CN103025916A - 用于金属硫化物层的湿化学沉积的浴沉积溶液及相关生产方法 - Google Patents

用于金属硫化物层的湿化学沉积的浴沉积溶液及相关生产方法 Download PDF

Info

Publication number
CN103025916A
CN103025916A CN2011800171160A CN201180017116A CN103025916A CN 103025916 A CN103025916 A CN 103025916A CN 2011800171160 A CN2011800171160 A CN 2011800171160A CN 201180017116 A CN201180017116 A CN 201180017116A CN 103025916 A CN103025916 A CN 103025916A
Authority
CN
China
Prior art keywords
layer
metal
salt
bath
deposit solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800171160A
Other languages
English (en)
Other versions
CN103025916B (zh
Inventor
L.比克特
D.哈里斯科斯
T.科尔布
B.施内尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nice Solar Energy GmbH
Original Assignee
Wuerth Solar GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuerth Solar GmbH and Co KG filed Critical Wuerth Solar GmbH and Co KG
Publication of CN103025916A publication Critical patent/CN103025916A/zh
Application granted granted Critical
Publication of CN103025916B publication Critical patent/CN103025916B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02469Group 12/16 materials
    • H01L21/02472Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02469Group 12/16 materials
    • H01L21/02474Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02483Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02557Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

用于金属硫化物层的湿化学沉积的浴沉积溶液及其生产方法。本发明涉及一种用于金属硫化物层的湿化学沉积的浴沉积溶液,涉及这样的浴沉积溶液的生产方法和涉及使用这样的浴沉积溶液在基材上生产金属硫化物层的方法。本发明的浴沉积溶液包含金属盐,有机硫化物,螯合剂(其与金属盐的金属离子形成螯合络合物)和氢氧化铵。还涉及在制造光伏薄膜部件中的用途,例如用于在吸收剂层上湿化学沉积ZnS缓冲层。

