WO2011090172A1 - ハードコート層を有する樹脂基板の製造方法およびハードコート層を有する樹脂基板 - Google Patents

ハードコート層を有する樹脂基板の製造方法およびハードコート層を有する樹脂基板 Download PDF

Info

Publication number
WO2011090172A1
WO2011090172A1 PCT/JP2011/051126 JP2011051126W WO2011090172A1 WO 2011090172 A1 WO2011090172 A1 WO 2011090172A1 JP 2011051126 W JP2011051126 W JP 2011051126W WO 2011090172 A1 WO2011090172 A1 WO 2011090172A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard coat
resin substrate
coat layer
organopolysiloxane
group
Prior art date
Application number
PCT/JP2011/051126
Other languages
English (en)
French (fr)
Inventor
今日子 山本
澁谷 崇
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to EP11734778.1A priority Critical patent/EP2527047B1/en
Priority to KR1020127019260A priority patent/KR20120123357A/ko
Priority to JP2011550973A priority patent/JP5708499B2/ja
Priority to CN201180005574.2A priority patent/CN102695565B/zh
Priority to BR112012018293-5A priority patent/BR112012018293A2/ja
Publication of WO2011090172A1 publication Critical patent/WO2011090172A1/ja
Priority to US13/541,874 priority patent/US9605123B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/056Forming hydrophilic coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/122Inorganic polymers, e.g. silanes, polysilazanes, polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1233Organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0209Multistage baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/10Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
    • B05D3/107Post-treatment of applied coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Definitions

