Tetrasulfid und/oder - Tetraselenid (CZTS), ein Verfahren zum Herstellen einer Halbleiterschicht aus CZTS sowie eine kolloidale Suspension
DE2844712A1 (de) Herstellen von halbleiterduennschichten auf elektrisch leitenden substraten
DE102012216026A1 (de) Verfahren zur Herstellung einer flexiblen Photovoltaik-Dünnschichtzelle mit einer Eisendiffusionsbarriereschicht
DE102006039331B4 (de) Photovoltaik-Dünnschichtaufbau und Herstellungsverfahren
DE102010030884A1 (de) Verfahren zur Abscheidung einer Pufferschicht auf einer CIS-Dünnschicht-Solarzelle und nach dem Verfahren hergestellte CIS-Dünnschicht-Solarzelle
EP2411558B1 (de) VERFAHREN ZUM AUFBRINGEN EINER Zn(S, O)-PUFFERSCHICHT AUF EIN HALBLEITERSUBSTRAT MITTELS CHEMISCHER BADABSCHEIDUNG
DE4447865B4 (de) Verbindungshalbleiter-Dünnschichtsolarzelle mit Alkalimetallzusatz und Verfahren zur Herstellung
DE102009054973A1 (de) Chalkopyrit-Dünnschicht-Solarzelle mit CdS/(Zn(S,O)-Pufferschicht und dazugehöriges Herstellungsverfahren
DE102008037177B4 (de) Verfahren zur Herstellung nanostrukturierter Metalloxide oder -chalkogenide mittels chemischer Badabscheidung
DE212012000087U1 (de) Eine kristalline 2D-Schicht auf der Grundlage von ZnO auf einem leitfähigen Kunststoffsubstrat
WO2007088146A1 (de) Verfahren zum aufbringen von alkaliionen auf die oberfläche der cigsse-absorberschicht einer chalkopyrit-solarzelle
DE102012211894A1 (de) Verwendung von mikroporösen anionischen anorganischen Gerüststrukturen, insbesondere enthaltend Dotierstoffkationen, für die Herstellung von Dünnschichtsolarzellen bzw. -modulen, photovoltaische Dünnschichtsolarzellen, enthaltend mikroporöse anionische anorganische Gerüststrukturen sowie Verfahren zur Herstellung solcher photovoltaischen Dünnschichtsolarmodule
EP3682045A1 (de) Verfahren zur oberflächenbehandlung einer probe die mindestens eine oberfläche eines metalloxids aufweist und metalloxid mit behandelter oberfläche
CH680449A5 (de)
DE102009001175A1 (de) Verfahren zur nasschemischen Abscheidung einer schwefelhaltigen Pufferschicht für eine Chalkopyrit-Dünnschicht-Solarzelle
DE102011000562A1 (de) Verfahren zur Erzeugung von lötbaren Kontaktstrukturen auf einer Substratoberfläche
DE3914180A1 (de) Verfahren zum betrieb und zum herstellen von stromlos metall abscheidenden badloesungen fuer die abscheidung praktisch rissfreier metallniederschlaege

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180017116.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11701263

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2192/KOLNP/2012

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2011701263

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011701263

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127021644

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13575670

Country of ref document: US