Description

用于金属硫化物层的湿化学沉积的浴沉积溶液及相关生产方法
本发明涉及一种用于金属硫化物层的湿化学沉积的浴沉积溶液,涉及这样的浴沉积溶液的生产方法和涉及使用这样的浴沉积溶液,在基材上生产金属硫化物层的方法。本发明特别适于在光伏薄膜部件的制造中,作为缓冲层的硫化锌层(称作CBD硫化锌层)在吸收剂层上的湿化学沉积(“化学浴沉积”, CBD)。这样的CBD硫化锌层意指这样的层,其除了锌和硫之外,还包含由于生产方法引起的含与制备条件相关比例的氧,因此这样的层在技术文献中也形式上称作Zn(S,O)层或者ZnS1-xOx层,这里0≤x<1,或者Zn(S,O,OH)层或者ZnS(O,OH)层。
特别是对于太阳能电池应用中所述的ZnS缓冲层沉积来说,已经提出了不同的方法。因此,例如从公开文献WO2006/018013A1和DE102006039331A1中已知的是,以特定方式从溶解在蒸馏水中的硫酸锌,硫脲和氨所制备的浴沉积溶液能够用于此目的,这里该沉积溶液的温度在沉积过程中保持在70℃-90℃或者攀升到这样的温度值。当使用这种沉积方法时,基于经验,为获得25nm量级典型所需层厚的ZnS缓冲层需要至少大约15分钟的沉积时间。
最近已经发现ZnS缓冲层作为硫化镉(CdS)缓冲层的替代是非常有用的。这里,从环境的观点而言,已知的是ZnS缓冲层具有比CdS缓冲层少的问题,并且可以由其来生产透明的缓冲层。与CdS相比,ZnS具有更高的带隙和在300nm-500nm波长范围内非常小的吸收。结果,更多的光到达了光伏活性吸收剂层,这导致了更高的电流密度和潜在的更高的效率。此外,最近对于商业制造大面积光伏模块例如CIS或者CIGS类型的模块的需求日益增加。所以人们对于快速和廉价的方法具有很大的兴趣,通过该方法,可以将ZnS缓冲层以所需的层品质大面积沉积到适当的基材上,即,相应的太阳能电池吸收剂层上。CBD硫化锌层是用于此目的特别令人感兴趣的,即便是如上所述由于制造方法而还包含了氧。相对于相邻的CIS 吸收剂层材料的导带偏移(Leitungsbandoffset)以此方式可以从大约1.6eV降低到大约1.0eV或者更低。取决于氧含量和可能的氢或者氢氧化物的含量,该CBD硫化锌层可以是包含元素Zn和S的二元化合物,包含元素Zn,O和S或者成分Zn,S和OH的三元化合物,包含成分Zn,S,O和OH或者成分Zn,S,O和H的四元化合物或者氧-和/或氢-掺杂的ZnS层,其中取决于所涉及的成分的比例或者掺杂浓度,在这些类型的化合物之间连续的转变自然也是可能的。
期刊论文R.Sahraei等人,Compositional,structural,and optical study of non-crystalline ZnS thin films prepared by a new chemical bath deposition route,J.of Alloys and Compounds 466(2008),第488页,公开了一种ZnS缓冲层沉积方法,在其中用作浴沉积溶液的是一种弱酸性溶液,其pH是大约5,并且含有氯化锌(ZnCl2),次氮基三乙酸(NTA), 硫代乙酰胺(TAA)和调整pH值用的氢氧化钠(NaOH)。沉积是在大约70℃的温度进行了直到大约6小时的时间,来实现大约80nm的层厚,其中如果需要,可以重复这种沉积方法,来实现更大的层厚。
期刊论文A.Goudarzi等人,Ammonia-free chemical bath deposition of nanocrystalline ZnS thin film buffer for solar cells,Thin Solid Films,516(2008),第4953页公开了一种ZnS缓冲层沉积方法,其中使用了无氨的弱酸性浴沉积溶液,其pH是大约6.0,并且含有溶解在蒸馏水中的乙酸锌,TAA,用于调整pH值的NaOH和乙二胺四乙酸的钠盐(Na2EDTA)。使用这种浴沉积溶液,在大约30分钟-7小时的沉积时间内实现了大约20nm-140nm层厚的ZnS沉积层。
在期刊论文S. Nagalingam等人,The Effect of EDTA on the Deposition of ZnS Thin Film,Z. Phys. Chem. 222(2008),第1703页中,作为无电镀湿化学沉积的一种替代,提出了ZnS缓冲层在强酸性沉积溶液中的电沉积,该溶液的pH不大于4和优选是大约1.26,这里该沉积溶液包含溶解在蒸馏水中的ZnCl2,Na2S2O3,NaEDTA和调整pH值的盐酸(HCl)。
公开文献US2007/0020400A1公开了一种方法,使用微混合器和微通道施涂器来连续的沉积薄层例如ZnS和CdS层。在这种微混合器中,将两种优选液体的反应物混合来提供沉积所期望的沉积材料,例如包含氯化镉,氯化铵和氢氧化铵的溶液作为第一反应物,含水尿素作为第二反应物,用于沉积CdS层。依靠微通道施涂器,所提供的用于CdS层沉积的沉积材料(例如处于适当的CdS粒子的形式)然后以喷射形式,导入到待涂覆的表面上。
本发明要解决的技术问题是提供一种浴沉积溶液,以及生产该溶液的方法及使用其生产金属硫化物层的方法,其允许以短的沉积时间实施具有良好品质的金属硫化物层的无电镀的湿化学沉积,例如在太阳能电池应用中所需品质的ZnS缓冲层,并且其还特别适于所需的大面积沉积,例如在大面积光伏模块制造中所需的ZnS缓冲层的沉积。
