WO2011089801A1 - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
WO2011089801A1
WO2011089801A1 PCT/JP2010/072629 JP2010072629W WO2011089801A1 WO 2011089801 A1 WO2011089801 A1 WO 2011089801A1 JP 2010072629 W JP2010072629 W JP 2010072629W WO 2011089801 A1 WO2011089801 A1 WO 2011089801A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas flow
flow path
gas
water
forming body
Prior art date
Application number
PCT/JP2010/072629
Other languages
English (en)
French (fr)
Inventor
浩右 川尻
圭二 橋本
諭 二見
友和 林
Original Assignee
トヨタ車体 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ車体 株式会社 filed Critical トヨタ車体 株式会社
Priority to CN201080062166.6A priority Critical patent/CN102725896B/zh
Priority to DE112010005161.5T priority patent/DE112010005161B4/de
Priority to US13/522,620 priority patent/US9065090B2/en
Publication of WO2011089801A1 publication Critical patent/WO2011089801A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0265Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant the reactant or coolant channels having varying cross sections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a fuel cell used in, for example, an electric vehicle, and more particularly to a fuel cell capable of improving power generation performance.
  • the fuel cell includes a fuel cell stack 11 composed of a large number of power generation cells 12 stacked as shown in FIG.
  • an electrode structure 15 is attached to a joint portion between a pair of frames 13 and 14 constituting each power generation cell 12.
  • the electrode structure 15 includes a solid electrolyte membrane 16, an electrode catalyst layer 17 located on the anode side, and an electrode catalyst layer 18 located on the cathode side.
  • the outer peripheral edge of the solid electrolyte membrane 16 is sandwiched and fixed by the frames 13 and 14.
  • a gas diffusion layer 19 on the anode side is laminated on the surface of the electrode catalyst layer 17, and a gas diffusion layer 20 on the cathode side is laminated on the surface of the electrode catalyst layer 18.
  • a first gas flow path forming body 21 on the anode side is stacked on the surface of the gas diffusion layer 19, and a second gas flow path forming body 22 on the cathode side is stacked on the surface of the gas diffusion layer 20.
  • a flat separator 23 is bonded to the surface of the first gas flow path forming body 21, and a flat plate separator 24 is bonded to the surface of the second gas flow path forming body 22.
  • the first gas flow path forming body 21 includes a substrate portion 21a that contacts the separator 23, and a protrusion 21b that is integrally formed on the surface of the substrate portion 21a. Between the adjacent protrusions 21b, a straight groove 21c constituting the gas flow path T is formed by being blocked by the surface of the gas diffusion layer 19.
  • the second gas flow path forming body 22 has the same configuration as the gas flow path forming body 21. That is, the second gas flow path forming body 22 includes a substrate portion 22a that contacts the separator 24 and a protrusion 22b that is integrally formed on the surface of the substrate portion 22a.
  • a straight groove 22c constituting the gas flow path F is formed by being blocked by the surface of the gas diffusion layer 20.
  • Fuel gas that is, hydrogen gas
  • the fuel gas and the oxidizing gas react electrochemically in the electrode structure 15 to generate power.
  • the fuel off-gas and oxidant off-gas that were not used during power generation are respectively connected to the outside of the power generation cell 12 through the fuel off-gas outlet passage M2 and the oxidation off-gas outlet passage R2 (see FIG. 13) formed in the power generation cell 12. To be discharged. (See Patent Document 1)
  • the straight grooves 21c, 21c, 22c, 22c, 22c, 22c, 22c, the straight grooves 21c, 22c is formed in the same shape. Therefore, there are the following problems. That is, when power generation is performed by the power generation cell 12, water is generated in the cathode-side electrode catalyst layer 18 and the gas diffusion layer 20 by an electrochemical reaction between hydrogen and oxygen, as is well known. In order to improve the power generation efficiency, the fuel gas and the oxidizing gas are supplied to the power generation cell 12 in a state of being humidified by a humidifier, so that humidified water is supplied to the gas flow paths T and F. Part of the water produced on the cathode side permeates the electrode structure 15 and enters the gas diffusion layer 19 on the anode side and the straight groove 21c of the gas flow path forming body 21 as permeated water.
  • the stagnant water W remains in all the gas flow paths T and F of the specific power generation cell 12, and the supply of the fuel gas and the oxidizing gas is suppressed.
  • the power generation cell 12 becomes unable to generate power, the power generation cells 12 of the fuel cell stack 11 are electrically connected in series, so that power generation cannot be continued.
  • An object of the present invention is to provide a fuel cell capable of suppressing a decrease in power generation efficiency.
  • an electrolyte membrane having an anode surface and a cathode surface, and a pair of electrode catalyst layers respectively laminated on the anode surface and the cathode surface of the electrolyte membrane, A pair of gas flow path forming bodies respectively stacked on the pair of electrode catalyst layers, and a plurality of gas flows formed in each gas flow path forming body and including the first gas flow path and the second gas flow path
  • a pair of separators provided integrally or separately with the pair of gas flow path forming bodies, a pair of introduction passages for introducing fuel gas and oxidizing gas into the plurality of gas flow paths, and a plurality of gas flow paths
  • a fuel cell comprising a pair of lead-out passages for leading out fuel off-gas and oxidizing off-gas from the fuel cell is provided.
  • the shapes of the first gas flow path and the second gas flow path are set so that a difference in flow resistance occurs between the first gas flow path and the second gas flow path in each gas flow path
  • the first gas flow path is a straight gas flow path having a small gas flow resistance
  • the second gas flow path is a meandering gas flow path having a flow resistance larger than that of the first gas flow path.
  • a corresponding separator of the pair of separators is in contact with the surface of each gas flow path forming body, and each gas flow path forming body is integrally formed with the flat plate portion and the flat plate portion, and a plurality of gas flow forming bodies are formed.
  • a plurality of protrusions for forming a path, a plurality of water flow paths are formed between the separator and the flat plate part, and at least one gas flow path among each water flow path and the plurality of gas flow paths, Communicating through communication holes formed in the gas flow path forming body, the depth of each water flow path is set smaller than the depth of each gas flow path, and the water produced by the reaction between the fuel gas and the oxidizing gas is It is preferable that the gas channel is sucked into the water channel by capillary action through the communication hole and discharged to the outlet channel by the gas flow pressure.
  • the outlet passage has an inner wall, each water passage has an opening on the downstream side in the gas flow direction, the opening extends to the inner wall of the outlet passage, and is located at a position corresponding to the opening of each water passage in the outlet passage. It is preferable that a throttle portion for increasing the gas flow rate is formed.
  • a gas passage penetrating the flat plate portion and the separator is formed in a portion of the gas flow passage forming body on the downstream side in the gas flow direction of each water flow passage of the separator and the gas passage is communicated with the outlet passage. It preferably functions as a throttle for increasing the gas flow rate.
  • the permeated water and the humidified water generated at the time of power generation adhere to the gas flow path having a large flow resistance among the plurality of gas flow paths as stagnant water.
  • the gas is properly supplied to the electrode catalyst layer. For this reason, the area
  • the present invention it is possible to appropriately supply gas to the electrode catalyst layer, to suppress a decrease in power generation efficiency, and to prevent power generation from being stopped.
  • FIG. 14 is a sectional view taken along line 1-1 of FIG. 13 showing the fuel cell according to the first embodiment of the invention.
  • FIG. 14 is a cross-sectional view taken along line 2-2 of FIG.
  • the perspective view which shows the 1st and 2nd gas flow path formation body. Sectional drawing which expands and shows the principal part of a power generation cell.
  • the partial perspective view which shows the 1st gas flow path formation body and separator of the fuel cell which concern on 2nd Embodiment of this invention.
  • the partial perspective view which shows the 2nd gas flow path formation body and separator of the fuel cell which concern on 2nd Embodiment of this invention.
  • FIG. 14 is a cross-sectional view taken along line 1-1 of FIG.
  • FIG. 13 showing a power generation cell of a fuel cell according to a second embodiment.
  • the partial top view which shows the 1st and 2nd gas flow path formation body of the electric power generation cell of FIG. Sectional drawing in the 2-2 line of FIG. 13 which shows the electric power generation cell of the fuel cell which concerns on 3rd Embodiment of this invention. Sectional drawing along the 1-1 line
  • the perspective view which shows the 1st and 2nd gas flow path formation body which shows the modification of 1st Embodiment.
  • the fragmentary perspective view which shows the 1st and 2nd gas flow path formation body which shows the modification of 1st Embodiment.
  • FIG. 14 is a cross-sectional view taken along line 2-2 of FIG.
  • the perspective view which shows the conventional 1st and 2nd gas flow path formation body.
  • the partial expanded sectional view which
  • the fuel cell stack 11 of the first embodiment is a solid polymer fuel cell and includes a large number of stacked power generation cells 12.
  • each power generation cell 12 includes a rectangular frame-shaped first and second frames 13 and 14, and a membrane electrode as an electrode structure disposed in the first and second frames 13 and 14.
  • the first and second frames 13 and 14 are made of synthetic resin such as synthetic rubber.
  • a fuel gas channel space 13 a is defined inside the first frame 13, and an oxidizing gas channel space 14 a is defined inside the second frame 14.
  • the MEA 15 is disposed between the first and second frames 13 and 14.
  • each power generation cell 12 includes a first gas flow path forming body 21 housed in the fuel gas flow path space 13a and a first gas flow path space 14a housed in the oxidizing gas flow path space 14a. 2 gas flow path forming body 22.
  • the first gas flow path forming body 21 is made of ferrite SUS (stainless steel), titanium alloy, or carbon.
  • the second gas flow path forming body 22 is made of a ferritic SUS (stainless steel), a titanium alloy, carbon, a titanium alloy subjected to gold plating, or a gold alloy.
  • each power generation cell 12 includes a flat plate-like first separator 23 and a second separator 24.
  • the first separator 23 and the second separator 24 are made of ferrite SUS (stainless steel), titanium alloy, or carbon.
  • the first separator 23 is joined to the upper surfaces of the first frame 13 and the first gas flow path forming body 21 via a seal ring (not shown).
  • the second separator 24 is bonded to the lower surface of the frame 14 and the second gas flow path forming body 22 via a seal ring (not shown).