  • the present invention relates to a method for producing a resin substrate having a hard coat layer and a resin substrate having a hard coat layer obtained thereby.
  • a condensation reaction of silanol groups capable of forming a siloxane bond is adopted as a curing system in order to form a high-hardness film, and the performance is improved in terms of scratch resistance.
  • An organopolysiloxane-containing composition for obtaining a good coating and a method for producing a resin substrate having a hard coat layer using them have been proposed, but for the scratch resistance in a resin substrate having a hard coat layer obtained, The current situation has not yet reached a sufficient level.
  • organopolysiloxane-containing compositions particularly for silicone rubber
  • a method for producing a silicone rubber protective film has been proposed in which the inside is made flexible using ultraviolet curing (Patent Document). 1).
  • Patent Document 1 the required surface hardness performance differs between the silicone rubber protective film and the hard coat, and even when this method is applied to the curing of the hard coat agent, sufficient scratch resistance can be imparted to the resulting coating. It is not a thing.
  • the present invention has been made to solve the above-described problems of the prior art, and the production of a resin substrate having a hard coat layer capable of forming a hard coat layer having sufficient scratch resistance on the resin substrate. It is an object to provide a method and a resin substrate having a hard coat layer excellent in scratch resistance.
  • the method for producing a resin substrate having a hard coat layer of the present invention is a method for producing a resin substrate having a hard coat layer on at least one surface of the resin substrate, A hard coating composition containing organopolysiloxane is applied onto at least one surface of the resin substrate to form a coating film made of the composition, and then a first heat treatment is applied to the coating film to form a cured film. Performing an Xe 2 excimer light irradiation treatment in an atmosphere having an oxygen concentration of 5% by volume or less on the cured film, oxidizing the cured film after the irradiation step, and further performing a second heat treatment. And a step of forming a hard coat layer in this order.
  • the oxygen concentration (volume%) used in the present specification represents the amount (capacity) of oxygen present per unit volume in an atmosphere in which Xe 2 excimer light irradiation is performed, expressed as a percentage of the unit volume.
  • the “cured film” used in the present specification refers to a cured film obtained by condensation-curing a hard coating agent composition containing an organopolysiloxane in the form of a coating film with heat as will be described later.
  • Hard coat layer refers to the final form of a film provided on a resin substrate for surface protection. Generally, the cured film may be used as it is as a hard coat layer. In the layer, the hard coat layer is a surface protective film obtained by further subjecting the cured film to surface treatment (Xe 2 excimer light irradiation treatment and oxidation treatment / second heat treatment).
  • the present invention also provides a resin substrate having a hard coat layer obtained by the production method of the present invention.
  • the method for producing a resin substrate having a hard coat layer of the present invention it is possible to form a hard coat having sufficient scratch resistance on the resin substrate. Moreover, the resin substrate having the hard coat layer of the present invention obtained by this production method is excellent in scratch resistance.
  • the resin substrate having a hard coat layer targeted by the production method of the present invention is a resin substrate having a hard coat layer on at least one surface of the resin substrate.
  • “having a hard coat layer on the surface of the resin substrate” means that the primer layer described later is formed on the surface of the resin substrate in addition to the case of having the hard coat layer directly on the surface of the resin substrate.
  • the case where a hard coat layer is provided via such a functional layer is also included. That is, the manufacturing method of the present invention can be applied to a resin substrate having a hard coat layer in which a functional layer such as a primer layer and a hard coat layer are sequentially laminated on the resin substrate.
  • the production method of the present invention includes the following (1) a step of forming a hard film of a hard coat agent composition containing an organopolysiloxane (hereinafter referred to as “cured film”). Forming process), (2) Xe 2 excimer light irradiation process, and (3) oxidation treatment / second heat treatment process.
  • cured film an organopolysiloxane
  • the cured film forming step in the production method of the present invention comprises applying a hard coat agent composition containing organopolysiloxane on at least one surface of the resin substrate, and forming a coating film comprising the composition. After the formation, the obtained coating film is subjected to a first heat treatment to form a cured film.
  • the resin that is a material of the resin substrate used in the present invention includes polycarbonate resin, polystyrene resin, aromatic polyester resin, acrylic resin, polyester resin, polyarylate resin, halogenated bisphenol A and ethylene glycol. Polycondensates, acrylic urethane resins, halogenated aryl group-containing acrylic resins, and the like.
  • polycarbonate resins such as aromatic polycarbonate resins and acrylic resins such as polymethyl methacrylate acrylic resins are preferable, and polycarbonate resins are more preferable.
  • bisphenol A-based polycarbonate resin is particularly preferable among polycarbonate resins.
  • the resin substrate may contain two or more types of thermoplastic resins as described above, or may be a laminated substrate in which two or more layers are laminated using these resins.
  • the shape of the resin substrate is not particularly limited, and may be a flat plate or curved.
  • the color tone of the resin substrate is preferably colorless and transparent or colored and transparent.
  • the hard coat agent composition used in the production method of the present invention contains an organopolysiloxane as an essential component, and further contains optional components added as necessary. It contains in the range which does not impair an effect.
  • each component contained in the hard coat agent composition will be described.
  • organopolysiloxane contained in the hard coat agent composition used in the production method of the present invention can be used without particular limitation as long as it is a curable organopolysiloxane.
  • Organopolysiloxane is composed of silicon-containing bond units called M units, D units, T units, and Q units.
  • curable organopolysiloxane is an oligomeric polymer mainly composed of T units or Q units, a polymer composed only of T units, a polymer composed only of Q units, T units and Q units.
  • a polymer composed of These polymers may further contain a small amount of M units and D units.
  • the T unit has one silicon atom, one hydrogen atom or monovalent organic group bonded to the silicon atom, and an oxygen atom bonded to another silicon atom ( Or a unit having three functional groups capable of bonding to other silicon atoms).
  • the monovalent organic group bonded to the silicon atom is a monovalent organic group in which the atom bonded to the silicon atom is a carbon atom.
  • the functional group that can be bonded to another silicon atom is a hydroxyl group or a group that becomes a hydroxyl group by hydrolysis (hereinafter referred to as a hydrolyzable group).
  • the total number of oxygen atoms bonded to other silicon atoms and functional groups that can bond to other silicon atoms is three, and the number of functional groups that can bond to oxygen atoms bonded to other silicon atoms and other silicon atoms is different.
  • the T unit is classified into three types of units called T1, T2, and T3.
  • T1 has one oxygen atom bonded to another silicon atom
  • T2 has two oxygen atoms
  • T3 has three oxygen atoms.
  • an oxygen atom bonded to another silicon atom is represented by O *
  • a monovalent functional group that can be bonded to another silicon atom is represented by Z.
  • O * representing an oxygen atom bonded to another silicon atom is an oxygen atom bonded between two silicon atoms, and is an oxygen atom in a bond represented by Si—O—Si. Accordingly, one O * exists between the silicon atoms of two silicon-containing bond units. In other words, O * represents an oxygen atom shared by two silicon atoms of two silicon-containing bond units. In the chemical formula of the silicon-containing bond unit described later, it is expressed as O * is bonded to one silicon atom, but this O * is an oxygen atom shared with the silicon atom of another silicon-containing bond unit. It does not mean that two silicon-containing bond units are bonded by a bond represented by Si—O * —O * —Si.
  • the M unit is a unit having 3 organic groups and 1 O *
  • the D unit is a unit having 2 organic groups and 2 O * (or 1 O * and 1 Z group)
  • the Q unit is This is a unit having 0 organic groups and 4 O * s (or 4 units of 1 to 3 O * s and 3 to 1 Z groups).
  • Each silicon-containing bond unit is formed from a compound (hereinafter also referred to as a monomer) that does not have an oxygen atom (O * ) bonded to another silicon atom (has only a Z group).
  • the monomer forming the T unit is hereinafter referred to as T monomer.
  • Monomers that form M units, D units, and Q units are also referred to as M monomers, D monomers, and Q monomers.
  • the monomer is represented by (R′—) a Si (—Z) 4-a .
  • a represents an integer of 0 to 3
  • R ′ represents a hydrogen atom or a monovalent organic group
  • Z represents a monovalent functional group capable of bonding to a hydroxyl group or another silicon atom.
  • the Z group is usually a hydrolyzable group.
  • R ′ is preferably in the same category as R described later.
  • the curable organopolysiloxane is obtained by a reaction in which a part of the Z group of the monomer is converted to O * .
  • the organopolysiloxane is a copolymer containing two or more silicon-containing bond units, these copolymers are usually obtained from a mixture of corresponding monomers.
  • the Z group of the monomer is a hydrolyzable group, the Z group is converted into a hydroxyl group by a hydrolysis reaction, and then two silicon atoms are converted by a dehydration condensation reaction between two hydroxyl groups bonded to separate silicon atoms. Bonding through an oxygen atom (O * ).
  • hydroxyl groups (or Z groups that have not been hydrolyzed) remain, and when the curable organopolysiloxane is cured, these hydroxyl groups and Z groups react and cure as described above.
  • the cured product of the curable organopolysiloxane is a three-dimensionally crosslinked polymer, and the cured product of the curable organopolysiloxane having many T units and Q units is a cured product having a high crosslinking density.
  • the Z group of the curable organopolysiloxane is converted to O * , but a part of the Z group (particularly hydroxyl group) remains and is considered to be a cured product having a hydroxyl group.
  • the curable organopolysiloxane is cured at a high temperature, it may be a cured product in which almost no hydroxyl groups remain.
  • the Z group of the monomer is a hydrolyzable group
  • examples of the Z group include an alkoxy group, a chlorine atom, an acyloxy group, and an isocyanate group.
  • a monomer in which the Z group is an alkoxy group is used as the monomer.
  • the alkoxy group is a hydrolyzable group having a relatively low reactivity as compared with a chlorine atom and the like, and in the curable organopolysiloxane obtained by using a monomer in which the Z group is an alkoxy group, it is not present together with the hydroxyl group as a Z group. Often an alkoxy group of the reaction is present.
  • the Z group of the monomer is a hydrolyzable group having a relatively high reactivity (for example, a chlorine atom)
  • most of the Z groups in the curable organopolysiloxane obtained using the monomer are hydroxyl groups. Therefore, in a normal curable organopolysiloxane, the Z group in each unit constituting it is often composed of a hydroxyl group or a hydroxyl group and an alkoxy group.
  • curable organopolysiloxanes having T units as the main silicon-containing bond units are preferably used.
  • curable organopolysiloxane is simply referred to as organopolysiloxane.
  • organopolysiloxane (T) refers to an M unit, a D unit, a T unit, and An organopolysiloxane in which the ratio of the number of T units to the total number of Q units is from 50 to 100%.
  • an organopolysiloxane having a ratio of the number of T units of from 70 to 100% is particularly preferred.
  • the ratio of the number of M units, D units, T units, and Q units in the organopolysiloxane can be calculated from the value of the peak area ratio by 29 Si-NMR.
  • the organopolysiloxane (T) preferably used in the present invention is an organopolysiloxane having T units represented by the following T1 to T3.
  • T1 R—Si (—OX) 2 (—O * —)
  • T2 R—Si (—OX) (— O * ⁇ ) 2
  • T3 R—Si (—O * ⁇ ) 3
  • R represents a hydrogen atom or a substituted or unsubstituted monovalent organic group having 1 to 10 carbon atoms
  • X represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • O * represents an oxygen atom connecting silicon atoms
  • R in the above chemical formula is not limited to one type, and T1, T2, and T3 may each include a plurality of types of R.
  • —OX represents a hydroxyl group or an alkoxy group.
  • -OX may be the same or different between T1 and T2.
  • the two —OX in T1 may be different.
  • one may be a hydroxyl group and the other may be an alkoxy group.
  • the alkoxy groups may be different alkoxy groups. However, as described later, usually, the two alkoxy groups are the same alkoxy group.
  • T0 The T unit having no oxygen atom (O * ) for bonding two silicon atoms and having only three —OX is hereinafter referred to as T0.
  • T0 actually corresponds to an unreacted T monomer contained in the organopolysiloxane and is not a silicon-containing bond unit. This T0 is measured in the same manner as T1 to T3 in the analysis of units of T1 to T3.
  • T0 to T3 in the organopolysiloxane can be analyzed by measuring the bonding state of silicon atoms in the organopolysiloxane by nuclear magnetic resonance analysis ( 29 Si-NMR). The ratio of the number of T0 to T3 is determined from the peak area ratio of 29 Si-NMR. -OX in the organopolysiloxane molecule can be analyzed by infrared absorption analysis. The ratio of the number of hydroxyl groups and alkoxy groups bonded to silicon atoms is determined from the peak area ratio of the infrared absorption peaks of the two.
  • the weight average molecular weight Mw, the number average molecular weight Mn, and the dispersity Mw / Mn of the organopolysiloxane are values measured by gel permeation chromatography using polystyrene as a standard substance.
  • the characteristics of such an organopolysiloxane do not refer to the characteristics of one molecule but are determined as the average characteristics of each molecule.
  • T two or more different T1, T2, and T3 may be present in each molecule.
  • two or more types of T2 with different R may exist.
  • Such organopolysiloxanes are obtained from a mixture of two or more T monomers.
  • an organopolysiloxane obtained from a mixture of two or more T monomers having different R it is considered that two or more T1, T2, and T3 having different R exist.
  • the ratio of the number of different R in the organopolysiloxane obtained from a mixture of a plurality of T monomers having different R reflects the composition ratio of the T monomer mixture having different R as a whole T unit.
  • the ratio of the number of units with different R in each of T1, T2, and T3 does not necessarily reflect the composition ratio of T monomer mixtures with different R. This is because the reactivity of the T monomer, T1, and T2 may differ depending on the difference in R even if the three —OXs in the T monomer are the same.
  • the organopolysiloxane (T) is preferably produced from at least one T monomer represented by R—Si (—OY) 3 .
  • R is the same as R described above, and Y represents an alkyl group having 1 to 6 carbon atoms.
  • Y may be a substituted alkyl group such as an alkoxy-substituted alkyl group in addition to an unsubstituted alkyl group.
  • Three Y in one molecule may be different. However, usually three Y are the same alkyl group.
  • Y is preferably an alkyl group having 1 to 4 carbon atoms, and more preferably 1 or 2 carbon atoms. Specific examples of Y include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, a t-butyl group, and a 2-methoxyethyl group.
  • R is a hydrogen atom or a substituted or unsubstituted monovalent organic group having 1 to 10 carbon atoms.
  • the organic group means an organic group in which the atom bonded to the silicon atom is a carbon atom as described above.
  • Examples of the unsubstituted monovalent organic group include hydrocarbon groups such as an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, an aryl group, and an aralkyl group. These hydrocarbon groups include alkyl groups having 1 to 10 carbon atoms, alkenyl groups and alkynyl groups having 2 to 10 carbon atoms, cycloalkyl groups having 5 or 6 carbon atoms, aryl groups having 6 to 10 carbon atoms, and 7 carbon atoms. ⁇ 10 aralkyl groups are preferred.
  • Examples of the substituted monovalent organic group include a hydrocarbon group in which a ring hydrogen atom such as a cycloalkyl group, an aryl group, and an aralkyl group is substituted with an alkyl group, and the hydrogen atom of the hydrocarbon group is a halogen atom or a functional group And a substituted organic group substituted with a functional group-containing organic group.
  • a hydroxyl group, mercapto group, carboxyl group, epoxy group, amino group, cyano group and the like are preferable.
  • an alkyl group having a chlorine atom or a fluorine atom such as a chloroalkyl group or a polyfluoroalkyl group is preferable.
  • the functional group-containing organic group include an alkoxy group, an acyl group, an acyloxy group, an alkoxycarbonyl group, a glycidyl group, an epoxycyclohexyl group, an alkylamino group, a dialkylamino group, an arylamino group, and an N-aminoalkyl-substituted aminoalkyl group. preferable.
  • T monomer having a substituted organic group substituted with a functional group or a functional group-containing organic group contains a category of compounds called silane coupling agents.
  • substituted organic group examples include the following organic groups. 3-chloropropyl group, 3,3,3-trifluoropropyl group, 3-mercaptopropyl group, p-mercaptomethylphenylethyl group, 3-acryloyloxypropyl group, 3-methacryloyloxypropyl group, 3-glycidoxy Propyl group, 2- (3,4-epoxycyclohexyl) ethyl group, 3-aminopropyl group, N-phenyl-3-aminopropyl group, N- (2-aminoethyl) -3-aminopropyl group, 2-cyanoethyl Group.
  • a particularly preferred monovalent organic group as R is an alkyl group having 1 to 4 carbon atoms.
  • the organopolysiloxane (T) is preferably an organopolysiloxane obtained by using a T monomer having an alkyl group having 1 to 4 carbon atoms alone or two or more thereof.
  • An organopolysiloxane obtained by using one or more T monomers having an alkyl group having 1 to 4 carbon atoms and a small amount of other T monomers as the organopolysiloxane (T) is also preferable.
  • the proportion of other T monomers is preferably 30 mol% or less, particularly preferably 15 mol% or less, based on the total amount of T monomers.
  • a T monomer having a substituted organic group substituted with a functional group, a functional group-containing organic group, or the like in a category called a silane coupling agent is preferable.
  • T monomer having an alkyl group having 1 to 4 carbon atoms include, for example, methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, ethyltrimethoxysilane, and ethyltriethoxysilane. In particular, methyltrimethoxysilane and ethyltrimethoxysilane are preferable.
  • T monomer having a substituted organic group and the like include the following compounds.
  • the Z group is preferably an alkoxy group having 1 to 4 carbon atoms, an acetoxy group, or the like. Examples of the D monomer include the following compounds.
  • the four Z groups may be different but are usually the same.
  • the Z group is preferably an alkoxy group having 1 to 4 carbon atoms, and particularly preferably a methoxy group or an ethoxy group.
  • Examples of the Q monomer include the following compounds.
  • the organopolysiloxane (T) used in the present invention is obtained by subjecting the above T monomer and the like to partial hydrolysis condensation. Usually, this reaction is performed by heating T monomer or the like and water in a solvent. A catalyst is preferably present in the reaction system.
  • the desired organopolysiloxane can be produced by adjusting the reaction conditions such as the type of monomer, the amount of water, the heating temperature, the type and amount of catalyst, and the reaction time. In some cases, a commercially available organopolysiloxane can be used as it is as a target organopolysiloxane, or a target organopolysiloxane can be produced using a commercially available organopolysiloxane.
  • Acid catalysts include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, nitrous acid, perchloric acid, sulfamic acid; formic acid, acetic acid, propionic acid, butyric acid, oxalic acid, succinic acid, maleic acid, lactic acid, p- An organic acid such as toluenesulfonic acid may be mentioned. In particular, acetic acid is preferred.
  • the solvent is preferably a hydrophilic organic solvent, and particularly preferably an alcohol solvent.
  • alcohol solvents include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-ethoxyethanol, 4-methyl-2-pentanol, 2- Examples include butoxyethanol.
  • the reaction temperature can be reacted at room temperature when a catalyst is present. Usually, an appropriate temperature is adopted from the reaction temperature of 20 to 80 ° C. according to the purpose.
  • the hydrolysis condensation reaction is a reaction in which T1 is generated from T0 (T monomer), T2 is generated from T1, and T3 is generated from T2.
  • Condensation reaction in which at least one hydrolyzable group is converted to a hydroxyl group from T0 to T1, a condensation reaction in which at least one of two —OX is a hydroxyl group, T1 to T2 is generated, and T2 in which —OX is a hydroxyl group It is considered that the reaction rate of the condensation reaction in which T3 is generated from the reaction becomes slower in this order. Even considering the hydrolysis reaction of the hydrolyzable group, it is considered that the peak of the abundance of each unit moves from T0 to T3 as the reaction proceeds.
  • the reaction conditions are relatively mild, the movement of the abundance peak is considered to proceed relatively orderly.
  • the reaction conditions are relatively severe, the reaction proceeds at random, and the distribution of the abundance of each unit becomes flat, and the abundance of T0 and T1 tends to increase with respect to the abundance of T2 and T3.
  • the organopolysiloxane (a) has a small amount of T0 and T1, and the ratio of the amounts of T2 and T3 is in a specific range. It is a relatively high molecular weight organopolysiloxane, and such an organopolysiloxane can be produced by selecting relatively mild reaction conditions.
  • the reactivity of the above condensation reaction varies depending on R, and when R is different, the reactivity of the hydroxyl group also varies.
  • R for example, when R is an alkyl group, the smaller the number of carbon atoms in the alkyl group), the higher the reactivity of the hydroxyl group. Accordingly, it is preferable to select the T monomer in consideration of the relationship between the reactivity of the hydrolyzable group and the reactivity of the hydroxyl group.
  • the rate of hydrolysis reaction of a hydrolyzable group to a hydroxyl group varies depending on the type of hydrolyzable group, and it is preferable to consider the relationship with the rate of condensation reaction. For example, when the OX group of T2 is an alkoxy group, if the rate of the hydrolysis reaction is too slow, T2 in which the OX group is a hydroxyl group decreases. Similarly, when the rate of the hydrolysis reaction is too slow, T1 in which the OX group is a hydroxyl group decreases. For this reason, it becomes difficult to obtain a high ratio of the amount of hydroxyl groups to alkoxy groups in the organopolysiloxane.
  • the alkoxy group which is an OX group is preferably a highly reactive alkoxy group, that is, an alkoxy group having a low carbon number, and most preferably a methoxy group.
  • the reactivity of the hydrolyzable group is sufficiently high, an organopolysiloxane having a high proportion of hydroxyl groups can be obtained from an organopolysiloxane having a high proportion of hydrolyzable groups without much progress of the condensation reaction.
  • one kind of curable organopolysiloxane (T) thus obtained can be blended alone, or two or more kinds can be blended together. It is.
  • the combination of organopolysiloxane (a) and organopolysiloxane (b) will be described below as a particularly preferred combination of organopolysiloxane (T) from the viewpoint of scratch resistance.
  • the curable organopolysiloxane used in the present invention is described below. It is not limited to these. Further, the organopolysiloxane (a) and the organopolysiloxane (b) are not precluded from being used in the present invention alone as the organopolysiloxane (T).
  • the organopolysiloxane (a) has a mass average molecular weight of 800 to 8000.
  • the organopolysiloxane (a) does not substantially contain T0 which is a T monomer.
  • (T2 + T3) / (T1 + T2 + T3) is preferably in the range of 0.85 to 1.00, 0.90 or more and less than 1.00 It is more preferable that For T3 / T2, the preferred range is 2.0 to 4.0.
  • the organopolysiloxane (a) and the organopolysiloxane (b) described later can be obtained.
  • the scratch resistance of the finally obtained hard coat layer can be improved.
  • (B) / (A) in the organopolysiloxane (a) is a parameter indicating condensation reactivity. The larger this value, that is, the greater the proportion of hydroxyl groups compared to the alkoxy groups, the greater the organopolysiloxane (a).
  • a hard coat agent composition is formed by combining the organopolysiloxane (b) with a curing reaction during curing film formation is promoted.
  • alkoxy groups left unreacted during the formation of the cured film may cause a decrease in scratch resistance of the finally obtained hard coat layer, and if post-curing progresses, it may cause micro cracks.
  • (B) / (A) in the organopolysiloxane (a) is 12.0 or more, preferably 16.0 or more. Note that (A) may be zero.
  • the mass average molecular weight of the organopolysiloxane (a) is 800 to 8000, preferably 1000 to 6000.
  • the weight average molecular weight of the organopolysiloxane (a) is in this range, when the organopolysiloxane (a) and the organopolysiloxane (b) are used in combination in the hard coat agent composition of the present invention, the final In particular, the scratch resistance of the hard coat layer obtained can be sufficiently improved.
  • the organopolysiloxane (a) used in the hard coat agent composition for forming a hard coat layer particularly excellent in scratch resistance as a raw material hydrolyzable silane compound, 70% by mass or more is preferably methyltrialkoxysilane, preferably 1 to 4 carbon atoms of the alkoxy group.
  • a small amount of T monomer other than methyltrialkoxysilane can be used in combination for the purpose of improving the adhesion, hydrophilicity, water repellency and the like.
  • a T monomer or the like is subjected to a hydrolysis condensation reaction in a solvent in the presence of an acid catalyst.
  • the water required for hydrolysis is usually 1 to 10 equivalents, preferably 1.5 to 7 equivalents, and more preferably 3 to 5 equivalents of water with respect to 1 equivalent of the monomer.
  • the monomer is hydrolyzed and condensed, it can also be carried out in a reaction system in which colloidal silica (described later) is present.
  • colloidal silica described later
  • water-dispersed colloidal silica is used as the colloidal silica, water is supplied from this dispersion. Is done.
  • the amount of the acid catalyst used is preferably from 0.1 to 50 parts by weight, particularly preferably from 1 to 20 parts by weight, based on 100 parts by weight of the monomer.
  • the solvent the alcohol solvent is preferable, and methanol, ethanol, 2-propanol, 1-butanol, and 2-butanol are particularly preferable from the viewpoint of good solubility of the resulting organopolysiloxane (a). preferable.
  • the reaction temperature is 20 to 40 ° C., and the reaction time is 1 hour to several days.
  • the hydrolysis and condensation reaction of the monomer is an exothermic reaction, it is preferable that the temperature of the system does not exceed 60 ° C. It is also preferable to allow the hydrolysis reaction to proceed sufficiently under such conditions, and then to proceed the condensation reaction at 40 to 80 ° C. for 1 hour to several days in order to stabilize the resulting organopolysiloxane.
  • Organopolysiloxane (a) can also be produced from commercially available organopolysiloxane. Since the commercially available organopolysiloxane is usually an organopolysiloxane having a higher proportion of alkoxy groups than the hydroxyl group, in particular, except for the above (B) / (A), commercially available similar to the desired organopolysiloxane (a). It is preferable to produce the organopolysiloxane (a) by increasing the proportion of hydroxyl groups by hydrolysis reaction using the above organopolysiloxane.
  • organopolysiloxane examples include the following organopolysiloxanes, which are partially hydrolyzed condensates of methyltrimethoxysilane. It should be noted that “ND” is not more than a detected amount when the 29 Si-NMR peak area ratio is measured using a nuclear magnetic resonance analyzer, manufactured by JEOL Ltd., ECP400 (trade name). Shown (the same applies below).
  • the organopolysiloxane (a) When producing the organopolysiloxane (a) from the above-mentioned commercially available organopolysiloxane, it is preferable to hydrolyze the alkoxy group of the commercially available organopolysiloxane mainly in the presence of an acid catalyst. For example, 0 to 10 times (mass) of a solvent is added to a commercially available organopolysiloxane, stirred well, and then an acid aqueous solution having a concentration of about 0.1 to 70% by mass is added, and 15 to 80 ° C., preferably And a method of stirring at a temperature of 20 to 70 ° C. for 1 to 24 hours.
  • an aqueous solvent can be used, and in addition, the above alcohol solvent to which water has been added can also be used.
  • organopolysiloxane (b) used in combination with the organopolysiloxane (a) in the hard coat agent composition used in the present invention is 1/10 to 1 / 1.5 of the mass average molecular weight of the organopolysiloxane (a). It is an organopolysiloxane having a mass average molecular weight of twice (that is, (0.1 to 0.67) times).
  • the organopolysiloxane (b) is an organopolysiloxane having a mass average molecular weight smaller than that of the combined organopolysiloxane (a), and has the T1 to T3 units.
  • the ratio of the numbers of T1, T2, and T3, the ratio of T3 / T2, and the ratio of (B) / (A) described above are not particularly limited.
  • the mass average molecular weight of the organopolysiloxane (b) is preferably 1/8 to 1 / 1.5 times (that is, (0.125 to 0.67) times) that of the combined organopolysiloxane (a).
  • the weight average molecular weight of the organopolysiloxane (b) exceeds 1 / 1.5 times the weight average molecular weight of the organopolysiloxane (a), in other words, the weight average molecular weight of the organopolysiloxane (a)
  • the mass average molecular weight of b) is less than 1.5 times, the toughness of the finally obtained hard coat layer is lowered, which causes cracks.
  • the mass average molecular weight of the organopolysiloxane (b) is less than 1/10 times the mass average molecular weight of the organopolysiloxane (a), in other words, the mass average molecular weight of the organopolysiloxane (a) is the organopolysiloxane (b).
  • the weight average molecular weight of 10 exceeds 10 times, the scratch resistance of the finally obtained hard coat layer is lowered, and there is a possibility that a hard coat layer having sufficient scratch resistance cannot be obtained.
  • a large ratio of T0 and T1 in the organopolysiloxane (b) generally indicates that the hydrolysis reaction or condensation reaction of the raw material monomer was insufficient when the organopolysiloxane was produced.
  • organopolysiloxane (b) if the ratios of T0 and T1 are large, a hard coat agent composition containing this and the organopolysiloxane (a) is used to form cracks during thermosetting when forming a cured film. Will tend to occur more frequently.
  • the ratio of T3 of the obtained organopolysiloxane increases.
  • organopolysiloxane (b) when the ratio of T3 becomes higher than necessary, a hard coat agent composition containing this and the organopolysiloxane (a) is used, and at the time of thermal curing when a cured film is formed, Since the cross-linking reaction becomes difficult, there is a possibility that a cured film cannot be formed, and it may be impossible to finally obtain a hard coat layer having sufficient scratch resistance.
  • the organopolysiloxane (b) can be produced from a T monomer or the like in the same manner as the organopolysiloxane (a).
  • Commercially available organopolysiloxane can be used as organopolysiloxane (b) as it is.
  • Examples of commercially available organopolysiloxanes that can be used as the organopolysiloxane (b) include the following organopolysiloxanes.
  • the notation of “trace” is 0.01 or more and 0.25 when the 29 Si-NMR peak area ratio is measured using a nuclear magnetic resonance analyzer, manufactured by JEOL Ltd., and ECP400 (trade name). Indicates the following (the same applies hereinafter).
  • T0: T1: T2: T3 ND: 2: 36: 62.
  • T0: T1: T2: T3 trace: 21: 58: 21.
  • the ratio of the content of the organopolysiloxane (b) to the organopolysiloxane (a) is 1.5 to 30 times in terms of mass ratio. Preferably, it is 2 to 15 times.
  • the organopolysiloxane three-dimensional crosslinked structure formed by the curing reaction is in the three-dimensional crosslinked structure mainly composed of the organopolysiloxane (b).
  • the component (a), organopolysiloxane, is partially incorporated, and the hard coat layer finally obtained can have good scratch resistance.
  • the hard coat agent composition used in the present invention contains the curable organopolysiloxane, preferably organopolysiloxane (T).
  • the content of the organopolysiloxane in the hard coat agent composition is preferably 50 to 100% by mass with respect to the total amount of the composition excluding the solvent (hereinafter referred to as “nonvolatile component” if necessary), preferably 60 to More preferably, it is 95 mass%.
  • the amount of the non-volatile component is measured based on a mass change after being held at 150 ° C. for 45 minutes.
  • the hard coat agent composition used in the present invention may contain various additives.
  • a hard coat agent composition containing silica fine particles is preferable.
  • colloidal silica refers to silica fine particles dispersed in water or an organic solvent such as methanol, ethanol, isobutanol, or propylene glycol monomethyl ether.
  • the silica fine particles can be blended with the raw material monomer in the process of producing the organopolysiloxane.
  • organopolysiloxane in a reaction system containing colloidal silica, an organopolysiloxane containing silica fine particles can be obtained.
  • a T monomer and, if necessary, water or an acid catalyst are added to colloidal silica, and the organopolysiloxane can be produced in the colloidal silica dispersion medium as described above.
  • a hard coat agent composition used in the present invention containing silica fine particles can be produced.
  • the silica fine particles used in the hard coat agent composition according to the present invention preferably have an average particle size (BET method) of 1 to 100 nm. If the average particle diameter exceeds 100 nm, the particles diffusely reflect light, and thus the value of the haze value of the obtained hard coat layer becomes large, which may be undesirable in terms of optical quality. Further, the average particle size is particularly preferably 5 to 40 nm. This is for imparting scratch resistance to the hard coat layer and maintaining the transparency of the hard coat layer.
  • colloidal silica can be used in both a water dispersion type and an organic solvent dispersion type, and it is preferable to use a water dispersion type.
  • colloidal silica dispersed in an acidic aqueous solution.
  • the colloidal silica may contain inorganic fine particles other than silica fine particles such as alumina sol, titanium sol, and ceria sol.
  • the content of the silica fine particles in the hard coat agent composition used in the present invention is preferably 1 to 50% by mass, and preferably 5 to 40% by mass, based on the total amount of the composition (nonvolatile components) excluding the solvent. The amount is more preferred. If the content of the silica fine particles in the non-volatile component in the hard coat agent composition used in the present invention is less than 1% by mass, sufficient scratch resistance may not be ensured in the resulting hard coat layer, and the content is 50% by mass.
  • the proportion of the organopolysiloxane in the non-volatile component becomes too low, and it becomes difficult to form a cured film by thermal curing of the organopolysiloxane, and cracks occur in the finally obtained hard coat layer. Aggregation of silica fine particles may occur and the transparency of the hard coat layer may be reduced.
  • the hard coat agent composition used in the present invention may further contain additives such as an antifoaming agent and a viscosity modifier for the purpose of improving coating properties, and adhesion for the purpose of improving adhesion to the primer layer.
  • An additive such as an imparting agent may be included, and a leveling agent may be included as an additive for the purpose of improving the coatability and the smoothness of the resulting coating film.
  • the amount of these additives is preferably 0.01 to 2 parts by mass for each additive component with respect to 100 parts by mass of the organopolysiloxane.
  • the hard-coat agent composition used for this invention may contain dye, a pigment, a filler, etc. in the range which does not impair the objective of this invention.
  • the hard coat agent composition used in the present invention may further contain a curing catalyst.
  • Curing catalysts include aliphatic carboxylic acids (formic acid, acetic acid, propionic acid, butyric acid, lactic acid, tartaric acid, succinic acid, etc.), alkali metal salts such as lithium salt, sodium salt, potassium salt; benzyltrimethylammonium salt, tetramethylammonium salt Quaternary ammonium salts such as salts and tetraethylammonium salts; metal alkoxides and chelates such as aluminum, titanium and cerium; ammonium perchlorate, ammonium chloride, ammonium sulfate, sodium acetate, imidazoles and their salts, ammonium trifluoromethylsulfonate, Bis (tolufluoromethylsulfonyl) bromomethylammonium and the like can be mentioned.
  • the blending amount of the curing catalyst is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the organopolysiloxane.
  • the content of the curing catalyst is less than 0.01 parts by mass, it is difficult to obtain a sufficient curing rate, and when the content is more than 10 parts by mass, the storage stability of the hard coat agent composition is lowered or a precipitate is formed. There is.
  • the hard coat agent composition used in the present invention preferably further contains an ultraviolet absorber in order to suppress yellowing of the resin substrate.
  • an ultraviolet absorber benzophenone UV absorbers, benzotriazole UV absorbers, benzimidazole UV absorbers, cyanoacrylate UV absorbers, salicylate UV absorbers, benzylidene malonate UV absorbers, triazine UV An absorbent etc. are mentioned. These ultraviolet absorbers may be used alone or in combination of two or more. Further, in order to prevent the ultraviolet absorber from bleeding out from the finally obtained hard coat layer, an ultraviolet absorber having a trialkoxysilyl group may be used.
  • the ultraviolet absorber having a trialkoxysilyl group is converted into a hydroxyl group by a hydrolysis reaction during the formation of a cured film by thermal curing of the organopolysiloxane, and then incorporated into the cured film by a dehydration condensation reaction. Bleeding out of the absorbent from the hard coat layer can be suppressed.
  • Specific examples of such trialkoxysilyl groups include trimethoxysilyl groups and triethoxysilyl groups.