本发明通过提供具有权利要求1的特征的浴沉积溶液,具有权利要求5的特征的浴沉积溶液生产方法和具有权利要求9的特征的金属硫化物层生产方法,而解决了这种问题。本发明有利的实施方案表示在从属权利要求中。
权利要求1的用于金属硫化物层的湿化学沉积的浴沉积溶液特征在于,除了金属硫化物层所需的金属的盐之外,还包含作为金属硫化物层的硫源的有机硫化物,螯合剂(其与所述金属盐的金属离子形成了螯合络合物)和氢氧化铵。一种或多种另外的成分可以任选地以低浓度而存在。
已经发现一方面作为硫的提供者的有机硫化物以及另一方面螯合剂和氢氧化铵二者的存在可以实现良好品质的金属硫化物层的非常有利的快速沉积,甚至在相当大的面积上也是如此,对此起作用的是螯合剂 (由于它的强的屏蔽效应使得金属离子难以接近从有机硫化物中释放出来的硫离子)和氢氧化铵的相互作用,其中氢氧化铵不仅充当了pH调节剂,而且还起到了弱金属离子屏蔽组份的作用。本发明人已经发现这种组成的浴沉积溶液能够例如在小于大约10分钟,特别是仅仅大约4分钟的沉积时间内,实现大约25nm厚的ZnS缓冲层,其具有良好的层品质。
虽然将Zn盐作为金属盐用于沉积ZnS层,例如用于太阳能电池应用的所述的缓冲层,但是根据本发明,可以使用相应的金属盐,将其他的金属硫化物层例如In或者金属Zn和In的组合的金属硫化物层以相同的方式进行湿化学沉积。
在一种有利的实施方案中,将硫代乙酰胺(TAA)用作有机硫化物。已经发现以此方式,可以实现例如与硫脲相比更快的硫释放,这可以通过TAA更高的水解敏感度来解释。通过受控的减慢硫积聚在金属离子上(这归因于螯合剂和氢氧化铵或者氨的屏蔽效应),防止了过快的金属硫化物形成反应,该反应与金属硫化物不期望的胶体沉积或者差的覆盖/形态特性有关。
在本发明的一种有利的实施方案中,将次氮基三乙酸(NTA)或者亚氨基二乙酸(IDA)或者这些酸适当的盐例如钠盐,铵盐等用作螯合剂。已经发现将这样的螯合剂与合适的有机硫化物例如TAA组合使用,可以实现有机硫化物的硫释放速率与被螯合剂减缓的硫在金属离子上的积聚之间良好的匹配,使得金属硫化物层以相对非常良好的品质和高的沉积速率(例如大约6nm/min)来沉积。
在本发明的一种实施方案中,在该浴沉积溶液中,该金属盐的存在浓度是大约1mM-大约50mM,和/或该有机硫化物的存在浓度是大约1mM-大约150mM,和/或该螯合剂的存在浓度是大约0.01M-大约1.0M,和/或该氢氧化铵的存在浓度是大约0.01M-大约3.0M。已经发现这些浓度范围以令人满意的高沉积速率和兼具相当低的材料用量,对于实现良好品质的金属硫化物层是特别有用的。
在本发明的另一实施方案中,将该浴沉积溶液的pH设定为碱性范围到中性范围。已经发现这能够实现金属硫化物层有利的湿化学沉积。
根据本发明,本发明的浴沉积溶液可以通过将所参与的成分在蒸馏水中简单混合,来容易的生产。
当使用本发明的浴沉积溶液时,如所述的,可以将金属硫化物层以相当良好的层品质和高的沉积速率,来湿化学沉积到基材上。因此,例如ZnS缓冲层可以依靠本发明的这种方法来沉积到光伏吸收剂层基材上,并且能够在最多大约10分钟和优选最多大约4分钟或者更小的非常短的沉积时间内,实现这样的缓冲层所需的层品质和大约25nm的层厚。
在本发明的这种金属硫化物层生产方法的一种实施方案中,在沉积过程中将该浴溶液保持在大约40℃-大约90℃的温度。
在本发明的另一实施方案中,基材与浴沉积溶液的接触是如下来进行的:将基材浸入到该浴沉积溶液中,或者等价的,依靠适当的润湿或者喷涂技术将待涂覆的基材区域与该浴沉积溶液接触。
本发明有利的实施方案表示在附图中,并且在下面进行描述。这里:
图1示意性的表示了一种装置,用于湿化学沉积金属硫化物层,
图2表示了使用图1的装置在CIGS基材上所生产的CBD硫化锌层的断裂边缘的扫描电镜照片,和
图3表示了具有在图1的装置中生产的CBD硫化锌层的太阳能电池模块的电流-电压曲线。
图1所示的涂覆装置用于在适当的基材上湿化学沉积金属硫化物层。为此目的,该涂覆装置通常具有反应器容器1,向其中引入待涂覆的基材2。在反应器容器1中,提供了化学浴3,将待涂覆的基材2整个浸入或者至少将它的待涂覆的表面2a浸入到该化学浴中。可理解的是,作为浸渍的一种替代,可以将待涂覆的表面2a以其他方式与化学浴3合适地接触,例如依靠常规的喷涂或者润湿技术,以便在待涂覆的表面2a上形成浴溶液3的液膜。
化学浴3经由混合容器4引入到反应器容器1中,在该混合容器4中将用于制备适当的化学浴溶液5的不同的浴成分进行混合。具体的,这些成分是金属盐,有机硫化物,螯合剂(其与金属盐的金属离子一起形成螯合络合物)和氢氧化铵。在图1的例子中,这四种成分的每种在相应容器6,7,8,9中是作为去离子水中的适当的溶液来提供的,即,作为金属盐溶液10,螯合剂溶液11,有机硫化物溶液12和氢氧化铵溶液13。这四种溶液中的每种可以经由相关的供给管线14,15,16,17引入到混合容器4中。仅仅作为本发明许多的另外可能性的一个例子,制备了硫酸锌(ZnSO4)的去离子水溶液作为金属盐溶液10,制备了次氮基三乙酸三钠盐(NA3NTA)或者次氮基三乙酸另一种盐的去离子水溶液作为螯合剂溶液11,和制备了硫代乙酰胺(TAA)的去离子水溶液作为有机硫化物溶液12。还可以使用亚氨基二乙酸的盐代替次氮基三乙酸的盐。将四种溶液组份10-13在混合容器4中,在室温以预定的体积比进行混合,其中确定这些体积比,以使得混合容器4中(即,浴溶液5中)的不同的化学成分具有确定的可以预定的浓度或者比例。明确的,可以选择混合方法,以使得金属盐例如ZnSO4的存在浓度是大约1mM-大约50mM,例如5mM的浓度,螯合剂例如Na3NTA的存在浓度是大约0.01M-1.0M,例如0.1M的浓度,有机硫化物例如TAA的存在浓度是大约1mM-大约150mM,例如5mM的浓度,和氢氧化铵(NH4OH)的存在浓度是大约0.01M-3.0M,例如1M的浓度。
