WO2011083009A1 - Flammschutzmittel - Google Patents

Flammschutzmittel Download PDF

Info

Publication number
WO2011083009A1
WO2011083009A1 PCT/EP2010/069796 EP2010069796W WO2011083009A1 WO 2011083009 A1 WO2011083009 A1 WO 2011083009A1 EP 2010069796 W EP2010069796 W EP 2010069796W WO 2011083009 A1 WO2011083009 A1 WO 2011083009A1
Authority
WO
WIPO (PCT)
Prior art keywords
bis
hexitol
dianhydro
formula
polymer
Prior art date
Application number
PCT/EP2010/069796
Other languages
English (en)
French (fr)
Inventor
Christoph Fleckenstein
Hartmut Denecke
Ingo Bellin
Olaf Kriha
Patrick Spies
Sabine Fuchs
Klemens Massonne
Klaus Hahn
Peter Deglmann
Maximilian Hofmann
Alois Kindler
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to KR1020127018256A priority Critical patent/KR101824268B1/ko
Priority to MX2012006941A priority patent/MX2012006941A/es
Priority to JP2012543729A priority patent/JP5917410B2/ja
Priority to ES10790979.8T priority patent/ES2545331T3/es
Priority to RU2012129682/05A priority patent/RU2012129682A/ru
Priority to PL10790979T priority patent/PL2513251T3/pl
Priority to US13/516,464 priority patent/US9234137B2/en
Priority to CN201080062708.XA priority patent/CN102834488B/zh
Priority to BR112012014682A priority patent/BR112012014682A2/pt
Priority to EP20100790979 priority patent/EP2513251B1/de
Publication of WO2011083009A1 publication Critical patent/WO2011083009A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/06Organic materials
    • C09K21/12Organic materials containing phosphorus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0038Use of organic additives containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/20Making expandable particles by suspension polymerisation in the presence of the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • C08K5/523Esters of phosphoric acids, e.g. of H3PO4 with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • B29B9/065Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion under-water, e.g. underwater pelletizers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5377Phosphinous compounds, e.g. R2=P—OR'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/5398Phosphorus bound to sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/14Applications used for foams

Definitions

  • the invention relates to the use of phosphorus compounds as flame retardants and polymers, in particular foams which contain these flame retardants, a process for the preparation of flame-retardant polymers, in particular foams, and novel phosphorus compounds.
  • flame retardants in plastics mainly polyhalogenated hydrocarbons, optionally used in combination with suitable synergists, such as organic peroxides or nitrogen-containing compounds.
  • suitable synergists such as organic peroxides or nitrogen-containing compounds.
  • HBCD hexabromocyclododecane Due to the bioaccumulation and persistence of some polyhalogenated hydrocarbons, it is a major effort in the plastics industry to substitute halogenated flame retardants.
  • Flame retardants should, if possible, in addition to a high flame retardancy in the plastic at low loading for processing also have sufficient temperature and hydrolysis stability. Furthermore, they should have no bioaccumulation and persistence.
  • halogen-free flame retardants with sulfur-phosphorus bonds in particular thiophosphates and thiophosphonates are described.
  • halogen-free flame retardants must be used to achieve the same flame retardant effect of halogen-containing flame retardants usually in significantly higher amounts. Therefore, halogen-containing flame retardants that can be used in thermoplastic polymers, such as polystyrene, often also not be used in polymer foams, since they either interfere with the foaming process or affect the mechanical and thermal properties of the polymer foam. Moreover, in the production of expandable polystyrene by suspension polymerization, the high levels of flame retardant can reduce the stability of the suspension. In addition, the effect of the flame retardants used in thermoplastic polymers in polymer foams is often unpredictable due to the different fire behavior and different fire tests. The object of the invention is therefore to provide compounds which are halogen-free on the one hand and, on the other hand, even in small amounts have good flame retardancy properties in polymers, in particular in polymer foams.
  • the invention therefore provides the use of phosphorus compounds of the formula (I) as flame retardants,
  • A is a group
  • Alkyl group C 5 -C 6 cycloalkyl, C 6 -Ci2-aryl, benzyl, where the four last-mentioned groups are unsubstituted or substituted by one or more radicals -C 4 alkyl or C 2 -C 4 alkenyl groups;
  • R 1 , R 2 , R 3 and R 4 are the same or different and are hydrogen, OH, C 1 -C 6 -alkyl, C 2 -
  • R 5 , R 6 , R 7 , R 8 are identical or different and are H, C 1 -C 6 -alkyl, C 2 -C 6 -alkenyl,
  • Ci-Ci 6 alkoxy C 2 -C 6 alkenoxy
  • R 9 , R 10 , R 11 , R 12 , R 13 are identical or different HC Ci 6 alkyl, C 2 -C 6 - alkenyl, C 6 -C 0 -aryl, C 6 -Cio-aryl-Ci-Ci 6 alkyl, C 6 -C 0 -
  • X 1 , X 2 are the same or different S or O; r, s are the same or different, preferably equal to 0 or 1;
  • X 3 , X 4 , X 5 , X 6 are the same or different S or O and n is a natural number from 1 to 50.