  • the content of the ultraviolet absorber in the hard coat agent composition is preferably 0.1 to 50 parts by mass, particularly 0.1 to 30 parts by mass with respect to 100 parts by mass of the organopolysiloxane. preferable.
  • the pH of the hard coating composition can be adjusted to 3.0 to 6.0 in order to prevent gelation of the hard coating composition at room temperature and increase the storage stability. Preferably, it is more preferably adjusted to 4.0 to 5.5. Under conditions where the pH is 2.0 or lower or 7.0 or higher, the hydroxyl group bonded to the silicon atom is extremely unstable, and thus is not suitable for storage. Examples of the pH adjustment method include addition of an acid and adjustment of the content of the curing catalyst.
  • Acids include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, nitrous acid, perchloric acid, sulfamic acid; formic acid, acetic acid, propionic acid, butyric acid, oxalic acid, succinic acid, maleic acid, lactic acid, p-toluene
  • examples include organic acids such as sulfonic acid.
  • the hard coat agent composition used in the present invention is usually prepared in a form in which an organopolysiloxane that is an essential component and various additives that are optional components are dissolved and dispersed in a solvent. It is necessary for all the non-volatile components in the hard coat agent composition to be stably dissolved and dispersed in a solvent. For this reason, the solvent contains at least 20% by mass, preferably 50% by mass or more of alcohol.
  • alcohols used in such solvents include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 1-methoxy-2-propanol, and 2-ethoxyethanol. 4-methyl-2-pentanol, 2-butoxyethanol and the like are preferable.
  • the boiling point is 80 to 160 ° C. from the viewpoint of good solubility of the organopolysiloxane and good coating property.
  • the alcohol is preferred.
  • ethanol 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 1-methoxy-2-propanol, 2-ethoxyethanol, 4-methyl-2- Pentanol and 2-butoxyethanol are preferred.
  • the solvent used in the hard coat agent composition according to the present invention includes a lower alcohol generated by hydrolyzing a raw material monomer, for example, an alkyltrialkoxysilane, and water when producing an organopolysiloxane,
  • a raw material monomer for example, an alkyltrialkoxysilane
  • water when producing an organopolysiloxane the dispersed organic solvent is also included.
  • a solvent other than those described above a solvent other than alcohol that can be mixed with water / alcohol may be used in combination.
  • ketones such as acetylacetone; esters such as ethyl acetate and isobutyl acetate; ethers such as propylene glycol monomethyl ether, dipropylene glycol monomethyl ether and diisopropyl ether.
  • the amount of the solvent used in the hard coat agent composition according to the present invention is preferably 50 to 3000 parts by mass, and 150 to 2000 parts by mass with respect to 100 parts by mass of all nonvolatile components in the hard coat agent composition. More preferably.
  • the hard coat agent composition used in the present invention can be obtained by uniformly mixing the various components described above by ordinary methods.
  • the hard coat agent composition prepared as described above is applied onto at least one surface of the resin substrate. Then, a coating film of the hard coating agent composition is formed, and the resulting coating film is cured.
  • the resin substrate having a hard coat layer has various functional layers such as a primer layer between the resin substrate and the hard coat layer
  • the hard coat agent composition is applied on the primer layer and the like, and is cured.
  • coating the said hard-coat agent composition Normal coating methods, such as a spray coat method, a dip coat method, a flow coat method, are mentioned. It is preferable to appropriately adjust the viscosity, solid content concentration and the like of the hard coat agent composition according to the coating method to be used.
  • the thickness of the coating film formed by applying the hard coat agent composition onto the surface of a resin substrate or the like depends on the solid content concentration in the composition. It is preferable to appropriately adjust the thickness of the cured film so as to be within a predetermined range by taking the solid content concentration into consideration.
  • the film thickness of the cured film applied on the resin substrate is preferably 0.1 ⁇ m or more and 20 ⁇ m or less, more preferably 1 ⁇ m or more and 10 ⁇ m or less, in the state after curing described below, and 2 ⁇ m.
  • the thickness is particularly preferably 10 ⁇ m or less.
  • the film thickness after curing that is, the film thickness of the cured film may be treated as the final film thickness of the hard coat layer finally obtained.
  • the film thickness of the cured film (that is, the film thickness of the hard coat layer excluding the film thickness of the primer layer) is 0. It is preferably 1 ⁇ m or more and 20 ⁇ m or less.
  • the organopolysiloxane is cured by applying a first heat treatment to the coating film of the hard coat agent composition thus formed on at least one surface of the resin substrate or the like.
  • the hard coat agent composition is cured”, which means that the organopolysiloxane contained in the hard coat agent composition is cured.
  • a drying operation may be provided as necessary.
  • Drying is performed by placing the hard coat agent composition coating film formed on the resin substrate as described above, usually under a temperature condition from room temperature to less than the thermal deformation temperature of the resin substrate for a certain period of time. In this operation, a part or all of the solvent in the coating film is removed.
  • Specific examples of the solvent drying conditions include, for example, drying conditions for holding at a temperature of 0 to 60 ° C. for 10 minutes to 10 hours. Further, the solvent may be removed by vacuum drying or the like while adjusting the degree of vacuum.
  • the coating film of the hard coat agent composition is subjected to a first heat treatment to form a cured film.
  • the first heat treatment in the production method of the present invention performed on the hard coat agent composition coating film can be the same as the treatment usually performed to condense and cure the hard coat agent composition.
  • the first heat treatment performed on the coating film obtained above is preferably performed at a high temperature within a range in which there is no problem with the heat resistance of the resin substrate because curing can be completed more quickly.
  • a high temperature within a range in which there is no problem with the heat resistance of the resin substrate because curing can be completed more quickly.
  • the curing temperature is preferably 50 to 200 ° C., particularly preferably 80 to 160 ° C., and particularly preferably 100 to 140 ° C.
  • the time required for the first heat treatment in the production method of the present invention is that the organopolysiloxane contained in the hard coat agent composition constituting the coating film is sufficiently condensed and cured to form a three-dimensional structure by siloxane bonds.
  • Such time is not particularly limited, but is preferably 10 minutes to 4 hours, particularly preferably 20 minutes to 3 hours, and particularly preferably 30 minutes to 2 hours.
  • Xe 2 excimer light is ultraviolet light having a wavelength of 172 nm, and the surface structure of the cured film is changed by irradiating the surface of the cured film obtained in (1) above with Xe 2 excimer light. Is capable of specifically cleaving the bond between silicon atoms and carbon atoms present on the surface of the cured film.
  • a three-dimensional cross-linked structure (network) is formed inside the cured film by siloxane bonds.
  • —SiCH 3 and —SiC 2 H 5 there are many structures such as —SiCH 3 and —SiC 2 H 5 in which a monovalent organic group derived from siloxane, for example, an alkyl group such as a methyl group or an ethyl group is bonded to a silicon atom.
  • a monovalent organic group derived from siloxane for example, an alkyl group such as a methyl group or an ethyl group is bonded to a silicon atom.
  • Xe 2 excimer light is used as a means for generating a Si radical on the surface of the cured film by cutting the bond between the silicon atom and the carbon atom on the surface of the cured film obtained in (1). This is because Xe 2 excimer light having a wavelength of 172 nm can effectively break the bond between silicon atoms and carbon atoms as compared with ultraviolet light having other wavelengths.
  • oxygen when the surface of the cured film is irradiated with Xe 2 excimer light, if oxygen is present in the atmosphere, oxygen selectively absorbs the Xe 2 excimer light, so that the Xe 2 excimer reaches the surface of the cured film. The amount of light is reduced, and the efficiency of breaking the silicon atom-carbon atom bond is significantly reduced. Oxygen is converted into ozone by irradiation with Xe 2 excimer light, and the generated ozone may cause deterioration of the cured film surface, the primer layer, and further the resin substrate.
  • Xe 2 excimer light irradiation to the cured film of the hard coat agent composition formed on the resin substrate is performed in an atmosphere having an oxygen concentration of 5% by volume or less, preferably 3% by volume or less, more preferably 1% by volume. It is performed under the following atmosphere. Specifically, it is performed in an atmosphere that does not absorb Xe 2 excimer light and is gas-substituted with an inert gas such as nitrogen or argon that is not affected by Xe 2 excimer light irradiation.
  • the Xe 2 excimer light irradiation energy on the cured film surface is 300 to 9000 mJ / cm 2 , preferably 500 to 8000 mJ. / Cm 2 is more preferable, and 1000 to 8000 mJ / cm 2 is particularly preferable.
  • the breaking of the silicon atom-carbon atom bond on the cured film surface is not sufficiently promoted, and sufficient scratch resistance is imparted to the finally obtained hard coat layer. There are things you can't do.
  • the Xe 2 excimer light irradiation energy is larger than 9000 mJ / cm 2 , not only the cured film surface but also deeper silicon atom-carbon atom bonds and silicon atom-oxygen atom bonds constituting the cured film are cut.
  • the subsequent heat treatment second heat treatment
  • the occurrence of cracks or the like due to shrinkage stress due to curing shrinkage may be promoted.
  • the Xe 2 excimer light irradiation to the cured film surface of the hard coat agent composition can be performed specifically using a Xe 2 excimer UV lamp.
  • the Xe 2 excimer UV lamp is not particularly limited, and an Xe 2 excimer UV lamp used for irradiating Xe 2 excimer light in various applications can be used in the production method of the present invention.
  • As such a Xe 2 excimer UV lamp there is an excimer irradiation device as a commercial product.
  • a standard excimer light irradiation unit irradiance: 10 mW / cm 2 , manufactured by USHIO INC.
  • a separate excimer ultraviolet irradiation device Irradiance: 35 mW / cm 2 (manufactured by Iwasaki Electric Co., Ltd.)
  • lamp house type excimer UV light source E500-172, irradiance: 10 mW / cm 2 , manufactured by Excimer
  • Xe 2 excimer light irradiation is performed using such an Xe 2 excimer UV lamp.
  • Xe 2 excimer UV lamp having an irradiance of 10 mW / cm 2
  • Xe on the cured film surface is used.
  • the hard coat agent composition having a predetermined area at a distance of about 0.1 to 10 mm from the lamp by installing the lamp in a sealable chamber
  • a resin substrate having a cured film of the product is disposed so that the cured film is opposed to the lamp so that the entire surface of the cured film can be uniformly irradiated with Xe 2 excimer light, and is placed in a nitrogen gas atmosphere for 1 to 15 minutes.
  • Xe 2 excimer light irradiation may be performed.
  • the silicon atom-carbon atom bond existing on the surface of the cured film of the hard coat agent composition was cut by Xe 2 excimer light irradiation, and the state in which the number of organic groups bonded to the silicon atom was reduced as compared to before irradiation was
  • the surface of the hard coat layer of the resin substrate having the finally obtained hard coat layer can be confirmed by infrared absorption analysis using FT-IR or the like, surface composition analysis using a scanning X-ray photoelectron spectrometer, etc. it can.
  • the ratio of the number of organic groups on the cured film surface measured using infrared absorption analysis after irradiation with Xe 2 excimer light to that before irradiation with Xe 2 excimer light is 95% or less. It is preferable that it is 90% or less.
  • the lower limit of this ratio may be 0%, that is, a state in which all of the organic groups on the surface of the cured film are cleaved after irradiation with Xe 2 excimer light, but shrinkage due to curing shrinkage in the subsequent heat treatment (second heat treatment). From the viewpoint of promoting the occurrence of cracks and the like due to stress, it is preferably about 80%.
  • Oxidation treatment / second heat treatment step of the production method of the present invention is a second heat treatment after the cured film after the Xe 2 excimer light irradiation step is oxidized. Is a step of applying a hard coat layer.
  • the oxidation treatment is usually sufficiently performed by taking the cured film after the Xe 2 excimer light irradiation step into the air from the sealed state having an oxygen concentration of 5% by volume or less.
  • the oxidation treatment can be actively performed by a method such as exposure to dry air, oxygen atmosphere, or water vapor atmosphere immediately after the excimer light irradiation step.
  • the Si radicals on the surface of the cured film generated in the Xe 2 excimer light irradiation step are oxidized to a state in which a hydroxyl group is bonded to a silicon atom (—SiOH).
  • the cured film in this state is subjected to the second heat treatment to form a siloxane bond on the surface of the cured film to produce a high-hardness surface, thereby having sufficient scratch resistance.
  • a hard coat layer is obtained.
  • the temperature condition in the second heat treatment like the first heat treatment, it is preferable to perform the treatment at a high temperature within a range where there is no problem in the heat resistance of the resin substrate because the treatment can be completed earlier.
  • the temperature condition is preferably 80 ° C. or higher and the heat deformation temperature of the resin substrate or lower.
  • the range of 80 to 140 ° C. is more preferable, and the range of 80 to 130 ° C. is more preferable.
  • heating is performed by the same method as the first heat treatment, specifically, a natural convection type thermostat, a constant temperature drier, a hot air circulation drier, a blower drier, or a vacuum drier. Methods and the like. An electric furnace or the like can also be used. Furthermore, a heating means using an infrared lamp can be used as appropriate. These heating means may be used alone or in combination of two or more.
  • the time required for the second heat treatment in the production method of the present invention is such that —SiOH on the cured film surface after the oxidation treatment sufficiently reacts to form a siloxane bond (—Si—O—Si—).
  • the time is not particularly limited, but is preferably 1 minute to 2 hours, particularly preferably 5 minutes to 2 hours, and particularly preferably 5 minutes to 1 hour.
  • a primer layer may be provided between the resin substrate and the hard coat layer, and adhesion between the resin substrate and the hard coat layer is improved. Therefore, it is preferable to have a primer layer.
  • the primer layer is not particularly limited, but in the present invention, the primer layer is preferably formed by applying a primer composition containing an acrylic polymer, an ultraviolet absorber, and a solvent on a resin substrate and drying it.
  • an acrylic polymer a homopolymer having at least one selected from an acrylic acid ester or a methacrylic acid ester having an alkyl group having an alkyl group having 6 or less carbon atoms as a “main monomer”, Copolymers are preferred.
  • the “main monomer” specifically refers to one having 90 to 100 mol% with respect to the whole raw material monomer, and the same shall apply hereinafter.
  • a copolymer of the above main monomer and at least one other acrylic ester or methacrylic ester is also preferable.
  • Examples of the other monomers include acrylic acid esters and methacrylic acid esters having an alkyl group having 7 or more carbon atoms and a cycloalkyl group having 12 or less carbon atoms.
  • copolymers obtained by copolymerizing a small amount of an acrylic ester or methacrylic ester having a functional group-containing alkyl group (for example, a hydroxyalkyl group) can also be used.
  • cycloalkyl group examples include a cyclohexyl group, a 4-methylcyclohexyl group, a 4-t-butylcyclohexyl group, an isobornyl group, a dicyclopentanyl group, and a dicyclopentenyloxyethyl group.
  • the acrylic polymer used in the present invention is preferably a polymer obtained by polymerization using one or more selected from methacrylic acid alkyl ester as a main monomer unit. Further, one or more of alkyl methacrylates having 6 or less carbon atoms in the alkyl group selected from methyl methacrylate, n-butyl methacrylate, tert-butyl methacrylate, ethyl methacrylate, isobutyl methacrylate, etc. A homopolymer or copolymer obtained by polymerization as a main monomer is preferable.
  • Homopolymers such as methyl methacrylate, tert-butyl methacrylate, and ethyl methacrylate, methyl methacrylate, n-butyl methacrylate, ethyl methacrylate, methacryl
  • a copolymer with one or more selected from isobutyl acid is more preferable.
  • an acrylic polymer obtained by polymerizing / copolymerizing at least one selected from acrylic monomers in which a hydrolyzable silyl group and / or SiOH group is bonded via a C—Si bond can also be employed.
  • acrylic monomer examples include 3-methacryloyloxypropyltrimethoxysilane, 3-methacryloyloxypropylmethyldimethoxysilane, 3-methacryloyloxypropyldimethylmethoxysilane, 3-methacryloyloxypropyltriethoxysilane, and 3-methacryloyloxypropyl.
  • examples include methyldiethoxysilane, 3-acryloyloxypropyltrimethoxysilane, and 3-acryloyloxypropylmethyldimethoxysilane.
  • these acrylic polymers used for forming the primer layer preferably have a mass average molecular weight of 20,000 or more, more preferably 50,000 or more, and preferably 1 million or less. Acrylic polymers having a weight average molecular weight within this range are preferable because they exhibit sufficient adhesion and strength performance as a primer layer.
  • the primer layer may contain an ultraviolet absorber in order to suppress yellowing of the resin substrate.
  • an ultraviolet absorber the same ultraviolet absorbers contained in the hard coat agent composition of the present invention can be used. These may use 1 type and may use 2 or more types together.
  • the content of the ultraviolet absorber in the primer layer is preferably 1 to 50 parts by mass, particularly preferably 1 to 30 parts by mass with respect to 100 parts by mass of a resin component such as an acrylic polymer.
  • the primer layer may further contain a light stabilizer and the like.
  • the light stabilizer include hindered amines; nickel complexes such as nickel bis (octylphenyl) sulfide, nickel complex-3,5-di-tert-butyl-4-hydroxybenzyl phosphate monoethylate, nickel dibutyldithiocarbamate . Two or more of these may be used in combination.
  • the content of the light stabilizer in the primer layer is preferably from 0.1 to 50 parts by weight, particularly preferably from 0.1 to 10 parts by weight, based on 100 parts by weight of a resin component such as an acrylic polymer.
  • the primer composition used for forming the primer layer usually contains a solvent.
  • the solvent is not particularly limited as long as it can dissolve the acrylic polymer stably. Specifically, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; ethers such as tetrahydrofuran, 1,4-dioxane and 1,2-dimethoxyethane; esters such as ethyl acetate, butyl acetate and methoxyethyl acetate Methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methoxyethanol, 4-methyl-2-pentanol, 2-butoxyethanol, 1 Alcohols such as methoxy-2-propanol and diacetone alcohol; hydrocarbons such as n-hexane, n-heptane, isoctane, benzen
  • the amount of the solvent is preferably 50 to 10000 parts by mass, particularly preferably 100 to 10000 parts by mass with respect to 100 parts by mass of the resin component such as acrylic polymer.
  • the content of the nonvolatile component (solid content) in the primer composition is preferably 0.5 to 75% by mass, particularly preferably 1 to 40% by mass, based on the total amount of the composition.
  • the primer composition may further contain additives such as a leveling agent, an antifoaming agent and a viscosity modifier.
  • the method for applying the primer composition onto the resin substrate is not particularly limited, and examples thereof include spray coating, dip coating, and flow coating.
  • the heating conditions for drying are not particularly limited, but are preferably 50 to 140 ° C. and 5 minutes to 3 hours.
  • the primer layer formed on the resin substrate using the primer composition may have an insufficient effect of improving the adhesion between the resin substrate and the hard coat layer if the primer layer is too thin. Therefore, the film thickness may be any film thickness that is necessary for sufficiently bonding the resin substrate and the hard coat layer and maintaining the necessary amount of the additive.
  • the thickness of such a primer layer is preferably from 0.1 ⁇ m to 10 ⁇ m, particularly preferably from 2 ⁇ m to 8 ⁇ m.
  • the primer layer formed in this manner is formed in the same manner as described above.
  • ⁇ Resin substrate having a hard coat layer of the present invention In the resin substrate having the hard coat layer of the present invention obtained by the production method of the present invention, not only the three-dimensional cross-linked structure (network) by the siloxane bond is formed inside the hard coat layer, but also the surface of the hard coat layer. The side also has a structure in which siloxane bonds are formed more firmly than in the hard coat layer.
  • the resin substrate having the hard coat layer of the present invention has a hardness gradient in the depth direction of the hard coat layer, and particularly the surface hardness is remarkably improved. It has excellent scratch resistance.
  • the “hardness” of a thin film material such as a resin substrate having a hard coat layer of the present invention that is, mechanical strength such as scratch resistance
  • the microhardness measurement test is a test method that calculates the hardness from the penetration depth of the indenter under a certain load condition on the measurement surface, and thereby knows the Martens hardness corresponding to the scratch hardness. Can do.
  • This hardness is a guideline indicating the scratch resistance, but in the resin substrate having the hard coat layer of the present invention obtained by the production method of the present invention, the Martens hardness of the hard coat layer surface is conventional, for example, In the production method of the present invention, it can be said that the scratch resistance is improved because it is much higher than that in a state where only the curing treatment prior to the Xe 2 excimer light irradiation treatment is performed.
  • the Martens hardness on the hard coat layer surface specifically has a value of about 200 to 850 N / mm 2 at a depth of 150 nm from the surface. Those are preferred.
  • the hard coat layer of the resin substrate having the hard coat layer of the present invention is produced by the production method of the present invention, and has a feature that the surface hardness is remarkably higher than that inside the hard coat layer.
  • the micro hardness measurement test measures the Martens hardness from the impression of pressing the indenter in the load-unloading test. The greater the load, the greater the indentation depth, and the deeper the Martens hardness is measured. If the measurement is performed with a small load, the indentation depth is small, and the surface Martens hardness can be measured. Therefore, by comparing the Martens hardness measured under different load conditions, it is possible to evaluate the difference in Martens hardness due to the difference in depth from the hard coat layer surface.
  • the ratio of numerical values of Martens hardness obtained under the following measurement conditions can be used.
  • Ratio of Martens hardness (HM (0.01) ) measured under the condition of creep C 5 s, that is, HM (0.01) / HM (0.5) .
  • HM (0.005) / HM (0.5) is preferably 1.21 to 2.50, and more preferably 1.21 to 2.30. If HM (0.005) / HM (0.5) is within this range, the hard coat layer of the resin substrate having the hard coat layer of the present invention has a surface hardness that is significantly greater than that inside the hard coat layer. Thus, the hard coat layer has a hardness gradient in the depth direction. Thereby, especially the hardness of the surface is remarkably improved, and the whole has excellent scratch resistance. On the other hand, a resin substrate having a hard coat layer with HM (0.005) / HM (0.5) of less than 1.21 has almost no hardness gradient in the depth direction of the hard coat layer. There is no improvement in scratch resistance.
  • Examples 1 to 5 are examples, and examples 6 to 8 are comparative examples.
  • the organopolysiloxane was analyzed by the following method.
  • Infrared absorption spectrometer (FT-IR, Thermo Fisher Scientific Co., Model: Avatar / Nicolet FT-IR360) using, Si absorption and 900cm around -1 derived from SiO-CH 3 in the vicinity of 2860Cm -1
  • the ratio of Si—OH / SiO—CH 3 was determined from the area ratio of absorption derived from —OH.
  • M unit to Q unit ⁇ M unit: 15-5ppm, D unit: -15 to -25 ppm, -T unit: -35 to -75 ppm, -Q unit: -90 to -130 ppm.
  • T0 to T3 ⁇ T0: -40 to -41 ppm, ⁇ T1: -49 to -50 ppm, T2: -57 to -59 ppm, T3: -66 to -70 ppm.
  • the obtained MSi-1 was compared with the raw material KR-500 by FT-IR. As a result, a decrease in the peak derived from the SiO—CH 3 group and the appearance of a peak derived from the Si—OH group were confirmed. .
  • the ratio of Si—OH / SiO—CH 3 of MSi-1 obtained from the peak area ratio of FT-IR was 41.0.
  • MSi had Mn of 520, Mw of 1150, and Mw / Mn of 2.22.
  • the resulting organopolysiloxane is almost free of monomeric T0 form [R—Si (OH) 3 ] (R is a monovalent organic group), and the raw material methyltrimethoxysilane is an oligomeric organopolysiloxane. It was confirmed that it was almost completely converted.
  • Mn of the obtained organopolysiloxane (b) PSi-1 was 400, Mw was 670, and Mw / Mn was 1.68.
  • organopolysiloxane (b) PSi-1 solution containing silica fine particles (c) obtained above, and the mixture was aged at 25 ° C. for 24 hours or more.
  • an organopolysiloxane (b) PSi-1 composition solution having a non-volatile component of 25 mass% (150 ° C., 45 minutes) and a viscosity of 4.4 mPa ⁇ s was prepared. The pH of the composition was stabilized at 5.0.
  • This sample has a primer layer and a cured film of a hard coat agent composition on both surfaces of a polycarbonate plate.
  • Example 1 A resin substrate (50 mm ⁇ 50 mm) having a cured film of the hard coat agent composition obtained in the above ⁇ 1> was used as a Xe 2 excimer lamp light source (Eximer, E500-172, irradiance: 10 mW / cm 2 ) to 1 mm so that one surface of the cured film is opposed to the Xe 2 excimer lamp light irradiation treatment in a nitrogen atmosphere (oxygen concentration: 1% by volume or less) Xe 2 excimer lamp light was irradiated uniformly over the entire opposite cured film for 2 minutes.
  • Xe 2 excimer lamp light source Example 1
  • E500-172 irradiance: 10 mW / cm 2
  • the resin substrate is taken out of the apparatus and exposed to an atmospheric atmosphere to be oxidized, and as a second heat treatment, heat treatment is performed for 1 hour using a hot air circulation dryer set at 120 ° C.
  • a resin substrate sample having a coating layer was produced.
  • the illuminance was measured Xe 2 excimer light illuminance on the surface of the cured film in the Xe 2 excimer light irradiation treatment is 10mW / cm 2, Xe 2 excimer light irradiation energy received is cured film surface is 1200 mJ / cm 2 there were.
  • the thickness of the hard coat layer of the resin substrate having the obtained hard coat layer was 2.9 ⁇ m, and there was no change from the thickness of the cured film.
  • a primer layer and a hard coat layer are formed on both surfaces of a polycarbonate plate, but one side is composed of a hard film of a hard coat agent composition, and only one side irradiated with Xe 2 excimer light is used in the present invention.
  • a photo-modified hard coat layer irradiated with Xe 2 excimer light is formed.
  • Examples 2 to 5 Using the resin substrate having the cured film of the hard coat agent composition obtained in ⁇ 1> above, except for the irradiation time and conditions of Xe 2 excimer light and the film thickness of the hard coat layer, the same as in Example 1 above, In a nitrogen atmosphere (oxygen concentration: 1% by volume or less), Xe 2 excimer lamp light is applied to one side of the cured film on the resin substrate for 5 minutes (Example 2), 10 minutes (Example 3), and 15 minutes (Example) 4) Xe 2 excimer light irradiation treatment for irradiation was performed.
  • a nitrogen atmosphere oxygen concentration: 1% by volume or less
  • Example 5 using the resin substrate having the cured film of the hard coat agent composition obtained in the above ⁇ 1>, except for the irradiation atmosphere and irradiation time, the film thickness of the hard coat layer was the same as in Example 1 above.
  • an atmosphere in which dry air and nitrogen are mixed at a volume ratio of 1: 4 (oxygen concentration: 4.2 vol%) one side of the cured film on the resin substrate is irradiated with Xe 2 excimer light for 15 minutes. Went.
  • the resin substrate was taken out from the apparatus, and the same heat treatment as in Example 1 was performed to prepare a sample of the resin substrate having a hard coat layer.
  • the film thickness of the hard coat layer of the resin substrate having the obtained hard coat layer was 2.8 ⁇ m for Example 2, 3.0 ⁇ m for Example 3, 3.1 ⁇ m for Example 4, and 3 for Example 5. .3 ⁇ m, and there was almost no change from the thickness of the cured film. There was no problem in the initial appearance in all samples except Example 4. Note that, in this Xe 2 excimer light irradiation treatment, the surface of the cured film has received Xe 2 excimer light irradiation energy, 3000 mJ / cm 2 for examples 2, 6000 mJ / cm 2 for Example 3, for Example 4 9000 mJ / cm 2 .
  • Example 5 the Xe 2 excimer light irradiation energy on the cured film surface is 9000 mJ / cm 2 which is the same as that in Example 4 unless there is a decrease due to the atmosphere. Xe 2 excimer light irradiation energy received is estimated to be less than that.
  • Example 4 initial cracks occurred, and the initial appearance was abnormal. This is because the Si—CH 3 groups present in the cured film subjected to the first heat treatment are photo-modified to Si—OH groups by Xe 2 excimer lamp light, and converted to Si—O—Si groups by thermal curing. It is considered that initial cracks were generated due to shrinkage stress due to shrinkage during curing.
  • the crack depth measured with a surface shape measuring microscope (Profile Micrometer VF-7500, 7510, manufactured by Keyence Corporation) is about 400 nm, and this depth is irradiated with Xe 2 excimer lamp light for 15 minutes (9000 mJ / cm 2 ). It is estimated that the depth is photo-modified by the above.
  • Example 6 The resin substrate having the cured film of the hard coat agent composition obtained in the above ⁇ 1> was evaluated as described below as a resin substrate having a hard coat layer (Xe 2 excimer lamp light non-irradiated sample).
  • Example 7 Using a resin substrate having a cured film of the hard coat agent composition obtained in the above ⁇ 1>, under the nitrogen atmosphere (oxygen) in the same manner as in Example 1 except for the irradiation time and conditions and the film thickness of the hard coat layer Xe 2 excimer light irradiation treatment in which one side of the cured film on the resin substrate is irradiated with Xe 2 excimer lamp light for 5 minutes (Xe 2 excimer light irradiation energy: 3000 mJ / cm 2 ). Went. In addition, the heat processing (2nd heat processing) after taking out this resin substrate from an apparatus was not performed.
  • the film thickness of the hard coat layer of the obtained resin substrate was 3.2 ⁇ m, and there was almost no change from the film thickness of the cured film.
  • a primer layer and a hard coat layer are formed on both sides of a polycarbonate plate, but one side is composed of a cured film of a hard coat agent composition, and the other side is subjected to Xe 2 excimer light irradiation treatment.
  • a hard coat layer produced by a production method outside the scope of the present invention that has not been subjected to subsequent heat treatment is formed. As a result of determining the presence or absence of the visual abnormality, there was no problem in the appearance of the initial sample.
  • Example 8 Xe 2 excimer lamp light irradiation performed in a nitrogen atmosphere (oxygen concentration: 1% by volume or less) in Example 1 was applied to the resin substrate having the hard film of the hard coat agent composition obtained in ⁇ 1> above. Except for the dry air atmosphere (oxygen concentration: 21% by volume), the Xe 2 excimer lamp light irradiation time was set to 5 minutes (Xe 2 excimer light irradiation energy: 3000 mJ / cm 2 ). A sample of a resin substrate having a hard coat layer was produced.
  • Example 8 the Xe 2 excimer light irradiation energy on the cured film surface is 3000 mJ / cm 2 which is the same as in Example 2 unless it is reduced by the atmosphere.
  • the received Xe 2 excimer light irradiation energy is estimated to be less.
  • the film thickness of the hard coat layer of the obtained resin substrate was 2.9 ⁇ m, and there was no change from the film thickness of the cured film.
  • a primer layer and a hard coat layer are formed on both sides of a polycarbonate plate, but one side is composed of a cured film of a hard coat agent composition, and the other side is subjected to Xe 2 excimer light irradiation treatment.
  • a hard coat layer produced under conditions outside the scope of the present invention is formed. There was no problem with the initial appearance.
  • film thickness film thickness of hard coat layer and primer layer
  • a Si—CH 3, initial, 1270 cm ⁇ 1 and A Si—CH 3, specimen, 1270 cm ⁇ 1 are cured films of the hard coat agent composition before Xe 2 excimer light irradiation (initial. That is, the cured film subjected to the first heat treatment) and the hard coat layer (specimen) after irradiation with Xe 2 excimer light under various conditions were measured with an infrared absorption spectrometer (FT-IR) at 1270 cm ⁇ 1. The absorption area derived from Si—CH 3 appearing in the vicinity is shown.
  • FT-IR infrared absorption spectrometer
  • the X-ray source AlK ⁇ ray monochromatized by a monochromator was used, and the measurement area diameter was 100 ⁇ m ⁇ , the pass energy was 224 eV, the step energy was 0.4 eV, the sample angle was 45 degrees, and the sputtering conditions were 2 kV and 3 ⁇ 3 mm 2 . .
  • Table 2 the result of the above micro-altitude measurement is expressed as micro-hardness measurement load F.
  • Table 1 shows the results of the film thickness of the hard coat layer and primer layer obtained above, the Si—CH 3 group reduction with Xe 2 excimer light irradiation, and the surface composition analysis of the hard coat layer, together with the manufacturing conditions.
  • Table 2 shows the results of scratch resistance evaluation and microhardness measurement together with manufacturing conditions.
  • the Xe 2 excimer light irradiation energy in Examples 5 and 8 indicates not the actual irradiation energy on the cured film surface but the output energy of the Xe 2 excimer lamp. Otherwise, showing the Xe 2 excimer light irradiation energy at the surface of the cured film.
  • Example 6 that was not irradiated with Xe 2 excimer light only by conventional heat curing, and the example that was not thermally cured after irradiation with Xe 2 excimer light No. 7 sample, Xe 2 excimer light irradiation was carried out in dry air having an oxygen concentration of 21 vol.%, Which was outside the oxygen concentration of 5 vol.% Which is the condition in the production method of the present invention.
  • the improvement in scratch resistance is remarkably higher than that in the case of failure.
  • This improvement in scratch resistance in Examples 1 to 5 is considered to be due to the high degree of reduction of Si—CH 3 groups on the surface of the cured film of the hard coating composition and the promotion of hardening due to the formation of siloxane bonds. It is done.
  • the resin substrate having a hard coat layer according to the production method of the present invention is a resin substrate having a hard coat layer having a gradient structure in Martens hardness. This suggests that the Si—OH group is converted to the Si—O—Si group by the Xe 2 excimer light irradiation and the heat treatment performed after the oxidation treatment, so that only the vicinity of the surface can be hardened.
  • the sample obtained in Example 4 has a large Xe 2 excimer light irradiation energy irradiated to the surface of the cured film of the hard coating agent composition as large as 9000 mJ / cm 2 , the appearance is abnormal.
  • the use of the resin substrate having a hard coat layer may be limited.
  • the Xe 2 excimer light irradiation energy applied to the surface of the cured film of the hard coating composition is more preferably 500 to 8000 mJ / cm 2 in the present invention.
  • this is a resin substrate having a hard coat layer that hardly has an inclined structure in Martens hardness.
  • both the Xe 2 excimer light irradiation step and the oxidation treatment / heat treatment step are essential for the hardening of the surface of the cured film of the hard coating composition, and within the scope of the present invention in the Xe 2 excimer light irradiation step.
  • controlling the oxygen concentration in the atmosphere is essential for hardening the surface of the cured film of the hard coat agent composition.
  • the Martens hardness of the hard coat layer surface has a characteristic that the gradient is high toward the surface, whereby the scratch resistance is improved. It turns out that the resin substrate which has the hard-coat layer improved dramatically is obtained. The reason for this is that irradiation with Xe 2 excimer light in an N 2 atmosphere with an oxygen concentration of 5% by volume or less breaks the bonding of Si—CH 3 groups on the surface, radicals are generated, and then oxidized in the atmosphere. This is probably because the Si—OH group is converted to the Si—O—Si group by the second heat treatment. Therefore, the hard coat layer surface can be hardened, and the Martens hardness can be provided with an inclined structure. As a result, it is presumed that the scratch resistance can be remarkably improved.
  • oxygen contained in the dry air selectively absorbs Xe 2 excimer light, and as a result, Si—CH 3 groups on the hard coat surface are formed. Since it is not converted to a Si—OH group, it is considered that it was not converted to a Si—O—Si group by subsequent thermal curing, the surface was hardened, and the scratch resistance was considered to be unacceptable. Furthermore, oxygen that has absorbed Xe 2 excimer light is converted to ozone, which is considered to be likely to promote deterioration of the hard coat layer surface, the primer layer, and the substrate, which is not preferable.
  • Example 6 which is a sample not irradiated with Xe 2 excimer light, the C / Si ratio was 0.136.
  • analysis was performed using an argon sputtered sample, so that the obtained C concentration was slightly lower than the actual value when considered from the charged values of silicone and silica.
  • both the Xe 2 excimer light irradiation step and the oxidation treatment / heat treatment step at an oxygen concentration of 5% by volume or less in the production method of the present invention are indispensable for hardening the surface of the hard film of the hard coat agent composition. It shows that there is.
  • the resin substrate having a hard coat layer obtained by the production method of the present invention has excellent scratch resistance, and is attached to a building such as a window glass, a house or a building for a vehicle to be attached to an automobile or various transportations. It can be used as a window glass for building materials.
  • a building such as a window glass, a house or a building for a vehicle to be attached to an automobile or various transportations. It can be used as a window glass for building materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Plasma & Fusion (AREA)
  • Laminated Bodies (AREA)
  • Silicon Polymers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