将在混合容器4中混合的浴溶液5在混合后立即引入到反应器容器1中,以在待涂覆的基材表面2a上进行湿化学沉积。为此目的,在该湿化学沉积过程中,将化学浴3保持在大约40℃-大约90℃的温度。在图1的装置中,这是通过将反应器容器1浸入到适当加热的,例如保持在大约60℃的温度的水浴18(其位于相关的水浴容器19中)中来实现的。
此外从图1中可见,在这里所示的例子中,反应器容器1在该湿化学沉积过程中来回均匀移动,为此目的,提供了适当的起重电动机(Hobmotor)20。
在上述的ZnSO4溶液作为金属盐溶液的例子中,将ZnS层在所述的条件下湿化学沉积到待涂覆的基材表面2a上。在光伏模块基材的情况中,这种层是作为具有上述性能的CBD硫化锌层沉积到基材表面2a上的,例如沉积到CIS或者CIGS 吸收剂层表面上。
已经发现,通过反应器1和因此待涂覆的基材表面2a均匀的来回运动,可以在待涂覆的基材表面2a上的相对大的面积上实现非常均匀的金属硫化物层,例如在0.1m2-1m2的模块面积上。化学浴3中所选择的成分的浓度比和所选择的水浴温度影响了沉积方法的持续时间,所沉积的CBD金属硫化物层的层厚和层品质,例如在结晶度,覆盖度和针孔密度方面的层品质。已经发现,根据本发明,明显小于10分钟的沉积/反应时间足以在光伏模块的吸收剂层上形成例如具有足够的厚度(例如大约40nm)的CBD硫化锌层作为缓冲层。在该湿化学沉积方法完成之后,将基材2从反应器1中取出,冲洗,例如用蒸馏水冲洗,和干燥,例如依靠氮气吹干。
因此,通过使用具有所示组成的化学浴3,具有足以作为缓冲层的大约40nm层厚的CBD硫化锌层可以在明显小于10分钟,例如仅仅大约4分钟或者甚至更小的非常短的沉积/反应时间内,沉积到光伏吸收剂层上。此外,已经发现以次方式沉积在例如CIS或者CIGS 吸收剂层上的CBD硫化锌层具有良好的缓冲层性能。这也可以从图2的扫描电子照片中看到,从其中可以看到在典型的相对粗糙的CIGS吸收剂层表面上湿化学沉积的硫化锌缓冲层是完全封闭的,并且提供了极好的台阶覆盖。该ZnS缓冲层表现出在纳米范围内的典型尺寸的粒子。
还可以看到作为所述的浸渍技术的替代,也可以这样实现相当品质的金属硫化物层,即依靠常规的润湿或者喷涂技术,将待涂覆的基材表面按照区域与浴沉积溶液接触,即,在待涂覆的基材上形成浴沉积溶液相应的液膜。在每种情况中,这种将它待涂覆的区域与浴沉积溶液的区域接触能够实现金属硫化物层期望的非均匀沉积。这种非均匀沉积行为带来了高的层品质,而没有出现对于均匀沉积技术来说典型的可感知的粒子形成;在均匀沉积技术中的粒子形成在这种情况中已经被证明对于所述品质产生了不利的影响。在该沉积方法中,螯合剂在实现期望的反应/沉积动力中发挥了重要作用。
图3以图形的形式表示了在平面尺寸是30cm×30cm的光伏模块上所测量的重要的电学参数,该光伏模块包含了在CIGS 吸收剂层上的通过所述的快速湿化学沉积方法制备的CBD硫化锌缓冲层。该作为示例的模块具有包括下面的层结构:玻璃基材或者玻璃载体,包括在玻璃载体上的钼的背面接触层,在该背面接触层上的CIGS吸收剂层,吸收剂层上的所述的根据本发明施用的CBD硫化锌缓冲层,在CBD硫化锌缓冲层上的ZnMgO层作为另外的缓冲层,和在该ZnMgO层上的ZnO:Al前接触层。除了根据本发明所生产的CBD硫化锌缓冲层之外,它是本身常规的一种光伏薄膜结构,正如已经描述在例如开始所述的文献中的。
在这种模块的情况中,CBD硫化锌缓冲层的沉积是在图1所示类型的生产设备上,在尺寸为60cm×120cm的玻璃基材上进行的,在该玻璃基材上已经事先施用了钼背面接触层和CIGS 吸收剂层。本发明的快速沉积方法赋予了在明显小于10分钟的时间内,以大约30nm厚度施涂的CBD硫化锌缓冲层非常良好的均匀性。然后将该带有根据本发明沉积的CBD硫化锌缓冲层的60cm×120cm玻璃基材分成30cm×30cm尺寸的模块。图3表示了这样的30cm×30cm尺寸CIGS模块的特性。从中可见,这种模块表现出非常良好的光伏性能,例如13.6%的效率,每单个电池641.9mV的开路电压,70.4%的充填系数和30.1mA/cm2的短路电流密度。
可理解的是,也可以依靠本发明来沉积比上述作为举例的大约40nm的厚度明显更低的厚度或者明显更高厚度的CBD硫化锌层,并且其他金属硫化物层也可以以相同的方式沉积到光伏吸收剂层上或者任何其他待涂覆的基材表面上。在每种情况中的特征是依靠本发明的浴沉积溶液,能够实现短的沉积时间或者高的沉积速率,同时兼具例如用于光伏模块缓冲层需要的良好层性能的湿化学沉积层。作为本领域技术人员已知的,对于每种单个的情况,必须以合适的方式例如根据经验,来确定不同的沉积参数和特别是本发明的浴沉积溶液的不同的成分的比例。