  • the MEA 15 includes a solid electrolyte membrane 16, a first electrode catalyst layer 17 and a second electrode catalyst layer 18, and a first gas diffusion layer 19 and a second gas diffusion layer 20 having conductivity.
  • the first electrode catalyst layer 17 is formed of a catalyst laminated on the anode surface of the electrolyte membrane 16, that is, the upper surface in the drawing.
  • the second electrode catalyst layer 18 is formed by a catalyst laminated on the cathode surface of the electrolyte membrane 16, that is, the lower surface in the drawing.
  • the gas diffusion layers 19 and 20 are in contact with the surfaces of the electrode catalyst layers 17 and 18, respectively.
  • the solid electrolyte membrane 16 is formed of a fluorine polymer membrane.
  • Each of the electrode catalyst layers 17 and 18 includes carbon particles (not shown). A large number of catalyst particles made of platinum (Pt) are attached to the surface of the carbon particles. The power generation efficiency of the fuel cell can be increased by the catalytic action of the catalyst particles.
  • the gas diffusion layers 19 and 20 are made of carbon paper.
  • each first gas flow path forming body 21 includes a substrate portion 21a that contacts the first separator 23 and a plurality of parallel protrusions that are integrally formed on the surface of the substrate portion 21a.
  • the second gas flow path forming body 22 includes a substrate portion 22a that contacts the second separator 24 and a plurality of parallel protrusions 22b that are integrally formed on the surface of the substrate portion 22a.
  • the first diffusion groove 20c is blocked by the surface of the gas diffusion layer 20, so that the first straight groove 22c and the first straight groove 22c constituting the first gas flow path F1 and the second gas flow path F2 of the oxidizing gas, respectively.
  • Two straight grooves 22d are formed.
  • the depths d1 and d2 of all the first and second straight grooves 21c and 21d (22c and 22d) are set to be the same, and the width w1 of the first straight groove 21c (22c) is It is set narrower than the width w2 of the second straight groove 21d (22d). Therefore, the passage cross-sectional area S1 of the fuel gas, that is, the oxidizing gas in the first gas flow path T1 (F1) is set to be narrow so that the gas flow resistance is increased.
  • the passage cross-sectional area S2 of the fuel gas of the second gas flow path T2 (F2), that is, the oxidizing gas is set so as to make the gas flow resistance smaller than the flow resistance of the first gas flow path T1 (F1). .
  • the first and second frames 13, 14 and the first and second separators 23, 24 of each power generation cell 12 are formed with an introduction passage M1 and a discharge passage M2.
  • the introduction passage M1 is provided to supply fuel gas, that is, hydrogen gas, from a fuel gas supply source (not shown) such as a hydrogen cylinder to the gas flow paths T1 and T2.
  • the lead-out passage M2 is provided to lead the fuel off-gas that has not been used during power generation to the outside of the power generation cell 12.
  • the first and second frames 13 and 14 and the first and second separators 23 and 24 of the power generation cell 12 are formed with an introduction passage R1 and a lead-out passage R2.
  • the introduction passage R1 is provided to introduce an oxidant gas, that is, air, from an oxidant gas supply source (not shown) such as a compressor into the gas flow paths F1 and F2.
  • the lead-out passage R2 is provided to lead the oxidizing off gas that has not been used during power generation to the outside.
  • fuel gas humidified by a humidifier that is, hydrogen gas is supplied from the introduction passage M1 into the gas passages T1 and T2 (see FIG. 1) of the first gas passage formation body 21. , Flowing along the arrow direction. The fuel gas is diffused by passing through the first gas diffusion layer 19 in the gas flow paths T ⁇ b> 1 and T ⁇ b> 2, and is uniformly supplied to the first electrode catalyst layer 17.
  • an oxidizing gas that is, an oxygen gas humidified by a humidifier (not shown) is supplied to gas flow paths F1 and F2 (see FIG. 2) of the second gas flow path forming body 22 through the introduction path R1.
  • the oxidizing gas is diffused by passing through the second gas diffusion layer 20 in the gas flow paths F ⁇ b> 1 and F ⁇ b> 2, and is uniformly supplied to the electrode catalyst layer 18.
  • an electrode reaction occurs in the MEA 15 to generate power.
  • desired power is output from the fuel cell stack 11 constituted by the plurality of stacked power generation cells 12.
  • a part of the fuel gas that was not used during power generation is discharged from the gas flow paths T1 and T2 of the first gas flow path forming body 21 to the outside of the battery stack 11 through the lead-out path M2 as fuel off-gas.
  • the oxidizing gas that has not been used in the power generation is discharged from the first and second gas flow paths F1 and F2 to the outside of the battery stack 11 through the outlet passage R2 as an oxidizing off gas.
  • water is generated in the gas flow paths F1 and F2 of the second gas flow path forming body 22 on the cathode side.
  • This generated water is discharged into the outlet passage R2 by the flow pressure of the oxidizing gas flowing in the first and second gas flow paths F1, F2 together with the humidified water.
  • Part of the generated water permeates the second electrode catalyst layer 18, the solid electrolyte membrane 16, the first electrode catalyst layer 17, and the first gas diffusion layer 19 on the cathode side, and the first gas flow path forming body 21.
  • This permeated water is discharged to the outlet passage M2 by the flow pressure of the fuel gas flowing in the gas flow paths T1, T2 together with the humidified water.
  • the generated water and the humidified water in the first and second gas flow paths F1 and F2 of the cathode-side second gas flow path forming body 22 are transferred to the oxidizing gas lead-out path R2 by the flow pressure of the oxidizing gas. It is discharged towards.
  • the remaining generated water and humidified water tend to adhere to the inner wall surfaces of the first and second gas flow paths F1, F2.
  • the passage sectional area S1 of the first gas flow path F1 is set narrow. Therefore, the generated water and the humidified water are likely to remain due to the surface tension, and the staying water W tends to remain attached to the inner wall surface of the first gas flow path F1 in a wide range as shown in FIG. .
  • the passage sectional area S2 of the second gas passage F2 is set wider than the passage sectional area S1 of the first gas passage F1. For this reason, in the second gas flow path F2, the remaining water W hardly remains and is swept away by the flow pressure of the oxidizing gas, and hardly remains in the second gas flow path F2. For this reason, the supply of the oxidizing gas to the second electrode catalyst layer 18 corresponding to the first gas flow path F1 blocked by the staying water W is insufficient, and power generation is partially disabled. However, the supply of the oxidizing gas to the second electrode catalyst layer 18 is appropriately performed by the second gas flow path F2, and a decrease in power generation efficiency is suppressed.
  • the permeated water and the humidified water in the first and second gas flow paths T1, T2 of the first gas flow path forming body 21 on the anode side are directed toward the fuel gas outlet passage M2 by the flow pressure of the fuel gas. Discharged. The remaining permeated water and humidified water tend to adhere to the inner wall surfaces of the first and second gas flow paths T1, T2.
  • the passage cross-sectional area S1 of the first gas flow path T1 is set narrow, the permeated water and the humidified water become the retained water W due to the surface tension, and the inner wall surface of the first gas flow path T1 has a wide area. It tends to adhere and remain.
  • the passage sectional area S2 of the second gas passage T2 is set wider than the passage sectional area S1 of the first gas passage T1, it is difficult to remain in the second gas passage T2, and the retained water W Is swept away by the flow pressure of the fuel gas and hardly remains in the second gas flow path T2. For this reason, the fuel gas is properly supplied to the first electrode catalyst layer 18 by the second gas flow path T2, and a decrease in power generation efficiency is suppressed.
  • the passage sectional area S1 of the first gas passage T1 of the first gas passage forming body 21 is set to be narrow, and the passage sectional area S2 of the second gas passage T2 is equal to that of the first gas passage T1. It is set wider than the passage sectional area S1. Further, the passage cross-sectional area S1 of the first gas flow path F1 of the second gas flow path forming body 22 is set to be narrow, and the passage cross-sectional area S2 of the second gas flow path F2 is the passage of the first gas flow path F1. It is set wider than the cross-sectional area S1.
  • the permeated water, the humidified water, the generated water, and the humidified water adhere to the first gas channel T1 on the anode side and the first gas channel F1 on the cathode side as the retained water W.
  • the staying water W can be prevented from adhering to the second gas flow path T2 and the second gas flow path F2. For this reason, it is suppressed that the supply of the fuel gas to the 1st gas diffusion layer 19 and the 1st electrode catalyst layer 17, and the supply of the oxidizing gas to the 2nd gas diffusion layer 20 and the 2nd electrode catalyst layer 18 are reduced. Thus, a decrease in power generation efficiency can be prevented.
  • the first gas flow path forming body 21 includes a flat plate 25, and a plurality of first protrusions 26 a and a plurality of second protrusions are provided at a number of locations in the flat plate 25.
  • the portion 26b is cut and raised.
  • Each of the first protrusion 26a and the second protrusion 26b is a protrusion for forming the gas flow path T and protrudes toward the first gas diffusion layer 19 (see FIG. 7).
  • Each of the first protrusions 26 a and the second protrusions 26 b comes into contact with the first gas diffusion layer 19, so that a gas flow path T for fuel gas is provided between the flat plate member 25 and the first gas diffusion layer 19. Is formed.
  • the gas flow path T also functions as the flow path space 13a.
  • the first protrusion 26a When viewed from the direction Q perpendicular to the gas flow direction P1, the first protrusion 26a has a semicircular shape. Since the second protrusion 26b has a flat trapezoidal shape, the contact area between the second protrusion 26b and the second gas diffusion layer 20 is wide.
  • the flat plate member 25 is formed with a plurality of small and low third protrusions 27 so as to correspond to the first and second protrusions 26a and 26b and to be located upstream in the gas flow direction P1. Yes.
  • Each of the third protrusions 27 is a protrusion for forming the water flow path 28 and is extrusion-molded so as to protrude toward the first separator 23 as shown in FIGS. 5 and 7.
  • a plurality of water flow paths 28 are formed between the flat plate material 25 and the first separator 23.
  • Each of the first protrusion 26a and the second protrusion 26b is formed with a communication hole 29 penetrating the first and second protrusions 26a, 26b along a direction Q perpendicular to the gas flow direction P1. Yes.
  • the communication holes 29 are opened at two locations on the left and right sides of each first protrusion 26a and at two locations on the left and right sides of each second protrusion 26b when viewed from the gas flow direction P1. Is formed.
  • the gas channel T and the water channel 28 communicate with each other through the communication hole 29.