 樹脂基板上に十分な耐擦傷性を有するハードコートを形成することが可能なハードコート層を有する樹脂基板の製造方法、並びに、耐擦傷性優れるハードコート層を有する樹脂基板を提供する。 樹脂基板の少なくとも一方の面上にハードコート層を有する樹脂基板の製造方法であって、オルガノポリシロキサンを含むハードコート剤組成物を前記樹脂基板の少なくとも一方の面上に塗布し前記組成物からなる塗膜を形成した後、前記塗膜に第1の熱処理を施して硬化膜を形成する工程と、前記硬化膜に酸素濃度が5体積%以下の雰囲気下、Xeエキシマ2光照射処理を施す照射工程と、前記照射工程後の硬化膜を酸化処理した後、さらに第2の熱処理を施してハードコート層とする工程と、を有することを特徴とする、ハードコート層を有する樹脂基板の製造方法。

Description

ハードコート層を有する樹脂基板の製造方法およびハードコート層を有する樹脂基板
 本発明は、ハードコート層を有する樹脂基板の製造方法および、それにより得られるハードコート層を有する樹脂基板に関する。
 近年、自動車等の車輌用の窓ガラスや家屋、ビル等の建物に取り付けられる建材用の窓ガラスとして、これまでの無機ガラス板に代わって透明樹脂板の需要が高まっている。特に、自動車等の車両では軽量化のために、窓材に透明樹脂板を用いることが提案されており、とりわけ芳香族ポリカーボネート系の透明樹脂板は、耐破壊性、透明性、軽量性、易加工性などに優れるため、有望な車両用窓材としてその使用が検討されている。しかしながら、このような透明樹脂板は、ガラス板の代わりに使用するには耐擦傷性の点で問題があった。そこで、透明樹脂板の耐擦傷性を向上させる目的で、種々のハードコート剤を用いて透明樹脂板の表面に被膜を形成することが提案されている。
 このようなハードコート剤においては、高硬度の被膜を形成させるために、シロキサン結合を形成することのできるシラノール基の縮合反応を硬化システムとして採用しており、耐擦傷性の点でより性能のよい被膜を得るためのオルガノポリシロキサン含有組成物やそれらを用いたハードコート層を有する樹脂基板の製造方法が提案されているが、得られるハードコート層を有する樹脂基板における耐擦傷性については、いまだ十分なレベルに達していないのが現状である。
 一方、オルガノポリシロキサン含有組成物のうちでも特にシリコーンゴムにおいて、紫外線硬化を利用して内部を柔軟に保ちながら表面に硬質性を持たせるシリコーンゴム保護膜の製造方法が提案されている(特許文献1参照)。しかしながら、このようなシリコーンゴム保護膜と上記ハードコートとでは求められる表面硬度の性能は異なり、この方法をハードコート剤の硬化に適用しても、得られる被膜に十分な耐擦傷性を付与できるものではない。
 このため、各種窓材、特に車両用窓材として有望なポリカーボネート系樹脂等からなる透明樹脂基板に十分な耐擦傷性を付与し、透明性や耐破壊性といったその優れた特性を長期にわたって維持できるハードコート剤や、該樹脂基板上に十分な耐擦傷性を有するハードコートを形成することが可能なハードコート層を有する樹脂基板の製造方法の開発が求められていた。
特開2005-254033号公報
 本発明は、上記の従来技術が有する問題を解消すべくなされたもので、樹脂基板上に十分な耐擦傷性を有するハードコート層を形成することが可能なハードコート層を有する樹脂基板の製造方法、並びに、耐擦傷性に優れるハードコート層を有する樹脂基板を提供することを目的とする。
 本発明のハードコート層を有する樹脂基板の製造方法は、樹脂基板の少なくとも一方の面上にハードコート層を有する樹脂基板の製造方法であって、
 オルガノポリシロキサンを含むハードコート剤組成物を前記樹脂基板の少なくとも一方の面上に塗布し前記組成物からなる塗膜を形成した後、前記塗膜に第1の熱処理を施して硬化膜を形成する工程と、前記硬化膜に酸素濃度が5体積%以下の雰囲気下、Xeエキシマ光照射処理を施す照射工程と、前記照射工程後の硬化膜を酸化処理した後、さらに第2の熱処理を施してハードコート層とする工程と、をこの順で有することを特徴とする。
 ここで、本明細書において用いる酸素濃度(体積%)は、Xeエキシマ光照射を行う雰囲気における単位体積あたりに存在する酸素の量(容量)を、単位体積に対する百分率で表したものである。
 また、本明細書において用いる「硬化膜」とは、オルガノポリシロキサンを含むハードコート剤組成物が塗膜の形態で後述の説明の通り熱により縮合硬化することで得られる硬化膜をいう。「ハードコート層」とは、表面保護のために樹脂基板に設けられる被膜の最終形態をいい、一般的には上記硬化膜をそのままハードコート層とすることもあるが、本発明に係るハードコート層においては、上記硬化膜にさらに表面処理(Xeエキシマ光照射処理、および酸化処理/第2の熱処理)を施して得られる表面保護被膜がハードコート層である。
 また、本発明は上記本発明の製造方法で得られるハードコート層を有する樹脂基板を提供する。
 本発明のハードコート層を有する樹脂基板の製造方法によれば、樹脂基板上に十分な耐擦傷性を有するハードコートを形成することが可能である。また、この製造方法で得られる本発明のハードコート層を有する樹脂基板は、耐擦傷性に優れる。
 本発明の実施の形態を以下に説明する。
<本発明のハードコート層を有する樹脂基板製造方法>
 本発明の製造方法が対象とするハードコート層を有する樹脂基板は、樹脂基板の少なくとも一方の面上にハードコート層を有する樹脂基板である。なお、本明細書において「樹脂基板の面上にハードコート層を有する」とは、樹脂基板の面上に直接ハードコート層を有する場合に加えて、樹脂基板の面上に後述するプライマー層のような機能層を介してハードコート層を有する場合も含むものである。すなわち、樹脂基板上に、プライマー層等の機能層、ハードコート層が順に積層された構成のハードコート層を有する樹脂基板も本発明の製造方法が適用可能である。
 このようなハードコート層を有する樹脂基板の製造において、本発明の製造方法は、以下に説明する(1)オルガノポリシロキサンを含むハードコート剤組成物の硬化膜を形成する工程(以下「硬化膜形成工程」という)、(2)Xeエキシマ光照射工程、および(3)酸化処理/第2の熱処理工程を有することを特徴とする。
(1)硬化膜形成工程
 本発明の製造方法における硬化膜形成工程は、オルガノポリシロキサンを含むハードコート剤組成物を前記樹脂基板の少なくとも一方の面上に塗布し前記組成物からなる塗膜を形成した後、得られた塗膜に第1の熱処理を施して硬化膜を形成する工程である。
(1-1)樹脂基板
 本発明に用いる樹脂基板の材料である樹脂としては、ポリカーボネート樹脂、ポリスチレン樹脂、芳香族ポリエステル樹脂、アクリル樹脂、ポリエステル樹脂、ポリアリレート樹脂、ハロゲン化ビスフェノールAとエチレングリコールとの重縮合物、アクリルウレタン樹脂、ハロゲン化アリール基含有アクリル樹脂等が挙げられる。
 これらのなかでも芳香族系ポリカーボネート樹脂等のポリカーボネート樹脂やポリメチルメタクリレート系アクリル樹脂等のアクリル樹脂が好ましく、ポリカーボネート樹脂がより好ましい。さらに、ポリカーボネート樹脂のなかでも特にビスフェノールA系ポリカーボネート樹脂が好ましい。なお、樹脂基板は、上記のような熱可塑性樹脂を2種以上含んでもよいし、これらの樹脂を用いて、2層以上積層された積層基板であってもよい。また、樹脂基板の形状は、特に限定されず、平板であってもよいし、湾曲していてもよい。さらに、樹脂基板の色調は無色透明または着色透明であることが好ましい。
(1-2)ハードコート剤組成物の調製
 本発明の製造方法に用いるハードコート剤組成物は、必須成分としてオルガノポリシロキサンを含有し、さらに必要に応じて添加される任意成分を本発明の効果を損なわない範囲で含有する。以下、ハードコート剤組成物が含有する各成分について説明する。
(オルガノポリシロキサン)
 本発明の製造方法に用いるハードコート剤組成物が含むオルガノポリシロキサンとしては、硬化性のオルガノポリシロキサンであれば、特に制限なく用いることができる。
 オルガノポリシロキサンはM単位、D単位、T単位、Q単位と呼ばれる含ケイ素結合単位から構成される。この内、硬化性のオルガノポリシロキサンは主としてT単位またはQ単位から構成されるオリゴマー状のポリマーであり、T単位のみから構成されるポリマー、Q単位のみから構成されるポリマー、T単位とQ単位から構成されるポリマーがある。またそれらポリマーはさらに少量のM単位やD単位を含むこともある。
 硬化性のオルガノポリシロキサンにおいて、T単位は、1個のケイ素原子を有し、そのケイ素原子に結合した1個の水素原子または1価の有機基と、他のケイ素原子に結合した酸素原子(または他のケイ素原子に結合できる官能基)3個とを有する単位である。ケイ素原子に結合した1価の有機基はケイ素原子に結合する原子が炭素原子である1価の有機基である。他のケイ素原子に結合できる官能基は水酸基または加水分解により水酸基となる基(以下加水分解性基という)である。他のケイ素原子に結合した酸素原子と他のケイ素原子に結合できる官能基の合計は3個であり、他のケイ素原子に結合した酸素原子と他のケイ素原子に結合できる官能基の数の違いにより、T単位はT1、T2、T3と呼ばれる3種の単位に分類される。T1は他のケイ素原子に結合した酸素原子の数が1個、T2はその酸素原子の数が2個、T3はその酸素原子の数が3個である。本明細書等においては、他のケイ素原子に結合した酸素原子をOで表し、他のケイ素原子に結合できる1価の官能基をZで表す。
 なお、他のケイ素原子に結合した酸素原子を表すOは、2個のケイ素原子間を結合する酸素原子であり、Si-O-Siで表される結合中の酸素原子である。したがって、Oは、2つの含ケイ素結合単位のケイ素原子間に1個存在する。言い換えれば、Oは、2つの含ケイ素結合単位の2つのケイ素原子に共有される酸素原子を表す。後述の含ケイ素結合単位の化学式において、1つのケイ素原子にOが結合している様に表現するが、このOは他の含ケイ素結合単位のケイ素原子と共有している酸素原子であり、2つの含ケイ素結合単位がSi-O-O-Siで表される結合で結合することを意味するものではない。
 前記M単位は上記有機基3個とO1個を有する単位、D単位は上記有機基2個とO2個(またはO1個とZ基1個)を有する単位、Q単位は上記有機基0個とO4個(またはO1~3個とZ基3~1個の計4個)を有する単位である。それぞれの含ケイ素結合単位は、他のケイ素原子に結合した酸素原子(O)を有しない(Z基のみを有する)化合物(以下モノマーともいう)から形成される。T単位を形成するモノマーを以下Tモノマーという。M単位、D単位、Q単位を形成するモノマーも同様にMモノマー、Dモノマー、Qモノマーという。
 モノマーは、(R’-)Si(-Z)4-aで表される。ただし、aは0~3の整数、R’は水素原子または1価の有機基、Zは水酸基または他のケイ素原子に結合できる1価の官能基を表す。この化学式において、a=3の化合物がMモノマー、a=2の化合物がDモノマー、a=1の化合物がTモノマー、a=0の化合物がQモノマーである。モノマーにおいて、Z基は通常加水分解性基である。また、R’が2または3個存在する場合(aが2または3の場合)、複数のR’は異なっていてもよい。R’としては、後述の好ましいRと同じ範疇のものが好ましい。
 硬化性オルガノポリシロキサンは、モノマーのZ基の一部をOに変換する反応により得られる。オルガノポリシロキサンが2種以上の含ケイ素結合単位を含むコポリマーの場合、通常、これらコポリマーはそれぞれ対応するモノマーの混合物から得られる。モノマーのZ基が加水分解性基の場合、Z基は加水分解反応により水酸基に変換され、次いで別々のケイ素原子に結合した2個の水酸基の間における脱水縮合反応により、2個のケイ素原子が酸素原子(O)を介して結合する。硬化性オルガノポリシロキサン中には水酸基(または加水分解しなかったZ基)が残存し、硬化性オルガノポリシロキサンの硬化の際にこれら水酸基やZ基が上記と同様に反応して硬化する。硬化性オルガノポリシロキサンの硬化物は3次元的に架橋したポリマーであり、T単位やQ単位の多い硬化性オルガノポリシロキサンの硬化物は架橋密度の高い硬化物となる。硬化の際、硬化性オルガノポリシロキサンのZ基がOに変換されるが、Z基(特に水酸基)の一部は残存し、水酸基を有する硬化物となると考えられる。硬化性オルガノポリシロキサンを高温で硬化させた場合は水酸基がほとんど残存しない硬化物となることもある。
 モノマーのZ基が加水分解性基である場合、そのZ基としては、アルコキシ基、塩素原子、アシルオキシ基、イソシアネート基等が挙げられる。多くの場合、モノマーとしてはZ基がアルコキシ基のモノマーが使用される。アルコキシ基は塩素原子などと比較すると反応性の比較的低い加水分解性基であり、Z基がアルコキシ基であるモノマーを使用して得られる硬化性オルガノポリシロキサン中にはZ基として水酸基とともに未反応のアルコキシ基が存在することが多い。モノマーのZ基が反応性の比較的高い加水分解性基(例えば塩素原子)の場合、そのモノマーを使用して得られる硬化性オルガノポリシロキサン中のZ基はそのほとんどが水酸基となる。したがって、通常の硬化性オルガノポリシロキサンにおいては、それを構成する各単位におけるZ基は、水酸基からなるかまたは水酸基とアルコキシ基からなることが多い。
 本発明においては、これら硬化性のオルガノポリシロキサンのうちでも、T単位を主な含ケイ素結合単位として構成される硬化性のオルガノポリシロキサンが好ましく用いられる。以下、特に言及しない限り、硬化性のオルガノポリシロキサンを単にオルガノポリシロキサンという。ここで、本明細書において、T単位を主な構成単位とするオルガノポリシロキサン(以下、必要に応じて「オルガノポリシロキサン(T)」という。)とは、M単位、D単位、T単位およびQ単位の合計数に対するT単位数の割合が50~100%のオルガノポリシロキサンをいうが、本発明においてより好ましくは、該T単位数の割合が70~100%のオルガノポリシロキサンを、特に好ましくは該T単位数の割合が90~100%のオルガノポリシロキサンを用いるものである。また、T単位以外に少量含まれる他の単位としてはD単位とQ単位が好ましく、特にQ単位が好ましい。
 すなわち、本発明においては、これら硬化性のオルガノポリシロキサンのうちでも、T単位とQ単位のみで構成され、その個数の割合がT:Q=90~100:10~0であるオルガノポリシロキサンが特に好ましく用いられる。
 なお、オルガノポリシロキサンにおけるM単位、D単位、T単位、Q単位の数の割合は、29Si-NMRによるピーク面積比の値から計算できる。
 本発明に好ましく用いられるオルガノポリシロキサン(T)は、下記T1~T3で表されるT単位を有するオルガノポリシロキサンである。
 T1:R-Si(-OX)(-O-)
 T2:R-Si(-OX)(-O-)
 T3:R-Si(-O-)
(式中、Rは水素原子または炭素数が1~10の置換または非置換の1価の有機基を表し、Xは水素原子または炭素数1~6のアルキル基を表し、Oは2つのケイ素原子を連結する酸素原子を表す)
 上記化学式におけるRは、1種に限定されず、T1、T2、T3はそれぞれ複数種のRを含んでいてもよい。また、上記化学式における-OXは水酸基またはアルコキシ基を表す。-OXはT1およびT2の間で同一であっても異なっていてもよい。T1における2つの-OXは異なっていてもよく、例えば、一方が水酸基で他方がアルコキシ基であってもよい。また、2つの-OXがいずれもアルコキシ基である場合、それらのアルコキシ基は異なるアルコキシ基であってもよい。ただし、後述のように、通常は2つのアルコキシ基は同一のアルコキシ基である。
 なお、2個のケイ素原子を結合する酸素原子(O)を有しない、-OXのみを3個有するT単位を以下T0という。T0は、実際には、オルガノポリシロキサン中に含まれる未反応のTモノマーに相当し、含ケイ素結合単位ではない。このT0は、T1~T3の単位の解析においてT1~T3と同様に測定される。
 オルガノポリシロキサン中のT0~T3は、核磁気共鳴分析(29Si-NMR)によりオルガノポリシロキサン中のケイ素原子の結合状態を測定して解析できる。T0~T3の数の比は、29Si-NMRのピーク面積比から求める。オルガノポリシロキサン分子中の-OXは、赤外吸光分析により解析できる。ケイ素原子に結合した水酸基とアルコキシ基の数の比は両者の赤外吸収ピークのピーク面積比から求める。オルガノポリシロキサンの質量平均分子量Mw、数平均分子量Mn、および分散度Mw/Mnは、ゲルパーミエーションクロマトグラフィー法により、ポリスチレンを標準物質として測定した値をいう。このようなオルガノポリシロキサンの特性は、分子1個の特性をいうものではなく、各分子の平均の特性として求められるものである。
 オルガノポリシロキサン(T)中には、1分子中に複数存在するT1、T2、T3はそれぞれ異なる2種以上が存在していてもよい。例えば、Rが異なる2種以上のT2が存在していてもよい。このようなオルガノポリシロキサンは2種以上のTモノマーの混合物から得られる。例えば、Rが異なる2種以上のTモノマーの混合物から得られるオルガノポリシロキサン中には、Rが異なるそれぞれ2種以上のT1、T2、T3が存在すると考えられる。Rが異なる複数のTモノマーの混合物から得られたオルガノポリシロキサン中の異なるRの数の比は、T単位全体として、Rが異なるTモノマー混合物の組成比を反映している。しかし、T1、T2、T3それぞれにおけるRが異なる単位の数の比は、Rが異なるTモノマー混合物の組成比を反映しているとは限らない。なぜならば、たとえTモノマーにおける3個の-OXが同一であっても、Tモノマー、T1、T2の反応性がRの相違によって異なる場合があるからである。
 オルガノポリシロキサン(T)は、R-Si(-OY)で表されるTモノマーの少なくとも1種から製造されることが好ましい。この式において、Rは前記のRと同一であり、Yは炭素数1~6のアルキル基を表す。Yは非置換のアルキル基以外に、アルコキシ置換アルキル基などの置換アルキル基であってもよい。1分子中の3個のYは異なっていてもよい。しかし、通常は3個のYは同一のアルキル基である。Yは、炭素数1~4のアルキル基であることが好ましく、炭素数1または2であることがより好ましい。具体的なYとしては、メチル基、エチル基、n-プロピル基、n-ブチル基、t-ブチル基、2-メトキシエチル基などが挙げられる。
 Rは水素原子または炭素数が1~10の置換または非置換の1価の有機基である。有機基とは、前記のようにケイ素原子に結合する原子が炭素原子である有機基をいう。
 非置換の1価の有機基としては、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基、アルアルキル基などの炭化水素基が挙げられる。これら炭化水素基としては、炭素数1~10のアルキル基、炭素数2~10のアルケニル基やアルキニル基、炭素数5または6のシクロアルキル基、炭素数6~10のアリール基、炭素数7~10のアルアルキル基が好ましい。具体的には、メチル基、エチル基、n-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、ヘキシル基、オクチル基、デシル基、ビニル基、アリル基、シクロヘキシル基、フェニル基、ベンジル基、フェネチル基等が挙げられる。
 置換の1価の有機基としては、シクロアルキル基、アリール基、アルアルキル基などの環の水素原子がアルキル基で置換された炭化水素基、前記炭化水素基の水素原子がハロゲン原子、官能基、官能基含有有機基などで置換された置換有機基などがある。官能基としては水酸基、メルカプト基、カルボキシル基、エポキシ基、アミノ基、シアノ基などが好ましい。ハロゲン原子置換有機基としては、クロロアルキル基、ポリフルオロアルキル基などの塩素原子またはフッ素原子を有するアルキル基が好ましい。官能基含有有機基としては、アルコキシ基、アシル基、アシルオキシ基、アルコキシカルボニル基、グリシジル基、エポキシシクロヘキシル基、アルキルアミノ基、ジアルキルアミノ基、アリールアミノ基、N-アミノアルキル置換アミノアルキル基などが好ましい。特に、塩素原子、メルカプト基、エポキシ基、アミノ基、アクリロイルオキシ基、メタクリロイルオキシ基、グリシジル基、アルキルアミノ基、N-アミノアルキル置換アミノアルキル基などが好ましい。官能基や官能基含有有機基などで置換された置換有機基を有するTモノマーはシランカップリング剤と呼ばれる範疇の化合物を含む。
 置換有機基の具体例としては、以下の有機基が挙げられる。3-クロロプロピル基、3,3,3-トリフルオロプロピル基、3-メルカプトプロピル基、p-メルカプトメチルフェニルエチル基、3-アクリロイルオキシプロピル基、3-メタクリロイルオキシプロピル基、3-グリシドキシプロピル基、2-(3,4-エポキシシクロヘキシル)エチル基、3-アミノプロピル基、N-フェニル-3-アミノプロピル基、N-(2-アミノエチル)-3-アミノプロピル基、2-シアノエチル基。
 上記Rとして特に好ましい1価有機基は、炭素数1~4のアルキル基である。オルガノポリシロキサン(T)としては、炭素数1~4のアルキル基を有するTモノマーの単独またはその2種以上を使用して得られるオルガノポリシロキサンが好ましい。また、オルガノポリシロキサン(T)として炭素数1~4のアルキル基を有するTモノマーの1種以上と少量の他のTモノマーを使用して得られるオルガノポリシロキサンもまた好ましい。他のTモノマーの割合はTモノマー全量に対し30モル%以下、特に15モル%以下が好ましい。他のTモノマーとしては、シランカップリング剤と呼ばれる範疇の、官能基や官能基含有有機基などで置換された置換有機基を有するTモノマーが好ましい。
 炭素数1~4のアルキル基を有するTモノマーの具体例としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、エチルトリメトキシシラン、エチルトリエトキシシランが挙げられる。特に、メチルトリメトキシシランとエチルトリメトキシシランが好ましい。置換有機基等を有するTモノマーの具体例としては、例えば、下記の化合物が挙げられる。
 ビニルトリメトキシシラン、ビニルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、3,3,3-トリフルオロプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、3-アクリロイルオキシプロピルトリメトキシシラン、3-メタクリロイルオキシプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-シアノエチルトリメトキシシラン。
 R-Si(-OY)で表されるTモノマー以外の(R’-)Si(-Z)4-aで表されるTモノマー(a=1)としては、例えば、メチルトリクロロシラン、エチルトリクロロシラン、フェニルトリクロロシラン、3-グリシドキシプロピルトリクロロシラン、メチルトリアセトキシシラン、エチルトリアセトキシシランなどが挙げられる。
 (R’-)Si(-Z)4-aで表されるDモノマー(a=2)において、2個のR’は同一であっても、異なっていてもよい。同一の場合は、炭素数1~4のアルキル基が好ましい。異なる場合は、一方のR’が炭素数1~4のアルキル基であり、他方のR’が前記官能基や官能基含有有機基などで置換された置換有機基であることが好ましい。また、Z基としては、炭素数1~4のアルコキシ基、アセトキシ基等が好ましい。Dモノマーとしては、例えば、下記の化合物が挙げられる。
 ジメチルジメトキシシラン、ジメチルジエトキシシラン、ビニルメチルジメトキシシラン、ビニルメチルジエトキシシラン、フェニルメチルジメトキシシラン、フェニルメチルジアセトキシシラン、3-クロロプロピルメチルジメトキシシラン、3,3,3-トリフルオロプロピルメチルジメトキシシラン、3-メルカプトプロピルメチルジエトキシシラン、3-アクリロイルオキシプロピルメチルジメトキシシラン、3-メタクリロイルオキシプロピルメチルジメトキシシラン、3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルメチルジエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-シアノエチルメチルジメトキシシラン。
 (R’-)Si(-Z)4-aで表されるQモノマー(a=0)において、4個のZ基は異なっていてもよいが、通常は同一である。Z基としては、炭素数1~4のアルコキシ基が好ましく、特にメトキシ基またはエトキシ基であることが好ましい。Qモノマーとしては、例えば、下記の化合物が挙げられる。
