WO2011090204A1 - 香料顆粒の製造方法 - Google Patents

香料顆粒の製造方法 Download PDF

Info

Publication number
WO2011090204A1
WO2011090204A1 PCT/JP2011/051296 JP2011051296W WO2011090204A1 WO 2011090204 A1 WO2011090204 A1 WO 2011090204A1 JP 2011051296 W JP2011051296 W JP 2011051296W WO 2011090204 A1 WO2011090204 A1 WO 2011090204A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
fragrance
raw
drying
raw material
Prior art date
Application number
PCT/JP2011/051296
Other languages
English (en)
French (fr)
Inventor
正浩 千田
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to RU2012136446/13A priority Critical patent/RU2523296C2/ru
Priority to JP2011550987A priority patent/JP5422674B2/ja
Priority to SG2012055844A priority patent/SG182765A1/en
Priority to PL11734810T priority patent/PL2530139T3/pl
Priority to CN201180007033.3A priority patent/CN102725388B/zh
Priority to EP11734810.2A priority patent/EP2530139B1/en
Publication of WO2011090204A1 publication Critical patent/WO2011090204A1/ja
Priority to US13/556,891 priority patent/US20120288600A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/16Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by suspending the powder material in a gas, e.g. in fluidised beds or as a falling curtain
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L19/00Products from fruits or vegetables; Preparation or treatment thereof
    • A23L19/01Instant products; Powders; Flakes; Granules
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/10Natural spices, flavouring agents or condiments; Extracts thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/70Fixation, conservation, or encapsulation of flavouring agents
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P10/00Shaping or working of foodstuffs characterised by the products
    • A23P10/20Agglomerating; Granulating; Tabletting