Claims (13)

1. 用于金属硫化物层的湿化学沉积的浴沉积溶液,特征在于它包含:
-金属盐,
-有机硫化物,
-螯合剂,其与金属盐的金属离子形成螯合络合物,和
-氢氧化铵。
2. 权利要求1的浴沉积溶液,进一步的特征在于所述金属盐是Zn和/或In盐,和/或所述有机硫化物是硫代乙酰胺,和/或所述螯合剂是次氮基-三乙酸或者亚氨基二乙酸或者其金属盐。
3. 权利要求1或者2的浴沉积溶液,进一步的特征在于所述金属盐的存在浓度是大约1mM-大约50mM,和/或所述有机硫化物的存在浓度是大约1mM-大约150mM,和/或所述螯合剂的存在浓度是大约0.01M-大约1.0M,和/或所述氢氧化铵的存在浓度是大约0.01M-大约3.0M。
4. 权利要求1-4中任一项的浴沉积溶液,进一步的特征在于它的pH值处于碱性范围到中性范围。
5. 生产用于湿化学沉积金属硫化物层的浴沉积溶液的方法,特征在于将金属盐,有机-硫化物,螯合剂和氢氧化铵在蒸馏水中混合,其中所述螯合剂与金属盐的金属离子形成螯合络合物。
6. 权利要求5的方法,进一步的特征在于使用Zn和/或In盐作为金属盐,和/或使用硫代乙酰胺作为有机-硫化物,和/或使用次氮基三乙酸或者亚氨基二乙酸或者其金属盐作为螯合剂。
7. 权利要求5或者6的方法,进一步的特征在于所述金属盐的加入浓度是大约1mM-大约50mM,和/或所述有机硫化物的加入浓度是大约1mM-150mM,和/或所述螯合剂的加入浓度是大约0.01M-1.0M,和/或所述氢氧化铵的加入浓度是大约0.01M-3.0M。
8. 权利要求5-7中任一项的方法,进一步的特征在于将所述浴沉积溶液的pH设定为碱性范围到中性范围。
9. 在基材上生产金属硫化物层的方法,其包括下面的步骤:
-提供权利要求1-4任一项的浴沉积溶液,和
-通过将基材与该浴沉积溶液接触,将金属硫化物层湿化学沉积到所述基材上。
10. 权利要求9的方法,进一步的特征在于将所述湿化学沉积进行最多大约10分钟,特别是最多大约4分钟的时间,来实现大约25nm的金属硫化物层层厚。
11. 权利要求9或10的方法,进一步的特征在于在湿化学沉积过程中,将所述浴沉积溶液保持在大约40℃-大约90℃的温度。
12. 权利要求9-11中任一项的方法,进一步的特征在于将硫化锌缓冲层作为金属硫化物层沉积到光伏吸收剂层基材上。
13. 权利要求9-12中任一项的方法,进一步的特征在于所述基材与浴沉积溶液的接触包括:将该基材浸入到浴沉积溶液中,或者用该浴沉积溶液平面润湿或者喷涂该基材。
CN201180017116.0A 2010-01-28 2011-01-27 用于金属硫化物层的湿化学沉积的浴沉积溶液及相关生产方法 Active CN103025916B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102010006499A DE102010006499A1 (de) 2010-01-28 2010-01-28 Badabscheidungslösung zur nasschemischen Abscheidung einer Metallsulfidschicht und zugehörige Herstellungsverfahren
DE102010006499.8 2010-01-28
PCT/EP2011/051117 WO2011092236A2 (de) 2010-01-28 2011-01-27 Badabscheidungslösung zur nasschemischen abscheidung einer metallsulfidschicht und zugehörige herstellungsverfahren