  • the semi-circular first protrusions 26a are arranged at a predetermined pitch along the gas flow direction P1, as shown in FIGS.
  • the flat trapezoidal second protrusions 26b are linearly arranged at a predetermined pitch along the gas flow direction P1.
  • the pair of first and second protrusions 26a and 26b adjacent to the direction Q perpendicular to the gas flow direction P1 is connected to the center O2 of the second protrusion 26b with respect to the gas flow direction P1.
  • the one protrusion 26a is arranged so that the centers O1 thereof coincide with each other.
  • the gas flow path T includes a belt-like straight gas flow path Ts having a small gas flow resistance between the belt-shaped flat plate portion 25a and the first separator 23.
  • the gas flow path T includes a meandering gas flow path Td having a large gas flow resistance separately from the straight gas flow path Ts.
  • the meandering gas flow path Td is formed by a meandering flat plate portion 25 b formed between the first protrusion 26 a and the second protrusion 26 b and the first separator 23.
  • the second gas flow path forming body 22 on the cathode side has the same configuration as the first gas flow path forming body 21 as shown in FIG. 6, but the flow direction P2 of the oxidizing gas is the flow directions P1 and 90 of the fuel gas. ° Different. That is, the flow direction P2 of the oxidizing gas is orthogonal to the flow direction P1 of the fuel gas in the first gas flow path forming body 21.
  • the gas flow path F corresponding to the gas flow path T of the second gas flow path forming body 22 includes the straight gas flow path Fs corresponding to the straight gas flow path Ts and the meandering gas flow path Fd corresponding to the meandering gas flow path Td. However, the description will be omitted by attaching each reference numeral.
  • the height of the portion of the first protrusion 26a and the second protrusion 26b that protrudes from the belt-like flat plate portion 25a in other words, the straight gas flow path Ts (Fs) and the meandering gas flow path Td.
  • the depth of (Fd) is set in the range of 30 ⁇ m to 1000 ⁇ m, desirably in the range of 30 ⁇ m to 300 ⁇ m, for example, set to 200 ⁇ m.
  • the height of the portion of the third protrusion 27 protruding from the belt-like flat plate portion 25a, in other words, the depth of the water flow path 28 is set in the range of 10 ⁇ m to 50 ⁇ m, for example, 30 ⁇ m. .
  • each water flow path 28 is formed in a slit shape, and the depth of each water flow path 28 is formed shallower than the depth of the straight gas flow path Ts (Fs) and the meandering gas flow path Td (Fd). Water in the straight gas flow path Ts (Fs) and the meandering gas flow path Td (Fd) is easily sucked into the water flow path 28 through the communication hole 29 by the capillary action of the water flow path 28 in the form of a tube.
  • the width D of the strip-shaped flat plate portion 25a shown in FIG. 8 is set to 100 ⁇ m to 300 ⁇ m, and the width E of the flat plate portion 25b is set to 50 ⁇ m to 150 ⁇ m.
  • This stagnant water W is pushed by the flow pressure of the fuel gas, and most of the fuel gas enters the inside of the second protrusion 26b through the communication hole 29 of the second protrusion 26b, and due to the capillary action of the water channel 28.
  • the water channel 28 is entered.
  • the water that has entered the water flow path 28 is moved downstream by the flow pressure of the fuel gas.
  • the first and second gas flow path forming bodies 21 and 22 have a low pressure loss and a straight gas flow path Ts (Fs) that can prevent the staying water from adhering, and a high pressure loss.
  • two types of flow paths, meandering gas flow paths Td (Fd), to which staying water easily adheres are formed. Therefore, even if the stagnant water remains in the meandering gas flow path Td (Fd) and the fuel gas and the oxidizing gas are not supplied to a part of the electrode catalyst layers 17 and 18, the straight gas flow path Ts (Fs) The fuel gas and the oxidizing gas are supplied to the electrode catalyst layers 17 and 18. For this reason, it can prevent that power generation efficiency falls. In addition, it is possible to prevent the power generation cell 12 from being unable to generate power and to prevent power generation from being stopped by the fuel cell stack 11 in advance.
  • a plurality of water flow paths 28 are formed between the flat plate member 25 of the first gas flow path forming body 21 on the anode side and the first separator 23.
  • the depth of each water channel 28 is set shallower than the depth of the gas channel T.
  • the permeated water and the humidified water in the gas flow path T formed between the flat plate material 25 and the first gas diffusion layer 19 are flown by capillary action through the communication hole 29 formed in the first protrusion 26. Guided to path 28.
  • the permeated water and the humidified water introduced into the water flow path 28 are discharged toward the fuel gas outlet passage M2 by the flow pressure of the fuel gas.
  • the water in the water flow path 28 is discharged to the fuel gas outlet passage M2.
  • the water in the water flow path 28 is discharged to the fuel gas outlet passage M2.
  • a plurality of water flow paths 28 are provided between the flat plate material 25 of the second gas flow path forming body 22 on the cathode side and the second separator 24. Therefore, the generated water and the humidified water in the gas flow path F of the cathode-side second gas flow path forming body 22 are discharged toward the oxidizing gas lead-out path R2 by the water flow path 28. Thereby, it is suppressed that generated water and humidified water remain in the gas flow path F of the 2nd gas flow path formation body 22, and the pressure loss by the generated water of the oxidizing gas which flows through the gas flow path F is reduced. Therefore, power generation efficiency is improved. In addition, since the oxidizing gas is properly supplied to the electrode catalyst layer 18 and the oxidizing gas deficiency state is avoided, the power generation efficiency is improved.
  • the inner circumferential surface of the inner space of the first protrusion 26 is formed as a semicircular arc surface as shown in FIGS. Therefore, the permeated water and the generated water generated in the gas flow paths Ts (Fs) and Td (Fd) enter the inner space of the first protrusion 26 and are stably held as the retained water W, and the first protrusion
  • the water retention of 26 can be improved. That is, the stagnant water W adhering to the surfaces of the first and second gas diffusion layers 19, 20 tends to be spherical due to surface tension, and therefore easily flows into the semi-cylindrical inner space of the first protrusion 26. Become.
  • the growth of the accumulated water W on the surfaces of the first and second gas diffusion layers 19 and 20 is suppressed, the shortage of gas supply due to water is eliminated, and the power generation performance is improved. Further, when the power generation of the fuel cell is stopped with the staying water W attached to the surfaces of the first and second gas diffusion layers 19 and 20, the first and second gas diffusion layers 19 and 20 are locally absorbed by water. to degrade. In this embodiment, this deterioration can be prevented and the durability of the diffusion layers 19 and 20 can be improved.
  • a throttle portion for increasing the flow rate of the fuel gas may be formed.
  • the downstream end edge 21e of the first gas flow path forming body 21, that is, the downstream opening of the water flow path 28 is extended to the side wall of the outlet passage M2.
  • a ridge portion 13b is provided on the wall surface facing the downstream end edge 21e in the lead-out passage M2.
  • the protruding portion 13b and the end edge 21e form a throttle portion 41 located in the vicinity of the opening on the downstream side of the water flow path 28.
  • the passage cross-sectional area of the lead-out passage M2 in the throttle portion 41 becomes narrow, and the flow rate of the fuel gas in the throttle portion 41 increases.
  • the water present in the water flow path 28 is sucked out into the lead-out passage M2 by the venturi effect of the fuel gas having a high flow velocity flowing through the throttle portion 41, so that the drainage is performed more appropriately.
  • a throttle portion for increasing the flow rate of the oxidizing gas may be formed in the outlet passage R2 for the oxidizing gas.
  • a drain hole 35 may be formed in the second separator 24 as shown in FIG. 10, and a gas passage 22e may be provided at a position corresponding to the drain hole 35.
  • the gas passage 22e and the drain hole 35 are communicated with the oxidizing gas outlet passage R2 through the communication passage 36, and serve as an oxidizing gas passage.
  • the gas passage 22e and the drain hole 35 function as a throttle portion 41 for increasing the flow rate of the oxidizing gas.
  • the water in the water flow path 28 is appropriately sucked out into the communication path 36 by the venturi effect of the oxidizing gas having a high flow velocity flowing through the throttle portion 41, and the drainage is performed more appropriately.
  • a throttle portion for increasing the flow rate of the fuel gas may be formed in the fuel gas outlet passage M2.
  • the depths d1 and d2 of the first and second straight grooves 21c and 21d of the first gas flow path forming body 21 may be set to be different from each other. Thereby, the passage cross-sectional area S1 of the first gas flow path T1 is set narrow and the gas flow resistance increases, and the passage cross-sectional area S2 of the second gas flow path T2 is set wide and the gas flow resistance decreases. .
  • the first gas channel T1 is a meandering gas channel Td having a large gas flow resistance in a plan view
  • the second gas channel T2 is a gas flow resistance in a plan view. It may be a small straight gas flow path Ts.
  • the widths w1 and w2 of the first and second straight grooves 21c and 21d and the first and second straight grooves 22c and 22d may be the same.
  • the water channel 28 may be provided only on the anode side. According to such a configuration, the supply of fuel gas to the first electrode catalyst layer 17 on the anode side can be suppressed from being reduced, the power generation efficiency of the fuel cell can be improved, and the second on the anode side. The durability of the gas flow path forming body 22 and the electrode catalyst layer 18 on the cathode side can be improved. Further, the water channel 28 may be provided only on the cathode side. With such a configuration, it is possible to suppress a reduction in the supply of the oxidizing gas to the second electrode catalyst layer 18 on the cathode side, and it is possible to improve the power generation efficiency of the fuel cell.
  • a plurality of straight gas passages having a large passage cross-sectional area and a plurality of meandering gas passages having a small passage cross-sectional area may be appropriately combined.
  • the passage cross-sectional area of the gas flow path may be changed in three stages or more, for example.
  • the passage cross-sectional area may be changed alternately or regularly, or may be changed irregularly.
  • a groove for allowing cooling water to pass through the first and second separators 23 and 24 of the power generation cell 12 may be formed.
  • the first gas flow path forming body 21 and the first separator 23 on the anode side may be integrally formed.
  • the first frame 13 and the first separator 23 may be integrally formed of a metal material, for example, by forging.
  • the second gas channel forming body 22 on the cathode side and the second separator 24 may be integrally formed. Further, the frame 14 and the second separator 24 may be integrally formed of a metal material, for example, by forging.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

