TWI496304B - 太陽能電池與其形成方法及n型ZnS層的形成方法 - Google Patents

太陽能電池與其形成方法及n型ZnS層的形成方法 Download PDF

Info

Publication number
TWI496304B
TWI496304B TW102145804A TW102145804A TWI496304B TW I496304 B TWI496304 B TW I496304B TW 102145804 A TW102145804 A TW 102145804A TW 102145804 A TW102145804 A TW 102145804A TW I496304 B TWI496304 B TW I496304B
Authority
TW
Taiwan
Prior art keywords
layer
forming
substrate
solar cell
type zns
Prior art date
Application number
TW102145804A
Other languages
English (en)
Other versions
TW201523906A (zh
Inventor
Wei Tse Hsu
Shih Cheng Chang
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW102145804A priority Critical patent/TWI496304B/zh
Priority to US14/141,094 priority patent/US20150171255A1/en
Priority to CN201310745979.0A priority patent/CN104716218B/zh
Publication of TW201523906A publication Critical patent/TW201523906A/zh
Application granted granted Critical
Publication of TWI496304B publication Critical patent/TWI496304B/zh
Priority to US15/385,162 priority patent/US20170104125A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02469Group 12/16 materials
    • H01L21/02474Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02485Other chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02491Conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02557Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Description