Publications (2)

Publication Number Publication Date
CN103025916A true CN103025916A (zh) 2013-04-03
CN103025916B CN103025916B (zh) 2016-08-03

Family

ID=44227559

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180017116.0A Active CN103025916B (zh) 2010-01-28 2011-01-27 用于金属硫化物层的湿化学沉积的浴沉积溶液及相关生产方法

Country Status (7)

Country Link
US (1) US9181437B2 (zh)
EP (1) EP2539486B1 (zh)
KR (1) KR101757897B1 (zh)
CN (1) CN103025916B (zh)
DE (1) DE102010006499A1 (zh)
ES (1) ES2647609T3 (zh)
WO (1) WO2011092236A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105860116A (zh) * 2015-02-05 2016-08-17 福特全球技术公司 用于沉积光致发光材料的方法
CN108521072A (zh) * 2018-03-29 2018-09-11 深圳瑞波光电子有限公司 半导体激光器件的谐振腔面钝化膜、制作方法及器件
CN108683074A (zh) * 2018-03-29 2018-10-19 深圳瑞波光电子有限公司 一种半导体激光器件及其谐振腔面钝化膜、制作方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM418398U (en) * 2011-08-10 2011-12-11 Manz Taiwan Ltd Elevation Conveying type Chemical bath deposition apparatus
TWI458546B (zh) * 2011-12-14 2014-11-01 Ind Tech Res Inst 化學水浴法鍍膜設備
FR3014909B1 (fr) * 2013-12-12 2016-01-29 Electricite De France Bain a morpholine et procede pour le depot chimique d'une couche.
FR3014908B1 (fr) 2013-12-12 2016-01-29 Electricite De France Bain a persulfate et procede pour le depot chimique d'une couche.
TWI496304B (zh) * 2013-12-12 2015-08-11 Ind Tech Res Inst 太陽能電池與其形成方法及n型ZnS層的形成方法
KR102551214B1 (ko) 2016-01-05 2023-07-03 삼성전기주식회사 유전체 자기 조성물 및 이를 포함하는 적층 세라믹 커패시터
CN109706437A (zh) * 2018-12-20 2019-05-03 德州易能新能源科技有限公司 制备金属硫化物薄膜的方法和由该方法制得的薄膜