一対のフレーム(13,14)の間に固体電解質膜(16)と電極触媒層(17,18)とよりなる膜電極接合体(15)が介在されている。電極触媒層(17)の表面にガス拡散層(19)が積層され、電極触媒層(18)の表面にガス拡散層(20)が積層されている。ガス拡散層(19)の表面に第1ガス流路形成体(21)が積層され、ガス拡散層(20)の表面に第2ガス流路形成体(22)が積層されている。フレーム(13)及び第1ガス流路形成体(21)の表面にセパレータ(23)が接触し、フレーム(14)及びガス流路形成体(22)の表面にセパレータ(24)が接触する。第1ガス流路形成体(21)に形成された複数の第1及び第2ストレート溝(21c,21d)の幅(w1,w2)が互いに異なるように設定されている。それにより、第1及び第2ガス流路(T1,T2)の通路断面積が互いに異なるように設定されている。

Description

燃料電池
 本発明は、例えば電気自動車に用いられる燃料電池に係り、より詳しくは発電性能を向上することができる燃料電池に関する。
 一般に、燃料電池は、図13に示すように積層された多数枚の発電セル12からなる燃料電池スタック11を含む。図14に示すように、各発電セル12を構成する一対のフレーム13,14の接合部には電極構造体15が装着されている。この電極構造体15は、固体電解質膜16と、アノード側に位置する電極触媒層17と、カソード側に位置する電極触媒層18とを備えている。固体電解質膜16の外周縁は、前記両フレーム13,14により挟まれて固定されている。前記電極触媒層17の表面にはアノード側のガス拡散層19が積層され、前記電極触媒層18の表面にはカソード側のガス拡散層20が積層されている。さらに、ガス拡散層19の表面にはアノード側の第1ガス流路形成体21が積層され、前記ガス拡散層20の表面には、カソード側の第2ガス流路形成体22が積層されている。前記第1ガス流路形成体21の表面には平板状のセパレータ23が接合され、第2ガス流路形成体22の表面には平板状のセパレータ24が接合されている。
 図14,15に示すように、前記第1ガス流路形成体21は、前記セパレータ23に接触する基板部21aと、該基板部21aの表面に一体に形成された突条21bとを含む。隣接する突条21bの間には前記ガス拡散層19の表面によって閉塞されることで、ガス流路Tを構成するストレート溝21cが形成されている。又、第2ガス流路形成体22も前記ガス流路形成体21と同様の構成を有する。即ち、第2ガス流路形成体22には、前記セパレータ24に接触する基板部22aと、該基板部22aの表面に一体に形成された突条22bとを含む。隣接する突条22bの間には前記ガス拡散層20の表面によって閉塞されることで、ガス流路Fを構成するストレート溝22cが形成されている。前記発電セル12に形成された、燃料ガス用の導入通路M1から前記ガス流路Tに燃料ガス、即ち水素ガスが供給されるとともに、同じく前記発電セル12に形成された、酸化ガス用、即ち酸素ガス用の導入通路R1(図13参照)から酸化ガスが前記ガス流路Fに供給される。燃料ガス及び酸化ガスの供給により、前記電極構造体15において燃料ガスと酸化ガスが電気化学的に反応して発電が行われる。発電の際に用いられなかった燃料オフガスと酸化オフガスとは、発電セル12に形成された燃料オフガス用の導出通路M2及び酸化オフガス用の導出通路R2(図13参照)を通してそれぞれ発電セル12の外部に排出される。(特許文献1参照)
特開2007‐207725号公報
 ところが、従来の燃料電池では、図14及び図15に示すように、前記ガス流路形成体21,22のストレート溝21c,22cの全ての通路断面積が同じとなるように、ストレート溝21c,22cが同じ形状に形成されている。そのため、次のような問題がある。即ち、前記発電セル12によって発電が行われると、水素と酸素の電気化学反応によって、周知のようにカソード側の電極触媒層18及びガス拡散層20に水が生成される。発電効率を向上するため、燃料ガスと酸化ガスとは加湿器によりそれぞれ加湿された状態で発電セル12に供給されるため、ガス流路T,Fに加湿水が供給される。カソード側の生成水の一部は、前記電極構造体15に浸透して、アノード側のガス拡散層19及びガス流路形成体21のストレート溝21cに浸透水として浸入する。
 上述した生成水及び加湿水がカソード側の第2ガス流路形成体22のストレート溝22cの壁面に滞留水Wとなって付着して残留すると、該滞留水Wによってストレート溝22cを流れる酸化ガスの流量が減少し、発電が抑制される。即ち、図16に示すように、例えば三つのストレート溝22c、即ちガス流路Fが滞留水Wによって閉塞されると、それらストレート溝22cの最も外側に位置する二つの突条22bの間の広い領域A1と対応する前記電極触媒層18に酸化ガスが供給されなくなって、発電効率が低下する。換言すれば、どのストレート溝22cも滞留水Wにより閉塞される可能性があるため、生成水及び加湿水の量が多いほど、滞留水Wによって閉塞されるストレート溝22cの数が増えるので、発電効率の低下に歯止めがかからない。
 又、図13に示す多数の積層された発電セル12のうち、例えば特定の発電セル12の全てのガス流路T,Fに滞留水Wが残留して燃料ガス及び酸化ガスの供給が抑制されて、発電セル12が発電不能に陥ると、燃料電池スタック11の各発電セル12が電気的に直列接続されているので、発電の継続が不可能になる。
 本発明の目的は、発電効率の低下を抑制することができる燃料電池を提供することにある。
 上記問題点を解決するために、本発明の一態様によれば、アノード面及びカソード面を有する電解質膜と、電解質膜のアノード面上及びカソード面上にそれぞれ積層された一対の電極触媒層と、一対の電極触媒層上にそれぞれ積層された一対のガス流路形成体と、各ガス流路形成体に形成されるとともに、第1ガス流路及び第2ガス流路を含む複数のガス流路と、一対のガス流路形成体に一体又は別体にそれぞれ設けられた一対のセパレータと、複数のガス流路に燃料ガス及び酸化ガスを導入する一対の導入通路と、複数のガス流路から燃料オフガス及び酸化オフガスを導出する一対の導出通路とを備えた燃料電池が提供される。各ガス流路形成体における第1ガス流路及び第2ガス流路の間に流動抵抗の差を生じるように、第1ガス流路及び第2ガス流路の形状が設定されている。
 複数のガス流路が並設され、第1ガス流路及び第2ガス流路の通路断面積が互いに異なるように設定されていることが好ましい。
 第1ガス流路はガスの流動抵抗の小さいストレート状のガス流路であり、第2ガス流路は第1ガス流路の流動抵抗より大きい流動抵抗を有する蛇行したガス流路であることが好ましい。
 各ガス流路形成体の表面には、前記一対のセパレータのうちの対応するセパレータが接触し、各ガス流路形成体は、平板部と、該平板部に一体に成形され、複数のガス流路を形成するための複数の突部とを備え、セパレータと平板部との間に複数の水流路が形成され、各水流路と複数のガス流路のうち少なくとも一つのガス流路とは、ガス流路形成体に形成された連通孔により連通され、各水流路の深さは、各ガス流路の深さよりも小さく設定され、燃料ガスと酸化ガスとの反応によって生成される水が各ガス流路から連通孔を通して毛管作用により水流路に吸い込まれて、ガスの流動圧力によって導出通路に排出されることが好ましい。
 導出通路は内壁を有し、各水流路はガスの流れ方向の下流側に開口部を有し、開口部は導出通路の内壁まで延び、導出通路において各水流路の開口部と対応する位置にガスの流速を高めるための絞り部が形成されていることが好ましい。
 ガス流路形成体の平板部及びセパレータの各水流路のガスの流れ方向の下流側の部分に、平板部及びセパレータを貫通するガス通路が形成され、該ガス通路は、導出通路に連通されて、ガスの流速を高めるための絞り部として機能することが好ましい。
 (作用)
 本発明において、発電時に生成された浸透水及び加湿水が複数のガス流路ののうちの流動抵抗の大きいガス流路に滞留水となって付着する。しかし、流動抵抗の小さいガス流路には残留することは殆どないので、電極触媒層へのガスの供給が適正に行われる。このため、電極触媒層へのガスの供給が阻害される領域を低減し、発電効率の低下を抑制することができる。
 本発明によれば、電極触媒層へのガスの供給が適正に行われ、発電効率の低下を抑制することができるとともに、発電が停止されることを防止することができる。
本発明の第1実施形態に係る燃料電池を示す図13の1-1線に沿った断面図。 燃料電池を構成する発電セルを示す図13の2-2線に沿った断面図。 第1及び第2ガス流路形成体を示す斜視図。 発電セルの要部を拡大して示す断面図。 本発明の第2実施形態に係る燃料電池の第1ガス流路形成体及びセパレータを示す部分斜視図。 本発明の第2実施形態に係る燃料電池の第2ガス流路形成体及びセパレータを示す部分斜視図。 第2実施形態の燃料電池の発電セルを示す図13の1-1線に沿った断面図。 図7の発電セルの第1及び第2ガス流路形成体を示す部分平面図。 本発明の第3実施形態に係る燃料電池の発電セルを示す図13の2-2線における断面図。 本発明の第4実施形態に係る燃料電池の発電セルを示す図13の1-1線に沿った断面図。 第1実施形態の変形例を示す第1及び第2ガス流路形成体を示す斜視図。 第1実施形態の変形例を示す第1及び第2ガス流路形成体を示す部分斜視図。 燃料電池スタックを示す斜視図。 従来の燃料電池スタックの発電セルを示す図13の2-2線に沿った断面図。 従来の第1及び第2ガス流路形成体を示す斜視図。 従来の発電セルを示す部分拡大断面図。
 (第1実施形態)
 以下、本発明の第1実施形態に係る燃料電池を図1~図4及び図13に従って説明する。
 図13に示すように、第1実施形態の燃料電池スタック11は、固体高分子型の燃料電池であり、積層された多数の発電セル12を含む。
 図1に示すように、各発電セル12は、四角枠状の第1及び第2フレーム13,14と、同第1及び第2フレーム13,14内に配置された電極構造体としての膜電極接合体(MEA:Membrane-Electrode-Assembly)15とを備えている。第1及び第2フレーム13,14は、合成ゴム等の合成樹脂からなる。第1フレーム13の内側には燃料ガスの流路空間13aが区画されており、第2フレーム14の内側には酸化ガスの流路空間14aが区画されている。前記MEA15は、第1及び第2フレーム13,14間に配設されている。
 各発電セル12は、図1及び図2に示すように前記燃料ガスの流路空間13aに収容された第1ガス流路形成体21と、前記酸化ガスの流路空間14aに収容された第2ガス流路形成体22とを備えている。第1ガス流路形成体21は、フェライト系SUS(ステンレス鋼)、チタン合金、或いはカーボンよりなる。第2ガス流路形成体22は、フェライト系SUS(ステンレス鋼)、チタン合金、カーボン、金鍍金を施したチタン合金、或いは金合金よりなる。さらに、各発電セル12は、平板状の第1セパレータ23及び第2セパレータ24を備えている。第1セパレータ23及び第2セパレータ24は、フェライト系SUS(ステンレス鋼)、チタン合金、或いはカーボンよりなる。第1セパレータ23は、第1フレーム13及び第1ガス流路形成体21の図示上面に図示しないシールリングを介して接合されている。第2セパレータ24は、フレーム14及び第2ガス流路形成体22の図示下面に図示しないシールリングを介して接着されている。
 前記MEA15は、固体電解質膜16と、第1電極触媒層17及び第2電極触媒層18と、導電性を有する第1ガス拡散層19及び第2ガス拡散層20とにより構成されている。第1電極触媒層17は、電解質膜16のアノード面、即ち図示上面に積層された触媒により形成されている。第2電極触媒層18は、電解質膜16のカソード面、即ち図示下面に積層された触媒によって形成されている。ガス拡散層19,20は、電極触媒層17,18の表面にそれぞれ接触している。