太陽能電池與其形成方法及n型ZnS層的形成方法
本發明係關於太陽能電池,更特別關於緩衝層之結構與形成方法。
近年來全球工業蓬勃發展,雖然利用傳統的能源供給方法成本較便宜,但卻潛在著輻射及環境汙染等問題。因此綠色替代能源成為各研究單位的研發重點,其中以太陽能電池最受矚目。傳統太陽電池主要以矽晶為主,但近年來各種薄膜太陽能電池蓬勃發展,但若考慮無毒、高效率以及高穩定度則以銅銦硒系列太陽能電池為首選。
銅銦鎵硒CIGS是一種黃銅礦結構的化合物,其晶體結構為正方結構,因為擁有高光學吸收係數、吸光波段範圍廣、化學性質穩定性高、以及直接能隙的優點,因此相當適合做為太陽能電池的材料。一般CIGS電池,為基板上依序為電極層、CIGS層、CdS層、i-ZnO層、AZO層、以及視情況形成的指狀電極。CdS層上的i-ZnO層可減緩緩衝層覆蓋不完全的問題,並有效抑制電池的漏電流。此外,i-ZnO層可降低濺鍍AZO層時,離子轟擊對CdS層的破壞。但i-ZnO層將吸收部分入射光,且i-ZnO層阻值大而不利電流蒐集。此外,i-ZnO層還需多 一道濺鍍製程而增加製程時間。
綜上所述,目前需要新的CIGS電池結構以省略習知i-ZnO層。
本發明一實施例提供之太陽能電池,包括:基板;電極層,位於基板上;p型吸光層,位於電極層上;n型ZnS層,位於p型吸光層上;以及透明電極層,位於n型ZnS層上。
本發明一實施例提供之n型ZnS層的形成方法,包括:將基板浸置於鋅鹽、螯合劑、以及硫代乙醯胺之酸性溶液中,以形成n型ZnS層於該基板上。
本發明一實施例提供之太陽能電池的形成方法,包括:提供基板;形成電極層於基板上;形成p型吸光層於電極層上;形成n型ZnS層於p型吸光層上,包括:將基板浸置於鋅鹽、螯合劑、以及硫代乙醯胺之酸性溶液中;以及形成透明電極層於n型ZnS層上。
20‧‧‧基板
21‧‧‧電極層
23‧‧‧p型吸光層
24、24’‧‧‧n型ZnS層
25‧‧‧CdS層
28‧‧‧透明電極層
29‧‧‧指狀電極
第1圖係本發明一實施例中,太陽能電池的示意圖。
第2圖係本發明一實施例中,太陽能電池的示意圖。
第3圖係本發明一實施例中,太陽能電池的示意圖。
第1圖係本發明一實施例中,太陽能電池20的示意圖。首先提供基板20如塑膠、不繡鋼、玻璃、石英、或其他常見基板材質。接著形成電極層21於基板20上,形成方法可為濺 鍍、物理氣相沉積、或噴塗法等。在本發明一實施例中,電極層21可為鉬、銅、銀、金、鉑、其他金屬、或上述之合金。接著形成p型吸光層23於電極層21上。在本發明一實施例中,p型吸光層23可為銅銦鎵硒(CIGS)、銅銦鎵硒硫(CIGSS)、銅鎵硒(CGS)、銅鎵硒硫(CGSS)、或銅銦硒(CIS)。P型吸光層23的形成方法可則可透過蒸鍍法、濺鍍法、電鍍法、奈米粒子塗佈等方法製作而成,請參考Solar energy,77(2004)page 749-756與Thin solid films,480-481(2005)page 99-109。