 テトラメトキシシラン、テトラエトキシシラン、テトラn-プロポキシシラン、テトラn-ブトキシシラン、テトラsec-ブトキシシラン、テトラt-ブトキシシラン。
 本発明に用いるオルガノポリシロキサン(T)は、上記Tモノマー等を部分加水分解縮合させることによって得られる。通常、Tモノマー等と水とを溶媒中で加熱することによりこの反応を行う。反応系には触媒を存在させることが好ましい。モノマーの種類、水の量、加熱温度、触媒の種類や量、反応時間等の反応条件を調節して目的のオルガノポリシロキサンを製造することができる。また、場合によっては市販のオルガノポリシロキサンをそのまま目的のオルガノポリシロキサンとして使用することや、市販のオルガノポリシロキサンを使用して目的とするオルガノポリシロキサンを製造することも可能である。
 上記触媒としては、酸触媒が好ましい。酸触媒としては、塩酸、硫酸、硝酸、リン酸、亜硝酸、過塩素酸、スルファミン酸等の無機酸;ギ酸、酢酸、プロピオン酸、酪酸、シュウ酸、コハク酸、マレイン酸、乳酸、p-トルエンスルホン酸等の有機酸が挙げられる。特に、酢酸が好ましい。上記溶媒としては親水性の有機溶媒が好ましく、特にアルコール系溶媒が好ましい。アルコール系溶媒としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、2-エトキシエタノール、4-メチル-2-ペンタノール、2-ブトキシエタノール等が挙げられる。反応温度は、触媒が存在する場合、室温で反応させることができる。通常は、20~80℃の反応温度から目的に応じて適切な温度を採用する。
 加水分解縮合反応はT0(Tモノマー)からT1が生成し、T1からT2が生成し、T2からT3が生成する反応である。加水分解性基の1個以上が水酸基変換されたT0からT1が生成する縮合反応、2個の-OXの少なくとも一方が水酸基であるT1からT2が生成する縮合反応、-OXが水酸基であるT2からT3が生成する縮合反応、の反応速度はこの順に遅くなると考えられる。加水分解性基の加水分解反応を考慮しても、反応が進むにしたがって各単位の存在量のピークはT0からT3へ移動していくと考えられる。反応条件が比較的温和である場合には存在量のピークの移動は比較的整然と進行すると考えられる。一方、反応条件が比較的激しい場合には反応がランダムに進行し各単位の存在量の分布は平板なものになり、T2やT3の存在量に対しT0やT1の存在量が多くなりやすい。後述のように、本発明に用いるオルガノポリシロキサン(T)のうちでもオルガノポリシロキサン(a)は、T0やT1の存在量が少なく、かつT2とT3の存在量の比が特定の範囲にある比較的高分子量のオルガノポリシロキサンであり、このようなオルガノポリシロキサンは比較的温和な反応条件を選択することにより製造することができる。
 上記縮合反応の反応性はRによって変化し、Rが異なると水酸基の反応性も変化する。通常Rが小さいほど(例えば、Rがアルキル基の場合、アルキル基の炭素数が少ないほど)、水酸基の反応性は高い。したがって、加水分解性基の反応性と水酸基の反応性の関係を考慮して、Tモノマーを選択することが好ましい。
 さらに、加水分解性基の水酸基への加水分解反応の速度は、加水分解性基の種類により変化し、縮合反応の速度との関係を考慮することが好ましい。例えば、T2のOX基がアルコキシ基である場合、その加水分解反応の速度が遅すぎると、OX基が水酸基であるT2が少なくなる。同様に、加水分解反応の速度が遅すぎるとOX基が水酸基であるT1が少なくなる。このため、オルガノポリシロキサン中のアルコキシ基に対する水酸基の存在量の比が高いものを得ることが困難となる。このため、OX基であるアルコキシ基は反応性の高いアルコキシ基、すなわち炭素数の低いアルコキシ基が好ましく、メトキシ基がもっとも好ましい。加水分解性基の反応性が充分高い場合、加水分解性基の割合の高いオルガノポリシロキサンから、縮合反応をあまり進めることなく、水酸基の割合の高いオルガノポリシロキサンを得ることができる。
 本発明に用いるハードコート剤組成物には、このようにして得られる硬化性のオルガノポリシロキサン(T)の1種を単独で配合することも、2種以上を併用して配合することも可能である。耐擦傷性の観点から特に好ましいオルガノポリシロキサン(T)の組合せとして、オルガノポリシロキサン(a)およびオルガノポリシロキサン(b)の組合せについて以下に説明するが、本発明に用いる硬化性オルガノポリシロキサンがこれらに限定されるものではない。また、オルガノポリシロキサン(a)およびオルガノポリシロキサン(b)が、それぞれ単独でオルガノポリシロキサン(T)として本発明に使用されることを妨げるものでもない。
(オルガノポリシロキサン(a))
 オルガノポリシロキサン(a)は、T1~T3の各単位を、T1:T2:T3=0~5:15~40:55~85、かつT3/T2=1.5~4.0の割合で含む。また、オルガノポリシロキサン(a)中のOX基について、それがアルコキシ基である個数(A)とそれが水酸基である個数(B)との割合、(B)/(A)が分子平均で12.0以上である。かつ、オルガノポリシロキサン(a)の質量平均分子量は800~8000である。なお、オルガノポリシロキサン(a)は、TモノマーであるT0を実質的に含まない。
 オルガノポリシロキサン(a)を構成するT1、T2およびT3の割合については、(T2+T3)/(T1+T2+T3)が0.85~1.00の範囲にあることが好ましく、0.90以上1.00未満であることがより好ましい。また、T3/T2については、好ましい範囲は2.0~4.0である。
 オルガノポリシロキサン(a)を構成するT1、T2およびT3の割合を、各分子の平均組成でこのような範囲にすることで、オルガノポリシロキサン(a)と後述するオルガノポリシロキサン(b)とを組み合わせて本発明に係るハードコート剤組成物に用いた際に、最終的に得られるハードコート層の耐擦傷性を向上させることができる。
 オルガノポリシロキサン(a)における(B)/(A)は、縮合反応性を示すパラメータであり、この値が大きいほど、つまりアルコキシ基に比べて水酸基の割合が多いほど、オルガノポリシロキサン(a)とオルガノポリシロキサン(b)とを組み合わせてハードコート剤組成物とした際に、硬化膜形成時の硬化反応が促進される。また、硬化膜形成時に未反応で残ったアルコキシ基は、最終的に得られるハードコート層の耐擦傷性の低下を招くおそれがあり、後硬化が進行すればマイクロクラックの原因ともなるため、アルコキシ基に比べて水酸基の割合が多いほどよい。オルガノポリシロキサン(a)における(B)/(A)は、12.0以上であるが、好ましくは16.0以上である。なお、(A)は0であってもよい。
 (B)/(A)の値が12.0未満であると、アルコキシ基に比べて水酸基の割合が少なすぎて、硬化反応促進の効果が得られず、またアルコキシ基の影響により耐擦傷性の低下を招くおそれがあり、後硬化が進行してマイクロクラックの原因となる。つまり、(B)/(A)の値が12.0未満であると、硬化膜形成に際して、オルガノポリシロキサン(a)とオルガノポリシロキサン(b)の硬化反応により形成される3次元架橋構造(ネットワーク)に、オルガノポリシロキサン(a)の一部が組み込まれずブリードアウトしやすくなること等に起因して、架橋密度が低下し、耐摩耗性が得られない、硬化が十分に進行しにくくなる等の問題が発生する。
 オルガノポリシロキサン(a)の質量平均分子量は800~8000であり、好ましくは、1000~6000である。オルガノポリシロキサン(a)の質量平均分子量がこの範囲にあることで、オルガノポリシロキサン(a)とオルガノポリシロキサン(b)とを組み合わせて本発明のハードコート剤組成物に用いた際に、最終的に得られるハードコート層の耐擦傷性を十分に向上させることができる。
 本発明において、特に耐擦傷性に優れたハードコート層を形成するためのハードコート剤組成物に用いるオルガノポリシロキサン(a)を得るには、原料の加水分解性シラン化合物として、全Tモノマー中70質量%以上がメチルトリアルコキシシラン、好ましくはアルコキシ基の炭素数は1~4を用いることが好ましい。ただし、密着性の改善、親水性、撥水性等の機能発現を目的として少量のメチルトリアルコキシシラン以外のTモノマーを併用することもできる。
 オルガノポリシロキサン(a)を製造する方法としては、上記のように、溶媒中で酸触媒存在下にTモノマー等を加水分解縮合反応させる。ここで加水分解に必要な水は、モノマー1当量に対して通常、水1~10当量、好ましくは1.5当量~7当量、さらに好ましくは3~5当量である。モノマーを加水分解および縮合する際に、コロイダルシリカ(後述する)が存在する反応系で行うこともでき、このコロイダルシリカとして水分散型のコロイダルシリカを使用した場合は、水はこの分散液から供給される。酸触媒の使用量は、モノマー100質量部に対して、0.1~50質量部が好ましく、1~20質量部が特に好ましい。溶媒としては、前記アルコール系溶媒が好ましく、得られるオルガノポリシロキサン(a)の溶解性が良好な点から、具体的には、メタノール、エタノール、2-プロパノール、1-ブタノール、2-ブタノールが特に好ましい。
 通常、反応温度は20~40℃、反応時間は1時間~数日間が採用される。モノマーの加水分解縮合反応は発熱反応であるが、系の温度は60℃を超えないことが好ましい。このような条件で十分に加水分解反応を進行させ、ついで、得られるオルガノポリシロキサンの安定化のため40~80℃で1時間~数日間縮合反応を進行させることも好ましく行われる。
 オルガノポリシロキサン(a)は、また、市販のオルガノポリシロキサンから製造することができる。市販のオルガノポリシロキサンは通常水酸基に比較してアルコキシ基の割合が高いオルガノポリシロキサンであるので、特に、前記(B)/(A)以外は目的とするオルガノポリシロキサン(a)に類似した市販のオルガノポリシロキサンを使用して加水分解反応で水酸基の割合を高めて、オルガノポリシロキサン(a)を製造することが好ましい。
 オルガノポリシロキサン(a)の原料として使用できる市販のオルガノポリシロキサンとしては、例えば、メチルトリメトキシシランの部分加水分解縮合物である以下のオルガノポリシロキサンがある。なお、「ND」の表記は、核磁気共鳴分析装置、日本電子株式会社製、ECP400(商品名)を用いて29Si-NMRのピーク面積比を測定した際に、検出量以下であることを示す(以下同様)。
 メチル系シリコーンレジンKR-220L(商品名、信越化学工業社製);T0:T1:T2:T3=ND:ND:28:72、Si-OH/SiO-CH=11.7、質量平均分子量Mw=4720、数平均分子量Mn=1200、Mw/Mn=3.93。
 メチル系シリコーンレジンKR-500(商品名、信越化学工業社製);T0:T1:T2:T3=ND:15:58:27、Si-OH基由来のピークはFT-IRにより確認されず、実質SiO-CHのみ存在。Mw=1240、Mn=700、Mw/Mn=1.77。
 上記のような市販のオルガノポリシロキサンからオルガノポリシロキサン(a)を製造する場合、市販のオルガノポリシロキサンを、酸触媒存在下で主にアルコキシ基の加水分解を行うことが好ましい。例えば、市販のオルガノポリシロキサンに0~10倍量(質量)の溶媒を加え、よく撹拌し、次いで0.1~70質量%程度の濃度の酸水溶液を添加して、15~80℃、好ましくは20~70℃の温度で1~24時間撹拌する等の方法が挙げられる。用いる溶媒としては水溶媒が使用でき、そのほか水を添加した前記アルコール系溶媒も使用できる。
(オルガノポリシロキサン(b))
 本発明に用いるハードコート剤組成物に上記オルガノポリシロキサン(a)と組合わせて用いるオルガノポリシロキサン(b)は、オルガノポリシロキサン(a)の質量平均分子量の1/10~1/1.5倍(すなわち(0.1~0.67)倍)の質量平均分子量を有するオルガノポリシロキサンである。オルガノポリシロキサン(b)は、組み合わされるオルガノポリシロキサン(a)よりも質量平均分子量の小さいオルガノポリシロキサンであり、前記T1~T3単位を有する。T1、T2、T3の数の比、T3/T2の割合、前記した(B)/(A)の比は特に限定されない。
 オルガノポリシロキサン(b)の質量平均分子量は、好ましくは組み合わされるオルガノポリシロキサン(a)の1/8~1/1.5倍(すなわち(0.125~0.67)倍)である。オルガノポリシロキサン(b)の質量平均分子量がオルガノポリシロキサン(a)の質量平均分子量の1/1.5倍を超えると、言い換えれば、オルガノポリシロキサン(a)の質量平均分子量がオルガノポリシロキサン(b)の質量平均分子量の1.5倍未満では、最終的に得られるハードコート層の靱性が低下し、クラックの発生の要因となる。また、オルガノポリシロキサン(b)の質量平均分子量がオルガノポリシロキサン(a)の質量平均分子量の1/10倍未満では、言い換えれば、オルガノポリシロキサン(a)の質量平均分子量がオルガノポリシロキサン(b)の質量平均分子量の10倍を超えると、最終的に得られるハードコート層の耐擦傷性が低くなり、十分な耐擦傷性を有するハードコート層を得ることができない可能性がある。
 より好ましいオルガノポリシロキサン(b)は、T0、T1、T2およびT3で示される各含ケイ素結合単位が、これらの単位の個数の割合で、T0:T1:T2:T3=0~5:0~50:5~70:10~90の範囲にあるオルガノポリシロキサンである。オルガノポリシロキサン(b)中のT0およびT1の割合が大きいということは、一般にそのオルガノポリシロキサンを製造する際に、原料モノマーの加水分解反応や縮合反応が不充分であったことを示す。オルガノポリシロキサン(b)において、T0およびT1の割合が大きいと、これとオルガノポリシロキサン(a)とを含有するハードコート剤組成物を用いて、硬化膜を形成させる際の熱硬化時に、クラックの発生が多くなる傾向となる。また、一般にオルガノポリシロキサンを製造する際に、原料モノマーの縮合反応を進行させすぎると得られるオルガノポリシロキサンのT3の割合が高くなる。オルガノポリシロキサン(b)において、T3の割合が必要以上に高くなると、これとオルガノポリシロキサン(a)を含むハードコート剤組成物を用いて、硬化膜を形成させる際の熱硬化時に、適切な架橋反応が困難になるため、硬化膜を形成できなくなるおそれがあり、また最終的に十分な耐擦傷性を有するハードコート層を得ることができないことがある。
 オルガノポリシロキサン(b)としては、オルガノポリシロキサン(a)と同様にTモノマー等から製造することができる。また、市販のオルガノポリシロキサンをそのままオルガノポリシロキサン(b)として使用することができる。オルガノポリシロキサン(b)として使用することができる市販のオルガノポリシロキサンとしては、例えば、下記のオルガノポリシロキサンがある。なお、「trace」の表記は、核磁気共鳴分析装置、日本電子株式会社製、ECP400(商品名)を用いて29Si-NMRのピーク面積比を測定した際に、0.01以上0.25以下であることを示す(以下同様)。
 トスガード510(商品名、モメンティブ・パフォーマンス・マテリアルズ社製);分子量:Mn=1370、Mw=1380、Mw/Mn=1.01。T単位の個数:(M単位とD単位とQ単位のそれぞれの個数の総量)=99.9以上:ND。T0:T1:T2:T3=ND:2:36:62。
 KP851(商品名、信越化学工業社製);分子量:Mn=1390、Mw=1400、Mw/Mn=1.01、T単位の個数:(M単位とD単位とQ単位のそれぞれの個数の総量)=99.9以上:ND。T0:T1:T2:T3=trace:21:58:21。
 ここで、以下に説明する本発明に用いるハードコート剤組成物においては、上記オルガノポリシロキサン(a)に対するオルガノポリシロキサン(b)の含有量の割合は、質量比で、1.5~30倍であることが好ましく、2~15倍であることがより好ましい。本発明に用いるハードコート剤組成物において、このような割合で両者を含有すれば、硬化反応により形成されるオルガノポリシロキサン3次元架橋構造が、オルガノポリシロキサン(b)主体の3次元架橋構造中に(a)成分オルガノポリシロキサンが部分的に組み込まれた構成となり、最終的に得られるハードコート層の耐擦傷性を良好なものとすることができる。
 本発明に用いるハードコート剤組成物は、上記硬化性のオルガノポリシロキサン、好ましくはオルガノポリシロキサン(T)を含有する。ハードコート剤組成物におけるオルガノポリシロキサンの含有量は、溶媒を除く組成物(以下、必要に応じて「不揮発成分」という)全量に対して、50~100質量%であることが好ましく、60~95質量%であることがより好ましい。本発明において、不揮発成分の量は、150℃で45分間保持した後の質量変化に基づいて測定している。
(任意成分)
 本発明に用いるハードコート剤組成物には、上記オルガノポリシロキサンの他に、種々の添加剤が含まれていてもよい。たとえば、本発明のハードコート層を有する樹脂基板のハードコート層の耐擦傷性をさらに向上させるためには、シリカ微粒子が含まれるハードコート剤組成物が好ましい。このために、ハードコート剤組成物にコロイダルシリカを配合することが好ましい。なお、コロイダルシリカとは、シリカ微粒子が、水またはメタノール、エタノール、イソブタノール、プロピレングリコールモノメチルエーテル等の有機溶媒中に分散されたものをいう。
 また、シリカ微粒子は、上記オルガノポリシロキサンの製造過程で、原料のモノマーに配合することもできる。コロイダルシリカを含む反応系中でオルガノポリシロキサンを製造することにより、シリカ微粒子を含むオルガノポリシロキサンが得られる。例えば、コロイダルシリカにTモノマーと必要により水や酸触媒を添加し、コロイダルシリカの分散媒中で前記のようにオルガノポリシロキサンを製造することができる。このようにして得られたオルガノポリシロキサンを使用して、シリカ微粒子を含む本発明に用いるハードコート剤組成物を製造することができる。
 本発明に係るハードコート剤組成物に用いる上記シリカ微粒子は、平均粒径(BET法)が1~100nmであることが好ましい。平均粒径が100nmを超えると、粒子が光を乱反射するため、得られるハードコート層の曇価の値が大きくなり、光学品質上好ましくない場合がある。さらに、平均粒径は5~40nmであることが特に好ましい。これは、ハードコート層に耐擦傷性を付与しつつ、かつハードコート層の透明性を保持するためである。また、コロイダルシリカは水分散型および有機溶剤分散型のどちらも使用でき、水分散型を使用することが好ましい。さらには、酸性水溶液中で分散させたコロイダルシリカを用いることが特に好ましい。さらに、コロイダルシリカには、アルミナゾル、チタンゾル、セリアゾル等のシリカ微粒子以外の無機質微粒子を含有させることもできる。
 本発明に用いるハードコート剤組成物におけるシリカ微粒子の含有量としては、溶媒を除く組成物(不揮発成分)全量に対して、1~50質量%となる量が好ましく、5~40質量%となる量がより好ましい。本発明に用いるハードコート剤組成物における不揮発成分中のシリカ微粒子の含有量が1質量%未満では、得られるハードコート層において十分な耐擦傷性を確保できないことがあり、前記含有量が50質量%を越えると、不揮発成分中の、オルガノポリシロキサンの割合が低くなりすぎて、オルガノポリシロキサンの熱硬化による硬化膜形成が困難になる、最終的に得られるハードコート層にクラックが発生する、シリカ微粒子同士の凝集が起こってハードコート層の透明性が低下するなどのおそれがある。
 本発明に用いるハードコート剤組成物はさらに、塗工性向上の目的で、消泡剤や粘性調整剤等の添加剤を含んでいてもよく、プライマー層への密着性向上の目的で密着性付与剤等の添加剤を含んでいてもよく、また、塗工性および得られる塗膜の平滑性を向上させる目的でレベリング剤を添加剤として含んでいてもよい。これらの添加剤の配合量は、オルガノポリシロキサン100質量部に対して、各添加剤成分毎に0.01~2質量部となる量が好ましい。また、本発明に用いるハードコート剤組成物は、本発明の目的を損なわない範囲で、染料、顔料、フィラーなどを含んでいてもよい。
 本発明に用いるハードコート剤組成物は、さらに硬化触媒を含有してもよい。硬化触媒としては、脂肪族カルボン酸(ギ酸、酢酸、プロピオン酸、酪酸、乳酸、酒石酸、コハク酸等)のリチウム塩、ナトリウム塩、カリウム塩等のアルカリ金属塩;ベンジルトリメチルアンモニウム塩、テトラメチルアンモニウム塩、テトラエチルアンモニウム塩等の四級アンモニウム塩;アルミニウム、チタン、セリウム等の金属アルコキシドやキレート;過塩素酸アンモニウム、塩化アンモニウム、硫酸アンモニウム、酢酸ナトリウム、イミダゾール類及びその塩、トリフルオロメチルスルホン酸アンモニウム、ビス(トルフルオルメチルスルホニル)ブロモメチルアンモニウム等が挙げられる。また、硬化触媒の配合量は、オルガノポリシロキサン100質量部に対して、好ましくは0.01~10質量部であり、より好ましくは0.1~5質量部である。硬化触媒の含有量が0.01質量部より少ないと十分な硬化速度が得られにくく、10質量部より多いとハードコート剤組成物の保存安定性が低下したり、沈殿物を生じたりすることがある。
 また、本発明に用いるハードコート剤組成物は、樹脂基板の黄変を抑制するために、さらに紫外線吸収剤を含むことが好ましい。紫外線吸収剤としては、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、ベンゾイミダゾール系紫外線吸収剤、シアノアクリレート系紫外線吸収剤、サリシレート系紫外線吸収剤、ベンジリデンマロネート系紫外線吸収剤、トリアジン系紫外線吸収剤等が挙げられる。これらの紫外線吸収剤は、1種を使用してもよく2種以上を併用してもよい。また、最終的に得られるハードコート層から上記紫外線吸収剤がブリードアウトするのを抑制するために、トリアルコキシシリル基を有する紫外線吸収剤を用いてもよい。トリアルコキシシリル基を有する紫外線吸収剤は、オルガノポリシロキサンの熱硬化による硬化膜形成の際に、加水分解反応により水酸基に変換され、次いで脱水縮合反応により硬化膜中に組み込まれ、結果として、紫外線吸収剤のハードコート層からのブリードアウトを抑制することができるものである。このようなトリアルコキシシリル基として、具体的には、トリメトキシシリル基、トリエトキシシリル基等が挙げられる。ハードコート剤組成物中の紫外線吸収剤の含有量は、オルガノポリシロキサン100質量部に対して、0.1~50質量部であることが好ましく、0.1~30質量部であることが特に好ましい。
 さらに、本発明においては、常温でのハードコート剤組成物のゲル化を防止し、保存安定性を増すために、ハードコート剤組成物のpHを3.0~6.0に調整することが好ましく、4.0~5.5に調整することがより好ましい。pHが2.0以下あるいは7.0以上の条件下では、ケイ素原子に結合した水酸基が極めて不安定であるため保存に適さない。pH調整の手法としては、酸の添加、硬化触媒の含有量の調整等が挙げられる。酸としては、塩酸、硫酸、硝酸、リン酸、亜硝酸、過塩素酸、スルファミン酸等の無機酸;ギ酸、酢酸、プロピオン酸、酪酸、シュウ酸、コハク酸、マレイン酸、乳酸、p-トルエンスルホン酸等の有機酸が挙げられる。
 本発明に用いるハードコート剤組成物は、通常、必須成分であるオルガノポリシロキサン、および任意成分である種々の添加剤等が溶媒中に溶解、分散した形態で調製される。前記ハードコート剤組成物中の全不揮発成分が溶媒に安定に溶解、分散することが必要であり、そのために溶媒は、少なくとも20質量%以上、好ましくは50質量%以上のアルコールを含有する。
 このような溶媒に用いるアルコールとしては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、1-メトキシ-2-プロパノール、2-エトキシエタノール、4-メチル-2-ペンタノール、および2-ブトキシエタノール等が好ましく、これらのうちでも、オルガノポリシロキサンの溶解性が良好な点、塗工性が良好な点から、沸点が80~160℃のアルコールが好ましい。具体的には、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、1-メトキシ-2-プロパノール、2-エトキシエタノール、4-メチル-2-ペンタノール、および2-ブトキシエタノールが好ましい。
 また、本発明に係るハードコート剤組成物に用いる溶媒としては、オルガノポリシロキサンを製造する際に、原料モノマー、例えばアルキルトリアルコキシシランを加水分解することに伴って発生する低級アルコール等や、水分散型コロイダルシリカ中の水で加水分解反応に関与しない水分、有機溶媒分散系のコロイダルシリカを使用した場合にはその分散有機溶媒も含まれる。