  • the invention also provides phosphorus compounds of the formula (I), the following compounds being excluded: HO OH 2,5-anhydro-3,4-dideoxy-hexitol bis (dihydrogen phosphate))
  • the invention further provides a process for the flame-retardant finishing of a material, wherein the material is added a flame retardant containing one or more compounds of the formula (I).
  • a polymer foam comprising one or more compounds of the formula (I), preferably an expandable styrene polymer, in particular obtainable by an extrusion process or a suspension process.
  • the invention therefore also provides a process for the preparation of a flame-retardant, expandable styrene polymer (EPS), by way of example comprising the steps:
  • the invention further relates to a process for producing a styrene extrusion foam (XPS) comprising the steps: a) heating a polymer component P containing at least one polystyrene polymer to form a polymer melt,
  • XPS styrene extrusion foam
  • the compounds of formula (I) are halogen-free and also have small amounts of a markedly better effectiveness as flame retardants, in particular foams, on, as known from the prior art flame retardants such as Disflamoll TP ® (triphenyl phosphate (0) P (OPh ) 3 ) or dibenz [c, e] [1,2] -oxaphosphorine-6-oxide (DOPO, EP-A 1 791 896).
  • Disflamoll TP ® triphenyl phosphate (0) P (OPh ) 3
  • DOPO dibenz [c, e] [1,2] -oxaphosphorine-6-oxide
  • A is preferably a group of the formula (II), (III) or (IV).
  • Y is preferably (X 2 ) r PR 3 R 4 or H.
  • R 1, R 2, R 3, R 4 are preferably identical or different C 6 -C 0 aryl, C 6 -C 0 aryloxy, C 6 - Cio-aryl-Ci-C 6 alkyl or C 6 -Cio -Aryl-Ci-Ci 6 -alkoxy.
  • R 5 , R 6 , R 7 , R 8 are preferably H, C 1 -C 6 -alkyl, C 2 -C 6 -alkenyl, C 1 -C 6 -alkoxy or C 2 -C 6 -alkenoxy. They are the same or different, preferably the same.
  • X 1 , X 2 are preferably the same or different S or O.
  • r, s are preferably 0 or 1.
  • X 3 , X 4 , X 5 , X 6 are preferably O.
  • n is preferably a natural number from 1 to 30.
  • A is more preferably a group of formula (II), (III) or (IV).
  • Y is particularly preferred (X 2 ) r PR 3 R 4 .
  • R 1 , R 2 , R 3 , R 4 are more preferably identical or different phenyl, phenoxy, phenyl-C Ci 6 alkyl, phenyl-C Ci 6 alkoxy.
  • R 5 , R 6 , R 7 , R 8 are particularly preferably H.
  • X 1 , X 2 are particularly preferably the same or different S or O. r, s are more preferably equal to 0 or 1.
  • X 3 , X 4 , X 5 , X 6 are particularly preferably O.
  • n is more preferably 1.
  • Particular preference is given to compounds of the formula (I) in which all symbols and indices have the particularly preferred meanings.
  • R 1 , R 2 , R 3 and R 4 are the same.
  • A is particularly preferably a group of the formula (II), (III) or (IV).
  • Y is particularly preferred (X 2 ) r PR 3 R 4 .
  • R 1 , R 2 , R 3 , R 4 are particularly preferably equal to phenyl or phenoxy.
  • R 5 , R 6 , R 7 , R 8 are particularly preferably H.
  • X 1 , X 2 are particularly preferably equal to S or O.
  • r, s are more preferably equal to 0 or 1.
  • X 3 , X 4 , X 5 , X 6 are particularly preferably oxygen.
  • n is particularly preferred 1.
  • Particular preference is given to compounds of the formula (I) in which all symbols and indices have the particularly preferred meanings.
  • the furan- or thiophene-based diol bases are largely commercially available or can easily be prepared from sugars by literature methods [see, for example: WO 2006/063287 (preparation of 2,5-bis (hydroxymethyl) tetrahydrofuran); Cottier, Louis; Descotes, Gerard; Soro, Yaya, Synth., Comm., (2003), 33 (24), 4285-4255), (Preparation of 2,5-bis (hydroxymethyl) furan); CA 2196632, Katritzky, Alan R .; Zhang, Zhongxing; Lang, Hengyuan; Jubran, Nusrallah; Lighter, Louis M .; Sweeny, Norman.
  • a2, a5-alkylated 2,5-bis (hydroxymethyl) furans) Krauss, Juergen; Unterreitmeier, Doris; Antlsperger, Dorothee, Archiv der Pharmazie, (2003), 336 (8), 381-384, z.