接著形成n型ZnS層24於p型吸光層23上,以形成p-n接面。在本發明一實施例中,n型ZnS層24的形成方法為濕式化學浴沉積(CBD)。舉例來說,將基板20浸置於鋅鹽、螯合劑、以及硫代乙醯胺之酸性溶液中,即可形成n型ZnS層24於基板20上。在本發明一實施例中,鋅鹽可為醋酸鋅、硫酸鋅、氯化鋅或硝酸鋅等,且酸性溶液中的鋅鹽濃度介於0.001M至1M之間。若鋅鹽濃度過低,則可能鋅量不足則導致薄膜生長速度過慢甚至無法成膜而影響元件性質。若鋅鹽濃度過高,則可能導致鍍膜速度過快而厚度控制不易,薄膜厚度過厚導致串聯電阻大幅上升而損傷元件效率。在本發明一實施例中,螯合劑可為酒石酸、琥珀酸、檸檬酸鈉或上述之組合,且酸性溶液中的螯合劑濃度介於0.001M至1M之間。若螯合劑濃度過低,則使均質成核反應速度過快,大量奈米粒子將產生於溶液中而沉降附著於吸光層上,此薄膜結構鬆散因此將大幅降低薄膜的品質。若螯合劑濃度過高,則鋅離子皆被螯合劑所鉗合,將使薄膜生長速度大幅下降。在本發明一實施例中,酸性溶液中的硫 代乙醯胺的濃度介於0.001M至1M之間。若硫代乙醯胺濃度過低,則可能影響溶液酸鹼值,若酸鹼值偏高,則溶液中氫氧根離子提高,可能導致硫化鋅薄膜中帶有氫氧化合物而影響薄膜的透光性。若硫代乙醯胺濃度過高,則因反應速度過快,因此薄膜結構鬆散而大幅降低薄膜的品質。上述酸性溶液的pH值介於pH1.5至pH5之間。若酸性溶液的pH值過高,雖然可增加鍍膜速度,但薄膜內含大量氫氧化物,氫氧化物除了將使薄膜的能隙降低外,也導致短波長光之光穿透度下降。若酸性溶液的pH值過低,除了可能損傷吸光層表面外,也可能因反應快速而導致大量均質成核產生而影響鍍膜品質。上述鍍膜製程之反應溫度約介於50℃~100℃之間,且鍍膜溫度也對薄膜的性質有顯著影響。過高的鍍膜溫度將使反應劇烈發生而偏向均質成核反應,將直接影響鍍膜的覆蓋率。過低的反應溫度則大幅抑制鍍膜速度。在本發明一實施例中,將基板20浸置於上述溶液前,先形成電極層21與p型吸光層23於基板20上,即可形成n型ZnS層24於p型吸光層23上。上述n型ZnS層24的厚度介於5nm至100nm之間。在另一實施例中,上述n型ZnS層24的厚度介於10nm至40nm之間。若n型ZnS層24的厚度過薄,則會因覆蓋率不完全而導致不佳的pn界面,對電池的效率有極大的影響。若n型ZnS層24的厚度過厚,薄膜可能發生龜裂而導致漏電流,除此之外過厚的膜厚也將大幅提高串聯電阻而導致電池效率下降。
接著形成CdS層25於n型ZnS層24上。在本發明一實施例中,CdS層25的形成方法可參考Solar energy,77(2004) page 749-756,使用的化學藥品為硫酸鎘、硫脲以及氨水,操作溫度約為50℃~75℃之間。在本發明一實施例中,CdS層25的厚度介於5nm至100nm之間。若CdS層25的厚度過薄,則會因覆蓋率不佳而導致漏電流產生,對電池效率有負面影響。若n型CdS層25的厚度過厚,除了使穿透光量下降外,也將因串聯電阻大幅提高而導致電池效率下降。
接著形成透明電極層28於CdS層25上。在本發明一實施例中,透明電極層28可為鋁鋅氧化物(AZO)、銦錫氧化物(ITO)、錫銻氧化物(ATO)、或其他透明導電材料。透明電極層28的形成方法可為濺鍍法、蒸鍍法、原子層沉積法、熱裂解法、奈米粒子塗佈法及其他相關薄膜塗佈製程。