 さらに、本発明に用いるハードコート剤組成物においては、上記以外の溶媒として、水/アルコールと混和することができるアルコール以外の他の溶媒を併用してもよく、このような溶媒としては、アセトン、アセチルアセトン等のケトン類;酢酸エチル、酢酸イソブチル等のエステル類;プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジイソプロピルエーテル等のエーテル類が挙げられる。
 本発明に係るハードコート剤組成物において用いる溶媒の量は、ハードコート剤組成物中の全不揮発成分100質量部に対して、50~3000質量部であることが好ましく、150~2000質量部であることがより好ましい。
 本発明に用いるハードコート剤組成物は、上記説明した各種成分を通常の方法で、均一に混合することで得られる。
(1-3)塗布・硬化
 本発明の製造方法の(1)硬化膜形成工程においては、上記のようにして調製したハードコート剤組成物を上記の樹脂基板の少なくとも一方の面上に塗布してハードコート剤組成物の塗膜を形成し、得られる塗膜を硬化させる。ハードコート層を有する樹脂基板が、樹脂基板とハードコート層の間にプライマー層等の各種機能層を有する場合は、プライマー層等の上にハードコート剤組成物を塗布し、これを硬化させる。
 上記ハードコート剤組成物を塗布する方法としては、特に限定されないが、スプレーコート法、ディップコート法、フローコート法等の通常の塗工方法が挙げられる。用いる塗工方法に応じて、ハードコート剤組成物の粘度、固形分濃度等を適宜調整することが好ましい。
 ハードコート剤組成物を樹脂基板等の表面に塗布して形成される塗膜の厚さは(硬化前の厚さ)は、組成物における固形分濃度による。硬化後の膜厚が所定の範囲内になるように、固形分濃度を勘案する等をして、適宜調整することが好ましい。
 なお、樹脂基板上に施される硬化膜の膜厚は、以下に説明する硬化後の状態で、0.1μm以上20μm以下であることが好ましく、1μm以上10μm以下であることがさらに好ましく、2μm以上10μm以下であることが特に好ましい。なお、本発明の製造方法においては、上記塗膜の硬化後、得られる硬化膜に対して、さらに施される(2)Xeエキシマ光照射および(3)酸化処理/第2の熱処理によって膜厚は変化することはない。したがって、以下の硬化後の膜厚、すなわち硬化膜の膜厚を、最終的に得られるハードコート層の最終膜厚として扱ってよい。ハードコート層の膜厚が小さすぎると、本発明の製造方法によっても、十分な耐擦傷性を確保することが困難である可能性がある。一方、ハードコート層の膜厚が大きすぎると、クラックや剥離が発生しやすくなるおそれがある。よって、十分な耐擦傷性を確保しつつ、クラックや剥離の発生を抑制するためには、硬化膜の膜厚(すなわち、プライマー層の膜厚を除いたハードコート層の膜厚)は、0.1μm以上20μm以下であることが好ましい。
 このようにして上記樹脂基板等の少なくとも一方の面上に形成されたハードコート剤組成物の塗膜に、次いで、第1の熱処理を施すことによって、上記オルガノポリシロキサンを硬化させる。なお、本明細書において、「ハードコート剤組成物が硬化する」という場合があるが、これはハードコート剤組成物に含まれるオルガノポリシロキサンが硬化することをいう。また、この処理に先立って、必要に応じて乾燥の操作を設けてもよい。
 乾燥は、上記のようにして樹脂基板上に形成されたハードコート剤組成物塗膜を、通常、常温~樹脂基板の熱変形温度未満の温度条件下に一定時間置くことで行われ、これにより塗膜中の溶媒が一部または全部除去される操作である。溶媒の乾燥条件として、具体的には、例えば0~60℃の温度で、10分~10時間保持する乾燥条件が挙げられる。また、減圧度を調整しながら真空乾燥などにより溶媒の除去を行ってもよい。
 本発明の製造方法においては、任意に行われる乾燥の後、ハードコート剤組成物の塗膜に、第1の熱処理を施して硬化膜を形成する。この、ハードコート剤組成物塗膜に対して行う本発明の製造方法における第1の熱処理は、ハードコート剤組成物を縮合硬化させるために通常行われる処理と同様の処理とすることができる。
 上記で得られた塗膜に対して行う第1の熱処理は、樹脂基板の耐熱性に問題がない範囲において高い温度で行う方がより早く硬化を完了させることができ、好ましい。しかし、例えば、1価の有機基としてメチル基を有するオルガノポリシロキサンを用いた場合、加熱硬化時の温度が250℃以上では、熱分解によりメチル基が脱離するため、好ましくない。よって、硬化温度としては、50~200℃が好ましく、80~160℃が特に好ましく、100℃~140℃がとりわけ好ましい。また、加熱手段としては、自然対流型恒温器、定温型乾燥器、熱風循環式乾燥器、送風型乾燥器、真空乾燥装置で加熱する方法等が挙げられる。また、電気炉等も使用できる。さらに赤外線ランプを用いた加熱手段も適宜用いることが可能である。これらの加熱手段は、1種を使用してもよく2種以上を適宜組み合わせて使用してもよい。
 本発明の製造方法における上記第1の熱処理にかかる時間は、上記塗膜を構成するハードコート剤組成物に含まれるオルガノポリシロキサンが十分に縮合硬化してシロキサン結合による3次元構造が形成されるような時間であれば特に制限されないが、10分間~4時間が好ましく、20分間~3時間が特に好ましく、30分間~2時間がとりわけ好ましい。
(2)Xeエキシマ光照射工程
 本発明の製造方法におけるXeエキシマ光照射工程は、上記(1)硬化膜形成工程で樹脂基板等の表面上に形成された硬化膜に、酸素濃度が5体積%以下の雰囲気下、Xeエキシマ光による照射処理を施す工程である。
 Xeエキシマ光は、波長172nmの紫外線であり、上記(1)で得られた硬化膜の表面にXeエキシマ光を照射することにより、該硬化膜の表面構造を変化させること、具体的には、硬化膜表面に存在するケイ素原子と炭素原子の結合を特異的に切断することが可能である。上記オルガノポリシロキサンを含有するハードコート剤組成物の硬化膜においては、硬化膜内部では、シロキサン結合による3次元架橋構造(ネットワーク)が形成されているが、硬化膜表面には、原料のオルガノポリシロキサンに由来する、1価の有機基、例えば、メチル基、エチル基等のアルキル基がケイ素原子に結合した-SiCHや-SiC等の構造が多く存在する。このような硬化膜の表面に、Xeエキシマ光を照射すれば、ケイ素原子と炭素原子の結合の全部または一部が切断され、例えば、-SiCH場合には、メチル基が切断され、Si・のようなラジカルが発生する。このように本発明の製造方法においては、上記(1)で得られた硬化膜表面のケイ素原子と炭素原子の結合を切断して硬化膜表面にSiラジカルを発生させる手段として、Xeエキシマ光の照射を用いているが、これは、波長172nmのXeエキシマ光が、他の波長の紫外線に比べケイ素原子と炭素原子の結合を効果的に切断可能である理由による。
 ここで、上記硬化膜表面にXeエキシマ光を照射する際に、雰囲気中に酸素が存在すると、酸素がXeエキシマ光を選択的に吸収することから、硬化膜表面に到達するXeエキシマ光の量が減少し、ケイ素原子-炭素原子結合を切断する効率が著しく低下する。また、酸素はXeエキシマ光の照射によりオゾンに変換され、この発生したオゾンが硬化膜表面や、プライマー層、さらには樹脂基板の劣化を引き起こすことがある。したがって、樹脂基板上に形成されたハードコート剤組成物の硬化膜へのXeエキシマ光照射は、酸素濃度が5体積%以下の雰囲気下、好ましくは3体積%以下、より好ましくは1体積%以下の雰囲気下で行われる。具体的には、Xeエキシマ光を吸収せず、かつXeエキシマ光照射の影響を受けない不活性ガス、例えば、窒素、アルゴン等でガス置換された雰囲気中で行われる。
 上記ハードコート剤組成物の硬化膜表面に対するXeエキシマ光照射処理においては、硬化膜表面におけるXeエキシマ光照射エネルギーが、300~9000mJ/cmとなる処理であることが好ましく、500~8000mJ/cmとなる処理であることがより好ましく、1000~8000mJ/cmであることが特に好ましい。Xeエキシマ光照射エネルギーが300mJ/cmより小さいと、硬化膜表面におけるケイ素原子-炭素原子結合の切断が十分に促進されず、最終的に得られるハードコート層に十分な耐擦傷性を付与することができないことがある。また、Xeエキシマ光照射エネルギーが9000mJ/cmより大きいと、硬化膜表面だけでなく、より深部のケイ素原子-炭素原子結合や硬化膜を構成しているケイ素原子-酸素原子結合まで切断され、その後の熱処理(第2の熱処理)において硬化収縮による収縮応力に起因するクラック等の発生が促進されることがある。
 本発明の製造方法において、上記ハードコート剤組成物の硬化膜表面に対するXeエキシマ光照射は、具体的には、XeエキシマUVランプを用いて行うことができる。XeエキシマUVランプとしては、特に制限されず、各種用途においてXeエキシマ光を照射するために用いられるXeエキシマUVランプを、本発明の製造方法に用いることができる。このようなXeエキシマUVランプとしては、市販品としてエキシマ照射装置があり、例えば、標準型エキシマ光照射ユニット(放射照度:10mW/cm、ウシオ電機社製)、分離型エキシマ紫外線照射装置(放射照度:35mW/cm、岩崎電気社製)、ランプハウス型エキシマUV光源(E500-172、放射照度:10mW/cm、エキシマ社製)等を用いることが可能である。樹脂基板の形状に合わせて、適宜選択すればよい。
 このようなXeエキシマUVランプを用いてXeエキシマ光照射を行うが、例えば、放射照度:10mW/cmのXeエキシマUVランプを用いて照射処理を行う場合に、硬化膜表面におけるXeエキシマ光照射エネルギーを上記好ましい範囲とするためには、密閉可能なチャンバー内に該ランプを設置し、該ランプから0.1~10mm程度の距離に、所定の面積を有する上記ハードコート剤組成物の硬化膜を有する樹脂基板を、硬化膜の表面全体に均一にXeエキシマ光照射ができるように、該ランプに硬化膜を対向させて配置し、窒素ガス雰囲気下、1~15分間のXeエキシマ光照射を行う等の方法が挙げられる。
 なお、上記ハードコート剤組成物の硬化膜表面に存在するケイ素原子-炭素原子結合がXeエキシマ光照射により切断され、ケイ素原子に結合していた有機基数が照射前と比べて減少した状態は、最終的に得られるハードコート層を有する樹脂基板のハードコート層表面についてFT-IR等を用いた赤外吸光分析や走査型X線光電子分光装置を用いた表面組成分析等により確認することができる。本発明の製造方法においては、例えば、赤外吸光分析を用いて測定される上記硬化膜表面における有機基数の、Xeエキシマ光照射前に対するXeエキシマ光照射後の割合は、95%以下であることが好ましく、90%以下であることがより好ましい。この割合の下限は0%、つまりXeエキシマ光照射後に硬化膜表面における有機基の全てが切断された状態、であってもよいが、その後の熱処理(第2の熱処理)において硬化収縮による収縮応力に起因するクラック等の発生が促進される点から、好ましくは80%程度である。
(3)酸化処理/第2熱処理工程
 本発明の製造方法の(3)酸化処理/第2熱処理工程は、上記Xeエキシマ光照射工程後の硬化膜を酸化処理した後、さらに第2の熱処理を施してハードコート層とする工程である。
 上記酸化処理は、通常、上記Xeエキシマ光照射工程後の硬化膜を、上記酸素濃度5体積%以下の密封状態から、空気中に取り出すことで十分に行われる。ただし、必要に応じて、エキシマ光照射工程後、すぐに乾燥空気、酸素雰囲気、あるいは水蒸気雰囲気にさらすこと等の方法により、酸化処理を積極的に行うことも可能である。
 この酸化処理により、上記Xeエキシマ光照射工程で発生した硬化膜表面のSiラジカルは酸化され、ケイ素原子に水酸基が結合した状態(-SiOH)となる。本発明の製造方法においては、この状態の硬化膜を第2の熱処理に供することにより、硬化膜表面にシロキサン結合を形成させて高硬度の表面を作製することで、十分な耐擦傷性を有するハードコート層を得るものである。
 この第2の熱処理における温度条件としては、上記第1の熱処理と同様、樹脂基板の耐熱性に問題がない範囲において高い温度で行う方がより早く処理を完了させることができ好ましい。このような温度条件として、具体的には、80℃以上かつ樹脂基板の熱変形温度以下であることが好ましい。樹脂基板にビスフェノールA系ポリカーボネート樹脂を用いる場合、80℃~140℃の範囲がより好ましく、80~130℃の範囲がさらに好ましい。
 また、加熱手段としても、上記第1の熱処理と同様の方法、具体的には、自然対流型恒温器、定温型乾燥器、熱風循環式乾燥器、送風型乾燥器、真空乾燥装置で加熱する方法等が挙げられる。また、電気炉等も使用できる。さらに赤外線ランプを用いた加熱手段も適宜用いることが可能である。これらの加熱手段は、1種を使用してもよく2種以上を適宜組み合わせて使用してもよい。
 本発明の製造方法における上記第2の熱処理にかかる時間は、上記酸化処理後の硬化膜表面における-SiOH同士が十分に反応してシロキサン結合(-Si-O-Si-)を形成するような時間であれば特に制限されないが、1分間~2時間が好ましく、5分間~2時間が特に好ましく、5分間~1時間がとりわけ好ましい。
(プライマー層の形成)
 本発明の製造方法が適用されるハードコート層を有する樹脂基板においては、樹脂基板と上記ハードコート層の間にプライマー層を有していてもよく、樹脂基板とハードコート層との密着性向上のためには、プライマー層を有していることが好ましい。プライマー層は、特に限定されないが、本発明においては、アクリル系ポリマー、紫外線吸収剤、および溶媒を含むプライマー組成物を樹脂基板上に塗布し乾燥させることによって形成することが好ましい。
 このようなアクリル系ポリマーとしては、アルキル基の炭素数が6以下のアルキル基を有するアクリル酸エステルやメタクリル酸エステルから選ばれる少なくとも1種を「主なモノマー」とするホモポリマーやそれらモノマー同士のコポリマーが好ましい。ここにおいて「主なモノマー」とは、具体的には、原料モノマー全体に対して90~100モル%有するものを指し、以下同様とする。また、上記主なモノマーと、それ以外のアクリル酸エステルやメタクリル酸エステルの少なくとも1種とのコポリマーも好ましい。前記したそれ以外のモノマーとしては、炭素数7以上のアルキル基や炭素数12以下のシクロアルキル基を有するアクリル酸エステルやメタクリル酸エステルが挙げられる。また、これらモノマーとともに、官能基含有アルキル基(例えば、ヒドロキシアルキル基)を有するアクリル酸エステルやメタクリル酸エステルを少量共重合させて得られるコポリマーも使用できる。上記シクロアルキル基としては、シクロヘキシル基、4-メチルシクロヘキシル基、4-t-ブチルシクロヘキシル基、イソボルニル基、ジシクロペンタニル基、ジシクロペンテニルオキシエチル基などが挙げられる。
 これらの中でも、本発明に用いるアクリル系ポリマーとしては、メタクリル酸アルキルエステルから選ばれる1種または2種以上を主なモノマー単位として重合して得られるポリマーが好ましい。さらに、メタクリル酸メチル、メタクリル酸n-ブチル、メタクリル酸tert-ブチル、メタクリル酸エチル、メタクリル酸イソブチル等から選ばれるアルキル基の炭素数が6以下のメタクリル酸アルキルエステルの1種または2種以上を主なモノマーとして重合して得られるホモポリマーまたはコポリマーが好ましく、メタクリル酸メチル、メタクリル酸tert-ブチル、メタクリル酸エチル等のホモポリマー、メタクリル酸メチルと、メタクリル酸n-ブチル、メタクリル酸エチル、メタクリル酸イソブチルから選ばれる1種または2種以上とのコポリマーがより好ましい。
 その他に、加水分解性シリル基及び/又はSiOH基がC-Si結合を介して結合したアクリル系単量体から選ばれる1種以上を重合/共重合して得られるアクリル系ポリマーも採用できる。
 前記アクリル系単量体としては、3-メタクリロイルオキシプロピルトリメトキシシラン、3-メタクリロイルオキシプロピルメチルジメトキシシラン、3-メタクリロイルオキシプロピルジメチルメトキシシラン、3-メタクリロイルオキシプロピルトリエトキシシラン、3-メタクリロイルオキシプロピルメチルジエトキシシラン、3-アクリロイルオキシプロピルトリメトキシシラン、3-アクリロイルオキシプロピルメチルジメトキシシラン等が挙げられる。
 また、プライマー層形成に用いられるこれらのアクリル系ポリマーは、質量平均分子量が20,000以上であることが好ましく、50,000以上がより好ましく、1百万以下のものが好ましく使用される。質量平均分子量がこの範囲にあるアクリル系ポリマーは、プライマー層としての密着性や強度の性能が十分に発揮され好ましい。
 プライマー層には、樹脂基板の黄変を抑制するために、紫外線吸収剤が含まれていてもよい。紫外線吸収剤としては、上記本発明のハードコート剤組成物に含まれる紫外線吸収剤と同様のものを用いることができる。これらは1種を用いてもよく、2種以上を併用してもよい。プライマー層中の紫外線吸収剤の含有量は、アクリル系ポリマー等の樹脂成分100質量部に対して、1~50質量部であることが好ましく、1~30質量部が特に好ましい。
 プライマー層は、さらに光安定剤等を含んでもよい。光安定剤としては、ヒンダードアミン類、;ニッケルビス(オクチルフェニル)サルファイド、ニッケルコンプレクス-3,5-ジ-tert-ブチル-4-ヒドロキシベンジルリン酸モノエチラート、ニッケルジブチルジチオカーバメート等のニッケル錯体が挙げられる。これらは2種以上を併用してもよい。プライマー層中の光安定剤の含有量は、アクリル系ポリマー等の樹脂成分100質量部に対して、0.1~50質量部であることが好ましく、0.1~10質量部が特に好ましい。
 プライマー層形成に用いるプライマー組成物には、通常、溶媒が含まれる。溶媒としては、前記アクリル系ポリマーを安定に溶解することが可能な溶媒であれば、特に限定されない。具体的には、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;テトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタン等のエーテル類;酢酸エチル、酢酸ブチル、酢酸メトキシエチル等のエステル類;メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、2-メトキシエタノール、4-メチル-2-ペンタノール、2-ブトキシエタノール、1-メトキシ-2-プロパノール、ジアセトンアルコール等のアルコール類;n-ヘキサン、n-ヘプタン、イソクタン、ベンゼン、トルエン、キシレン、ガソリン、軽油、灯油等の炭化水素類;アセトニトリル、ニトロメタン、水等が挙げられる。これらは2種以上を併用してもよい。
 溶媒の量は、アクリル系ポリマー等の樹脂成分100質量部に対して、50~10000質量部であることが好ましく、100~10000質量部が特に好ましい。なお、プライマー組成物中の不揮発成分(固形分)の含有量は、組成物全量に対して0.5~75質量%であることが好ましく、1~40質量%であることが特に好ましい。
 上記プライマー組成物は、レベリング剤、消泡剤、粘性調整剤等の添加剤をさらに含んでいてもよい。
 プライマー組成物を樹脂基板上に塗布する方法としては、特に限定されないが、スプレーコート法、ディップコート法、フローコート法等が挙げられる。また、乾燥のための加熱条件は、特に限定されないが、50~140℃で5分~3時間であることが好ましい。
 上記プライマー組成物を用いて樹脂基板上に形成されるプライマー層は、プライマー層の膜厚が小さすぎると、樹脂基板とハードコート層との密着性を向上させる効果が不十分となることがあるため、樹脂基板とハードコート層とを十分に接着し、前記添加剤の必要量を保持するのに必要な膜厚であればよい。このようなプライマー層の厚さとしては、0.1μm以上10μm以下であることが好ましく、2μm以上8μm以下であることが特に好ましい。
 なお、本発明の製造方法の対象となるハードコート層を有する樹脂基板が、上記プライマー層を有する場合には、このようにして形成されたプライマー層上に、上で述べたのと同様にしてハードコート層を形成することで、本発明によりハードコート層を有する樹脂基板を製造することができる。
<本発明のハードコート層を有する樹脂基板>
 上記本発明の製造法により得られる本発明のハードコート層を有する樹脂基板は、ハードコート層内部にシロキサン結合による3次元架橋構造(ネットワーク)が形成されているばかりでなく、ハードコート層の表面側もハードコート層内部と比較して、シロキサン結合がより強固に形成された構造を有するものである。このような構造のハードコート層を有することにより本発明のハードコート層を有する樹脂基板は、ハードコート層の深さ方向に硬さの傾斜をもち、特に表面の硬度が著しく改善され、全体として、優れた耐擦傷性を有するものである。
 ここで、本発明のハードコート層を有する樹脂基板のような薄膜材料の「硬さ」、すなわち、耐擦傷性といった機械的強度、を求める場合、一般的には微小硬度測定試験を用いて評価を行うことができる。微小硬度測定試験は、測定表面への一定の荷重条件のもとでの圧子の侵入深さから硬さを算出する試験方法であり、これにより、引っかき硬さに対応するマルテンス硬さを知ることができる。
 この硬さは耐擦傷性を表す指針となるが、本発明の製造方法より得られる本発明のハードコート層を有する樹脂基板においては、ハードコート層表面のマルテンス硬さが、従来のもの、例えば、本発明の製造方法においてXeエキシマ光照射処理を行う前の硬化処理のみを施した状態のものに比べ非常に高く、耐擦傷性が向上しているといえる。
 なお、本発明のハードコート層を有する樹脂基板においては、ハードコート層表面のマルテンス硬さは、具体的には、表面から150nmまでの深さにおいて、200~850N/mm程度の値を有するものが好ましい。
 本発明のハードコート層を有する樹脂基板のハードコート層は、上記本発明の製造方法により作製されることで、ハードコート層内部に比べて表面の硬度が著しく大きいという特徴を有する。上記微小硬度測定試験は、負荷-除荷試験で圧子を押した圧跡からマルテンス硬さを測定するものであって、負荷荷重が大きいほど押込み深さは大きく、より深部のマルテンス硬さを測定することが可能であり、小さい荷重で測定すれば押込み深さは小さく、より表面のマルテンス硬さの測定が可能である。したがって、異なる荷重条件で測定したマルテンス硬さを比ベることで、ハードコート層表面からの深さの違いによるマルテンス硬さの違いを評価することが可能である。
 具体的には、ハードコート層の評価について、次に示す測定条件によって得られたマルテンス硬さの数値の比を用いることができる。
(評価1)
 負荷速度・除荷速度F=0.5mN/5s、クリープC=5sの条件で測定したマルテンス硬さ(HM(0.5))に対する、負荷速度・除荷速度F=0.01mN/5s、クリープC=5sの条件で測定したマルテンス硬さ(HM(0.01))の比、すなわちHM(0.01)/HM(0.5)
(評価2)負荷速度・除荷速度F=0.5mN/5s、クリープC=5sの条件で測定したマルテンス硬さ(HM(0.5))に対する、負荷速度・除荷速度F=0.005mN/5s、クリープC=5sの条件で測定したマルテンス硬さ(HM(0.005))の比、すなわちHM(0.005)/HM(0.5)
 本発明のハードコート層を有する樹脂基板においては、ハードコート層におけるHM(0.01)/HM(0.5)が、1.10~1.80であることが好ましく、1.10~1.65であることがより好ましい。また、HM(0.005)/HM(0.5)が1.21~2.50であることが好ましく、1.21~2.30であることがより好ましい。HM(0.005)/HM(0.5)が、この範囲にあれば、本発明のハードコート層を有する樹脂基板のハードコート層が、ハードコート層内部に比べて表面の硬度が著しく大きくなり、ハードコート層の深さ方向に硬さの傾斜をもつようになる。これにより、特に表面の硬度が著しく改善され、全体として、優れた耐擦傷性を有する。一方、HM(0.005)/HM(0.5)が1.21未満であるハードコート層を有する樹脂基板では、ハードコート層の深さ方向に硬さの傾斜をほとんど持たないため、耐擦傷性の向上は見られない。
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。なお、例1~5が実施例であり、例6~8が比較例である。また、オルガノポリシロキサンの分析を以下に示す方法によって行った。
(1)ケイ素原子結合水酸基の個数(B)/ケイ素原子結合アルコキシ基の個数(A)