  • the preparation of a2, a5-alkylated 2,5-bis (hydroxymethyl) tetrahydrofurans) Walba, D.M .; Wand, M. D .; Wilkes, M.C., J. Am. Chem. Soc., (1979), 101 (15), 4396-4397, or
  • a2 a5-alkenylated 2,5-bis (hydroxymethyl) tetrahydrofurans: Morimoto, Yoshiki; Kinoshita, Takamasa; Iwai, Toshiyuki, Chirality (2002), 14 (7), 578-586.
  • the furan- or thiophene-based diols are partly present in enantiomerically or diastereomerically pure form.
  • the furan or thiophene-based diols can be used in the form of their pure enantiomers or diastereomers. However, mixtures of the respective configuration isomers are preferred.
  • Suitable solvents are inert organic solvents, e.g. DMSO, halogenated hydrocarbons, e.g. Methylene chloride, chloroform, 1, 2-dichloroethane and chlorobenzene.
  • ethers e.g. Diethyl ether, methyl tert-butyl ether, dibutyl ether, dioxane or tetrahydrofuran.
  • hydrocarbons e.g. Hexane, benzene or toluene.
  • Further suitable solvents are nitriles, e.g. Acetonitrile or propionitrile.
  • Further suitable solvents are ketones, e.g. Acetone, butanone or tert-butyl methyl ketone.
  • Suitable bases are metal hydrides, e.g. Sodium hydride, or non-nucleophilic amine bases, e.g. Triethylamine, Hunig base, bicyclic amines such as 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU), N-methylimidazole and N-methylmorpholine, N-methylpiperidine, pyridine and substituted pyridines such as lutidine. Particularly preferred are triethylamine and N-methylimidazole.
  • the bases are generally used in equimolar amounts. But they can also be used in excess or optionally as a solvent.
  • the starting materials are generally reacted in stoichiometric amounts in the ratio 1: 2 (diol: chlorophosphorus component). It may be advantageous to use the chlorophosphorus component in excess of the hydroxy functionalities of the diol. Statistical partial phosphorylation can be achieved by using the chlorophosphorus component in excess.
  • the selective single phosphorylation is achieved by protecting one of the two diol hydroxy groups in advance with the aid of a suitable protective group, which can be deprotected again after a successful phosphorylation sequence.
  • suitable protecting groups are, for example, silyl ether protective groups (TMS, TPDMS) or methoxymethyl ether (MOM).
  • TMS silyl ether protective groups
  • MOM methoxymethyl ether
  • the use of protecting groups is well known in the relevant literature [cf. Peter GM Wuts, Theodora W. Greene in: Greene's Protective Groups in Organic Synthesis, 4th Edition, VCH Wiley 2006].
  • the heteroatom X can be introduced as described directly by coupling the respective chlorophosphorus component.
  • a second possibility is first the coupling of a trivalent phosphorus species to the hydroxy functionality and subse- quent oxidation for the introduction of the heteroelement X with oxidizing or sulfiding reagents [cf. Grachev, MK; Anfilov, K.L .; Bekker, AK; Nifant'ev. EE Zhurnal Obshchei Khimii (1995), 65 (12), 1946-50].
  • the reactions are usually carried out at temperatures from 0 ° C to the boiling point of the reaction mixture, preferably from 0 ° C to 1 10 ° C, more preferably at room temperature to 1 10 ° C.
  • the reaction mixtures are worked up in the usual way, e.g. by filtration, mixing with water, separation of the phases and optionally chromatographic purification of the crude products.
  • the products are z.T. in the form of viscous oils, which are freed or purified under reduced pressure and at moderately elevated temperature of volatile fractions. If the products are obtained as solids, the purification can also be carried out by recrystallization or digestion.
  • the yield of the isolated products is usually 40-100%, preferably 90-100%.
  • a compound of formula (I) is used as a flame retardant.
  • the compounds of the formula (I) used according to the invention are generally used in an amount in the range from 0.1 to 25% by weight, based on the material to be protected, in particular polymer material. Quantities of from 2 to 15% by weight, based on the polymer, ensure sufficient flame retardancy, in particular in the case of foams made from expandable polystyrene.
  • the effectiveness of the compounds (I) can be improved by the addition of suitable flame retardant synergists, in particular thermal free-radical initiators, preferably organic peroxides, such as dicumyl peroxide or di-tert-butyl peroxide, organic polysulfides, ie sulfides having a chain of three or more sulfur atoms, or CC-splitting initiators , such as biscumyl (2,3-diphenyl-2,3-dimethyl-butane), are further improved.
  • suitable flame retardant synergists preferably organic peroxides, such as dicumyl peroxide or di-tert-butyl peroxide, organic polysulfides, ie sulfides having a chain of three or more sulfur atoms, or CC-splitting initiators , such as biscumyl (2,3-diphenyl-2,3-dimethyl-butane).
  • synergist is elemental sulfur, preferably in a proportion of 0.05 to 4 wt .-%, particularly preferably 0.1 to 2.5 wt .-% (based on the material to be protected, in particular polymer material).