Definitions

  • the present invention relates to a method for producing a perfume granule, and more specifically to a method for producing a perfume granule using a fluid granulation drying method.
  • the fluidized granulation drying process uses a powdery raw material, for example, a granule having an arbitrary particle size can be produced from a raw material which is difficult to form a slurry and is not suitable for spray drying.
  • the fluidized granulation drying process is known as a useful process having a relatively wide application range in the field of powder production.
  • the raw material is exposed to high temperature in the fluidized granulation dryer, so that it may be denatured by heat, or the perfume is not available in the fluidized granulation dryer. Use tends to be avoided.
  • the present inventors have found that water or a water-soluble fragrance solution (binder liquid) is added to the fluidized bed of the raw fragrance powder up to the flow limit moisture content (Uf) in a fluidized granulation dryer. And the spraying and drying cycle of drying the raw fragrance powder until the equilibrium moisture content (Ue) of the raw fragrance powder is repeated, the fragrance component is sufficiently concentrated and the irritating odor component, etc. It was found that a perfume granule from which unnecessary components were removed was easily obtained.
  • a water-soluble fragrance solution binder liquid
  • a) hot air is blown into the raw fragrance powder to form a fluidized layer of the raw fragrance powder, until the flow limit moisture content (Uf) of the raw fragrance powder is reached.
  • a process comprising the steps of: allowing a perfume granule to be produced, wherein the cycle is repeated twice or more.
  • FIG. 1 shows the moisture content of the raw material powder with respect to time (series -O- in the figure), which is observed in a cycle until the raw material flavor powder reaches the equilibrium moisture content (Ue) after water spraying on the raw material flavor powder.
  • 4 is a graph showing the temperature of raw material flavor powder in the fluidized granulation dryer with respect to time (series - ⁇ - in the figure).
  • FIG. 2 shows the moisture content of raw fragrance powder with respect to time (series in the figure- ⁇ ⁇ ) observed when the cycle of FIG. 1 is repeated a plurality of times, and the raw fragrance powder in the fluidized granulation dryer with respect to time.
  • 3 is a graph showing temperatures (series - ⁇ - in the figure).
  • FIG. 3 shows the moisture content of the raw fragrance powder over time when the raw fragrance powder is intermediate-dried while keeping the raw fragrance powder above the limit moisture content (Ul) after spraying moisture onto the raw fragrance powder (series in the figure- ⁇ -) 2 is a graph showing the temperature of the raw fragrance powder in the fluidized granulation dryer with respect to time (series - ⁇ - in the figure).
  • FIG. 4 relates to the analysis result of the sample obtained according to one embodiment of the present invention, and is substantially equivalent to the temperature of the hot air blown from the fluidized granulation dryer with respect to time (series a in the figure) and the temperature of the raw fragrance powder.
  • FIG. 5 is a graph showing the relationship between the fluidized bed temperature (series b in the figure), the exhaust temperature (series c in the figure), and the exhaust relative humidity (series d in the figure).
  • FIG. 5 relates to the analysis result of the sample obtained according to one embodiment of the present invention, and is a graph showing the change in the residual ratio of fatty acid alcohols with respect to time.
  • FIG. 6 relates to the analysis result of the sample obtained according to one embodiment of the present invention, and is a graph showing the change in the residual ratio of fatty acids with respect to time.
  • FIG. 7 relates to the analysis result of the sample obtained according to one embodiment of the present invention.
  • FIG. 8 relates to the analysis result of the sample obtained according to one embodiment of the present invention, and shows the change in the residual ratio of terpenes (series-O-) and phenolic aldehydes (series- ⁇ -) with respect to time. It is a graph to show.
  • the method of the present invention is characterized by using a fluidized granulation drying process.
  • a fluidized granulation drying process first, hot air is blown into the raw fragrance powder from below to form a fluidized layer of the raw fragrance powder.
  • the fluidized bed is sprayed with fine droplets made of water, an aqueous solution, an organic solvent or other solution from below, from the side, from above, and the like, and is composed of liquid agglomeration of the spray solution and wet aggregates of raw material powders. Form granules with any particle size.
  • the spraying of the droplets is stopped, the granules are dried by the hot air blown continuously. Finally, the granules are cooled under cold air to obtain the desired granules.
  • water or a water-soluble fragrance solution (binder liquid) is sprayed on the fluidized layer of the raw fragrance powder until the flow limit moisture content (Uf) of the raw fragrance powder is reached.
  • Uf flow limit moisture content
  • the product temperature (sensible heat) of the raw fragrance powder decreases, but for a certain period after the spraying is stopped, all the heat supplied from the hot air is used to dry the raw powder. Since it is used, the moisture content of the raw material powder monotonously decreases, while the temperature of the raw material flavor powder does not change from a constant temperature (constant rate drying). During the constant rate drying period, moisture in the raw fragrance powder moves from the raw fragrance powder to the surface by diffusion and evaporates.
  • natural products such as plant-derived raw material flavor powders contain unnecessary components such as green grass odor and acid odor stimulating odor components in addition to generally effective fragrance components.
  • unnecessary components such as green grass odor and acid odor stimulating odor components
  • the raw fragrance powder and / or the binder liquid are derived from natural products, it is desirable that these unnecessary components are selectively removed from the final fragrance granule or the content is controlled.
  • the unnecessary component is relatively more volatile than the fragrance component
  • the effective fragrance component is concentrated by the selective diffusion phenomenon as the drying progresses, while the content rate of the unnecessary component in the fragrance granule is reduced. This tendency appears remarkably by repeating the cycle of spraying and drying water or a binder liquid again after completion of the reduction drying.
  • the present invention it is preferable to repeat the above spray / dry cycle a plurality of times, particularly 3 times or more. Multiple spray / dry cycles can be performed in the same fluidized granulator.
  • the moisture content of the raw fragrance powder with respect to time (series in the figure- ⁇ -) and the temperature of the raw fragrance powder in the fluidized granulator with respect to time (series in the figure- FIG. 2 shows ⁇ -).
  • the spraying process in each cycle is defined as “intermittent spraying”, and the time required for “intermediate drying” and “intermediate drying” as the drying process between two “intermittent spraying” Defined as “intermediate drying time” (ie spray stop time between intermittent sprays).
  • intermediate drying time ie spray stop time between intermittent sprays.
  • the raw material flavor powder can theoretically be heated to about the hot air temperature used for fluidized granulation drying.
  • FIG. 3 shows a state of intermittent spraying (or intermediate drying) generally performed.
  • Intermittent spraying refers to a spraying method that repeats intermediate drying during binder spraying, such as spraying for 1 minute and then stopping spraying for 2 minutes.
  • spraying is performed while monitoring the flow, and the purpose is to granulate the core material. That is, when spraying the binder liquid continuously onto the raw material powder, a drying time is provided several times to avoid a significant deterioration in fluidity, and at this time, the constant rate drying is controlled in combination with the binder liquid feeding speed. To do. That is, since it is a case where it dries while always keeping the moisture content of the raw material powder above the limit moisture content (Ul), the advantageous reforming effect as in the present invention cannot be obtained.
  • Ul limit moisture content
  • FIG. 4 shows the blown hot air temperature (series a in the figure), fluidized bed temperature (series b in the figure), exhaust temperature (series c in the figure) and fluidized granulation when the granules are actually produced by the method of the present invention.
  • the relationship with the exhaust relative humidity from the dryer (series d in the figure) is shown.
  • the flow limit moisture content (Uf) in FIG. 4 is about 18% (exhaust relative humidity is about 42%), the limit moisture content (Ul) is about 7% (exhaust relative humidity is about 34%), and the equilibrium moisture content ( Ue) is about 5% (about 31% in exhaust relative humidity). Further, it can be seen that the correspondence relationship between the exhaust relative humidity and the fluidized bed temperature in FIG. 4 matches the correspondence relationship between the powder moisture content and the powder temperature in FIG.
  • “powder moisture content” is measured by regarding the relative humidity of the exhaust from the fluidized granulation dryer as the moisture content of the raw fragrance powder itself
  • product temperature means fluidized granulation. It is measured by regarding the temperature in the fluidized bed in the grain dryer as the product temperature of the raw fragrance powder itself.
  • the raw fragrance powder contains saccharides, and is obtained by spray-drying plant-derived raw material powder such as cocoa powder, St. John's bread powder, tea powder, malt powder, spice powder, and plant extract.
  • plant-derived raw material powder such as cocoa powder, St. John's bread powder, tea powder, malt powder, spice powder, and plant extract.
  • Perfume powder, or saccharide powder or saccharide granules can be used without any special pretreatment.
  • licorice extract powder produced by spray drying in advance may be used.
  • the average particle size of the raw material flavor powder is preferably 10 to 350 ⁇ m, and in particular, in order to obtain a good modification effect of the plant powder, it is preferably ground to 30 to 70 ⁇ m.
  • the amount of spray when water is sprayed on the raw fragrance powder is preferably 5 to 20% by weight, particularly 10 to 15% by weight, based on the raw fragrance powder.
  • the binder liquid contains a saccharide, and any plant raw material extract such as carob, licorice, cacao mass, fenugreek, lobe, vanilla bean or tomato, or a hydrocarbon such as pinene or limonene blended with saccharide, Synthetic fragrance solutions or plant essential oils such as linear terpene alcohols such as linalool and geraniol, cyclic terpene alcohols such as sesquiterpene, isopulegol and borneol, phenol derivatives such as anis alcohol and cinnamic alcohol, and cyclic ketones such as ethyl maltol and nootkatone These blended perfume solutions can be used.
  • any plant raw material extract such as carob, licorice, cacao mass, fenugreek, lobe, vanilla bean or tomato, or a hydrocarbon such as pinene or limonene blended with saccharide
  • Synthetic fragrance solutions or plant essential oils such as linear terpene alcohols such
  • the sugar content (Brix%) of the binder liquid is previously adjusted to 5 to 70 degrees, particularly 5 to 35 degrees.
  • the weight of the binder dry matter sprayed so far and the interaction between the raw material powders to which the binder has adhered affect the fluidized bed formation.
  • the binder liquid is sprayed onto the raw fragrance powder, the total spray amount is about 5 to 35% by weight in the above sugar content range, but 5 to 20% by weight is particularly preferable.
  • the temperature of the hot air may be any temperature that can cause modification of the aroma component contained in the raw fragrance powder or the binder liquid.
  • Specific embodiments of the modification include removal of unnecessary components such as green grass odor and acid odor components, and non-bromination by thermal denaturation of irritating odor components.
  • the raw fragrance powder is a plant-derived powder
  • a modification effect can be produced on the fragrance component at 95 to 150 ° C.