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070020400A1 (en) * 2005-07-22 2007-01-25 State of Oregon acting by and through the State Board of Higher Education on behalf of Oregon Method and apparatus for chemical deposition
US20080299411A1 (en) * 2007-05-30 2008-12-04 Oladeji Isaiah O Zinc oxide film and method for making
CN101608304A (zh) * 2009-07-20 2009-12-23 北京工业大学 一种化学浴沉积硫化铟薄膜的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7163835B2 (en) * 2003-09-26 2007-01-16 E. I. Du Pont De Nemours And Company Method for producing thin semiconductor films by deposition from solution
CN101373791B (zh) * 2004-06-28 2010-09-29 皇家飞利浦电子股份有限公司 通过湿法化学沉积制造的场效应晶体管
DE102004040546B3 (de) 2004-08-18 2006-05-18 Hahn-Meitner-Institut Berlin Gmbh Verfahren zum Aufbringen einer Zinksulfid-Pufferschicht auf ein Halbleitersubstrat mittels chemischer Badabscheidung, insbesondere auf die Absorberschicht einer Chalkopyrit-Dünnschicht-Solarzelle
DE102006039331C5 (de) 2006-08-15 2013-08-22 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Photovoltaik-Dünnschichtaufbau und Herstellungsverfahren
US8553333B2 (en) * 2009-01-23 2013-10-08 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Nanostructured anti-reflective coatings for substrates
KR20110012550A (ko) * 2009-07-30 2011-02-09 삼성전자주식회사 박막 태양 전지의 제조방법 및 제조장치
JP4782880B2 (ja) * 2009-10-05 2011-09-28 富士フイルム株式会社 バッファ層とその製造方法、反応液、光電変換素子及び太陽電池
JP4745450B2 (ja) * 2009-10-06 2011-08-10 富士フイルム株式会社 バッファ層とその製造方法、反応液、光電変換素子及び太陽電池
US20110111129A1 (en) * 2009-11-10 2011-05-12 Jenn Feng New Energy Co., Ltd. Method for fabricating cadmium sulfide thin film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070020400A1 (en) * 2005-07-22 2007-01-25 State of Oregon acting by and through the State Board of Higher Education on behalf of Oregon Method and apparatus for chemical deposition
US20080299411A1 (en) * 2007-05-30 2008-12-04 Oladeji Isaiah O Zinc oxide film and method for making
CN101608304A (zh) * 2009-07-20 2009-12-23 北京工业大学 一种化学浴沉积硫化铟薄膜的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
D.A. JOHNSTON, ET AL.: ""Chemical bath deposition of zinc sulfide based buffer layers using low toxicity materials"", 《THIN SOLID FILMS》 *
JOEL PANTOJA ENRÍQUEZ, ET AL.: ""Influence of the thickness on structural, optical and electrical properties of chemical bath deposited CdS thin films"", 《SOLAR ENERGY MATERIALS & SOLAR CELLS》 *
LIANGYAN CHEN, ET AL.: ""The Effects of the Complexing Agents on the Growth and Properties of Modified Chemical-bath-deposited ZnS Thin Films"", 《NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS》 *
N. LEJMI, ET AL.: ""The efect of heteropolyacids and isopolyacids on the properties of chemically bath deposited CdS thin films"", 《SOLAR ENERGY MATERIALS & SOLAR CELLS》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105860116A (zh) * 2015-02-05 2016-08-17 福特全球技术公司 用于沉积光致发光材料的方法
CN108521072A (zh) * 2018-03-29 2018-09-11 深圳瑞波光电子有限公司 半导体激光器件的谐振腔面钝化膜、制作方法及器件
CN108683074A (zh) * 2018-03-29 2018-10-19 深圳瑞波光电子有限公司 一种半导体激光器件及其谐振腔面钝化膜、制作方法
CN108683074B (zh) * 2018-03-29 2022-12-02 深圳瑞波光电子有限公司 一种半导体激光器件及其谐振腔面钝化膜、制作方法