 前記固体電解質膜16は、フッ素系の高分子膜により形成されている。各電極触媒層17,18は、炭素粒子(図示しない)を含む。炭素粒子の表面には、白金(Pt)からなる多数の触媒粒子が付着している。前記触媒粒子による触媒作用により、燃料電池の発電効率を高めることができる。各ガス拡散層19,20はカーボンペーパーにより構成されている。
 次に、前記第1及び第2ガス流路形成体21,22について説明する。アノード側に位置する第1ガス流路形成体21とカソード側に位置する第2ガス流路形成体22とは、同様の構成を有するが、第1及び第2ガス流路形成体21,22の設置方向が例えば90°異なる。なお、前記第1ガス流路形成体21と第2ガス流路形成体22の設置方向は、互いに同方向であっても逆方向であってもよい。各第1ガス流路形成体21は、図1及び図3に示すように、第1セパレータ23に接触する基板部21aと、該基板部21aの表面に一体に形成された複数の平行な突条21bとにより構成されている。隣接する突条21bの間には前記ガス拡散層19の表面によって閉塞されることで、燃料ガスの第1ガス流路T1及び第2ガス流路T2を構成する第1ストレート溝21c及び第2ストレート溝21dが形成されている。前記第2ガス流路形成体22は、第2セパレータ24に接触する基板部22aと、該基板部22aの表面に一体に形成された複数の平行な突条22bとにより構成されている。隣接する突条22bの間には前記ガス拡散層20の表面によって閉塞されることで、酸化ガスの第1ガス流路F1及び第2ガス流路F2をそれぞれ構成する第1ストレート溝22c及び第2ストレート溝22dが形成されている。
 図4に示すように、全ての第1及び第2ストレート溝21c,21d(22c,22d)の深さd1,d2は、同一に設定され、第1ストレート溝21c(22c)の幅w1は、第2ストレート溝21d(22d)の幅w2よりも狭く設定されている。従って、前記第1ガス流路T1(F1)の燃料ガス、即ち酸化ガスの通路断面積S1は、ガスの流動抵抗が大きくなるように狭く設定されている。第2ガス流路T2(F2)の燃料ガス、即ち酸化ガスの通路断面積S2は、ガスの流動抵抗が第1ガス流路T1(F1)の流動抵抗より小さくなるように広く設定されている。
 図2に示すように、前記各発電セル12の第1及び第2フレーム13,14及び第1及び第2セパレータ23,24には、導入通路M1及び導出通路M2が形成されている。導入通路M1は、図示しない燃料ガス供給源、例えば水素ボンベから燃料ガス、即ち水素ガスを前記ガス流路T1,T2へ供給するために設けられている。導出通路M2は、発電の際に用いられなかった燃料オフガスを発電セル12の外部に導出するために設けられている。図1に示すように、前記発電セル12の第1及び第2フレーム13,14及び第1及び第2セパレータ23,24には、導入通路R1及び導出通路R2が形成されている。導入通路R1は、図示しない酸化ガス供給源、例えばコンプレッサから酸化ガス、即ち空気を前記ガス流路F1,F2へ導入するために設けられている。導出通路R2は、発電の際に用いられなかった酸化オフガスを外部に導出するために設けられている。
 次に、上述の構成を有する燃料電池の作用について説明する。
 図2において、図示しない加湿器によって加湿された燃料ガス、即ち水素ガスは、前記導入通路M1から前記第1ガス流路形成体21のガス流路T1,T2(図1参照)内に供給され、矢印方向に沿って流れる。燃料ガスは、ガス流路T1,T2内において第1ガス拡散層19を通過することによって拡散されて、第1電極触媒層17に均一に供給される。図1において、図示しない加湿器によって加湿された酸化ガス、即ち酸素ガスは、前記導入通路R1を通して、前記第2ガス流路形成体22のガス流路F1,F2(図2参照)に供給され、矢印方向に沿って流れる。酸化ガスは、ガス流路F1,F2内において第2ガス拡散層20を通過することによって拡散されて、電極触媒層18に均一に供給される。燃料ガスと酸化ガスとの供給により、MEA15において電極反応が生じ、発電が行われる。その結果、積層された複数の発電セル12によって構成された燃料電池スタック11から、所望の電力が出力される。
 発電の際に用いられなかった一部の燃料ガスは、燃料オフガスとして第1ガス流路形成体21のガス流路T1,T2から導出通路M2を通って電池スタック11の外部に排出される。発電の際に用いられなかった酸化ガスは、第1及び第2ガス流路F1,F2から酸化オフガスとして導出通路R2を通って電池スタック11の外部に排出される。
 前述したMEA15における電極反応によって、カソード側の第2ガス流路形成体22のガス流路F1,F2に水が生成される。この生成水は加湿水とともに第1及び第2ガス流路F1,F2内を流れる酸化ガスの流動圧力によって導出通路R2に排出される。前記生成水の一部は、カソード側の前記第2電極触媒層18、固体電解質膜16、第1電極触媒層17及び第1ガス拡散層19に浸透して、第1ガス流路形成体21のガス流路T1,T2へ浸透水として流入する。この浸透水は加湿水とともにガス流路T1,T2内を流れる燃料ガスの流動圧力によって導出通路M2へ排出される。
 カソード側の第2ガス流路形成体22の第1及び第2ガス流路F1,F2内の生成水及び加湿水の大部分は、酸化ガスの流動圧力によって、酸化ガス用の導出通路R2に向かって排出される。残った生成水及び加湿水は第1及び第2ガス流路F1,F2の内壁面に付着しようとする。このとき、第1ガス流路F1の通路断面積S1が狭く設定されている。そのため、生成水及び加湿水はその表面張力によって残留し易く、その滞留水Wは、図4に示すように、第1ガス流路F1の内壁面に広い範囲で付着して残留する傾向にある。しかし、第2ガス流路F2の通路断面積S2は、第1ガス流路F1の通路断面積S1より広く設定されている。そのため、この第2ガス流路F2においては、残留し難く滞留水Wは酸化ガスの流動圧力によって押し流され、第2ガス流路F2に残留することは殆どない。このため、滞留水Wによって閉塞された第1ガス流路F1と対応する第2電極触媒層18への酸化ガスの供給が不足し、部分的に発電が不能となる。しかし、第2ガス流路F2によって酸化ガスの第2電極触媒層18への供給が適正に行われ、発電効率の低下が抑制される。
 即ち、図4に示すように、一つの第1ガス流路F1が滞留水Wによって閉塞されると、ガス拡散層19は二つの突条22bと滞留水Wによって遮蔽され、発電不能となる領域はA1で示される領域である。しかし、第2ガス流路F2は滞留水Wによって、閉塞されることはないので、領域A1よりも広い領域A2は、常に発電可能な領域となる。
 一方、アノード側の第1ガス流路形成体21の第1及び第2ガス流路T1,T2内の浸透水及び加湿水は燃料ガスの流動圧力によって、燃料ガス用の導出通路M2へ向かって排出される。残りの浸透水及び加湿水は第1及び第2ガス流路T1,T2の内壁面に付着しようとする。このとき、第1ガス流路T1の通路断面積S1が狭く設定されているので、浸透水及び加湿水はその表面張力によって滞留水Wとなり、第1ガス流路T1の内壁面に広い面積で付着して残留する傾向にある。しかし、第2ガス流路T2の通路断面積S2は、第1ガス流路T1の通路断面積S1より広く設定されているので、この第2ガス流路T2においては残留し難く、滞留水Wは燃料ガスの流動圧力によって押し流され、第2ガス流路T2に残留することは殆どない。このため、第2ガス流路T2によって燃料ガスの第1電極触媒層18への供給が適正に行われ、発電効率の低下が抑制される。
 第1実施形態の燃料電池によれば、以下のような利点を得ることができる。
 (1)第1ガス流路形成体21の第1ガス流路T1の通路断面積S1が狭く設定されるとともに、第2ガス流路T2の通路断面積S2が、第1ガス流路T1の通路断面積S1より広く設定されている。又、第2ガス流路形成体22の第1ガス流路F1の通路断面積S1が狭く設定されるとともに、第2ガス流路F2の通路断面積S2が、第1ガス流路F1の通路断面積S1より広く設定されている。このため、前述したように、アノード側の第1ガス流路T1及びカソード側の第1ガス流路F1には浸透水及び加湿水及び生成水及び加湿水が滞留水Wとなって付着するが、第2ガス流路T2及び第2ガス流路F2に滞留水Wが付着することを防止することができる。このため、第1ガス拡散層19及び第1電極触媒層17への燃料ガスの供給、並びに第2ガス拡散層20及び第2電極触媒層18への酸化ガスの供給が低減されることを抑制して、発電効率の低下を防止することができる。
 (2)発電セル12のアノード側の殆どの第1ガス流路T1が滞留水Wによって閉塞されたとしても、殆どの第2ガス流路T2によって燃料ガスの供給が行われる。又、カソード側の殆どの第1ガス流路F1が滞留水Wによって閉塞されたとしても、殆どの第2ガス流路F2によって酸化ガスの供給が行われる。従って、一つの発電セル12の第1及び第2電極触媒層17,18の全域に燃料ガス及び酸化ガスが供給されなくなることを防止して、発電セル12が発電不能に陥ることを防止することができ、ひいては燃料電池スタック11による発電が停止されることを防止することができる。
 (3)第1ガス流路形成体21の第1及び第2ストレート溝21c,21d並びに第2ガス流路形成体22の第1及び第2ストレート溝22c,22dの幅w1,w2を変更するという簡単な構成が採用されている。そのため、第1及び第2ガス流路形成体21,22の製造を容易に行い、製造コストを低減することができる。
(第2実施形態)
 次に、本発明の第2実施形態に係る燃料電池を図5~図8に基づいて説明する。以下に示す各実施形態において、前述した第1実施形態と同様の機能を有する部材については、同一の符号を付してその説明を省略し、第1実施形態との異なる構成、作用及び効果を中心に説明する。
 図5及び図7に示すように、前記第1ガス流路形成体21は平板材25を含み、その平板材25における多数の箇所には、複数の第1突部26a及び複数の第2突部26bが切り起こし成形されている。第1突部26a及び第2突部26bの各々は、ガス流路Tを形成するための突部であり、第1ガス拡散層19(図7参照)に向かって突出する。前記第1突部26a及び第2突部26bの各々が前記第1ガス拡散層19に接触することによって、平板材25と第1ガス拡散層19との間に燃料ガス用のガス流路Tが形成されている。ガス流路Tは、流路空間13aとしても機能する。ガスの流れ方向P1と直交する方向Qから見た場合、第1突部26aは半円形状を有する。第2突部26bは扁平台形状を有するため、同第2突部26bと前記第2ガス拡散層20との接触面積は広くなっている。
 前記平板材25には、第1及び第2突部26a,26bと対応するように、かつガスの流れ方向P1に関して上流側に位置するように複数の小さく低い第3突部27が成形されている。各第3突部27は、水流路28を形成するための突部であり、図5及び図7に示すように第1セパレータ23に向かって突出するように押し出し成形されている。各第3突部27が第1セパレータ23に接触することによって、平板材25と第1セパレータ23との間に複数の水流路28が形成されている。前記第1突部26a及び第2突部26bの各々には、ガスの流れ方向P1と直交する方向Qに沿って第1及び第2突部26a,26bを貫通する連通孔29が形成されている。すなわち、連通孔29は、ガスの流れ方向P1から見て各第1突部26aの左側と右側との二箇所及び各第2突部26bの左側と右側との二箇所においてそれぞれ開口するように形成されている。該連通孔29によって、前記ガス流路Tと水流路28とが互いに連通している。