  • the raw fragrance powder is a saccharide powder
  • a temperature below the temperature at which the saccharide powder used is scorched specifically 45 to 120 ° C. is preferable. .
  • the absolute humidity of hot air in the fluidized granulator is preferably 10 to 25 g / m 3 , particularly preferably 17 to 19 g / m 3 .
  • the hot air blowing speed is preferably 0.4 to 1.2 m / min, particularly preferably 0.6 to 1.0 m / min.
  • the amount of spray liquid fed is also set each time according to the raw fragrance powder used; b) When the raw fragrance powder reaches the flow limit moisture content (Uf), spraying is stopped, and the raw fragrance powder is dried to the equilibrium moisture content (Ue).
  • the cycle consisting of the above steps a) and b) is preferably repeated twice or more, more preferably three times or more.
  • the intermediate drying time is the time when the moisture content of the powder when it reaches the flow limit moisture content (Uf) peculiar to the raw material flavor powder is 100%, and this is reduced to about 60 to 70%.
  • the raw material fragrance powder sprayed with water may be subjected to intermediate drying, and then the binder liquid may be sprayed, or the raw material fragrance powder sprayed with the binder liquid may be subjected to intermediate drying and then sprayed with water.
  • the method of the present invention may include a first cycle in which intermediate drying is performed immediately after spraying water on the raw flavor powder and / or a second cycle in which intermediate drying is performed immediately after spraying the binder liquid.
  • the raw material fragrance powder finally obtained is cooled at once to a product temperature of 35 ° C. or less using dry cold air to obtain a fragrance granule.
  • the obtained fragrance granule is finished into a granule of 90 to 130 ⁇ m, and has a caking resistance, water Excellent dispersibility.
  • the modified essential oil can also be obtained by using a perfume granule prepared by the method of the present invention as a raw material and newly undergoing a solvent extraction process or the like.
  • Example 1 Sample granules were prepared according to the following procedure.
  • carob powder 25 parts by weight of carob powder and 75 parts by weight of water are weighed and extracted with stirring at 60 ° C. for 90 minutes. After solid-liquid separation, centrifugation is performed at 6,000 rpm to obtain a carob extract having a sugar content of about 15 degrees. This was used as a binder liquid.
  • a 5,000 g weight of carob powder with an average particle size of 25 ⁇ m is put into a fluidized granulation dryer, hot air of 120 ° C. and absolute humidity of 16-18 g / m 3 is blown at a wind speed of 0.6 m / s, and a fluidized bed of carob powder is formed. Formed. While forming a fluidized bed, water at 35 ° C. was sprayed at 30 to 40 g weight / min. This spraying was performed by repeating spraying for 1 minute and stopping spraying for 3 minutes (drying up to Ue), and a total of 750 g of water was intermittently sprayed onto the carob powder to perform intermediate drying.
  • the above binder liquid is sprayed at 30 to 40 g weight / min, and spraying for 1 minute and stopping spraying for 3 minutes (drying up to Ue) are repeated to obtain a binder liquid having a total weight of 750 g.
  • Carob powder was sprayed intermittently. After the final intermediate drying, the mixture was cooled to about 30 ° C. by air blowing to obtain a fragrance powder.
  • FIG. 5, FIG. 6, FIG. 7 and FIG. 8 show component transitions when the initial content component area value is 100%. Sampling is performed at the untreated time, when the spraying of 50% of the total spray amount is completed, when the spraying of 100% of the total spray amount is completed, and when the spray of the binder liquid of 50% of the total spray amount is completed. And 100% of the total spray amount when the binder liquid was completely sprayed.
  • the content component balance changes according to the degree of volatility of the components during the process, and the content component balance can be controlled according to the number of intermittent sprays.
  • Example 2 An aqueous solution of 75 parts by weight of licorice was prepared and used as a binder solution. Put 5,330 g weight of cocoa with an average particle size of 30 ⁇ m into a fluidized granulation dryer and blow hot air at 120 ° C. and absolute humidity of 16-18 g / m 3 at a wind speed of 0.6 m / s to form a fluidized layer of cocoa powder. did. While forming the fluidized bed, water was sprayed at 60 to 80 g weight / min. This spraying was performed by repeating spraying for 1 minute and stopping spraying for 3 minutes (drying up to Ue), and a total of 533 g of water was sprayed on the cocoa powder and dried.
  • the binder liquid was sprayed at 130 to 160 g weight / min. This spraying is performed by repeating spraying for 1 minute and stopping spraying for 3 minutes (drying to Ue) in the same manner as water, spraying and drying a total of 1066 g of isomerized sugar 5% binder liquid on licorice powder and drying. did. Finally, it was cooled to about 30 ° C. by air blowing to obtain a fragrance powder.
  • the obtained fragrance powder showed a good chocolate-like aroma with suppressed acid odor.
  • Example 3 4,000 g of licorice extract spray-dried powder with an average particle size of 90 ⁇ m is placed in a fluidized granulation dryer, and hot air of 120 ° C. and absolute humidity of 16-18 g / m 3 is blown at a wind speed of 0.6 m / s. A fluidized bed was formed. While forming the fluidized bed, the isomerized sugar 5% binder solution was sprayed at 25 to 35 g weight / min. This spraying was carried out by repeating spraying for 30 seconds and stopping spraying for 90 seconds (drying up to Ue), and a total of 400 g weight of isomerized sugar 5% binder liquid was sprayed on licorice powder and dried. Finally, it was cooled to about 30 ° C. by air blowing to obtain a fragrance powder.
  • the obtained fragrance powder showed a high licorice aroma titer with reduced licorice-specific chemical aroma.
  • Example 4 An aqueous solution of 40 parts by weight of licorice extract was prepared and used as a binder solution.
  • 4,000 g of licorice extract spray-dried powder with an average particle size of 90 ⁇ m is placed in a fluidized granulation dryer, and hot air of 120 ° C. and absolute humidity of 16-18 g / m 3 is blown at a wind speed of 0.6 m / s.
  • a fluidized bed was formed. While forming the fluidized bed, the binder liquid was sprayed at 70 to 90 g weight / min. This spraying was carried out by repeating spraying for 30 seconds and stopping spraying for 90 seconds (drying to Ue), and a total of 1,000 g weight of isomerized sugar 5% binder solution was sprayed on licorice powder and dried. Finally, it was cooled to about 30 ° C. by air blowing to obtain a fragrance powder.
  • the obtained fragrance powder showed a high licorice aroma titer with reduced licorice-specific chemical aroma.
  • Example 5 In advance, 5 parts by weight of cacao mass, 0.5 part by weight of lecithin and 94.5 parts by weight of water were weighed, and 4,000 g of licorice extract spray dry powder having an average particle size of 30 ⁇ m was measured using an emulsifier (PRIMX: ROBOMIC MARK II).
  • PARMX ROBOMIC MARK II
  • This spraying was performed by repeating spraying for 30 seconds and stopping spraying for 90 seconds (drying up to Ue), and a total of 400 g of water was sprayed on the licorice extract spray dry powder and dried. Further, the binder liquid was sprayed at 50 to 70 g weight / min. This spraying was carried out by repeating spraying for 30 seconds and stopping spraying for 90 seconds (drying to Ue) in the same manner as water, and a total of 1,000 g of binder liquid was sprayed and dried on licorice extract spray dry powder. Finally, it was cooled to about 30 ° C. by air blowing to obtain a fragrance powder. The obtained fragrance powder was accompanied by a high chocolate-like fragrance, and the chemical fragrance peculiar to licorice was reduced.
  • Example 6 25 parts by weight of carob powder and 75 parts by weight of water were weighed and extracted with stirring at 60 ° C. for 90 minutes. After solid-liquid separation, centrifugation was performed at 6,000 rpm to obtain a carob extract having a sugar content of about 15; This was used as a binder liquid.
  • a weight of 5,000 g of anhydrous glucose crystals with an average particle size of 200 ⁇ m is put in a fluidized granulator, and hot air of 80 ° C. and absolute humidity of 16 to 18 g / m 3 is blown at a wind speed of 0.6 m / s to flow the anhydrous glucose crystals.
  • a layer was formed. While forming the fluidized bed, the binder liquid was sprayed at 30 to 40 g weight / min. This spraying was carried out by repeating spraying for 30 seconds and stopping spraying for 60 seconds (drying up to Ue), and a total of 750 g of binder liquid was sprayed and dried on anhydrous glucose crystals. Finally, it was cooled to about 30 ° C. by air blowing to obtain a fragrance powder. The obtained fragrance powder reduced the lactic acid odor characteristic of carob powder and developed a high chocolate-like fragrance.
  • Example 7 A 50% by weight aqueous solution of carob extract was used as a binder solution.
  • a weight of 4,000 g of maltose crystals with an average particle size of 200 ⁇ m is put in a fluidized granulator and hot air of 80 ° C. and absolute humidity of 16 to 18 g / m 3 is blown at a wind speed of 0.6 m / s. Formed.
  • the binder liquid was sprayed at 40 to 60 g weight / min. This spraying was performed by repeating spraying for 30 seconds and stopping spraying for 60 seconds (drying to Ue), and a total of 535 g of binder liquid was sprayed on the maltose crystals and dried. Finally, it was cooled to about 30 ° C. by air blowing to obtain a fragrance powder.
  • a water-complete powder fragrance with reduced lactic odor characteristic of carob powder was obtained.
  • Example 8 An aqueous solution of 20 parts by weight of Koroha extract was prepared and used as a binder solution.
  • Anhydrous glucose crystals weighing 6,000 g with an average particle size of 200 ⁇ m are put into a fluidized granulation dryer, hot air of 120 ° C. and absolute humidity of 16 to 18 g / m 3 is blown at a wind speed of 0.5 m / s, and the anhydrous glucose crystals flow. A layer was formed. While forming the fluidized bed, the binder liquid was sprayed at 30 to 40 g weight / min. This spraying was carried out by repeating spraying for 10 seconds and stopping spraying for 40 seconds (drying up to Ue), and a total of 600 g of binder liquid was sprayed and dried on anhydrous glucose crystals. Finally, it was cooled to about 30 ° C. by air blowing to obtain a fragrance powder. A water-complete powder fragrance with reduced lactic odor characteristic of carob powder was obtained.
  • Example 9 An aqueous solution of 25 parts by weight of lobe extract was prepared and used as a binder solution.
  • Example 10 Extraction of the flavor liquid from vanilla beans, followed by drying and pulverization, 5,500 g of the extracted residual raw material powder (average particle size 120 ⁇ m) is placed in a fluidized granulator and dried at 120 ° C. and an absolute humidity of 16-18 g / m 3 . Hot air was blown at a wind speed of 0.45 m / s to form a fluidized bed. Water was sprayed at 8-12 g weight / min. This spraying was performed by repeating spraying for 1 minute and stopping spraying for 3 minutes (drying to Ue), and sprayed a total of 500 g of water onto the vanilla powder. Then, it cooled to about 30 degreeC by air sending, and the fragrance
  • vanilla powder obtained above 100 g was dissolved in 900 g of 10% aqueous ethanol and stirred and extracted for 1 hour. Thereafter, solid-liquid separation was performed using a centrifuge to obtain about 850 g of vanilla flavor.
  • the obtained vanilla fragrance reduced the green grass odor and increased the vanilla-specific aroma.
  • Example 11 The dry tomato powder 5,000g weight of moisture content 4% placed in a fluidized granulating dryer, blowing 120 ° C., the warm air of the absolute temperature 16 ⁇ 18g / m 3 at velocity of 0.6 m / s, forming a fluidized bed did. Water was sprayed at 8-12 g weight / min. This spraying was carried out by repeating spraying for 1 minute and stopping spraying for 3 minutes (drying to Ue), and a total of 500 g of water was sprayed on the dried tomato powder. Then, it cooled at a stretch to about 35 degreeC with air blowing, and obtained the fragrance
  • water or a binder liquid is sprayed in a fluidized granulation dryer without any special pretreatment on the plant-derived raw material flavor powder, and then the equilibrium moisture content (Ue) of the raw material flavor powder.
  • Ue equilibrium moisture content