  • the elemental sulfur can also be used in the form of starting compounds which are decomposed under the process conditions to elemental sulfur.
  • Suitable materials for encapsulating are, for example, melamine resins (analogous to US Pat. No. 4,440,880) and urea-formaldehyde resins (analogous to US Pat. No. 4,698,215). Further materials and references are to be found in WO 99/10429.
  • a preferred embodiment is therefore also a use according to the invention, wherein the compound (s) of the formula (I) are used in admixture with one or more further flame-retardant compounds and / or one or more synergists.
  • flame-retardant materials such as melamine, melamine cyanurates, metal oxides, metal hydroxides, phosphates, phosphinates and expandable graphite, or synergists, such as Sb 2 0 3 or Zn compounds can be used.
  • Suitable additional halogen-free flame retardant materials are, for example, commercially available under the names Exolit OP 930, Exolit OP 1312, DOPO, HCA-HQ, M-ester Cyagard RF-1241, Cyagard RF-1243, Fyrol PMP, Phoslite IP-A (aluminum hypophosphite), Melapur 200, Melapur MC, APP (ammonium polyphosphate) available.
  • halogen-reduced materials by the use of the compounds (I) according to the invention and the addition of relatively small quantities of halogen-containing, in particular brominated flame retardants, such as hexabromocyclododecane (HBCD), preferably in amounts ranging from 0.05 to 1, in particular from 0.1 to 0.5% by weight (based on the material to be protected, in particular the polymer composition).
  • halogen-containing, in particular brominated flame retardants such as hexabromocyclododecane (HBCD)
  • the flame retardant of the invention is halogen-free.
  • the composition of the material to be protected, flame retardants and other additives is halogen-free.
  • the material to be protected is preferably a polymer composition, i. a composition containing one or more polymers and preferably consisting of one or more polymers. Preference is given to thermoplastic polymers. Most preferably, the polymeric material is a foam.
  • the flame retardants of the invention i. Compounds of the formula (I), alone or mixed with one another and / or with synergists and / or other flame-retardant substances, are used according to the invention for the preparation of flame retardant (or flameproof) polymers, in particular thermoplastic polymers.
  • the flame retardants are preferably mixed physically with the corresponding polymer in the melt and then either finished as a polymer mixture with phosphorus contents between 0.05 wt .-% and 5 wt .-% (based on the polymer) and then in a second process step further processed together with the same or with another polymer.
  • the addition of the compounds (I) according to the invention before, during and / or after the preparation by suspension polymerization is preferred.
  • the invention also provides a, preferably thermoplastic, polymer composition containing one or more compounds of the formula (I) as flame retardants.
  • Foamed or unfoamed styrenic polymers including ABS, ASA, SAN, AMSAN, SB and HIPS polymers, polyimides, polysulfones, polyolefins such as polyethylene and polypropylene, polyacrylates, polyetheretherketones, polyurethanes, polycarbonates, polyphenylene oxides, unsaturated polyester resins, phenolic resins, polyamides, Polyethersulfone, polyether ketones and polyether sulfides, each individually or in mixture can be used as polymer blends.
  • flameproofed polymer foams in particular based on styrene polymers, preferably EPS and XPS.
  • the flameproofed polymer foams preferably have a density in the range from 5 to 200 kg / m 3 , particularly preferably in the range from 10 to 50 kg / m 3 , and are preferably more than 80%, particularly preferably 90 to 100% closed-cell.
  • the flame-retardant, expandable styrene polymers (EPS) and styrene polymer extrusion foams (XPS) according to the invention can be obtained by adding the blowing agent and the flame retardant according to the invention before, during or after the suspension polymerization or by mixing a blowing agent and the inventive flame retardant into the polymer melt and subsequent extrusion and granulation Pressure to expandable granules (EPS) or by extrusion and relaxation using appropriately shaped nozzles to foam plates (XPS) or foam strands are processed.
  • EPS expandable styrene polymers
  • XPS styrene polymer extrusion foams
  • styrene polymer includes polymers based on styrene, alpha-methylstyrene or mixtures of styrene and alpha-methylstyrene; This applies analogously to the styrene content in SAN, AMSAN, ABS, ASA, MBS and MABS (see below).
  • Styrene polymers according to the invention are based on at least 50% by weight of styrene and / or alpha-methylstyrene monomers.
  • the polymer is an expandable polystyrene (EPS).
  • the foam is a styrenic polymer extrusion foam (XPS).
  • Expandable styrenic polymers preferably have a molecular weight M w in the range from 120,000 to 400,000 g / mol, particularly preferably in the range from 180,000 to 300,000 g / mol, measured by gel permeation chromatography with refractometric detection (RI) over polystyrene standards. Due to the reduction in molecular weight by shear and / or temperature, the molecular weight of the expandable polystyrene is usually about 10,000 g / mol below the molecular weight of the polystyrene used.