在本發明一實施例中,可視情況形成指狀電極29於透明電極層28上。指狀電極29的材質可為鎳鋁合金,其形成方法可為濺鍍、微影、蝕刻、及/或其他合適製程。在本發明一實施例中,當透明電極層28的表面積較小時,可省略指狀電極29。
在本發明另一實施例中,可在上述酸性溶液中沉積n型ZnS層24的步驟之前或之後,在鹼性溶液中沉積另一n型ZnS層24’,如第2及3圖所示。n型ZnS層24’可夾設於基板20與n型ZnS層24之間,或位於n型ZnS層24上,端視製程順序。舉例來說,將基板20浸置於鋅鹽、硫脲、及氨水之鹼性溶液中,即可形成n型ZnS層24’。在本發明一實施例中,鋅鹽可為醋酸鋅、硫酸鋅、氯化鋅或硝酸鋅等,且鹼性溶液中的鋅鹽濃度介於0.001M至1M之間。則可能鋅量不足則導致薄膜生長速度過慢 甚至無法成膜而影響元件性質。若鋅鹽濃度過高,則可能導致鍍膜速度過快而厚度控制不易,薄膜厚度過厚導致串聯電阻大幅上升而損傷元件效率。在本發明一實施例中,鹼性溶液中的硫脲濃度介於0.005M至2M之間。若硫脲濃度過低,則可能造成鍍膜反應速度過慢,此外也可能因為硫源不足而使薄膜內之化學組成以氫氧化物居多。若硫脲濃度過高,將導致大量均質成核產生,均質成核可能造成光線散射而降低進入吸光層之光量,除此之外,均質成核所構成之鍍膜其結構通常鬆散,因而影響元件的品質。在本發明一實施例中,鹼性溶液中的氨水濃度介於0.5M至5M之間。若氨水濃度過低,則使均質成核反應速度過快,大量奈米粒子將產生於溶液中而沉降,此薄膜結構鬆散因此將大幅降低薄膜的品質。上述鹼性溶液的pH值介於pH9至pH12.5之間。若鹼性溶液的pH值過高,則可能導致薄膜組成中以氫氧化物為主,該氫氧化物除了較不穩定外,其能隙也較低,因此使進入吸光層的光量減少而降低電池之短路電流,除此之外過低的能隙也將導致與上下兩層之接面有能隙不匹配的問題,而使電池效率下降。若鹼性溶液的pH值過低,則可能因薄膜組成中的硫含量過高,而導致該層薄膜與其接觸之上下兩層之接面有能隙不匹配的問題,而使電池效率下降。在本發明一實施例中,上述鍍膜製程之反應溫度約介於50℃~100℃之間。上述鹼性溶液沉積的n型ZnS層24’的厚度可介於5nm至100nm之間。在另一實施例中,上述n型ZnS層24’的厚度介於10nm至40nm之間。若n型ZnS層24’的厚度過薄,則會因覆蓋率不佳而導致漏電流產生,對電池效率有負面影響。若n型ZnS 層24’的厚度過厚,除了使穿透光量下降外,也將因串聯電阻大幅提高而導致電池效率下降。值得注意的是,若是以酸性溶液形成n型ZnS層24,並以鹼性溶液形成n型ZnS層24’,則可省略第1圖中的CdS層25。換言之,透明電極層28可直接形成於雙層結構中的n型ZnS層24或n型ZnS層24’上,如第2-3圖所示。
為了讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉數實施例配合所附圖示,作詳細說明如下:
實施例
比較例1
使用厚度為100μm之不鏽鋼板做為基板,並以濺鍍法形成厚度約為1000nm之鉻雜質阻擋層於其上,接續以濺鍍法製作厚度約為1000nm之鉬電極層於鉻層上,之後再以奈米粒子塗佈法塗佈金屬前驅物於鉬電極上,最後施以硒化製程製備厚度約為2500nm的CIGS吸光層。