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Seasonings (AREA)
  • Fats And Perfumes (AREA)
  • Glanulating (AREA)

Abstract

 a)原料香料粉末に熱風を吹き込み、前記原料香料粉末の流動層を形成しながら、前記原料香料粉末の流動限界含水率(Uf)に達するまで、前記原料香料粉末に水またはバインダー液を噴霧する工程と、b)前記工程a)の後に、前記原料香料粉末の平衡含水率(Ue)に達するまで前記原料香料粉末を乾燥させる工程とからなるサイクルを含み、前記サイクルを2回以上繰り返すことを特徴とする香料顆粒の製造方法。

Description

香料顆粒の製造方法
 本発明は、香料顆粒の製造方法に係り、より具体的には、流動造粒乾燥方法を利用した香料顆粒の製造方法に関する。
 天然物、例えば植物由来の原料香料を粉末状に加工し、この原料香料粉末から香料顆粒を製造する方法は数多く存在しており、原料香料粉末、賦形剤および溶媒を混合してスラリー状にし、このスラリーを噴霧乾燥する方法が一般に知られている。噴霧乾燥は、香料製造の分野に限らず粉体製造の分野で幅広く用いられている技術であるが、このような噴霧乾燥で得られる粉末は一般に賦形剤の含有率が高くなり、結果として噴霧乾燥によって製造された香料粉末は、有効な香気成分の含有率が低くなる問題があった。
 ところで、天然物由来の原料粉末から香料顆粒を製造するにあたり、一般的な市販の原料粉末を用いる場合にあっては、従来の方法では原料由来の青草臭、刺激臭成分等を除くことが困難であった。このような青草臭、刺激臭成分等の不要成分を除くためには、特別に精製された高グレードの原料を用いるか、または別途精製プロセスが必要になる。しかしながら、高グレードの原料は当然に高価であり、別途精製プロセスを実行するにあたっては、使用する原料に合わせた処理条件を最適化する必要が生じ、結果として製造コストを押し上げる要因にもなっていた。
 一方、流動造粒乾燥プロセスは、原料粉末に熱風を吹き込んで流動層を形成し、この流動層に水やバインダー液を噴霧し、原料粉末の凝集塊を生じさせることにより、連続的に顆粒状粒子を製造するプロセスである。これは例えば、薬効成分を配合した食品顆粒の製造に使用されているものであり(特開2003-321355号公報)、製品顆粒の粒径を制御するためにも好適である(米国特許出願第2009/0035372号公報)。さらに、流動造粒乾燥プロセスは粉体状の原料を使用するため、例えばスラリーを形成しにくく、噴霧乾燥に適さないような原料からも任意の粒径を持った顆粒を製造することができる。このように、流動造粒乾燥プロセスは、粉体製造の分野では比較的応用範囲が広い有用なプロセスとして知られている。
 しかしながら、特開2006-158333号公報に記載されているように、流動造粒乾燥機中では原料が高温に暴露されるため、熱による変性を恐れるためか、香料については流動造粒乾燥機の使用は避けられる傾向がある。
 上記課題を解決するために鋭意検討した結果、本発明者らは、流動造粒乾燥機中で流動限界含水率(Uf)まで原料香料粉末の流動層に水または水溶性香料溶液(バインダー液)を噴霧することと、原料香料粉末の平衡含水率(Ue)に至るまで原料香料粉末を乾燥するという噴霧・乾燥サイクルを繰り返し実施することにより、香気成分が十分に濃縮され、かつ刺激臭成分等の不要成分が除かれた香料顆粒が容易に得られることを見出した。
 すなわち、本発明の第1の側面によれば、a)原料香料粉末に熱風を吹き込み、該原料香料粉末の流動層を形成しながら、該原料香料粉末の流動限界含水率(Uf)に達するまで、該原料香料粉末に水または水溶性香料溶液(バインダー液)を噴霧する工程と、b)工程a)の後に、該原料香料粉末の平衡含水率(Ue)に達するまで該原料香料粉末を乾燥させる工程とからなるサイクルを含み、該サイクルを2回以上繰り返すことを特徴とする香料顆粒の製造方法が提供される。
図1は、原料香料粉末への水分噴霧後、この原料香料粉末が平衡含水率(Ue)に至るまでのサイクルで観察される、時間に対する原料粉末の含水率(図中系列-○-)と、時間に対する流動造粒乾燥機内部における原料香料粉末の温度(図中系列-△-)とをそれぞれ示したグラフである。 図2は、図1のサイクルを複数回繰り返した場合に観察される、時間に対する原料香料粉末の含水率(図中系列-○-)と、時間に対する流動造粒乾燥機内部における原料香料粉末の温度(図中系列-△-)とをそれぞれ示したグラフである。 図3は、原料香料粉末への水分噴霧後、この原料香料粉末を限界含水率(Ul)以上に保ちながら中間乾燥させる場合の、時間に対する原料香料粉末の含水率(図中系列-○-)と、時間に対する流動造粒乾燥機内部における原料香料粉末の温度(図中系列-△-)とをそれぞれ示したグラフである。 図4は本発明の一つの態様により得られた試料の分析結果に関するものであって、時間に対する流動造粒乾燥機からの吹込熱風温度(図中系列a)、原料香料粉末の温度とほぼ同等の値を示す流動層内温度(図中系列b)、排気温度(図中系列c)および排気相対湿度(図中系列d)の関係を示すグラフである。 図5は本発明の一つの態様により得られた試料の分析結果に関するものであって、時間に対する脂肪酸系アルコール類の残留率の変化を示すグラフである。 図6は本発明の一つの態様により得られた試料の分析結果に関するものであって、時間に対する脂肪酸類の残留率の変化を示すグラフである。 図7は本発明の一つの態様により得られた試料の分析結果に関するものであって、時間に対する脂肪酸系アルデヒド(図中系列-▲-)およびピラジン類(図中系列-○-)の粉末中残留率の変化を示すグラフである。 図8は本発明の一つの態様により得られた試料の分析結果に関するものであって、時間に対するテルペン類(系列-○-)およびフェノール系アルデヒド類(系列-◆-)の残留率の変化を示すグラフである。
 本発明の方法は、流動造粒乾燥プロセスを用いることを一つの特徴とする。一般に流動造粒乾燥プロセスは、まず原料香料粉末に下方より熱風を吹き込み、原料香料粉末の流動層を形成する。この流動層に対し、下方、側方、上方などより水、水溶液、有機溶媒またはその他溶液などからなる微細な液滴を噴霧し、当該噴霧液の液架橋や原料粉末同士の湿り凝集塊からなる任意の粒径を持った顆粒を形成する。液滴の噴霧を休止すると、連続的に吹き込まれた熱風により顆粒が乾燥される。最終的に顆粒を冷風下で冷却することにより、所望の顆粒を得る。
 ここで、図1を参照しながら、本発明による造粒乾燥プロセスについて概説する(参照:「粉粒体を扱う単位操作 乾燥」、「粉体工学便覧」、(1998年)、粉体工学会編、日刊工業新聞社発行、365頁、図4.9.1)。
 本発明では、原料香料粉末の流動層に対し、原料香料粉末の流動限界含水率(Uf)に至るまで水または水溶性香料溶液(バインダー液)を噴霧する。水またはバインダー液の噴霧が継続している間は原料香料粉末の品温(顕熱)は低下するが、噴霧が休止した後一定期間は、熱風から供給される熱が全て原料粉末の乾燥に使用されるため、原料粉末の含水率は単調減少する一方、原料香料粉末の温度は一定温度から変化しない(恒率乾燥)。恒率乾燥期間においては、原料香料粉末中の水分は、原料香料粉末内部から拡散によって表面に移動して蒸発する。乾燥が継続し、原料香料粉末の含水率が限界含水率(Ul)に到達すると、原料粉末内部の水分移動速度が遅くなり、原料香料粉末表面への水分移動量と原料香料粉末表面からの水分蒸発量とが釣り合わなくなる。こうなると、熱風からの供給熱量は原料香料粉末の品温(顕熱)の上昇に使われる一方、原料香料粉末の含水率は逓減し、平衡含水率(Ue)に到達して乾燥が終了する(減率乾燥)。
 ところで、例えば噴霧乾燥等の一般的な造粒乾燥プロセスにおいても観察されることであるが、原料香料粉末および/またはバインダー液が糖質を含む場合、恒率乾燥の終了時点において、原料香料粉末表面に濃厚な糖質液からなる皮膜が形成される。この皮膜を通しての物質の移動は大変遅く、水の移動速度が大幅に減少するのはもちろん、水よりも大きな分子、すなわち大抵の香気成分はほとんどこの皮膜を透過できなくなる。その結果、原料粉末内部に香気成分が閉じ込められる。この現象は、Rulkensらによる「選択拡散理論」によって説明される(Rulkens,W.H.,Thijssen,H.A.,Journal of Food Technology,(7),186-191(1972))。
 また、天然物、例えば植物由来の原料香料粉末は、一般に有効な香気成分の他に青草臭や酸臭刺激臭成分等の不要成分を含有している。原料香料粉末および/またはバインダー液が天然物由来である場合、これらの不要成分は最終的な香料顆粒から選択的に除去される、或いは含量が制御されることが望ましい。ここで、不要成分が香気成分よりも相対的に揮発性が高い場合、乾燥の進行につれて選択拡散現象により有効な香気成分は濃縮される一方で、香料顆粒中の不要成分含有率は低減する。この傾向は、減率乾燥終了後に再び水またはバインダー液を噴霧、乾燥するサイクルを繰り返すことによって顕著に現れる。