  • styrene polymers to glassy polystyrene (GPPS), toughened polystyrene (HIPS), anionically polymerized polystyrene or toughened polystyrene (A-IPS), styrene- ⁇ -methylstyrene copolymers, acrylonitrile-butadiene-styrene polymers (ABS), styrene-butadiene Copolymers (SB), styrene-acrylonitrile copolymers (SAN), acrylonitrile-alpha-methylstyrene copolymers (AMSAN), acrylonitrile-styrene-acrylic esters (ASA), Methyl methacrylate-butadiene-styrene (MBS), methyl methacrylate-acrylonitrile-butadiene-styrene (MABS) polymers or mixtures thereof or with polyphenylene ether (PPE) used.
  • GPPS
  • thermoplastic polymers such as polyamides (PA), polyolefins, such as polypropylene (PP) or polyethylene (PE), polyacrylates, such as polymethyl methacrylate (PMMA), polycarbonate ( PC), polyesters, such as polyethylene terephthalate (PET) or polybutylene terephthalate (PBT), polyethersulfones (PES), polyether ketones or polyether sulfides (PES) or mixtures thereof, generally in proportions of not more than 30% by weight, preferably in the range of 1 be mixed to 10 wt .-%, based on the polymer melt.
  • PA polyamides
  • PE polyolefins
  • PMMA polymethyl methacrylate
  • PC polycarbonate
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PES polyethersulfones
  • PES polyether ketones or polyether sulfides
  • rubbers such as polyacrylates or polydienes, for.
  • styrene-butadiene block copolymers or biodegradable aliphatic or aliphatic / aromatic copolyesters possible.
  • Suitable compatibilizers are e.g. Maleic anhydride-modified styrene copolymers, epoxy group-containing polymers or organosilanes.
  • the styrene polymer melt may also be mixed with polymer recyclates of the abovementioned thermoplastic polymers, in particular styrene polymers and expandable styrene polymers (EPS), in amounts which do not substantially impair their properties, generally in quantities of not more than 50% by weight, in particular in amounts of 1 to 20% by weight.
  • EPS expandable styrene polymers
  • the blowing agent-containing styrene polymer melt generally contains one or more blowing agents in a homogeneous distribution in a proportion of 2 to 10 wt .-%, preferably 3 to 7 wt .-%, based on the propellant-containing styrene polymer melt.
  • Suitable blowing agents are the physical blowing agents commonly used in EPS, such as aliphatic hydrocarbons having 2 to 7 carbon atoms, alcohols, ketones, ethers or halogenated hydrocarbons. Preference is given to using isobutane, n-butane, isopentane, n-pentane. For XPS, preference is given to using CO 2 or mixtures thereof with alcohols and / or C 2 -C 4 -carbonyl compounds, in particular ketones.
  • finely distributed internal water droplets can be introduced into the styrene polymer matrix. This can be done, for example, by the addition of water into the molten styrene polymer matrix. The addition the water may be localized before, with or after propellant dosing. A homogeneous distribution of the water can be achieved by means of dynamic or static mixers. As a rule, from 0 to 2, preferably from 0.05 to 1.5,% by weight of water, based on the styrene polymer, is sufficient.
  • Expandable styrene polymers with at least 90% of the internal water in the form of inner water droplets with a diameter in the range of 0.5 to 15 ⁇ form during foaming foams with sufficient cell count and homogeneous foam structure.
  • the amount of blowing agent and water added is chosen such that the expandable styrene polymers (EPS) have an expansion capacity a, defined as bulk density before foaming / bulk density after being applied, at most 125, preferably 15 to 100.
  • EPS expandable styrene polymers
  • the expandable styrene polymer pellets (EPS) according to the invention generally have a bulk density of at most 700 g / l, preferably in the range from 590 to 660 g / l.
  • bulk densities in the range of 590 to 1200 g / l may occur.
  • additives, nucleating agents, fillers, plasticizers, soluble and insoluble inorganic and / or organic dyes and pigments may be added to the styrene polymer melt together or spatially separated, eg via mixers or side extruders.
  • the dyes and pigments are added in amounts ranging from 0.01 to 30, preferably in the range of 1 to 5 wt .-%.
  • a dispersing aid for example organosilanes, polymers containing epoxy groups or maleic anhydride-grafted styrene polymers.
  • Preferred plasticizers are mineral oils, phthalates, which can be used in amounts of from 0.05 to 10% by weight, based on the styrene polymer. Analogously, these substances can also be added before, during or after the suspension polymerization to inventive EPS.
  • the blowing agent can be mixed into the polymer melt.
  • One possible method comprises the stages a) melt production, b) mixing c) cooling d) conveying and e) granulation.
  • stages can be carried out by the apparatuses or apparatus combinations known in plastics processing.
  • static or dynamic mixers are suitable, for example extruders.
  • the polymer melt can be taken directly from a polymerization reactor or produced directly in the mixing extruder or a separate melt extruder by melting polymer granules.