接著形成厚度約為50nm之CdS層於CIGS吸光層上,其做法為配製0.0015M的硫酸鎘、0.0075M的硫脲、及1.5M的氨水的溶液,並將溫度控制於65℃,且基板浸置於溶液中的鍍膜時間控制約為12分鐘。接著使用濺鍍法形成約50nm厚之i-ZnO層於CdS層上,接續以濺鍍法形成厚度約為350nm之AZO層於i-ZnO層上,最後形成Ni/Al指狀電極於AZO層上,即完成太陽能電池。上述太陽能電池中,CdS層與i-ZnO層之雙層結構在300nm至1100nm之間的透光率約為76.6%,而上述太陽能電池之效能如第1表所示。
實施例1
使用厚度為100μm之不鏽鋼板做為基板,並以濺鍍法形成厚度約為1000nm之鉻雜質阻擋層於其上,接續以濺鍍法製作厚度約為1000nm之鉬電極層於鉻層上,之後再以奈米粒子塗佈法塗佈金屬前驅物於鉬電極上,最後施以硒化製程製備厚度約為2500nm的CIGS吸光層。
接著將硫酸鋅、酒石酸、及硫代乙醯胺溶於500mL之去離子水中,形成pH值約為2.5之酸性溶液。此酸性溶液中,硫酸鋅之濃度為0.005M,酒石酸之濃度為0.03M,而硫代乙醯胺之濃度為0.01M,並將溶液溫度控制約為75℃~85℃。隨後將塗有CIGS吸光層之基板浸入上述酸性溶液中10分鐘後,即形成厚度約為35nm之n型ZnS層。
接著形成厚度約為35nm之CdS層於n型ZnS層上,其做法為配製0.0015M的硫酸鎘、0.0075M的硫脲、及1.5M的氨水的溶液,並將溫度控制於65℃,且基板浸置於溶液中的鍍膜時間控制約為10分鐘。接續使用濺鍍法形成厚度約為350nm之AZO層於CdS層上,最後形成Ni/Al指狀電極於AZO層上,即完成太陽能電池。上述太陽能電池中,n型ZnS層與CdS層之雙層結構的透光率在300nm至1100nm之間的透光率約為80.6%。上述太陽能電池之效能如第1表所示。
實施例2
使用厚度為100μm之不鏽鋼板做為基板,並以濺鍍法形成厚度約為1000nm之鉻雜質阻擋層於其上,接續以濺鍍法製作厚度約為1000nm之鉬電極層於鉻層上,之後再以奈米粒子塗佈法 塗佈金屬前驅物於鉬電極上,最後施以硒化製程製備厚度約為2500nm的CIGS吸光層。
接著將硫酸鋅、酒石酸、及硫代乙醯胺溶於500mL之去離子水中,形成pH值約為2.5之酸性溶液。此酸性溶液中,硫酸鋅之濃度為0.005M,酒石酸之濃度為0.03M,而硫代乙醯胺之濃度為0.01M,並將溶液溫度控制約為75℃~85℃。隨後將塗有CIGS吸光層之基板浸入上述酸性溶液中7分鐘後,即形成厚度約為20nm之n型ZnS層。
接著形成厚度約為15nm之CdS層於n型ZnS層上,其做法為配製0.0015M的硫酸鎘、0.0075M的硫脲、及1.5M的氨水的溶液,並將溫度控制於65℃,且基板浸置於溶液中的鍍膜時間控制約為5分鐘。接續使用濺鍍法形成厚度約為350nm之AZO層於CdS層上,最後形成Ni/Al指狀電極於AZO層上,即完成太陽能電池。上述太陽能電池中,n型ZnS層與CdS層之雙層結構的透光率在300nm至1100nm之間的透光率約為84.2%。上述太陽能電池之效能如第1表所示。