 前記半円形状の第1突部26aは、図5及び図7に示すように、ガスの流れ方向P1に沿って、所定のピッチで配列されている。前記偏平台形状の第2突部26bは、ガスの流れ方向P1に沿って、所定のピッチで直線的に配列されている。ガスの流れ方向P1と直交する方向Qに隣接する一対の第1及び第2突部26a,26bは、図8に示すように、ガスの流れ方向P1に関して第2突部26bの中心O2と第1突部26aの中心O1とが互いに一致するように配列されている。ガスの流れ方向P1に沿って延びる第2突部26bの隣接する列の間には、ガスの流れ方向P1に関して、第1及び第2突部26a,26bの存在しない帯状平板部25aが形成されている。ガス流路Tは、前記帯状平板部25aと第1セパレータ23との間において、ガスの流動抵抗の小さい帯状のストレートガス流路Tsを備えている。前記ガス流路Tは、このストレートガス流路Tsとは別に、ガスの流動抵抗の大きい蛇行ガス流路Tdを備えている。この蛇行ガス流路Tdは、第1突部26aと第2突部26bとの間に形成された蛇行する平板部25bと、第1セパレータ23とによって形成されている。
 カソード側の第2ガス流路形成体22は、図6に示すように第1ガス流路形成体21と同様の構成を有するが、酸化ガスの流れ方向P2が燃料ガスの流れ方向P1と90°異なる。即ち、酸化ガスの流れ方向P2は、第1ガス流路形成体21の燃料ガスの流れ方向P1と直交する。第2ガス流路形成体22の前記ガス流路Tと対応するガス流路Fは、ストレートガス流路Tsと対応するストレートガス流路Fs、蛇行ガス流路Tdと対応する蛇行ガス流路Fdを含むが、各符号を付すことによりその説明を省略する。
 第2実施形態においては、前記第1突部26a及び第2突部26bの帯状平板部25aから突出する部分の高さ、換言すれば、ストレートガス流路Ts(Fs)及び蛇行ガス流路Td(Fd)の深さは、30μm~1000μmの範囲内に、望ましくは30μm~300μmの範囲内に設定されており、例えば200μmに設定されている。前記第3突部27の帯状平板部25aから突出する部分の高さ、換言すれば、前記水流路28の深さは10μm~50μmの範囲内に設定されており、例えば30μmに設定されている。このように各水流路28がスリット状に、かつ各水流路28の深さがストレートガス流路Ts(Fs)、蛇行ガス流路Td(Fd)の深さよりも浅く形成されているため、スリット状の水流路28の毛管作用によりストレートガス流路Ts(Fs)、蛇行ガス流路Td(Fd)内の水が連通孔29を通して水流路28に吸い込まれ易くなる。図8に示す帯状平板部25aの幅Dは、100μm~300μmに設定されており、平板部25bの幅Eは、50μm~150μmに設定されている。
 次に、第2実施形態の燃料電池の作用について説明する。
 図7において、発電の際に導入通路M1から図5及び図8に示すストレートガス流路Tsに供給された加湿水を含む燃料ガスの大部分は、図8に破線の矢印で示すように直進し、一部の燃料ガスが左右の第2突部26bの上流側の表面に当たる。この表面に当たった燃料ガスに含まれる加湿水及び浸透水は滞留水Wとなって該表面に付着して成長する。この滞留水Wは燃料ガスの流動圧力によって押されて、その燃料ガスの大部分が第2突部26bの連通孔29を通して第2突部26bの内部に進入し、水流路28の毛細管作用により該水流路28に進入する。この水流路28に進入した水は、燃料ガスの流動圧力によって、下流側に移動される。
 一方、蛇行ガス流路Tdに供給された加湿水を含む燃料ガスの大半は、図8に破線の矢印で示すように蛇行し、第1突部26aの上流側の表面に当たる。この表面に当たった燃料ガスに含まれる加湿水及び浸透水も滞留水Wとなって該表面に付着して成長する。この滞留水Wは燃料ガスの流動圧力によって押されて、第1突部26aの左右の連通孔29を通して第1突部26aの内部に進入し、水流路28の毛細管作用により該水流路28に進入する。この水流路28に進入した水も、燃料ガスの流動圧力によって、下流側に移動される。
 以下、この第2実施形態の効果について説明する。
 (1)第1及び第2ガス流路形成体21,22には、圧力損失が低く、かつ滞留水の付着を防止することができるストレートガス流路Ts(Fs)と、圧力損失が高く、かつ滞留水が付着し易い蛇行ガス流路Td(Fd)の2種類の流路が形成されている。このため、蛇行ガス流路Td(Fd)に滞留水が残留して、燃料ガス及び酸化ガスが電極触媒層17,18の一部に供給されない状態となっても、ストレートガス流路Ts(Fs)から燃料ガス及び酸化ガスが電極触媒層17,18に供給される。このため、発電効率が低下することを防止することができる。又、発電セル12が発電不能になることを防止して、燃料電池スタック11による発電の停止を未然に防止することができる。
 (2)アノード側の第1ガス流路形成体21の平板材25と第1セパレータ23との間に複数の水流路28が形成されている。各水流路28の深さがガス流路Tの深さよりも浅く設定されている。平板材25と第1ガス拡散層19との間に形成されたガス流路T内の浸透水及び加湿水は、前記第1突部26に形成された連通孔29を介して毛細管作用により水流路28に導かれる。水流路28内に導かれた浸透水及び加湿水は、燃料ガスの流動圧力によって燃料ガス用の導出通路M2へ向かって排出される。このような構成により、第1電極触媒層17に燃料ガスが適正に供給されるため、第1電極触媒層17の水素欠乏状態が回避され、発電効率が向上する。
 又、水流路28内の水は、燃料ガス用の導出通路M2へ排出される。これにより、前記ガス流路T内に浸透水及び加湿水が残留することが抑制され、浸透水、加湿水等の水によるガス流路T内を流れる燃料ガスの圧力損失が低減されるので、発電効率が向上する。さらに、第1電極触媒層17の水素欠乏状態によって生じるアノード側の第1電極触媒層17の電位の上昇が抑制される。従って、第1ガス流路形成体21の腐蝕が防止されるため、第1ガス流路形成体21の耐久性を向上することができる。よって、第1ガス流路形成体21の材料の選択基準が緩和され、第1ガス流路形成体21の材料として安価な材料を用いることができ、材料コストを低減することができる。
 (3)カソード側の第2ガス流路形成体22の平板材25と第2セパレータ24との間に複数の水流路28が設けられている。そのため、カソード側の第2ガス流路形成体22のガス流路F内の生成水及び加湿水が前記水流路28によって酸化ガス用の導出通路R2へ向かって排出される。これにより、第2ガス流路形成体22のガス流路Fに生成水及び加湿水が残留することが抑制されて、ガス流路F内を流れる酸化ガスの生成水による圧力損失が低減されるので、発電効率が向上する。又、電極触媒層18に酸化ガスが適正に供給されて、酸化ガス欠乏状態が回避されるので、発電効率が向上する。
 (4)第1突部26の内側空間の内周面が図5及び図6に示すように、半円弧面として形成されている。そのため、ガス流路Ts(Fs),Td(Fd)に生成された浸透水及び生成水が第1突部26の内側空間に進入して滞留水Wとして安定して保持され、第1突部26の保水性を向上することができる。即ち、第1及び第2ガス拡散層19,20の表面に付着した滞留水Wは、表面張力によって球状になる傾向にあるので、第1突部26の半円筒状の内側空間に流入し易くなる。このため、第1及び第2ガス拡散層19,20の表面の滞留水Wの成長が抑制され、水によるガスの供給不足が解消され、発電性能が向上する。又、滞留水Wが第1及び第2ガス拡散層19,20の表面に付着したまま燃料電池の発電が停止されると、第1及び第2ガス拡散層19,20が水によって局部的に劣化する。この実施形態では、この劣化を防止して、拡散層19,20の耐久性を向上することができる。
 (5)半円形状の前記第1突部26のみが点在しているセパレータと比較して、前記第2ガス拡散層20と接触する面積が偏平台形状の第2突部26bによって広くなる。そのため、半円形状の第1突部26が前記第2ガス拡散層20に食い込むことを防止することができるとともに、発電された電気に対する電気抵抗が低減される。一方、半円形状に形成された多数の第1突部26によって生成水及び加湿水を滞留水として保持する能力も高められる。
 (6)前記ストレートガス流路Ts,Fsによって、ガスの流路圧損が低減されるので、例えばガスを供給するコンプレッサ等の周辺機器の動力損失を低減することができる。
(変形例)
 なお、本発明は以下のような実施形態に変更してもよい。
 ・燃料ガス用の導出通路M2において、燃料ガスの流速を高めるための絞り部が形成されてもよい。具体的には、図9に示すように、第1ガス流路形成体21の下流側端縁21e、即ち水流路28の下流側の開口部は、導出通路M2の側壁にまで延長されている。前記導出通路M2において前記下流側端縁21eと対向する壁面には、突条部13bが設けられている。該突条部13bと前記端縁21eとにより、水流路28の下流側の開口部の近傍に位置する絞り部41が形成されている。この絞り部41における導出通路M2の通路断面積が狭くなり、同絞り部41における燃料ガスの流速は高まる。この実施形態においては、絞り部41を流れる流速の高い燃料ガスのベンチュリー効果によって、前記水流路28内に存在する水は、導出通路M2へ吸い出されるため、排水がより適正に行われる。上述の構成と同様に、酸化ガス用の導出通路R2において酸化ガスの流速を高めるための絞り部が形成されてもよい。
 ・第2実施形態において、図10に示すように第2セパレータ24に排水孔35が形成され、その排水孔35と対応する位置にガス通路22eが設けられてもよい。こうした構成により、これらガス通路22e及び排水孔35は、連通路36を通じて酸化ガス用の導出通路R2に連通されており、酸化ガスの通路となっている。これらガス通路22e及び排水孔35は、酸化ガスの流速を高めるための絞り部41として機能している。この実施形態においては、絞り部41を流れる流速の高い酸化ガスのベンチュリー効果によって、水流路28内の水は、適正に連通路36へ吸い出され、排水がより適正に行われる。上述の構成と同様に、燃料ガス用の導出通路M2において燃料ガスの流速を高めるための絞り部が形成されてもよい。
 ・図11に示すように、前記第1ガス流路形成体21の第1及び第2ストレート溝21c,21dの深さd1,d2が互いに異なるように設定されてもよい。これにより、第1ガス流路T1の通路断面積S1が狭く設定されてガスの流動抵抗が大きくなり、第2ガス流路T2の通路断面積S2が広く設定されてガスの流動抵抗が小さくなる。
 ・図12に示すように、前記第1ガス流路T1が平面視で、ガスの流動抵抗の大きい蛇行ガス流路Tdであり、第2ガス流路T2が平面視で、ガスの流動抵抗の小さいストレートガス流路Tsであってもよい。この実施形態において、第1及び第2ストレート溝21c,21d及び第1及び第2ストレート溝22c,22dの幅w1,w2は、それぞれ同じであってもよい。
 ・図示しないが、前記第2実施形態において、アノード側のみに水流路28が設けられてもよい。このような構成によれば、アノード側の第1電極触媒層17への燃料ガスの供給が低減されることを抑制でき、燃料電池の発電効率を向上することができるとともに、アノード側の第2ガス流路形成体22及びカソード側の電極触媒層18の耐久性を向上することができる。又、カソード側のみに水流路28が設けられてもよい。このような構成により、カソード側の前記第2電極触媒層18への酸化ガスの供給が低減されるのを抑制でき、燃料電池の発電効率を向上することもできる。
 ・通路断面積が大きい複数のストレートガス流路と、通路断面積が小さい複数の蛇行ガス流路とが適宜に組み合わされてもよい。
 ・前記ガス流路の通路断面積が例えば三段階以上に変化されてもよい。通路断面積は交互或いは規則性をもって変化されてもよいし、不規則に変化されてもよい。
 ・前記各実施形態の燃料電池において、発電セル12の第1及び第2セパレータ23,24に冷却水を通過させるための溝が形成されてもよい。
 ・カソード側のみに前記水流路28を設けた燃料電池において、アノード側の第1ガス流路形成体21と第1セパレータ23とが一体的に形成されていてもよい。又、第1フレーム13と第1セパレータ23とが金属材料により例えば鍛造により一体的に形成されていてもよい。
 ・アノード側のみに前記水流路28を設けた燃料電池において、カソード側の第2ガス流路形成体22と第2セパレータ24とが一体的に形成されていてもよい。又、フレーム14と第2セパレータ24とが金属材料により例えば鍛造により一体的に形成されていてもよい。