  • the cooling of the melt can be done in the mixing units or in separate coolers.
  • pressurized underwater granulation, granulation with rotating knives and cooling by spray misting of tempering liquids or sputtering granulation may be considered for the granulation.
  • Apparatus arrangements suitable for carrying out the method are, for example: a) Polymerization reactor - static mixer / cooler - granulator
  • Extruder - Granulator Furthermore, the arrangement may include side extruders for incorporation of additives, e.g. of solids or thermally sensitive additives.
  • additives e.g. of solids or thermally sensitive additives.
  • the propellant-containing styrene polymer melt is generally conveyed through the nozzle plate at a temperature in the range from 140 to 300.degree. C., preferably in the range from 160 to 240.degree. Cooling down to the range of the glass transition temperature is not necessary.
  • the nozzle plate is heated at least to the temperature of the blowing agent-containing polystyrene melt.
  • the temperature of the nozzle plate is in the range of 20 to 100 ° C above the temperature of the blowing agent-containing polystyrene melt. This prevents polymer deposits in the nozzles and ensures trouble-free granulation.
  • the diameter (D) of the nozzle bores at the nozzle exit should be in the range of 0.2 to 1.5 mm, preferably in the range of 0.3 to 1.2 mm, particularly preferably in the range of 0.3 to 0.8 mm.
  • D diameter of the nozzle bores at the nozzle exit
  • EPS halogen-free flame-retardant, expandable styrene polymers
  • EPS expandable styrene polymers
  • styrene In the suspension polymerization, styrene is used alone as the monomer. However, up to 20% of its weight may be replaced by other ethylenically unsaturated monomers such as alkylstyrenes, divinylbenzene, acrylonitrile, 1,1-diphenyl ether or alpha-methylstyrene.
  • ethylenically unsaturated monomers such as alkylstyrenes, divinylbenzene, acrylonitrile, 1,1-diphenyl ether or alpha-methylstyrene.
  • the usual adjuvants e.g. Peroxide initiators, suspension stabilizers, blowing agents, chain transfer agents, expanding aids, nucleating agents and plasticizers.
  • the flame retardant of the invention is added in the polymerization in amounts of 0.5 to 25 wt .-%, preferably from 5 to 15 wt .-%.
  • Propellants are added in amounts of 2 to 10 wt .-%, based on monomer. It can be added before, during or after the polymerization of the suspension.
  • Suitable propellants are, for example, aliphatic hydrocarbons having 4 to 6 carbon atoms. It is advantageous to use as suspension stabilizers inorganic Pickering dispersants, e.g. Magnesium pyrophosphate or calcium phosphate use.
  • pear-shaped, substantially round particles having an average diameter in the range of 0.2 to 2 mm are formed.
  • the final expandable styrenic polymer granules may be coated by glycerol esters, antistatic agents or anticaking agents.
  • the EPS granules may contain glycerol monostearate GMS (typically 0.25%), glycerol tristearate (typically 0.25%) finely divided silica Aerosil R972 (typically 0.12%) and Zn stearate (typically 0.15%), and antistatic be coated.
  • the expandable styrene polymer granules according to the invention can be prefoamed in a first step by means of hot air or steam to form foam particles having a density in the range of 5 to 200 kg / m 3 , in particular 10 to 50 kg / m 3 , and in a second step in a closed form Particle moldings are welded.
  • the expandable polystyrene particles can be made into polystyrene foams having densities of from 8 to 200 kg / m 3, preferably from 10 to 50 kg / m 3 .
  • the expandable particles are prefoamed. This is usually done by heating the particles with water vapor in so-called pre-expanders.
  • the pre-expanded particles are then welded into shaped bodies.
  • the prefoamed particles are brought into forms that do not close in a gas-tight manner and subjected to steam. After cooling, the moldings can be removed.
  • the foam is an extruded polystyrene (XPS), available from:
  • Foams according to the invention based on styrene polymers, in particular EPS and XPS, are suitable, for example, for use as insulating and / or insulating materials, in particular in the construction industry.
  • Preferred is a use as halogen-free insulating and / or insulating material, especially in the construction industry.
  • Foams according to the invention in particular based on styrene polymers, such as EPS and XPS, preferably exhibit a quenching time (fire test B2 according to DIN 4102 at a foam density of 15 g / l and a deposition time of 72 h) of ⁇ 15 seconds, particularly preferably ⁇ 10 seconds, and thus meet the conditions for passing the said fire test, as long as the flame height does not exceed the measurement mark specified in the standard.
  • a quenching time fire test B2 according to DIN 4102 at a foam density of 15 g / l and a deposition time of 72 h
  • the filtrate was shaken thoroughly with saturated, aqueous Na 2 CO 3 solution (2 ⁇ 500 ml), then washed with water (2 ⁇ 500 ml) and dried over Na 2 SO 4 overnight.
  • the Na 2 S0 4 was filtered off and washed with toluene (1 x 300 ml_).