 以下、実施例において用いたオルガノポリシロキサンは、ケイ素原子結合アルコキシ基として、ケイ素原子結合メトキシ基(SiO-CH)を有するもののみであったため、上記(B)/(A)として、以下の方法により求めたSi-OH/SiO-CHの比を用いた。赤外吸光分析装置(FT-IR、サーモフィッシャーサイエンティフィック社製、型式:Avatar/Nicolet FT-IR360)を用い、2860cm-1付近のSiO-CHに由来する吸収と900cm-1付近のSi-OHに由来する吸収の面積比からSi-OH/SiO-CHの比を求めた。
(2)オルガノポリシロキサン中のケイ素原子の結合状態の解析
 ハードコート剤組成物が含有するオルガノポリシロキサン中のケイ素原子の結合状態、具体的には、M単位、D単位、T単位、Q単位の存在の割合、およびT0~T3の存在比を、核磁気共鳴分析装置(29Si-NMR:日本電子株式会社製、ECP400)を用いて、29Si-NMRのピーク面積比からそれぞれ求めた。測定条件等は以下の通りである。
  ・ポリテトラフルオロエチレン(PTFE)製10mmφ試料管使用、
  ・プローブ:T10、
  ・共鳴周波数79.42MHz、
  ・パルス幅10μsec、
  ・待ち時間20sec、
  ・積算回数1500回、
  ・緩和試薬:Cr(acac)を0.1質量%含有、
  ・外部標準試料:テトラメチルシラン。
 また、各構造に由来する29Si-NMRの化学シフトは、メチル系オルガノポリシロキサンの場合、以下のとおりである。
(M単位~Q単位)
  ・M単位:15~5ppm、
  ・D単位:-15~-25ppm、
  ・T単位:-35~-75ppm、
  ・Q単位:-90~-130ppm。
(T0~T3)
  ・T0:-40~-41ppm、
  ・T1:-49~-50ppm、
  ・T2:-57~-59ppm、
  ・T3:-66~-70ppm。
(3)数平均分子量Mn、質量平均分子量Mw、および分散度Mw/Mn
 ゲルパーミエーションクロマトグラフィー(GPC、Waters社製のWaters2695、RI検出、カラム:Styragel ガードカラム+HR1+HR4+HR5E、溶離液:クロロホルム)によって求めた。
[1]オルガノポリシロキサン(a)(MSi-1)の合成
 0.2Lのフラスコに、メチル系シリコーンレジンKR-500(信越化学工業社製、Si-OH基由来のピークはFT-IRにより確認されず、実質SiO-CHのみである。各T単位の存在比はT0:T1:T2:T3=ND:15:58:27、Mn=700、Mw=1240、Mw/Mn=1.77)(10g)と1-ブタノール(10g)を加えよく撹拌し、酢酸(10g)、イオン交換水(10g)を加え、さらによく撹拌した。この溶液を40℃で1時間撹拌し、オルガノポリシロキサン(a)「MSi-1」を得た。このMSi-1を含有する溶液(MSi-1濃度:25質量%)をそのまま後述の[3]ハードコート剤組成物の調製に用いた。
 得られたMSi-1について、FT-IRにより、原料であるKR-500との比較を行ったところ、SiO-CH基由来のピークの減少およびSi-OH基由来のピークの出現を確認した。FT-IRのピーク面積比から求めたMSi-1のSi-OH/SiO-CHの比は41.0であった。MSi-1はT単位のみからなり、29Si-NMRの化学シフトから求めた各T単位の存在比は、T0:T1:T2:T3=ND:1.1:30.1:68.8であった。MSi-1のMnは520、Mwは1150、Mw/Mnは2.22であった。
[2]オルガノポリシロキサン(b)(PSi-1)の合成およびオルガノポリシロキサン(b)組成物溶液の調製
 1Lのフラスコに、約15nmの平均粒子径をもつ水分散コロイダルシリカ(pH3.1、シリカ微粒子固形分35質量%)200gと酢酸0.2gを仕込み、メチルトリメトキシシラン138gを添加した。1時間撹拌した後、この組成物を25℃で4日間熟成してシリカ・メタノール-水分散液中で部分加水分解縮合物を確実に形成させた。
 この組成物は不揮発成分が40質量%で、得られたオルガノポリシロキサン(以下、オルガノポリシロキサン(b)「PSi-1」という)はT単位を主とした結合構造(T単位の個数:M単位とD単位とQ単位のそれぞれの個数の総量=100:0)をもち、29Si-NMRの化学シフトから求めた各T単位の存在比は、T0:T1:T2:T3=ND(検出されず):2:54:44であった。得られたオルガノポリシロキサンには、モノマー状のT0体[R-Si(OH)](Rは1価有機基)がほぼ存在せず、原料のメチルトリメトキシシランはオリゴマー状のオルガノポリシロキサンにほぼ完全に転換されていることが確認された。得られたオルガノポリシロキサン(b)PSi-1のMnは400、Mwは670、Mw/Mnは1.68であった。
 上記で得られたオルガノポリシロキサン(b)PSi-1溶液(シリカ微粒子(c)含有)100質量部に、ベンゾフェノン系紫外線吸収剤4質量部を加え、25℃で24時間以上熟成した。希釈溶媒として1-ブタノール、イソプロパノールを用いて、不揮発成分が25質量%(150℃、45分)、粘度が4.4mPa・sのオルガノポリシロキサン(b)PSi-1組成物溶液を調製した。組成物のpHは5.0で安定化した。
[3]ハードコート剤組成物の調製
 上記[2]で得られたオルガノポリシロキサン(b)PSi-1を含むオルガノポリシロキサン(b)組成物溶液80部、上記[1]で得られたオルガノポリシロキサン(a)MSi-1を含む溶液20部を混合して、ハードコート剤組成物HC-1を得た。
[4]ハードコート層を有する樹脂基板サンプルの作製
 上記[3]で得られたハードコート剤組成物を用いて、以下のようにして各実施例、比較例のハードコート層を有する樹脂基板サンプルを作製した。なお、以下のサンプル作製においては、加熱手段として、熱風循環式乾燥器(三洋電機社製、CONVECTION OVEN、 MOV-202F)を使用した。Xeエキシマ光照射手段としては、Xeエキシマランプ光源(エキシマ社製、E500-172)を用いた。
<1>ハードコート剤組成物の硬化膜を有する樹脂基板の作製
 厚さ3mmのポリカーボネート樹脂板(カーボグラス(登録商標)ポリッシュ クリヤー(商品名、旭硝子社製))に、アクリル系プライマーSHP470(商品名、モメンティブ・パフォーマンス・マテリアルズ社製、固形分10質量%溶液)をディップ方式で、乾燥後の膜厚が4~5μmになるように塗工し、120℃に設定した熱風循環式乾燥器を用いて30分間の加熱乾燥を行い、プライマー層を形成させた。つぎに、得られたプライマー層上に、ハードコート剤組成物HC-1をディップ方式でコーティングしHC-1の塗膜を形成させ、25℃で20分間保持後、120℃に設定した熱風循環式乾燥器を用いて1時間の熱処理を行いこの塗膜を硬化させて、ハードコート剤組成物の硬化膜を有する樹脂基板を作製した。このように第1の熱処理を施して得られた硬化膜の膜厚は、2.9μmであった。このサンプルは、ポリカーボネート板の両面にプライマー層とハードコート剤組成物の硬化膜を有する。
[例1]
 上記<1>で得られたハードコート剤組成物の硬化膜を有する樹脂基板(50mm×50mm)を、密封装置内のXeエキシマランプ光源(エキシマ社製、E500-172、放射照度:10mW/cm)から1mmの位置に上記硬化膜の片方の面が対向するようにセットし、窒素雰囲気下(酸素濃度:1体積%以下)において、Xeエキシマランプ光照射処理として、上記ランプ光源と対向する硬化膜全体に均一に、Xeエキシマランプ光を2分間照射した。その後、この樹脂基板を装置から取り出して大気雰囲気に曝して酸化処理を施し、第2の熱処理として、120℃に設定した熱風循環式乾燥器を用いて1時間の加熱処理を行うことで、ハードコート層を有する樹脂基板サンプルを作製した。
 なお、上記Xeエキシマ光照射処理における硬化膜表面でのXeエキシマ光照度を測定したところ照度は10mW/cmであり、硬化膜表面が受けたXeエキシマ光照射エネルギーは1200mJ/cmであった。
 得られたハードコート層を有する樹脂基板のハードコート層の膜厚は、2.9μmであり、上記硬化膜の膜厚からの変化はなかった。このサンプルは、ポリカーボネート板の両面にプライマー層とハードコート層が形成されているが、片面側はハードコート剤組成物の硬化膜からなり、Xeエキシマ光照射した片面側にのみが本発明のXeエキシマ光照射の光改質されたハードコート層が形成されている。その目視による異常の有無を判定した結果、初期サンプルの外観は問題なかった。
[例2~5]
 上記<1>で得られたハードコート剤組成物の硬化膜を有する樹脂基板を用いて、Xeエキシマ光の照射時間・条件、ハードコート層の膜厚以外は上記例1と同様にして、窒素雰囲気下(酸素濃度:1体積%以下)、上記樹脂基板上の硬化膜の片方の面に、Xeエキシマランプ光を5分間(例2)、10分間(例3)、15分間(例4)照射するXeエキシマ光照射処理を行った。その後、樹脂基板を装置から取り出して、例1と同様の加熱処理を行い、ハードコート層を有する樹脂基板のサンプルを作製した。
 例5については、上記<1>で得られたハードコート剤組成物の硬化膜を有する樹脂基板を用いて、照射雰囲気と照射時間、ハードコート層の膜厚以外は上記例1と同様にして、乾燥空気と窒素が体積比1:4で混合された雰囲気下(酸素濃度:4.2体積%)、上記樹脂基板上の硬化膜の片方の面に、15分間のXeエキシマ光照射処理を行った。その後、樹脂基板を装置から取り出して、例1と同様の加熱処理を行い、ハードコート層を有する樹脂基板のサンプルを作製した。
 得られたハードコート層を有する樹脂基板のハードコート層の膜厚は、例2については2.8μm、例3については3.0μm、例4については3.1μmであり、例5については3.3μmであり、上記硬化膜の膜厚からの変化はほとんどなかった。例4以外のすべてのサンプルで初期外観は問題なかった。なお、このXeエキシマ光照射処理において、上記硬化膜表面が受けたXeエキシマ光照射エネルギーは、例2については3000mJ/cm、例3については6000mJ/cm、例4については9000mJ/cmであった。また、例5について、硬化膜表面におけるXeエキシマ光照射エネルギーは、雰囲気による減少がなければ、例4と同じ9000mJ/cmであるが、酸素による吸収を勘案すれば、実際に硬化膜表面が受けたXeエキシマ光照射エネルギーは、それより少ないものであると推定される。
 例4では初期クラックが発生し、初期外観は異常が見られた。これはXeエキシマランプ光により、第1の熱処理が施された硬化膜において存在するSi-CH基がSi-OH基へ光改質され、熱硬化によってSi-O-Si基に変換される際に、硬化収縮による収縮応力のため、初期クラックが発生したものであると考えられる。表面形状測定顕微鏡(キーエンス社製、Profile micrometer VF-7500,7510)を用いて測定したクラックの深さは約400nmであり、この深さがXeエキシマランプ光15分間照射(9000mJ/cm)によって光改質された深さであると推測される。
[例6]
 上記<1>で得られたハードコート剤組成物の硬化膜を有する樹脂基板をそのままハードコート層を有する樹脂基板として後述の評価を行った(Xeエキシマランプ光未照射サンプル)。
[例7]
 上記<1>で得られたハードコート剤組成物の硬化膜を有する樹脂基板を用いて、照射時間・条件、ハードコート層の膜厚以外は上記例1と同様にして、窒素雰囲気下(酸素濃度:1体積%以下)、上記樹脂基板上の硬化膜の片方の面に、Xeエキシマランプ光を5分間照射(Xeエキシマ光照射エネルギー:3000mJ/cm)するXeエキシマ光照射処理を行った。なお、この樹脂基板を装置から取り出した後の熱処理(第2の熱処理)は行わなかった。
 得られた樹脂基板のハードコート層の膜厚は、3.2μmであり、上記硬化膜の膜厚からの変化はほとんどなかった。このサンプルは、ポリカーボネート板の両面にプライマー層とハードコート層が形成されているが、片面側はハードコート剤組成物の硬化膜からなり、もう一方の面についてはXeエキシマ光照射処理は行ったものの、その後の熱処理が施されていない本発明の範囲外の製造方法で作製されたハードコート層が形成されている。その目視による異常の有無を判定した結果、初期サンプルの外観は問題なかった。
[例8]
 上記<1>で得られたハードコート剤組成物の硬化膜を有する樹脂基板に、上記例1において、窒素雰囲気下(酸素濃度:1体積%以下)で行ったXeエキシマランプ光照射を、乾燥空気雰囲気下(酸素濃度:21体積%)で行い、Xeエキシマランプ光照射時間を5分間(Xeエキシマ光照射エネルギー:3000mJ/cm)とした以外は、例1と同様の方法でハードコート層を有する樹脂基板のサンプルを作製した。
 なお、例8について、硬化膜表面におけるXeエキシマ光照射エネルギーは、雰囲気による減少がなければ例2と同じ3000mJ/cmであるが、酸素による吸収を勘案すれば、実際に硬化膜表面が受けたXeエキシマ光照射エネルギーは、それより少ないものであると推定される。
 得られた樹脂基板のハードコート層の膜厚は、2.9μmであり、上記硬化膜の膜厚からの変化はなかった。このサンプルは、ポリカーボネート板の両面にプライマー層とハードコート層が形成されているが、片面側はハードコート剤組成物の硬化膜からなり、もう一方の面についてはXeエキシマ光照射処理は行ったものの、その条件が本発明の範囲外の条件で作製されたハードコート層が形成されている。初期外観は問題なかった。
[5]ハードコート層を有する樹脂基板サンプルの評価
 上記[4]の各例で得られたハードコート層を有する樹脂基板サンプルについて、下記項目の評価を行った。
<1>膜厚(ハードコート層およびプライマー層の膜厚)
 各サンプルにおけるハードコート層およびプライマー層膜厚を干渉膜厚測定装置(スペクトラ・コープ社製、Solid Lambda Thickness)を用いて測定した。このとき、屈折率はn=1.46(ハードコート層)およびn=1.56(プライマー層)の値を用いた。
<2>Xeエキシマ光照射に伴うSi-CH基の減少度
 Xeエキシマ光照射に伴ってSi-CH基は減少する。上記各サンプルにおけるハードコート層についてSi-CH基の減少度を測定した。Xeエキシマ光照射前のハードコート剤組成物の硬化膜(初期)、種々の条件でXeエキシマ光照射した後のハードコート層(検体)のそれぞれについて、所定量中に存在するSi-CHの量を、赤外吸光分析装置(FT-IR、サーモフィッシャーサイエンティフィック社製、型式:Avatar/Nicolet FT-IR360)を用いて測定して両者の量比を算出し、これを下記の式(1)に挿入して求めたものである。
Figure JPOXMLDOC01-appb-M000001
 ここで、式(1)中、ASi-CH3,初期、1270cm-1およびASi-CH3,検体、1270cm-1は、Xeエキシマ光照射前のハードコート剤組成物の硬化膜(初期。すなわち第1の熱処理が施された硬化膜)および種々の条件でXeエキシマ光照射した後のハードコート層(検体)の、赤外吸光分析装置(FT-IR)で測定された1270cm-1付近に現れるSi-CHに由来する吸収の面積を示す。
<3>ハードコート層を有する樹脂基板の表面組成分析
 例2および例3で得られたサンプル、および例6で得られたサンプルについて、走査型X線光電子分光装置(μ-ESCA、アルバック・ファイ社製、Quantera SXM)によるワイドスキャン表面組成分析を行った。表面の有機コンタミを除去するため、アルゴンイオンにて表面から7nm(SiO換算)スパッタした後、測定した。X線源はモノクロメータにより単色化したAlKα線を用い、測定エリア径:100μmΦ、パスエネルギー:224eV、ステップエネルギー:0.4eV、試料角度:45度、スパッタ条件:2kV、3×3mmとした。
<4>初期外観
 上記[4]で得られた各サンプルの初期の状態のハードコート層を目視で観察し、異常の有無を判定した。
  ・○(合格)  : 異常なし
  ・×(不合格) : ハードコート層にクラックあり
<5>耐擦傷性評価
 JIS K5600(5.9)に準拠し、テーバー磨耗試験機(東洋精機製作所社製、型式:ROTARY ABRASION TESTER)に磨耗輪 CALIBRASE(登録商標)CS-10F(TABER社製)を装着し、荷重500g下での500回転後のヘーズ(曇価)を測定し、試験後と試験前の曇価差ΔH500を耐擦傷性とした。ヘーズはJIS K7105(6.4)に準拠し、ヘーズメーター(スガ試験機株式会社製、型式:HGM-2)を用いて測定した。判定基準は以下の通りである。
  ・○(合格)  : ΔH500≦5
  ・×(不合格) : ΔH500>5
 なお、表2においては、耐擦傷性評価を耐擦傷性と表記した。
<6>ハードコート層を有する樹脂基板の微小硬度測定
 上記例1~8で得られたサンプルのハードコート層表面について、微小硬さ試験機(フィッシャーインスツルメンツ社製、ピコデンター HM500)にビッカース角錐圧子を装着し、負荷-除荷試験を行い、荷重/進入深さ曲線を測定した。ここで、負荷速度Fは、それぞれ0.5、0.1、0.01および0.005mN/5sとし、クリープCは5sとし、除荷速度Fは、負荷速度と同じとした。測定データはWIN-HCU(フィッシャーインスツルメンツ社製)により処理され、引っかき硬さであるマルテンス硬さHM(N/mm)および押込み深さhmax(nm)を求めた。また、負荷速度F=0.5mN/5sにおけるHM(0.5)に対する、負荷速度F=0.01mN/5sにおけるHM(0.01)の比、HM(0.01)/HM(0.5)、および負荷速度F=0.5mN/5sにおけるHM(0.5)に対する、負荷速度F=0.005mN/5sにおけるHM(0.005)の比、HM(0.005)/HM(0.5)をそれぞれ算出した。
 なお、表2においては、上記微小高度測定の結果を微小硬度測定 荷重Fと表記した。
 上記で得られた、ハードコート層およびプライマー層の膜厚、Xeエキシマ光照射に伴うSi-CH基減少度、ハードコート層の表面組成分析の結果を製造条件とともに表1に、初期外観、耐擦傷性評価、微小硬度測定の結果を製造条件とともに表2に示す。
 なお、表1、表2において、例5および例8のXeエキシマ光照射エネルギーは、硬化膜表面における実際の照射エネルギーではなく、Xeエキシマランプの出力エネルギーを示すものである。それ以外は、硬化膜表面におけるXeエキシマ光照射エネルギーを示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明の製造方法により得られた例1~5のサンプルについては、従来の熱硬化のみでXeエキシマ光未照射の例6のサンプル、およびXeエキシマ光照射後に熱硬化をしていない例7のサンプル、Xeエキシマ光照射を本発明の製造方法における条件である酸素濃度5体積%以下から外れた、酸素濃度21体積%の乾燥空気中で行った例8のサンプルが、耐擦傷性で不合格であるのに比べ、耐擦傷性の向上が顕著である。例1~5におけるこの耐擦傷性の向上は、ハードコート剤組成物の硬化膜表面におけるSi-CH基の減少度が高く、シロキサン結合の形成による硬質化が促進されたことによるものと考えられる。
 例1~5で得られたサンプルでは、荷重(負荷速度)F=0.5~0.005mN/5s(押込み深さ19~320nm)において、引っかき硬さに相当するマルテンス硬さに変化が見られた。例1~5のマルテンス硬さの値は、荷重(負荷速度)F=0.005mN/5s(押込み深さ19~30nm)において、未照射サンプル(例6)の約1.7~4.3倍であり、荷重(負荷速度)F=0.5mN/5s(押込み深さ230~320nm)においては約1.1~2.3倍であった。また、例1~5で得られたサンプルでは、HM(0.01)/HM(0.5)が、1.13以上、HM(0.005)/HM(0.5)が1.79以上であって、本発明の製造方法によるハードコート層を有する樹脂基板は、マルテンス硬さに傾斜構造を持つハードコート層を有する樹脂基板であることが分かる。
 これは、Xeエキシマ光照射、酸化処理後に行われる熱処理によって、Si-OH基がSi-O-Si基に変換され、表面ごく近傍のみの硬質化が可能であることを示唆している。
 なお、例4で得られたサンプルは、ハードコート剤組成物の硬化膜の表面に照射されたXeエキシマ光照射エネルギーが9000mJ/cmと大きいために、外観に異常があるが、他の実施例に比べ、Si-CH基の減少度が高く、マルテンス硬度も荷重(負荷速度)F=0.5~0.005mN/5s(押込み深さ19~230nm)において、例6のサンプルの2.3~4.3倍であり表面硬化が促進され、耐擦傷性も非常に良い。例4で得られたサンプルのような場合、ハードコート層を有する樹脂基板の用途が限定される可能性がある。これを考慮すると、本発明においてより好ましくは、ハードコート剤組成物の硬化膜の表面に照射されるXeエキシマ光照射エネルギーは500~8000mJ/cmある。
 一方、Xeエキシマ光未照射である例6のサンプルでは、押込み深さ36~350nmにおいてマルテンス硬さはほとんど変化しない。Xeエキシマ光を5分間照射した後、熱処理なしの例7のサンプル、Xeエキシマ光照射を本発明の製造方法における条件である酸素濃度5体積%以下から外れた、酸素濃度21体積%の乾燥空気中で行った例8のサンプルも同様である。また、例6~8で得られたサンプルでは、HM(0.01)/HM(0.5)が、1.05以下、HM(0.005)/HM(0.5)が1.20以下であって、マルテンス硬さに傾斜構造をほとんど持たないハードコート層を有する樹脂基板であることが分かる。
 これは、Xeエキシマ光照射工程および酸化処理/熱処理工程の両方がハードコート剤組成物の硬化膜の表面の硬質化に必須であること、Xeエキシマ光照射工程において本発明の範囲内に雰囲気の酸素濃度を制御することがハードコート剤組成物の硬化膜の表面の硬質化に必須であることを示唆している。
 以上の結果から、本発明のハードコート層を有する樹脂基板の製造方法によれば、ハードコート層表面のマルテンス硬さが表面に向かって傾斜的に高い特性を有し、これにより耐擦傷性が飛躍的に向上したハードコート層を有する樹脂基板が得られることがわかる。この理由として酸素濃度が5体積%以下のN雰囲気下のXeエキシマ光照射により、表面のSi-CH基の結合が切れ、ラジカルが発生し、その後大気中で酸化され、Si-OH基に変換され、さらに第2の熱処理によりSi-OH基がSi-O-Si基に変換されるためであると考えられる。そのため、ハードコート層表面の硬質化が可能であり、マルテンス硬さに傾斜構造をもたせることができ、その結果耐擦傷性を飛躍的に向上できたと推測される。
 一方、本発明の製造方法の範疇から外れた例8のサンプルにおいては、乾燥空気中に含まれる酸素が選択的にXeエキシマ光を吸収し、その結果ハードコート表面のSi-CH基がSi-OH基に変換されないため、その後の熱硬化によってSi-O-Si基に変換されず、表面の硬質化が抑制され、耐擦傷性で不合格となったと考えられる。さらに、Xeエキシマ光を吸収した酸素はオゾンに変換され、このオゾンがハードコート層表面やプライマー層、さらには基材の劣化を促進することがあると考えられ、好ましくない。
 例2および例3のサンプルにおけるハードコート層では表面組成分析において、C/Si比は、0.054および0.057とほぼ同等の値が得られた。一方、Xeエキシマ光未照射サンプルである例6では、C/Si比は0.136であった。なお、本表面組成分析では、アルゴンスパッタした試料を用いて分析を行ったため、得られたC濃度は、シリコーン、シリカ仕込み値から考えると、実際の値よりもやや低めである。これは、スパッタ時にSi-CH基の結合の一部が切れるためと考えられるが、両者の相対比較はXeエキシマ光照射サンプルと未照射サンプルのFT-IR分析でのSi-CH基の減少挙動を明確に支持するものである。
 以上の結果から、本発明の製造方法における酸素濃度5体積%以下でのXeエキシマ光照射工程および酸化処理/熱処理工程の両方がハードコート剤組成物の硬化膜の表面の硬質化に必須であることを示している。
 本発明の製造方法により得られるハードコート層を有する樹脂基板は、優れた耐擦傷性を有するものであり、自動車や各種交通機関に取り付けられる車輌用の窓ガラス、家屋、ビル等の建物に取り付けられる建材用の窓ガラスとして使用できる。
 なお、2010年1月22日に出願された日本特許出願2010-012228号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の開示として取り入れるものである。