由第1表可知,實施例1之太陽能電池的光電轉換率和比較例1相近,主要原因為其開路電壓相近,雖然比較例1的填充因子(Fill factor)優於實施例1與2,但實施例1的短路電 流高於比較例,因此兩者的光電轉換效率相近,而導致實施例1的填充因子較低的原因,推論應為硫化鋅的電阻率高於硫化鎘所致,此現象可於實施例2中證明。實施例2之開路電壓和比較例1相近,但透過減薄n型ZnS層與CdS層之厚度,可增加進入吸光層之入光量,因此實施例2之短路電流明顯高於比較例1之短路電流。實施例2和實施例1比較,則可發現減薄n型ZnS層與CdS層之厚度可減少串聯電阻,進而提升電池之填充因子,因此實施例2之電池效率優於比較例1之太陽能電池轉換率。
實施例3
使用厚度為100μm之不鏽鋼板做為基板,並以濺鍍法形成厚度約為1000nm之鉻雜質阻擋層於其上,接續以濺鍍法製作厚度約為1000nm之鉬電極層於鉻層上,之後再以奈米粒子塗佈法塗佈金屬前驅物於鉬電極上,最後施以硒化製程製備厚度約為2500nm的CIGS層。
接著將硫酸鋅、酒石酸、及硫代乙醯胺溶於500mL之去離子水中,形成pH值約為2.5之酸性溶液。此酸性溶液中,硫酸鋅之濃度為0.005M,酒石酸之濃度為0.03M,而硫代乙醯胺之濃度為0.01M,並將溶液溫度控制約為75℃~85℃。隨後將塗有CIGS層之基板浸入上述酸性溶液中10分鐘後,即形成厚度約為35nm之n型ZnS層。
接著形成厚度約為20nm之另一n型ZnS層於n型ZnS層上,其做法為混合硫酸鋅、硫脲、及氨水,形成pH值約為12之鹼性溶液。此鹼性溶液中,硫酸鋅的濃度為0.01M、硫 脲的濃度為0.08M,且氨水的濃度為2.5M,並將溫度控制於80℃,鍍膜時間控制約為20分鐘。接續使用濺鍍法形成厚度約為350nm之AZO層於n型ZnS層上,最後形成Ni/Al指狀電極於AZO層上,即完成太陽能電池,第2表為該電池之電性表現。
實施例4
使用厚度為100μm之不鏽鋼板做為基板,並以濺鍍法形成厚度約為1000nm之鉻雜質阻擋層於其上,接續以濺鍍法製作厚度約為1000nm之鉬電極層於鉻層上,之後再以奈米粒子塗佈法塗佈金屬前驅物於鉬電極上,最後施以硒化製程製備厚度約為2500nm的CIGS層。
接著形成厚度約為20nm之n型ZnS層於CIGS層上,其做法為混合硫酸鋅、硫脲、及氨水,形成pH值約為12之鹼性溶液。此鹼性溶液中,硫酸鋅的濃度為0.01M、硫脲的濃度為0.08M,且氨水的濃度為2.5M,並將溫度控制於80℃,鍍膜時間控制約為20分鐘。
接著將硫酸鋅、酒石酸、及硫代乙醯胺溶於500mL之去離子水中,形成pH值約為2.5之酸性溶液。此酸性溶液中,硫酸鋅之濃度為0.005M,酒石酸之濃度為0.03M,而硫代乙醯胺之濃度為0.01M,並將溶液溫度控制約為75℃~85℃。隨後將形成有n型ZnS層於其上之基板浸入上述酸性溶液中10分鐘後,即形成厚度約為35nm的另一n型ZnS層。接續使用濺鍍法形成厚度約為350nm之AZO層於另一n型ZnS層上,最後形成Ni/Al指狀電極於AZO層上,即完成太陽能電池,第2表為該電池之電性表現。
20‧‧‧基板
21‧‧‧電極層
23‧‧‧p型吸光層
24‧‧‧n型ZnS層
25‧‧‧CdS層
28‧‧‧透明電極層
29‧‧‧指狀電極