 したがって、本発明においては、上記噴霧・乾燥サイクルを連続して複数回、特に3回以上繰り返すことが好ましい。複数回の噴霧・乾燥サイクルは同じ流動造粒乾燥機内で行うことができる。ここで、上記サイクルを複数回繰り返した場合における、時間に対する原料香料粉末の含水率(図中系列-○-)と、時間に対する流動造粒乾燥機内部における原料香料粉末の温度(図中系列-△-)とを図2に示す。また、上記サイクルを複数回繰り返す場合において、各サイクルにおける噴霧工程を「間欠噴霧」と定義し、2つの「間欠噴霧」の間の乾燥工程を「中間乾燥」、「中間乾燥」に要する時間を「中間乾燥時間」(すなわち、間欠噴霧の間の噴霧停止時間)と定義する。本発明の方法では、「中間乾燥」工程で原料粉末が平衡含水率(Ue)に至るまで乾燥する。
 なお、本発明の方法においては、限界含水量(Ul)を超えて原料粉末を乾燥させるため、原料香料粉末を理論上、流動造粒乾燥に使用する熱風温度程度まで加熱することができる。
 他方、図3は、一般的に行われる間欠噴霧(或いは中間乾燥)の状態を示す。バインダー噴霧中に流動が悪くなった場合、送液を一時的に停止し中間乾燥を行うのが一般的である。間欠噴霧とは、1分噴霧後、2分噴霧停止といったバインダー噴霧中に中間乾燥を繰り返す噴霧方法をいう。実際には、流動を監視しながら噴霧するものであり、目的は核材を造粒することにある。すなわち、バインダー液を原料粉末に連続的に噴霧している場合に流動性が著しく悪化することを避ける場合に複数回乾燥時間を設け、このとき、バインダー送液速度と併せて恒率乾燥を制御するために行う。すなわち、原料粉末の含水率を常に限界含水率(Ul)以上に保ちながら乾燥する場合であるので、本発明のような有利な改質効果は得られない。
 なお、図1~3は概念図であって、これらの図における粉末含水率は、近赤外分光法などを用いて流動層内の粉末の水分状態を直接モニタリングすることによって測定されるものである。しかしながら、このようなモニタリング方法は測定誤差を生じやすく、実際の顆粒製造においては、装置内の粉末の含水率を造粒装置の排気湿度から推定することが一般的である。図4は本発明の方法により実際に顆粒を製造する際の、吹込熱風温度(図中系列a)、流動層内温度(図中系列b)、排気温度(図中系列c)および流動造粒乾燥機からの排気相対湿度(図中系列d)との関係を示す。ここで図4における流動限界含水率(Uf)は約18%(排気相対湿度で約42%)、限界含水率(Ul)は約7%(排気相対湿度で約34%)、平衡含水率(Ue)は約5%(排気相対湿度で約31%)である。また、図4における排気相対湿度と流動層内温度との対応関係は、図2の粉末含水率と粉末温度との対応関係と一致することがわかる。
 以下、本発明の方法をより具体的に説明する。
 なお、以下で「粉末の含水率」とは、流動造粒乾燥機からの排気相対湿度を原料香料粉末自体の含水率とみなして測定されるものであり、「品温」とは、流動造粒乾燥機中の流動層内温度を原料香料粉末自体の品温とみなして測定されるものである。
 a)はじめに、流動造粒乾燥機中で原料香料粉末に熱風を吹き込んで原料香料粉末の流動層を形成し、この流動層に対して、原料香料粉末の流動限界含水率(Uf)に到達するまで、水またはバインダー液を噴霧する。
 ここで、原料香料粉末は糖質を含有するものであって、ココア粉、セントジョーンズブレッド粉、茶粉、麦芽粉、スパイス粉などの植物由来の原料粉末、植物エキスを噴霧乾燥して得られる香料粉末、或いは糖類粉末または糖類顆粒を、特別な前処理を施すことなく使用することができる。あるいは、予め噴霧乾燥によって製造された甘草エキス粉などを使用してもよい。
 原料香料粉末の平均粒径は10~350μm、特に植物粉末の良好な改質効果を得るためには30~70μmに粉砕されたものが好ましい。
 原料香料粉末に水を噴霧する場合の噴霧量は、原料香料粉末に対して5~20重量%、特に10~15重量%が好ましい。
 バインダー液は糖質を含有するものであって、キャロブ、リコリス、カカオマス、コロハ、ロベージ、バニラ豆もしくはトマトなどの任意の植物原料抽出物、または糖質を配合したピネンやリモネンなどの炭化水素、リナロールやゲラニオールなどの鎖状テルペン系アルコール、セスキテルペンやイソプレゴールやボルネオールなどの環状テルペンアルコール、アニスアルコールやシンナミックアルコールなどのフェノール誘導体、エチルマルトールやヌートカトンなどの環状ケトンなどの合成香料溶液または植物精油、それらの調合香料溶液を使用することができる。
 バインダー液を噴霧する場合は、バインダー液の糖度(Brix%)を予め5~70度、特に5~35度に調製しておくことが好ましい。
 流動限界含水率(Uf)に到達した際に、それまで噴霧したバインダー乾物重量やバインダーが付着した原料粉末同士の相互作用(主に液架橋力)が流動層形成に影響してくる。原料香料粉末にバインダー液を噴霧する場合の全噴霧量は、上述の糖度範囲の場合において5~35重量%程度であるが、特に5~20重量%が好ましい。
 熱風の温度は、原料香料粉末またはバインダー液に含まれる香気成分の改質を生じさせ得る温度であればよい。改質の具体的な態様は、青草臭、酸臭成分等の不要成分の除去、刺激臭成分の熱変性による無臭化などである。原料香料粉末が植物由来の粉末である場合は、95~150℃で香気成分に改質効果を生じさせ得る。原料香料粉末が糖類粉末である場合において、バインダー液に含まれる香気成分の改質を生じさせるためには、使用される糖類粉末が焦げ付く温度以下の温度、具体的には45~120℃が好ましい。
 流動造粒乾燥機の熱風の絶対湿度は10~25g/m、特に17~19g/mが好ましい。
 熱風の吹き込み速度は0.4~1.2m/min、特に0.6~1.0m/minが好ましい。
 流動限界含水率(Uf)は原料香料粉末に特有のものであるため、噴霧液の送液量も使用する原料香料粉末に従ってその都度設定される;
 b)原料香料粉末が流動限界含水率(Uf)に到達したら噴霧を停止し、原料香料粉末を平衡含水率(Ue)まで乾燥させる。
 本発明においては、好ましくは上記工程a)およびb)からなるサイクルを2回以上、より好ましくは3回以上繰り返す。
 中間乾燥時間は、原料香料粉末に特有の流動限界含水率(Uf)に到達した時点の粉末の含水率を100%として、これが60~70%程度まで減少する時間とする。
 上記サイクルを繰り返し実行するにあたり、水を噴霧した原料香料粉末を中間乾燥させた後にバインダー液を噴霧してもよいし、バインダー液を噴霧した原料香料粉末を中間乾燥させた後に水を噴霧してもよい。特に、本発明の方法は、原料香料粉末に水を噴霧した直後に中間乾燥を行う第1のサイクルおよび/またはバインダー液を噴霧した直後に中間乾燥を行う第2のサイクルを含み得る。
 c)最終的に得られた原料香料粉末を、乾燥冷風を用いて品温35℃以下まで一気に冷却し、香料顆粒を得る
 得られた香料顆粒は90~130μmの顆粒に仕上り、ケーキング耐性、水分散性に優れている。
 本発明の方法で作成した香料顆粒を原料として、新たに溶媒抽出プロセスなどを経ることで、改質された精油を得ることもできる。
 以下、本発明の実施例を説明するが、本発明はそれらの実施例により限定されるものではない。なお以下の実施例においては、全て同一の流動造粒乾燥機(大川原製作所:ミクスグラードMGD-05型)を使用した。
 [実施例1]
 以下の手順に従って試料顆粒を作製した。
 キャロブパウダー25重量部および水75重量部を秤取り、60℃にて90分間攪拌抽出を行い、固液分離後、6,000rpmにて遠心分離を行い、糖度15度程度のキャロブ抽出液を得、これをバインダー液とした。
 平均粒径25μmのキャロブパウダー5,000g重を流動造粒乾燥機に入れ、120℃、絶対湿度16~18g/mの熱風を0.6m/sの風速で吹き込み、キャロブ粉の流動層を形成した。流動層を形成しながら、35℃の水を30~40g重/minで噴霧した。この噴霧は1分間の噴霧と3分間の噴霧停止(Ueまでの乾燥)を繰り返すことによって実行され、合計750g重の水をキャロブパウダーに間欠噴霧し、中間乾燥を行った。最後の中間乾燥終了後速やかに上述のバインダー液を30~40g重/minで噴霧し、1分間の噴霧と3分間の噴霧停止(Ueまでの乾燥)を繰り返すことによって合計750g重のバインダー液をキャロブパウダーに間欠噴霧した。最後の中間乾燥終了後、風送により30℃程度まで冷却し、香料紛を得た。
 上述の工程中で粉体を一定時間ごとにサンプリングし、5g重の中間粉体に対して95g重のジクロロメタンを加え、常温で1時間攪拌抽出した。約30分間の静置後、上澄液を0.45μmのガラス繊維フィルターにて濾過後、内容成分のガスクロマトカラムを得た。下図に初期の内容成分面積値を100%としたときの成分推移を図5、図6、図7および図8にそれぞれ示す。サンプリングは、それぞれ未処理時点、全噴霧量の50%の水を噴霧終了した時点、全噴霧量の100%の水を噴霧終了した時点、全噴霧量の50%のバインダー液を噴霧終了した時点、および全噴霧量の100%のバインダー液を噴霧終了した時点で行った。
 図5および図6に示すグラフから、アルカノールおよびアルカン酸が、それぞれの蒸気圧に準じてプロセスの進行にとともに顕著に除かれることがわかる。他方、バインダー液に由来するピラジン類は、プロセスの進行で増加する傾向が示された。
 図7に示すグラフから、脂肪族系アルデヒドおよび直鎖炭化水素が、プロセスの進行につれて顕著に除かれることがわかる。バインダー液に由来するピラジン類は、プロセスの進行につれて増加する傾向が示された。
 図8に示すグラフから、有効な香気成分であるテルペン類およびフェノール系アルデヒド類の残留率は、プロセスが進行しても殆ど変化が見られなかった。