  • the filtrate was concentrated on a rotary evaporator in vacuo (65 ° C, 77 mbar) and then dried at 80 ° C for 4 h at an oil pump vacuum.
  • the product was obtained as red-brown oil (1046 g, 86% of theory), purity> 96%.
  • An aqueous emulsion of the product had a pH of 5.0.
  • TGA under argon: 300 ° C (2% mass loss), 322 ° C (5% mass loss), 337 ° C (10% mass loss).
  • TGA under argon: 155 ° C (2% mass loss), 160 ° C (5% mass loss), 200 ° C (10% mass loss).
  • fire behavior of the foam boards was determined at a foam density of 15 kg / m 3 according to DIN 4102 (fire test B2).
  • HBCD Hexabromocyclododecane
  • Expandable styrene polymers (extrusion process)
  • the mixture of polystyrene melt, blowing agent and flame retardant was conveyed at 60 kg / h through a nozzle plate with 32 holes (diameter of the nozzle 0.75 mm). With the help of pressurized underwater granulation, compact granules with a narrow size distribution were produced.
  • the molecular weight of the granules was 220,000 g / mol (Mw) and 80,000 g / mol (Mn) (determined by GPC, Rl detector, PS as standard).
  • the granules were prefoamed by the action of flowing steam and, after being stored for 12 hours by further treatment with water vapor, sealed in a closed mold to form foam blocks with a density of 15 kg / m 3.
  • the fire behavior of the foam panels was determined after storage for 72 hours at a foam density of 15 kg / m3 according to DIN 4102. The results are summarized in Table 1 a (B.1-B.12).
  • EPS polyethylene wax, Clariant
  • dibenzoyl peroxide, dicumyl peroxide, optionally further synergists and Ceridust 3620 polyethylene wax, Clariant
  • the novel, phosphorus-containing flame retardant was added.
  • the organic phase was introduced into demineralized water in a stirred tank.
  • the aqueous phase also contained sodium pyrophosphate and magnesium sulfate * heptahydrate (Epsom salts).
  • the suspension was heated to 104 ° C. in the course of 1.75 hours and then to 136 ° C. over 5.5 hours.
  • emulsifier K30 (a mixture of different linear alkyl sulfonates, Lanxess AG) was added. After another hour, 7.8 wt .-% pentane were postdosed. Finally, it is polymerized at a final temperature of 136 ° C.
  • the propellant-containing polystyrene beads obtained were decanted off, dried from internal water and coated with a standard EPS coating.
  • the propellant-containing polystyrene beads were prefoamed by the action of flowing steam and, after being stored for 12 hours by further treatment with steam, sealed in a closed mold to form foam blocks with a density of 15 kg / m 3.
  • the fire behavior of the foam panels was determined after storage for 72 hours at a foam density of 15 kg / m3 according to DIN 4102.
  • Table 1 b The results of suspension polymerization are listed in Table 1 b (B.13-B.20).
  • Table 1 a Fire behavior of inventive polymer composition (examples) and of comparative examples (in italics)
  • Table 1 b Fire behavior of inventive polymer composition (examples) and of comparative examples (in italics)
  • Table 2 Influence of the foam density of polystyrene foam test specimens made of EPS on the firing result.
  • the parts described in the examples are parts by weight.
  • the uniformly kneaded gel in the extruder at 180 ° C was passed through a settling zone and extruded after a residence time of 15 minutes with an exit temperature of 105 ° C through a 300 mm wide and 1, 5 mm wide nozzle into the atmosphere.
  • the foam was passed through a mold channel connected to the extruder to form a foamed sheet having a cross section of 650 mm x 50 mm and a density of 35 g / l.
  • the molecular weight of the polystyrene was 240,000 g / mol (Mw) and 70,000 g / mol (Mn) (determined by GPC, Rl detector, PS as standard).
  • the product was cut into plates.
  • the fire behavior of the samples was tested with thicknesses of 10 mm after a deposition time of 30 days according to DIN 4102.