Claims (10)

  1.  樹脂基板の少なくとも一方の面上にハードコート層を有する樹脂基板の製造方法であって、
     オルガノポリシロキサンを含むハードコート剤組成物を前記樹脂基板の少なくとも一方の面上に塗布し前記組成物からなる塗膜を形成した後、前記塗膜に第1の熱処理を施して硬化膜を形成する工程と、
     前記硬化膜に酸素濃度が5体積%以下の雰囲気下、Xeエキシマ光照射処理を施す照射工程と、
     前記照射工程後の硬化膜を酸化処理した後、さらに第2の熱処理を施してハードコート層とする工程と、
     をこの順で有することを特徴とする、ハードコート層を有する樹脂基板の製造方法。
  2.  前記Xeエキシマ光照射処理が、硬化膜表面におけるXeエキシマ光照射エネルギーが300~9000mJ/cmとなる処理である、請求項1に記載のハードコート層を有する樹脂基板の製造方法。
  3.  前記Xeエキシマ光照射処理が、硬化膜表面におけるXeエキシマ光照射エネルギーが500~8000mJ/cmとなる処理である、請求項1に記載のハードコート層を有する樹脂基板の製造方法。
  4.  前記第2の熱処理が、80℃以上かつ樹脂基板の熱変形温度以下の温度に前記硬化膜を5~120分間保持する処理である、請求項1~3のいずれか1項に記載のハードコート層を有する樹脂基板の製造方法。
  5.  前記オルガノポリシロキサンにおけるT単位数の割合が70~100%である、請求項1~4のいずれか1項に記載のハードコート層を有する樹脂基板の製造方法。
  6.  前記オルガノポリシロキサンが、T単位とQ単位のみで構成され、その個数の割合がT:Q=90~100:10~0である、請求項1~4のいずれか1項に記載のハードコート層を有する樹脂基板の製造方法。
  7.  前記硬化膜形成工程の前に、さらに、プライマー組成物を前記樹脂基板の少なくとも一方の面上に塗布し乾燥させてプライマー層を形成する工程を有し、前記硬化膜形成工程において前記ハードコート剤組成物を前記プライマー層上に塗布する、請求項1~6のいずれか1項に記載のハードコート層を有する樹脂基板の製造方法。
  8.  前記樹脂基板の材料がポリカーボネート樹脂である、請求項1~7のいずれか1項に記載のハードコート層を有する樹脂基板の製造方法。
  9.  請求項1~8のいずれか1項に記載の製造方法で得られるハードコート層を有する樹脂基板。
  10.  前記ハードコート層表面における、負荷速度・除荷速度F=0.5mN/5s、クリープC=5sの測定条件で測定したマルテンス硬さ(HM(0.5))に対する、負荷速度・除荷速度F=0.005mN/5s、クリープC=5sの測定条件で測定したマルテンス硬さ(HM(0.005))の比、HM(0.005)/HM(0.5)が、1.21~2.50である請求項9に記載のハードコート層を有する樹脂基板。
PCT/JP2011/051126 2010-01-22 2011-01-21 ハードコート層を有する樹脂基板の製造方法およびハードコート層を有する樹脂基板 WO2011090172A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP11734778.1A EP2527047B1 (en) 2010-01-22 2011-01-21 Method for producing resin substrate having hard coat layer, and resin substrate having hard coat layer
KR1020127019260A KR20120123357A (ko) 2010-01-22 2011-01-21 하드 코트층을 갖는 수지 기판의 제조 방법 및 하드 코트층을 갖는 수지 기판
JP2011550973A JP5708499B2 (ja) 2010-01-22 2011-01-21 ハードコート層を有する樹脂基板の製造方法
CN201180005574.2A CN102695565B (zh) 2010-01-22 2011-01-21 具有硬质涂层的树脂基板的制造方法以及具有硬质涂层的树脂基板
BR112012018293-5A BR112012018293A2 (ja) 2010-01-22 2011-01-21 A resin substrate which has a manufacturing method and a hard court layer of a resin substrate which have a hard court layer
US13/541,874 US9605123B2 (en) 2010-01-22 2012-07-05 Process for producing resin substrate having hard coating layer, and resin substrate having hard coating layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-012228 2010-01-22
JP2010012228 2010-01-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/541,874 Continuation US9605123B2 (en) 2010-01-22 2012-07-05 Process for producing resin substrate having hard coating layer, and resin substrate having hard coating layer

Publications (1)

Publication Number Publication Date
WO2011090172A1 true WO2011090172A1 (ja) 2011-07-28

Family

ID=44306972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051126 WO2011090172A1 (ja) 2010-01-22 2011-01-21 ハードコート層を有する樹脂基板の製造方法およびハードコート層を有する樹脂基板

Country Status (7)

Country Link
US (1) US9605123B2 (ja)
EP (1) EP2527047B1 (ja)
JP (1) JP5708499B2 (ja)
KR (1) KR20120123357A (ja)
CN (1) CN102695565B (ja)
BR (1) BR112012018293A2 (ja)
WO (1) WO2011090172A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161866A1 (ja) * 2012-04-25 2013-10-31 三菱レイヨン株式会社 積層体及び製造方法
JP2019098655A (ja) * 2017-12-05 2019-06-24 凸版印刷株式会社 樹脂硬化層付き基板およびその製造方法
JP2020501944A (ja) * 2016-12-15 2020-01-23 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag 透明コーティングされたポリカーボネート部品、その製造および使用
WO2020209181A1 (ja) * 2019-04-10 2020-10-15 株式会社小糸製作所 車両用の樹脂製部材
JP2021016995A (ja) * 2019-07-19 2021-02-15 信越化学工業株式会社 プラスチック積層体及びその製造方法
WO2021235493A1 (ja) * 2020-05-20 2021-11-25 日本ペイント・オートモーティブコーティングス株式会社 積層フィルムおよび成形体、ならびにこれらの製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170015599A1 (en) * 2014-02-28 2017-01-19 Nokia Technologies Oy Method and apparatus for oxidation of two-dimensional materials
FR3019477B1 (fr) * 2014-04-03 2023-03-17 Commissariat Energie Atomique Procede de fonctionnalisation de surface
KR101979520B1 (ko) * 2014-09-30 2019-05-17 닛폰세이테츠 가부시키가이샤 저온 주행 환경에서의 방청성이 우수한 자동차용 도장 금속판
KR102510824B1 (ko) * 2016-09-30 2023-03-17 다이니폰 인사츠 가부시키가이샤 도전성 필름, 터치 패널 및 화상 표시 장치
EP3585830B1 (en) * 2017-02-24 2023-09-27 Solvay Specialty Polymers USA, LLC Uv-stabilizer solution for treating the surface layer of a polymer article

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0368475A (ja) * 1989-08-07 1991-03-25 Kansai Paint Co Ltd 塗膜形成方法
JPH06136292A (ja) * 1992-10-27 1994-05-17 Shin Etsu Chem Co Ltd ポリカーボネート物品被覆用組成物及びポリカーボネート物品
JP2005254033A (ja) * 2004-03-09 2005-09-22 Okamoto Kogaku Kakosho:Kk シリコーンゴムの紫外線硬化を利用したコーティング方法
JP2010012228A (ja) 2008-07-03 2010-01-21 Medison Co Ltd 医療装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3986997A (en) * 1974-06-25 1976-10-19 Dow Corning Corporation Pigment-free coating compositions
US4353959A (en) * 1979-12-21 1982-10-12 General Electric Company Abrasion resistant silicone coated polycarbonate article having an acrylic primer layer containing a U.V. absorbing compound
US4503126A (en) * 1982-08-18 1985-03-05 Foster Grant Corporation Method of making an abrasion resistant coating on a solid substrate and articles produced thereby
JPS63182080A (ja) * 1987-01-23 1988-07-27 Nippon Steel Corp 塗装金属材料の表面改質方法
DE4230149A1 (de) * 1992-09-09 1994-03-17 Heraeus Noblelight Gmbh Verfahren zur Herstellung von oxydischen Schutzschichten
DK0833850T3 (da) * 1995-06-22 2000-09-11 Jasha Jacob I Kleiman Overflademodifikation af polymerer og carbonbaserede materialer
JP2001089572A (ja) * 1999-09-22 2001-04-03 Jsr Corp リン変性ケイ素ポリマー、その製法、それを含有する組成物ならびにリン変性シリコンの製法
WO2001077234A1 (fr) * 2000-04-10 2001-10-18 Sekisui Chemical Co., Ltd. Composition pour revetement dur antistatique, revetement dur antistatique, procede de production d'un tel revetement et pellicule multicouche a revetement dur antistatique
AU2001268404A1 (en) * 2000-06-14 2001-12-24 The Procter And Gamble Company Long lasting coatings for modifying hard surfaces and processes for applying the same
JP3989184B2 (ja) * 2001-03-30 2007-10-10 Azエレクトロニックマテリアルズ株式会社 ケイ素含有共重合ポリマー及びその製造方法
DE10143383A1 (de) * 2001-09-05 2003-03-27 Basf Coatings Ag Thermisch und mit aktinischer Strahlung härtbare Stoffgemische, Verfahren zu ihrer Herstellung und ihre Verwendung
US7084076B2 (en) * 2003-02-27 2006-08-01 Samsung Electronics, Co., Ltd. Method for forming silicon dioxide film using siloxane
JP3714338B2 (ja) * 2003-04-23 2005-11-09 ウシオ電機株式会社 接合方法
US20070111007A1 (en) * 2005-11-14 2007-05-17 Uwe Wilkenhoener Process for the preparation of coatings with specific surface properties
JP5177617B2 (ja) * 2006-12-25 2013-04-03 独立行政法人産業技術総合研究所 酸化シリコン薄膜形成装置
US9556317B2 (en) * 2007-07-03 2017-01-31 Nippon Soda Co., Ltd. Molding sheet for forming hard coat layer
JP5239347B2 (ja) * 2008-01-15 2013-07-17 凸版印刷株式会社 ハードコートフィルムおよびその製造方法
CN101965230B (zh) * 2008-03-04 2014-03-19 株式会社雷尼阿斯 透明树脂板及其制造方法
JP2010106081A (ja) * 2008-10-28 2010-05-13 Seiko Epson Corp 接合方法、接合体および光学素子
JP2010201789A (ja) 2009-03-03 2010-09-16 Asahi Glass Co Ltd 被膜付き樹脂基板
EP2412747B1 (en) 2009-03-27 2016-11-02 Asahi Glass Company, Limited Hard coating composite, and resin substrate having a hard coat layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0368475A (ja) * 1989-08-07 1991-03-25 Kansai Paint Co Ltd 塗膜形成方法
JPH06136292A (ja) * 1992-10-27 1994-05-17 Shin Etsu Chem Co Ltd ポリカーボネート物品被覆用組成物及びポリカーボネート物品
JP2005254033A (ja) * 2004-03-09 2005-09-22 Okamoto Kogaku Kakosho:Kk シリコーンゴムの紫外線硬化を利用したコーティング方法
JP2010012228A (ja) 2008-07-03 2010-01-21 Medison Co Ltd 医療装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2527047A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161866A1 (ja) * 2012-04-25 2013-10-31 三菱レイヨン株式会社 積層体及び製造方法
CN104254443A (zh) * 2012-04-25 2014-12-31 三菱丽阳株式会社 层积体及其制造方法
JPWO2013161866A1 (ja) * 2012-04-25 2015-12-24 三菱レイヨン株式会社 積層体及び製造方法
JP2020501944A (ja) * 2016-12-15 2020-01-23 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag 透明コーティングされたポリカーボネート部品、その製造および使用
JP2019098655A (ja) * 2017-12-05 2019-06-24 凸版印刷株式会社 樹脂硬化層付き基板およびその製造方法
JP7027851B2 (ja) 2017-12-05 2022-03-02 凸版印刷株式会社 樹脂硬化層付き基板およびその製造方法
WO2020209181A1 (ja) * 2019-04-10 2020-10-15 株式会社小糸製作所 車両用の樹脂製部材
JP2021016995A (ja) * 2019-07-19 2021-02-15 信越化学工業株式会社 プラスチック積層体及びその製造方法
JP7101145B2 (ja) 2019-07-19 2022-07-14 信越化学工業株式会社 プラスチック積層体及びその製造方法
WO2021235493A1 (ja) * 2020-05-20 2021-11-25 日本ペイント・オートモーティブコーティングス株式会社 積層フィルムおよび成形体、ならびにこれらの製造方法
JPWO2021235493A1 (ja) * 2020-05-20 2021-11-25
JP7297156B2 (ja) 2020-05-20 2023-06-23 日本ペイント・オートモーティブコーティングス株式会社 積層フィルムおよび成形体、ならびにこれらの製造方法

Also Published As

Publication number Publication date
KR20120123357A (ko) 2012-11-08
CN102695565B (zh) 2015-08-19
US20120276394A1 (en) 2012-11-01
CN102695565A (zh) 2012-09-26
EP2527047A4 (en) 2015-01-21
EP2527047B1 (en) 2018-05-16
JP5708499B2 (ja) 2015-04-30
JPWO2011090172A1 (ja) 2013-05-23
US9605123B2 (en) 2017-03-28
BR112012018293A2 (ja) 2018-06-05
EP2527047A1 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
JP5708499B2 (ja) ハードコート層を有する樹脂基板の製造方法
JP5821634B2 (ja) ハードコート剤組成物およびハードコート層を有する樹脂基板
JP5923235B2 (ja) フレキシブルな熱硬化型シリコーンハードコート
JP5772598B2 (ja) ハードコート被膜付き樹脂基板およびその製造方法
WO2012099125A1 (ja) ハードコート被膜付き樹脂基板およびその製造方法
JP6421760B2 (ja) ハードコート被膜付き樹脂基板の製造方法およびハードコート被膜付き樹脂基板
JP2005314616A (ja) シリコーンコーティング組成物及び被覆物品
WO2012086659A1 (ja) ハードコート被膜付き樹脂基板およびその製造方法
JP2005200546A (ja) シリコーンレジン組成物及びそれを用いた被覆物品
WO2012086656A1 (ja) ハードコート被膜を有する樹脂基板およびハードコート被膜を有する樹脂基板の製造方法
WO2012046784A1 (ja) ハードコート被膜付き樹脂基板およびその製造方法
JP2016030392A (ja) ハードコート層付き樹脂基板およびハードコート層付き樹脂基板の製造方法
WO2011105382A1 (ja) ハードコート層を有する樹脂基板
JP2016016338A (ja) ハードコート層付き樹脂基板の製造方法
JP2014171974A (ja) ハードコート被膜付き樹脂基板の製造方法およびハードコート被膜付き樹脂基板
JP5316394B2 (ja) ハードコート層を有する樹脂基板の製造方法
JP5412932B2 (ja) ハードコート付き樹脂基材およびハードコート付き樹脂基材の製造方法
JP2014162087A (ja) ハードコート被膜付き樹脂基板の製造方法およびハードコート被膜付き樹脂基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734778

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011550973

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1753/MUMNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2011734778

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127019260

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012018293

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012018293

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120723