Claims (18)

  1. 一種太陽能電池,包括:一基板;一電極層,位於該基板上;一p型吸光層,位於該電極層上;一n型ZnS層,位於該p型吸光層上;一CdS層位於該n型ZnS層上;以及一透明電極層,位於該CdS層上。
  2. 如申請專利範圍第1項所述之太陽能電池,更包括:一指狀電極,位於該透明電極層上。
  3. 如申請專利範圍第1項所述之太陽能電池,其中該電極層包括鉬、銅、銀、金、或鉑。
  4. 如申請專利範圍第1項所述之太陽能電池,其中該p型吸光層包括銅銦鎵硒、銅銦鎵硒硫、銅鎵硒、銅鎵硒硫、或銅銦硒。
  5. 如申請專利範圍第1項所述之太陽能電池,其中該透明電極層包括鋁鋅氧化物、銦錫氧化物、或錫銻氧化物。
  6. 如申請專利範圍第1項所述之太陽能電池,其中該n型ZnS層之厚度介於5nm至100nm之間。
  7. 如申請專利範圍第1項所述之太陽能電池,其中該CdS層之厚度介於5nm至100nm之間。
  8. 如申請專利範圍第1項所述之太陽能電池,其中該n型ZnS層係雙層結構,其中一層之形成方法係將該基板浸置於鋅鹽、螯合劑、以及硫代乙醯胺之酸性溶液中,且另一層之形成 方法係將該基板浸置於鋅鹽、硫脲、以及氨水之鹼性溶液中。
  9. 一種n型ZnS層的形成方法,包括:將一基板浸置於鋅鹽、螯合劑、以及硫代乙醯胺之酸性溶液中,以形成一n型ZnS層於該基板上。
  10. 如申請專利範圍第9項所述之n型ZnS層的形成方法,其中該鋅鹽包括硫酸鋅、醋酸鋅、氯化鋅、或硝酸鋅,且該酸性溶液中的鋅鹽濃度介於0.001M至1M之間。
  11. 如申請專利範圍第9項所述之n型ZnS層的形成方法,其中該螯合劑包括酒石酸、琥珀酸、或上述之組合,且該酸性溶液中的螯合劑濃度介於0.001M至1M之間。
  12. 如申請專利範圍第9項所述之n型ZnS層的形成方法,其中該酸性溶液中的硫代乙醯胺濃度介於0.001M至1M之間。
  13. 如申請專利範圍第9項所述之n型ZnS層的形成方法,其中該n型ZnS層之厚度介於5nm至100nm之間。
  14. 如申請專利範圍第9項所述之n型ZnS層的形成方法,更包括在形成該n型ZnS層於該基板上之前或之後,將該基板浸置於鋅鹽、硫脲、以及氨水之鹼性溶液中,以形成另一n型ZnS層於該基板上。
  15. 一種太陽能電池的形成方法,包括:提供一基板;形成一電極層於該基板上;形成一p型吸光層於該電極層上;形成一n型ZnS層於該p型吸光層上,包括:將該基板浸置於鋅鹽、螯合劑、以及硫代乙醯胺之酸 性溶液中;以及形成一透明電極層於該n型ZnS層上。
  16. 如申請專利範圍第15項所述之太陽能電池的形成方法,更包括形成一指狀電極於該透明電極層上。
  17. 如申請專利範圍第15項所述之太陽能電池的形成方法,更包括形成一CdS層於該n型ZnS層與該透明電極層之間。
  18. 如申請專利範圍第15項所述之太陽能電池的形成方法,更包括在形成該n型ZnS層於該p型吸光層上的步驟之前或之後,將該基板浸置於鋅鹽、硫脲、以及氨水之鹼性溶液中,以形成另一n型ZnS層於該基板上。
TW102145804A 2013-12-12 2013-12-12 太陽能電池與其形成方法及n型ZnS層的形成方法 TWI496304B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
TW102145804A TWI496304B (zh) 2013-12-12 2013-12-12 太陽能電池與其形成方法及n型ZnS層的形成方法
US14/141,094 US20150171255A1 (en) 2013-12-12 2013-12-26 Solar cell and method of forming the same and method for forming n-type zns layer
CN201310745979.0A CN104716218B (zh) 2013-12-12 2013-12-26 太阳能电池与其形成方法及n型ZnS层的形成方法
US15/385,162 US20170104125A1 (en) 2013-12-12 2016-12-20 METHOD FOR FORMING N-TYPE ZnS LAYER AND SOLAR CELL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102145804A TWI496304B (zh) 2013-12-12 2013-12-12 太陽能電池與其形成方法及n型ZnS層的形成方法