 以上の実験から、工程中において成分の揮発性の度合いに応じて内容成分バランスが変化し、間欠噴霧の回数に応じて内容成分バランスの制御も達成し得ることが判った。
 [実施例2]
 リコリス75重量部の水溶液を調製し、バインダー液とした。平均粒径30μmのココア5,330g重を流動造粒乾燥機に入れ、120℃、絶対湿度16~18g/mの熱風を0.6m/sの風速で吹き込み、ココア粉の流動層を形成した。流動層を形成しながら、水を60~80g重/minで噴霧した。この噴霧は1分間の噴霧と3分間の噴霧停止(Ueまでの乾燥)を繰り返すことによって実行され、合計533g重の水をココア粉に噴霧、乾燥した。さらにバインダー液を130~160g重/minで噴霧した。この噴霧は、水と同様に、1分間の噴霧と3分間の噴霧停止(Ueまでの乾燥)を繰り返すことによって実行され、合計1066g重の異性化糖5%バインダー液をリコリス粉に噴霧、乾燥した。最終的に、風送により30℃程度まで冷却し、香料紛を得た。
 得られた香料粉は、酸臭が抑制された良好なチョコレート様香気を示した。
 [実施例3]
 平均粒径90μmのリコリスエキススプレードライ粉4,000g重を流動造粒乾燥機に入れ、120℃、絶対湿度16~18g/mの熱風を0.6m/sの風速で吹き込み、リコリス粉の流動層を形成した。流動層を形成しながら、異性化糖5%バインダー液を25~35g重/minで噴霧した。この噴霧は30秒間の噴霧と90秒間の噴霧停止(Ueまでの乾燥)を繰り返しことによって実行され、合計400g重の異性化糖5%バインダー液をリコリス粉に噴霧、乾燥した。最終的に、風送により30℃程度まで冷却し、香料紛を得た。
 得られた香料粉はリコリス特有の薬品香が低減され、高いリコリス香気力価を示した。
 [実施例4]
 リコリスエキス40重量部の水溶液を調製しバインダー液とした。
 平均粒径90μmのリコリスエキススプレードライ粉4,000g重を流動造粒乾燥機に入れ、120℃、絶対湿度16~18g/mの熱風を0.6m/sの風速で吹き込み、リコリス粉の流動層を形成した。流動層を形成しながら、バインダー液を70~90g重/minで噴霧した。この噴霧は30秒間の噴霧と90秒間の噴霧停止(Ueまでの乾燥)を繰り返すことによって実行され、合計1,000g重の異性化糖5%バインダー液をリコリス粉に噴霧、乾燥した。最終的に、風送により30℃程度まで冷却し、香料紛を得た。
 得られた香料粉はリコリス特有の薬品香が低減され、高いリコリス香気力価を示した。
 [実施例5]
 予めカカオマス5重量部、レシチン0.5重量部および水94.5重量部を秤取り、乳化機(PRIMX:ROBOMICS MARK II)を用いて、平均粒径30μmのリコリスエキススプレードライ粉4,000g重を流動造粒乾燥機に入れ、120℃、絶対湿度16~18g/mの熱風を0.6m/sの風速で吹き込み、リコリス粉の流動層を形成した。流動層を形成しながら、水を60~80g重/minで噴霧した。この噴霧は30秒間の噴霧と90秒間の噴霧停止(Ueまでの乾燥)を繰り返すことによって実行され、合計400g重の水をリコリスエキススプレードライ粉に噴霧、乾燥した。さらにバインダー液を50~70g重/minで噴霧した。この噴霧は水と同様に30秒間の噴霧と90秒間の噴霧停止(Ueまでの乾燥)を繰り返すことによって実行され、合計1,000g重のバインダー液をリコリスエキススプレードライ粉に噴霧、乾燥した。最終的に、風送により30℃程度まで冷却し、香料紛を得た。得られた香料粉は、高チョコレート様香気を伴い、リコリス特有の薬品香が減少された。
 [実施例6]
 キャロブパウダー25重量部および水75重量部を秤取り、60℃にて90分間攪拌抽出を行い、固液分離後、6,000rpmにて遠心分離を行い、糖度15程度のキャロブ抽出液を得、これをバインダー液とした。
 平均粒径200μmの無水グルコース結晶5,000g重を流動造粒乾燥機に入れ、80℃、絶対湿度16~18g/mの熱風を0.6m/sの風速で吹き込み、無水グルコース結晶の流動層を形成した。流動層を形成しながら、バインダー液を30~40g重/minで噴霧した。この噴霧は30秒間の噴霧と60秒間の噴霧停止(Ueまでの乾燥)を繰り返すことによって実行され、合計750g重のバインダー液を無水グルコース結晶に噴霧、乾燥した。最終的に、風送により30℃程度まで冷却し、香料紛を得た。得られた香料粉は、キャロブ粉特有の乳酸臭香が低減され、高いチョコレート様香気が発現した。
 [実施例7]
 キャロブエキス50重量%の水溶液をバインダー液とした。
 平均粒径200μmのマルトース結晶4,000g重を流動造粒乾燥機に入れ、80℃、絶対湿度16~18g/mの熱風を0.6m/sの風速で吹き込み、マルトース結晶の流動層を形成した。流動層を形成しながら、バインダー液を40~60g重/minで噴霧した。この噴霧は30秒間の噴霧と60秒間の噴霧停止(Ueまでの乾燥)を繰り返すことによって実行され、合計535g重のバインダー液をマルトース結晶に噴霧、乾燥した。最終的に、風送により30℃程度まで冷却し、香料紛を得た。キャロブ粉特有の乳酸臭香が低減された水完溶性粉体香料が得られた。
 [実施例8]
 コロハエキス20重量部の水溶液を調製し、バインダー液とした。
 平均粒径200μmの無水グルコース結晶6,000g重を流動造粒乾燥機に入れ、120℃、絶対湿度16~18g/mの熱風を0.5m/sの風速で吹き込み、無水グルコース結晶の流動層を形成した。流動層を形成しながら、バインダー液を30~40g重/minで噴霧した。この噴霧は10秒間の噴霧と40秒間の噴霧停止(Ueまでの乾燥)を繰り返すことによって実行され、合計600g重のバインダー液を無水グルコース結晶に噴霧、乾燥した。最終的に、風送により30℃程度まで冷却し、香料紛を得た。キャロブ粉特有の乳酸臭香が低減された水完溶性粉体香料が得られた。
 [実施例9]
 ロベージエキス25重量部の水溶液を調製し、バインダー液とした。
 平均粒径200μmの無水グルコース結晶3,000g重を流動造粒乾燥機に入れ、120℃、絶対湿度16~18g/mの熱風を0.45m/sの風速で吹き込み、無水グルコース結晶の流動層を形成した。流動層を形成しながら、バインダー液を8~12g重/minで噴霧した。この噴霧は10秒間の噴霧と30秒間の噴霧停止(Ueまでの乾燥)を繰り返すことによって実行され、合計250g重のバインダー液を無水グルコース結晶に噴霧、乾燥した。最終的に、風送により30℃程度まで冷却し、香料紛を得た。ロベージエキス特有の青草臭香が低減された水完溶性粉体香料が得られた。
 [実施例10]
 バニラ豆から香料液を抽出後、乾燥粉砕して得られる抽出残原料粉末(平均粒径120μm)5,500g重を流動造粒乾燥機に入れ、120℃、絶対湿度16~18g/mの熱風を0.45m/sの風速で吹き込み、流動層を形成した。水を8~12g重/minで噴霧した。この噴霧は1分間の噴霧と3分間の噴霧停止(Ueまでの乾燥)を繰り返すことによって実行され、合計500g重の水をバニラ粉末に噴霧した。その後、風送により30℃程度まで冷却し、香料紛を得た。10%含水エタノール900g重中に上記で得られたバニラ粉末100gを溶解し、1時間攪拌抽出した。その後、遠心分離機を用いて固液分離し、約850gのバニラ香料を得た。得られたバニラ香料は、青草臭が減少し、バニラ特有の香気が増大した。
 [実施例11]
 含水率4%の乾燥トマト粉末5,000g重を流動造粒乾燥機に入れ、120℃、絶対温度16~18g/mの温風を0.6m/sの風速で吹き込み、流動層を形成した。水を8~12g重/minで噴霧した。この噴霧は1分間の噴霧と3分間の噴霧停止(Ueまでの乾燥)を繰り返すことによって実行され、合計500g重の水を乾燥トマト粉末に噴霧した。その後、風送により35℃程度まで一気に冷却し香料粉を得た。得られたトマト粉末の含水量は6%であった。5%重エタノール水950g中に上述で得られたトマト末50gを溶解し、温浴中で攪拌、50℃に液温を維持しながら1時間攪拌抽出した。その後、遠心分離機を用いて固液分離し、約890gの上澄液を得た、上澄液に0.5%ペクチナーゼを加え、40℃で3時間反応させた。さらに75℃に液温を維持しながらロータリーエバポレーターで糖度60まで濃縮し、約70g重のトマトエキスを得た。
 対照用として、同ロッドの乾燥トマト粉末49g重を上述の抽出作業と同じ処理をし、同様に約70g重のトマトエキスを得た。
 対照品と比較して、トマト特有の青臭い臭気が消失し、甘い香りを増強することができた。また、対照トマトエキス30g重に純度95%エタノール30g重を加え1時間混和した。その後、5℃で静置し、液液分配で下部に沈積したエキス分を分離した。得られた約26g重のエキスを50℃に維持しながらロータリーエバポレーターでアルコール分を蒸発除去し、23g重のエキスを得た。得られたトマトエキスはトマト特有の青臭い香気が減少していたが、流動造粒乾燥機で前処理したトマトエキスと比べて青臭い香気の残留度合いが顕著に高かった。
 本発明の方法によって、植物由来の原料香料粉末に特別の前処理を施すことなく、流動造粒乾燥機中で水またはバインダー液を噴霧する工程と、その後に原料香料粉末の平衡含水率(Ue)に達するまで原料香料粉末を乾燥させる工程とからなるサイクルを繰り返すだけで、香気成分が濃縮され、かつ不要成分が除かれた香料顆粒を容易に得ることができる。