Claims (6)

  1.  アノード面及びカソード面を有する電解質膜と、
     前記電解質膜の前記アノード面上及び前記カソード面上にそれぞれ積層された一対の電極触媒層と、
     前記一対の電極触媒層上にそれぞれ積層された一対のガス流路形成体と、
     前記各ガス流路形成体に形成されるとともに、第1ガス流路及び第2ガス流路を含む複数のガス流路と、
     前記一対のガス流路形成体に一体又は別体にそれぞれ設けられた一対のセパレータと、
     前記複数のガス流路に燃料ガス及び酸化ガスをそれぞれ導入する一対の導入通路と、
     前記複数のガス流路から燃料オフガス及び酸化オフガスをそれぞれ導出する一対の導出通路とを備えた燃料電池において、
     前記各ガス流路形成体における前記第1ガス流路及び第2ガス流路の間に流動抵抗の差を生じるように、前記第1ガス流路及び第2ガス流路の形状が設定されていることを特徴とする燃料電池。
  2.  請求項1において、前記複数のガス流路が並設され、前記第1ガス流路及び第2ガス流路の通路断面積が互いに異なるように設定されていることを特徴とする燃料電池。
  3.  請求項1において、前記第1ガス流路はガスの流動抵抗の小さいストレート状のガス流路であり、前記第2ガス流路は前記第1ガス流路の流動抵抗より大きい流動抵抗を有する蛇行したガス流路であることを特徴とする燃料電池。
  4.  請求項1において、前記各ガス流路形成体の表面には、前記一対のセパレータのうちの対応するセパレータが接触し、
     前記各ガス流路形成体は、
     平板部と、
     該平板部に一体に成形されるとともに、前記複数のガス流路を形成するための複数の突部とを備え、
     前記セパレータと前記平板部との間に複数の水流路が形成され、前記各水流路と前記複数のガス流路のうち少なくとも一つのガス流路とは、前記ガス流路形成体に形成された連通孔により連通され、前記各水流路の深さは、前記各ガス流路の深さよりも小さく設定され、前記燃料ガスと前記酸化ガスとの反応によって生成される水が前記各ガス流路から前記連通孔を通して毛管作用により前記水流路に吸い込まれて、ガスの流動圧力によって前記導出通路に排出されることを特徴とする燃料電池。
  5.  請求項4において、前記導出通路は内壁を有し、前記各水流路は前記ガスの流れ方向の下流側に開口部を有し、前記開口部は前記導出通路の前記内壁まで延び、前記導出通路において前記各水流路の開口部と対応する位置にガスの流速を高めるための絞り部が形成されていることを特徴とする燃料電池。
  6.  請求項4において、前記ガス流路形成体の平板部及び前記セパレータの前記各水流路の前記ガスの流れ方向の下流側の部分に、前記平板部及び前記セパレータを貫通するガス通路が形成され、該ガス通路は、前記導出通路に連通されて、ガスの流速を高めるための絞り部として機能することを特徴とする燃料電池。
PCT/JP2010/072629 2010-01-19 2010-12-16 燃料電池 WO2011089801A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080062166.6A CN102725896B (zh) 2010-01-19 2010-12-16 燃料电池
DE112010005161.5T DE112010005161B4 (de) 2010-01-19 2010-12-16 Brennstoffzelle
US13/522,620 US9065090B2 (en) 2010-01-19 2010-12-16 Fuel battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010008854A JP5560728B2 (ja) 2010-01-19 2010-01-19 燃料電池
JP2010-008854 2010-01-19