Publications (2)

Publication Number Publication Date
TW201523906A TW201523906A (zh) 2015-06-16
TWI496304B true TWI496304B (zh) 2015-08-11

Family

ID=53369539

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102145804A TWI496304B (zh) 2013-12-12 2013-12-12 太陽能電池與其形成方法及n型ZnS層的形成方法

Country Status (3)

Country Link
US (2) US20150171255A1 (zh)
CN (1) CN104716218B (zh)
TW (1) TWI496304B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3042068B1 (fr) * 2015-10-02 2018-06-15 Electricite De France Procede de depot d'une couche tampon sur un film semi-conducteur par photocatalyse
TW201914044A (zh) * 2017-09-01 2019-04-01 財團法人工業技術研究院 太陽能電池及其製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102373405A (zh) * 2010-08-09 2012-03-14 邓凤山 沉积铜铟镓硒(cigs)吸收层的装置及其方法
TW201228007A (en) * 2010-12-29 2012-07-01 Au Optronics Corp Method of fabricating solar cell

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4226897A (en) * 1977-12-05 1980-10-07 Plasma Physics Corporation Method of forming semiconducting materials and barriers
US4611091A (en) * 1984-12-06 1986-09-09 Atlantic Richfield Company CuInSe2 thin film solar cell with thin CdS and transparent window layer
JP2001085076A (ja) * 1999-09-10 2001-03-30 Fuji Photo Film Co Ltd 光電変換素子および光電池
CN1151560C (zh) * 2002-03-08 2004-05-26 清华大学 一种铜铟镓硒薄膜太阳能电池及其制备方法
CN1210437C (zh) * 2002-06-14 2005-07-13 上海化工研究院 真空镀膜硫化锌的制备方法
US7537778B2 (en) * 2002-09-26 2009-05-26 W. Neudorff Gmbh Kg Pesticidal compositions and methods
WO2008120306A1 (ja) * 2007-03-28 2008-10-09 Showa Shell Sekiyu K.K. Cis系薄膜太陽電池デバイスの製造方法
CN101127372A (zh) * 2007-09-17 2008-02-20 四川大学 一种AlSb太阳电池结构
US20110056541A1 (en) * 2009-09-04 2011-03-10 Martinez Casiano R Cadmium-free thin films for use in solar cells
DE102010006499A1 (de) * 2010-01-28 2011-08-18 Würth Solar GmbH & Co. KG, 74523 Badabscheidungslösung zur nasschemischen Abscheidung einer Metallsulfidschicht und zugehörige Herstellungsverfahren
CN103255396A (zh) * 2012-02-17 2013-08-21 任丘市永基光电太阳能有限公司 柔性cigs薄膜太阳电池中无镉缓冲层的制备方法
US20140000673A1 (en) * 2012-06-29 2014-01-02 General Electric Company Photovoltaic device and method of making

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102373405A (zh) * 2010-08-09 2012-03-14 邓凤山 沉积铜铟镓硒(cigs)吸收层的装置及其方法
TW201228007A (en) * 2010-12-29 2012-07-01 Au Optronics Corp Method of fabricating solar cell

Also Published As

Publication number Publication date
US20150171255A1 (en) 2015-06-18
US20170104125A1 (en) 2017-04-13
TW201523906A (zh) 2015-06-16
CN104716218B (zh) 2017-05-10
CN104716218A (zh) 2015-06-17

Similar Documents

Publication Publication Date Title
US20190334043A1 (en) Formation of Ohmic Back Contact for Ag2ZnSn(S,Se)4 Photovoltaic Devices
WO2011158899A1 (ja) Cis系薄膜太陽電池
US20150059842A1 (en) Solar cell
CN104269460B (zh) 一种水浴叠层制备太阳能电池吸收层材料CZTS/CZTSSe的方法
Saha A Status Review on Cu2ZnSn (S, Se) 4‐Based Thin‐Film Solar Cells
TWI596785B (zh) 太陽能電池結構與其形成方法
TWI496304B (zh) 太陽能電池與其形成方法及n型ZnS層的形成方法
US20190013424A1 (en) Technique for Achieving Large-Grain Ag2ZnSn(S,Se)4 Thin Films
KR101219835B1 (ko) 태양전지 및 이의 제조방법
TW201914044A (zh) 太陽能電池及其製造方法
JP5881717B2 (ja) 太陽電池及びその製造方法
TW201427054A (zh) 光電變換元件及其製造方法、光電變換元件的緩衝層的製造方法與太陽電池
TW201436261A (zh) 光伏元件與其製作方法
US20170104111A1 (en) Solar cell structure and method for manufacturing the same
US10115849B2 (en) Solar cell and method of fabricating the same
US20150101530A1 (en) Method of recycling solution, solar cell including buffer layer formed by the method, and deposition apparatus
KR101262529B1 (ko) 태양전지 및 이의 제조방법
TWI624077B (zh) 太陽能電池之緩衝層的製造方法
JP5641850B2 (ja) 光電変換素子およびその製造方法
US20160312347A1 (en) Morpholine bath and method for chemically depositing a layer
US20140290730A1 (en) Method of manufacturing thin film solar cell and thin film solar cell manufactured by the method
TW201407802A (zh) 具有雙層n型半導體薄膜之太陽能電池堆疊結構及其製法
CN101840960A (zh) 多段式硫化镉薄膜沉积方法
US20160312346A1 (en) Persulfate bath and method for chemically depositing a layer
KR20140031351A (ko) 태양전지