Claims (9)

  1.  a)原料香料粉末に熱風を吹き込み、前記原料香料粉末の流動層を形成しながら、前記原料香料粉末の流動限界含水率(Uf)に達するまで、前記原料香料粉末に水またはバインダー液を噴霧する工程と、
     b)前記工程a)の後に、前記原料香料粉末の平衡含水率(Ue)に達するまで前記原料香料粉末を乾燥させる工程と
    からなるサイクルを含み、前記サイクルを2回以上繰り返すことを特徴とする香料顆粒の製造方法。
  2.  前記工程a)中で前記原料香料粉末に水が噴霧された直後に前記工程b)を行う第1のサイクル、および/または、
     前記工程a)中で前記原料香料粉末にバインダー液が噴霧された直後に前記工程b)を行う第2のサイクル
    を含むことを特徴とする請求項1に記載の方法。
  3.  前記原料香料粉末が、糖質を含有する植物原料由来の香料粉末であるか、植物エキスを噴霧乾燥して得られる香料粉末、或いは糖類粉末または糖類顆粒であることを特徴とする請求項1に記載の方法。
  4.  前記バインダー液が、糖質を含有する植物由来の抽出物、または糖質を配合した合成香料溶液または調合香料溶液であることを特徴とする請求項1に記載の方法。
  5.  前記原料香料粉末の粒径が10~350μmであることを特徴とする請求項1に記載の方法。
  6.  前記流動層の温度が100~150℃であることを特徴とする請求項1に記載の方法。
  7.  前記流動層の温度が45~120℃であることを特徴とする請求項1に記載の方法。
  8.  前記熱風の絶対湿度が10~25g/mであることを特徴とする請求項1に記載の方法。
  9.  流動造粒乾燥機内で行われることを特徴とする請求項1に記載の方法。
PCT/JP2011/051296 2010-01-25 2011-01-25 香料顆粒の製造方法 WO2011090204A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU2012136446/13A RU2523296C2 (ru) 2010-01-25 2011-01-25 Способ получения ароматизированных гранул
JP2011550987A JP5422674B2 (ja) 2010-01-25 2011-01-25 香料顆粒の製造方法
SG2012055844A SG182765A1 (en) 2010-01-25 2011-01-25 Method of producing flavor granules
PL11734810T PL2530139T3 (pl) 2010-01-25 2011-01-25 Sposób wytwarzania granulek aromatycznych
CN201180007033.3A CN102725388B (zh) 2010-01-25 2011-01-25 香料颗粒的制造方法
EP11734810.2A EP2530139B1 (en) 2010-01-25 2011-01-25 Process for production of flavor granules
US13/556,891 US20120288600A1 (en) 2010-01-25 2012-07-24 Method of producing flavor granules

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010013578 2010-01-25
JP2010-013578 2010-01-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/556,891 Continuation US20120288600A1 (en) 2010-01-25 2012-07-24 Method of producing flavor granules

Publications (1)

Publication Number Publication Date
WO2011090204A1 true WO2011090204A1 (ja) 2011-07-28

Family

ID=44307005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051296 WO2011090204A1 (ja) 2010-01-25 2011-01-25 香料顆粒の製造方法

Country Status (10)