Publications (1)

Publication Number Publication Date
WO2011089801A1 true WO2011089801A1 (ja) 2011-07-28

Family

ID=44306618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072629 WO2011089801A1 (ja) 2010-01-19 2010-12-16 燃料電池

Country Status (5)

Country Link
US (1) US9065090B2 (ja)
JP (1) JP5560728B2 (ja)
CN (1) CN102725896B (ja)
DE (1) DE112010005161B4 (ja)
WO (1) WO2011089801A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150004515A1 (en) * 2012-02-24 2015-01-01 Ballard Power Systems Inc. Avoiding fuel starvation of anode end fuel cell

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113252A1 (ja) 2009-03-31 2010-10-07 トヨタ車体 株式会社 燃料電池
EP2876715B1 (en) 2012-07-17 2020-05-06 Toyota Shatai Kabushiki Kaisya Fuel cell
JP6079304B2 (ja) 2013-02-28 2017-02-15 トヨタ車体株式会社 燃料電池のガス流路形成体及び燃料電池
JP6079303B2 (ja) 2013-02-28 2017-02-15 トヨタ車体株式会社 燃料電池のガス流路形成体及び燃料電池
JP6155711B2 (ja) * 2013-03-11 2017-07-05 日産自動車株式会社 燃料電池
JP6205915B2 (ja) 2013-07-08 2017-10-04 トヨタ車体株式会社 燃料電池のガス流路形成部材及び燃料電池
WO2015072584A1 (ja) 2013-11-18 2015-05-21 国立大学法人山梨大学 燃料電池のためのセパレータおよびセル・スタック
KR101990281B1 (ko) 2015-06-30 2019-06-18 주식회사 엘지화학 분리판, 이의 제조방법 및 이를 포함하는 연료전지 스택
KR101959469B1 (ko) * 2015-07-31 2019-07-02 주식회사 엘지화학 분리판, 및 이를 포함하는 연료전지 스택
JP6458286B2 (ja) * 2015-08-21 2019-01-30 トヨタ車体株式会社 燃料電池用ガス流路形成板及び燃料電池スタック
KR102483895B1 (ko) * 2016-01-21 2022-12-30 삼성전자주식회사 전기 화학 소자, 전기 화학 소자를 포함하는 전지 모듈, 및 전지 모듈을 포함하는 전지 팩
JP6859823B2 (ja) * 2017-04-17 2021-04-14 トヨタ自動車株式会社 燃料電池セル
KR101983912B1 (ko) * 2017-12-15 2019-05-29 한양대학교 산학협력단 분리판 및 이를 포함하는 연료 전지
KR102602415B1 (ko) * 2018-09-04 2023-11-14 현대자동차주식회사 전극막접합체
CN109921057A (zh) * 2019-04-04 2019-06-21 浙江大学 一种波纹交错排布的燃料电池双极板结构
JP7176490B2 (ja) * 2019-07-19 2022-11-22 トヨタ車体株式会社 燃料電池スタック

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110261A (ja) * 1985-11-08 1987-05-21 Hitachi Ltd 燃料電池
JPH10134833A (ja) * 1996-11-01 1998-05-22 Murata Mfg Co Ltd 燃料電池
JP2000251907A (ja) * 1999-02-24 2000-09-14 Sanyo Electric Co Ltd 固体高分子型燃料電池
JP2004186008A (ja) * 2002-12-04 2004-07-02 Nissan Motor Co Ltd 固体高分子型燃料電池および固体高分子燃料型電池システムおよび移動体
JP2006331916A (ja) * 2005-05-27 2006-12-07 Toyota Motor Corp 燃料電池
JP2007207731A (ja) * 2006-02-06 2007-08-16 Sanyo Electric Co Ltd 燃料電池用セパレータ
JP3135588U (ja) * 2006-08-29 2007-09-20 奇▲こう▼科技股▲ふん▼有限公司 燃料電池に用いる均等流量の流路板
JP2007265939A (ja) * 2006-03-30 2007-10-11 Ngk Insulators Ltd 電気化学装置
WO2010047143A1 (ja) * 2008-10-20 2010-04-29 トヨタ車体 株式会社 発電セル用ガス流路形成部材及びその製造方法、並びに、成形装置
WO2010064366A1 (ja) * 2008-12-02 2010-06-10 パナソニック株式会社 燃料電池
WO2010113534A1 (ja) * 2009-03-31 2010-10-07 トヨタ車体 株式会社 燃料電池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007207725A (ja) 2006-02-06 2007-08-16 Toyota Central Res & Dev Lab Inc 燃料電池システム及び拡散層内のフラッディング試験方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110261A (ja) * 1985-11-08 1987-05-21 Hitachi Ltd 燃料電池
JPH10134833A (ja) * 1996-11-01 1998-05-22 Murata Mfg Co Ltd 燃料電池
JP2000251907A (ja) * 1999-02-24 2000-09-14 Sanyo Electric Co Ltd 固体高分子型燃料電池
JP2004186008A (ja) * 2002-12-04 2004-07-02 Nissan Motor Co Ltd 固体高分子型燃料電池および固体高分子燃料型電池システムおよび移動体
JP2006331916A (ja) * 2005-05-27 2006-12-07 Toyota Motor Corp 燃料電池
JP2007207731A (ja) * 2006-02-06 2007-08-16 Sanyo Electric Co Ltd 燃料電池用セパレータ
JP2007265939A (ja) * 2006-03-30 2007-10-11 Ngk Insulators Ltd 電気化学装置
JP3135588U (ja) * 2006-08-29 2007-09-20 奇▲こう▼科技股▲ふん▼有限公司 燃料電池に用いる均等流量の流路板
WO2010047143A1 (ja) * 2008-10-20 2010-04-29 トヨタ車体 株式会社 発電セル用ガス流路形成部材及びその製造方法、並びに、成形装置
WO2010064366A1 (ja) * 2008-12-02 2010-06-10 パナソニック株式会社 燃料電池
WO2010113534A1 (ja) * 2009-03-31 2010-10-07 トヨタ車体 株式会社 燃料電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150004515A1 (en) * 2012-02-24 2015-01-01 Ballard Power Systems Inc. Avoiding fuel starvation of anode end fuel cell
US9966612B2 (en) * 2012-02-24 2018-05-08 Audi Ag Avoiding fuel starvation of anode end fuel cell

Also Published As

Publication number Publication date
US20120301810A1 (en) 2012-11-29
DE112010005161T5 (de) 2013-01-10
JP2011150801A (ja) 2011-08-04
CN102725896A (zh) 2012-10-10
DE112010005161B4 (de) 2017-07-27
JP5560728B2 (ja) 2014-07-30
CN102725896B (zh) 2015-08-05
US9065090B2 (en) 2015-06-23

Similar Documents

Publication Publication Date Title
WO2011089801A1 (ja) 燃料電池
WO2010113534A1 (ja) 燃料電池
JP5500254B2 (ja) 燃料電池
JP5648293B2 (ja) 燃料電池
WO2014013747A1 (ja) 燃料電池
JP5304082B2 (ja) 燃料電池の発電セル
JP2008171615A (ja) シール一体型膜電極接合体
JP2007115525A (ja) 燃料電池用セパレータおよび燃料電池
US8691471B2 (en) Polymer electrolyte fuel cell and fuel cell stack comprising the same
JP4228501B2 (ja) 固体高分子型燃料電池の集電板および固体高分子型燃料電池
JP5246329B2 (ja) 燃料電池
JP2008311047A (ja) 燃料電池
WO2010067635A1 (ja) 燃料電池の発電セル
JP2007250432A (ja) 燃料電池
JP5246331B2 (ja) 燃料電池
JP2020107397A (ja) 燃料電池セル
JP2006066172A (ja) 燃料電池
JP5423699B2 (ja) ガス流路形成体および燃料電池セル
JP6874403B2 (ja) 燃料電池
JP5336221B2 (ja) 燃料電池スタック
JP4321264B2 (ja) 燃料電池と燃料電池用セパレータ
JP2005158513A (ja) 燃料電池
JP2023102600A (ja) 発電セル
CN113948731A (zh) 用于燃料电池的隔板的多穿孔板和燃料电池
JP2005339901A (ja) 燃料電池および燃料電池用セパレータ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080062166.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10843965

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13522620

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120100051615

Country of ref document: DE

Ref document number: 112010005161

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10843965

Country of ref document: EP

Kind code of ref document: A1