Also Published As

Publication number Publication date
CN103025916B (zh) 2016-08-03
ES2647609T3 (es) 2017-12-22
WO2011092236A2 (de) 2011-08-04
EP2539486B1 (de) 2017-08-30
EP2539486A2 (de) 2013-01-02
DE102010006499A1 (de) 2011-08-18
KR20120129915A (ko) 2012-11-28
WO2011092236A3 (de) 2013-08-15
US20130084401A1 (en) 2013-04-04
KR101757897B1 (ko) 2017-07-26
US9181437B2 (en) 2015-11-10

Similar Documents

Publication Publication Date Title
CN103025916A (zh) 用于金属硫化物层的湿化学沉积的浴沉积溶液及相关生产方法
Tang et al. One-step electrodeposition for targeted off-stoichiometry Cu2ZnSnS4 thin films
Mariappan et al. The effect of annealing temperature on structural and optical properties of undoped and Cu doped CdS thin films
Jeon et al. Formation and characterization of single-step electrodeposited Cu2ZnSnS4 thin films: Effect of complexing agent volume
Mkawi et al. Influence of triangle wave pulse on the properties of Cu2ZnSnS4 thin films prepared by single step electrodeposition
Patil et al. Effect of complexing agent on the photoelectrochemical properties of bath deposited CdS thin films
WO2012011723A2 (en) Method of manufacturing high density cis thin film for solar cell and method of manufacturing thin film solar cell using the same
Borate et al. Single-step electrochemical deposition of CZTS thin films with enhanced photoactivity
Mkawi et al. Effect of complexing agents on the electrodeposition of Cu–Zn–Sn metal precursors and corresponding Cu2ZnSnS4-based solar cells
Paraye et al. Effect of pH and sulfur precursor concentration on electrochemically deposited CZTS thin films using glycine as the complexing agent
Deshmukh et al. Preparation and properties of (CdS) x-(PbS) 1− x thin-film composites
Echendu et al. Electrochemical deposition and characterization of ZnOS thin films for photovoltaic and photocatalysis applications
Gedi et al. Influence of deposition temperature on the efficiency of SnS solar cells
JP5874645B2 (ja) 化合物半導体薄膜太陽電池及びその製造方法
Ge et al. Controllable multinary alloy electrodeposition for thin-film solar cell fabrication: a case study of kesterite Cu2ZnSnS4
Beres et al. Growth behavior of co-electrodeposited CZTS precursor thin films from acidic baths containing tartaric acid
CN101704510A (zh) 具有周期性形貌变化的纳米氧化亚铜薄膜的制备方法
Sharma et al. Structural and morphological studies of chemical bath-deposited nanocrystalline CdS films and its alloys
Zaki et al. A two-step magnetron sputtering approach for the synthesis of Cu2ZnSnS4 Films from Cu2SnS3\ZnS Stacks
Kim et al. Role of hydrazine in the enhanced growth of zinc sulfide thin films using chemical bath deposition for Cu (In, Ga) Se2 solar cell application
Layachi et al. Investigation of nucleation and growth mechanism of Cu2ZnSnS4 absorber layer electrodeposition on Indium Tin Oxide coated glass
TWI500170B (zh) 製造摻雜Bi之IB-IIIA-VIA化合物之光吸收層的方法與包含其之太陽能電池
Vargas-Rueda et al. Chemical stability diagrams as a powerful tool to the synthesis of Cu2SnS3 thin films by chemical bath deposition
US20130017322A1 (en) Method for forming an indium (iii) sulfide film
Al-Mamun et al. Structural, electrical and optical properties of copper selenide thin films deposited by chemical bath deposition technique

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: Schwbisch Hall

Patentee after: NICE Solar Energy Co., Ltd.

Address before: Schwbisch Hall

Patentee before: Wuerth Solar GmbH. & Co. KG