Country Link
US (1) US20120288600A1 (ja)
EP (1) EP2530139B1 (ja)
JP (1) JP5422674B2 (ja)
CN (1) CN102725388B (ja)
MY (1) MY156695A (ja)
PL (1) PL2530139T3 (ja)
RU (1) RU2523296C2 (ja)
SG (1) SG182765A1 (ja)
TW (1) TW201130428A (ja)
WO (1) WO2011090204A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013054906A1 (ja) * 2011-10-12 2013-04-18 日本たばこ産業株式会社 たばこ製品用香喫味有用成分の増強方法、たばこ原料、シガレットおよび葉巻
WO2017126498A1 (ja) * 2016-01-18 2017-07-27 株式会社クボタ 乾燥機及び乾燥機用測定装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CL2012000047A1 (es) * 2012-01-06 2012-07-20 Cultivos Hidrobiologicos Y Biotecnologia Aguamarina S A Metodo para disminuir el material particulado en suspension en aire o agua, que comprende aglomerar el material particulado suspendido con exopolisacaridos (eps) de carga negativa.
CN103695174B (zh) * 2013-12-03 2015-02-18 红云红河烟草(集团)有限责任公司 一种紫罗兰多孔颗粒及其在卷烟中的应用
CN104522603A (zh) * 2014-12-26 2015-04-22 王伟 一种黑豆提神醒脑保健香料及其制备方法
EP3320897A1 (en) * 2016-11-14 2018-05-16 Dompè Primary S.r.l Process for the preparation of coated cranberry granules with stable proanthocyanidine content
MY189497A (en) * 2019-01-23 2022-02-16 Mizkan Holdings Co Ltd Dried powder of edible plant, food and beverage, and production method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0847378A (ja) * 1994-08-05 1996-02-20 Takasago Internatl Corp 粉末香味料の製造法
JP2001086971A (ja) * 1999-09-17 2001-04-03 Ogawa & Co Ltd 粉末香味料及びその製造方法
JP2003321355A (ja) 2002-04-25 2003-11-11 Otsuka Chemical Holdings Co Ltd ストレス抑制組成物、テアニン含有顆粒およびその製造方法
JP2006158333A (ja) 2004-12-09 2006-06-22 Wakoudou Kk 粉末清涼飲料の製造方法
US20090035372A1 (en) 2003-03-06 2009-02-05 Astellas Pharma Inc. method for manufacturing a pharmaceutical composition for controlled release of an active substance

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU667226A1 (ru) * 1975-06-16 1979-06-15 Московский Институт Химического Машиностроения Способ получени гранулированного продукта из растворов, суспензий и плавов
EP0011324B1 (en) * 1978-11-03 1983-03-02 THE PROCTER & GAMBLE COMPANY Fluidized bed process for making beverage, food or the like
US4698190A (en) * 1985-09-02 1987-10-06 Kabushiki Kaisha Okawaraseisakusho Method and apparatus of controlling granulation of moisture-absorbing powder material
DE59609238D1 (de) * 1995-10-27 2002-06-27 Givaudan Sa Aromengranulat
ES2229806T3 (es) * 1998-12-18 2005-04-16 SYMRISE GMBH & CO. KG Preparado encapsulado de sustancias aromaticas y/u odoriferas.
JP3405342B2 (ja) * 2001-09-11 2003-05-12 味の素株式会社 矯味、矯臭物質の付着した粒状物の製造方法
AU2003207241A1 (en) * 2002-02-18 2003-09-04 Ajinomoto Co., Inc. Dry powder holding flavor and aroma components and process for producing the same
FR2852607B1 (fr) * 2003-03-20 2006-07-14 Procede de fabrication de microspheres de sucre de petite taille, les microspheres susceptibles d'etre obtenues par ce procede et leurs applications
RU2336736C1 (ru) * 2006-12-21 2008-10-27 Елена Викторовна Борисенко Пищевой ароматизатор в виде сухой формы и способ его получения

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0847378A (ja) * 1994-08-05 1996-02-20 Takasago Internatl Corp 粉末香味料の製造法
JP2001086971A (ja) * 1999-09-17 2001-04-03 Ogawa & Co Ltd 粉末香味料及びその製造方法
JP2003321355A (ja) 2002-04-25 2003-11-11 Otsuka Chemical Holdings Co Ltd ストレス抑制組成物、テアニン含有顆粒およびその製造方法
US20090035372A1 (en) 2003-03-06 2009-02-05 Astellas Pharma Inc. method for manufacturing a pharmaceutical composition for controlled release of an active substance
JP2006158333A (ja) 2004-12-09 2006-06-22 Wakoudou Kk 粉末清涼飲料の製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Hyojun Gijutsushu Noyaku Seizai Gijutsu B-1- (5) Kanso Gijutsu", 28 August 2001 (2001-08-28), XP008163494, Retrieved from the Internet <URL:http://www.jpo.go.jp/shiryou/s_sonota/hyoujungijutsu/nouyaku/0012.html> [retrieved on 20110223] *
"Powder Technology Handbook", 1998, NIKKAN KOGYO SHIMBUN, LTD., article "Unit Operation For Handling Powder Particles - Drying", pages: 365
NAGAYOSHI AKE ET AL.: "Foodstuff pelletizing and drying technology and equipment", JAPAN FOOD SCIENCE, vol. 24, no. 3, 1985, pages 43 - 49, XP008163093 *
RULKENS, W. H.; THIJSSEN, H. A., JOURNAL OF FOOD TECHNOLOGY, no. 7, 1972, pages 186 - 191
See also references of EP2530139A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013054906A1 (ja) * 2011-10-12 2013-04-18 日本たばこ産業株式会社 たばこ製品用香喫味有用成分の増強方法、たばこ原料、シガレットおよび葉巻
JPWO2013054906A1 (ja) * 2011-10-12 2015-03-30 日本たばこ産業株式会社 たばこ製品用香喫味有用成分の増強方法、たばこ原料、シガレットおよび葉巻
WO2017126498A1 (ja) * 2016-01-18 2017-07-27 株式会社クボタ 乾燥機及び乾燥機用測定装置

Also Published As

Publication number Publication date
EP2530139B1 (en) 2014-08-13
RU2012136446A (ru) 2014-03-10
EP2530139A4 (en) 2013-11-27
US20120288600A1 (en) 2012-11-15
JP5422674B2 (ja) 2014-02-19
CN102725388A (zh) 2012-10-10
JPWO2011090204A1 (ja) 2013-05-23
CN102725388B (zh) 2014-02-19
EP2530139A1 (en) 2012-12-05
SG182765A1 (en) 2012-08-30
RU2523296C2 (ru) 2014-07-20
MY156695A (en) 2016-03-15
PL2530139T3 (pl) 2015-01-30
TW201130428A (en) 2011-09-16

Similar Documents

Publication Publication Date Title
JP5422674B2 (ja) 香料顆粒の製造方法
US11412765B2 (en) Spray-dried compositions capable of retaining volatile compounds and methods of producing the same
EP2897465B1 (en) Method of producing a stable spray-dried composition
JP5254216B2 (ja) 1工程噴霧乾燥法
Phoungchandang et al. Spray-drying of ginger juice and physicochemical properties of ginger powders
Singh et al. A review on spray drying: emerging technology in food industry
Pang et al. Comparative study on different drying methods of fish oil microcapsules
Uhlemann et al. Flavor encapsulation technologies: an overview including recent developments
JPH06254382A (ja) マイクロカプセルの製造法およびその製造装置
Ho et al. Spray-drying and non-equilibrium states/glass transition
Liu et al. Microencapsulation of sweet orange oil terpeneless using the orifice method
Jedlińska et al. Physicochemical properties of vanilla and raspberry aromas microencapsulated in the industrial conditions by spray drying
EP0713412A1 (de) Verwendung von überhitztem wasserdampf zur praktisch abgasfreien trocknung von wertstoffen und temperatursensitiven wertstoffgemischen und damit hergestellte trockenprodukte mit verbesserten eigenschaften
JPS5825418B2 (ja) インスタント粉末の凝集塊化法
JP2012115205A (ja) 粉末香味料及びその製造方法
KR101688052B1 (ko) 기호성이 우수한 가향차 및 그 제조방법
KR20180106180A (ko) 땅콩 새싹 또는 인삼 음료 추출용 캡슐
KR101633428B1 (ko) 홍삼류 또는 인삼류 추출물의 정분의 제조방법.
JP4188512B2 (ja) 粉末香味料組成物及びその製造方法
Souza et al. Drying of Phytochemical Compositions by Spouted Bed: An Update 1
JP4039782B2 (ja) 粉末酸味料組成物及びその製造方法
JP2524183B2 (ja) 揮発性成分含有物
Jaishankar Spray Drying-A New Emerging Technology in Post Harvest: An Overview

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180007033.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734810

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011550987

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011734810

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012136446

Country of ref document: RU