  • the application examples prove that the flame retardants according to the invention can be used to produce a foam which, without the use of halogenated flame retardants, exhibits the same or better fire behavior than with these agents.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fireproofing Substances (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Organic Insulating Materials (AREA)

Abstract

Verwendung einer Phosphorverbindung der Formel (I) als Flammschutzmittel, wobei die Symbole in der Formel (I) folgende Bedeutungen haben: ist eine Gruppe Y ist -P(=X2)SR3R4, H, eine geradkettige oder verzweigte C1-C12- Alkylgruppe, C5-C6-Cycloalkyl, C6-C12-Aryl, Benzyl, wobei die vier letztgenannten Gruppen unsubstituiert oder durch einen oder mehre- re Reste aus der Gruppe C1-C4-Alkyl oder C2-C4-Alkenyl substituiert sind; R1, R2, R3 und R4 sind gleich oder verschieden Wasserstoff, OH, C1-C16-Alkyl, C2- C16-Alkenyl, C1-C16-Alkoxy, C2-C16-Alkenoxy, C3-C10-Cycloalkyl, C3-C10-Cycloalkoxy, C6-C10-Aryl, C6-C10-Aryloxy, C6-C10-Aryl-C1- C16-Alkyl, C6-C10-Aryl-C1-C16-Alkoxy, SR9 COR10, COOR11, CONR12R13 oder zwei Reste R1, R2, R3, R4 bilden zusammen mit dem Phosphoratom, an das sie gebunden sind, oder der Gruppe P-O-A-O-P ein Ringsystem; R5, R6, R7, R8 sind gleich oder verschieden H, C1-C16-Alkyl, C2-C16-Alkenyl, C1-C16-Alkoxy, C2-C16-Alkenoxy; R9, R10, R11, R12, R13 sind gleich oder verschieden H d-de-Alkyl, C2-C16- Alkenyl, C6-C10-Aryl, C6-C10-Aryl-C1-C16-Alkyl,, C6-C10- Aryl-C1-C16-Alkoxy; X1, X2 sind gleich oder verschieden S oder O; r, s sind gleich oder verschieden 0 oder 1; X3, X4, X5, X6 sind gleich oder verschieden S oder O und n ist eine natϋrliche Zahl von 1 bis 50.

Description

Flammschutzmittel
Beschreibung Die Erfindung betrifft die Verwendung von Phosphorverbindungen als Flammschutzmittel sowie Polymere, insbesondere Schaumstoffe, welche diese Flammschutzmittel enthalten, ein Verfahren zur Herstellung von flammgeschützten Polymeren, insbesondere Schaumstoffen, sowie neuartige Phosphorverbindungen. Derzeit werden als Flammschutzmittel in Kunststoffen hauptsächlich polyhalogenierte Kohlenwasserstoffe, gegebenenfalls in Kombination mit geeigneten Synergisten, beispielsweise organischen Peroxiden oder stickstoffhaltigen Verbindungen eingesetzt. Ein typischer Vertreter dieser klassischen Flammschutzmittel ist Hexabromcyclododecan (HBCD), welches beispielsweise in Polystyrol Anwendung findet. Aufgrund von Bioakkumulation sowie Persistenz von einigen polyhalogenierten Kohlenwasserstoffen ist es ein großes Bestreben in der Kunststoffindustrie, halogenier- te Flammschutzmittel zu substituieren.
Flammschutzmittel sollten nach Möglichkeit neben einer hohen Flammschutzwirkung im Kunststoff bei niedriger Beladung für die Verarbeitung auch ausreichende Temperatur- und Hydrolysestabilität aufweisen. Des Weiteren sollten sie keine Bioakkumulation sowie Persistenz aufweisen.
In der WO-A 2009/035881 und der WO-A 2008/088487 sind halogenfreie Flamm- Schutzmittel mit Schwefel-Phosphor-Bindungen, insbesondere Thiophosphate und Thiophosphonate beschrieben.
Dennoch bleibt ein breiter Raum für Verbesserungen solcher Flammschutzmittel, beispielsweise weil halogenfreie Flammschutzmittel zur Erreichung der gleichen Flamm- schutzwirkung von halogenhaltigen Flammschutzmitteln in der Regel in deutlich höheren Mengen eingesetzt werden müssen. Deshalb können halogenhaltige Flammschutzmittel, die bei thermoplastischen Polymeren, wie Polystyrol, einsetzbar sind, häufig auch nicht bei Polymerschaumstoffen eingesetzt werden, da sie entweder den Schäumprozess stören oder die mechanischen und thermischen Eigenschaften des Polymerschaumstoffes beeinflussen. Bei der Herstellung von expandierbarem Polystyrol durch Suspensionspolymerisation können außerdem die hohen Flammschutzmittelmengen die Stabilität der Suspension verringern. Zudem ist die Wirkung der bei thermoplastischen Polymeren eingesetzten Flammschutzmittel bei Polymerschaumstoffen häufig aufgrund des unterschiedlichen Brandverhaltens und unterschiedlicher Brandtests nicht vorhersagbar. Aufgabe der Erfindung ist es daher, Verbindungen bereit zu stellen, die zum einen halogenfrei sind und zum anderen schon in geringen Mengen gute Flammschutzeigenschaften in Polymeren, insbesondere in Polymerschaumstoffen, aufweisen.
Es wurde gefunden, dass sich bestimmte Phosphorverbindungen der Formel (I) in besonderer Weise zur Verwendung als Flammschutzmittel eignen.
Zwar sind einzelne Verbindungen der Formel (I) bereits aus den folgenden Literatur- stellen bekannt, eine Eignung als Brandschutzmittel lässt sich aus diesen Dokumenten jedoch nicht ableiten: DeMaine, M. M.; Benkovic, S. J., Biochemical and Biophysical Research Communications (1979), 88(3), 835-40 (D1 ); Grachev, M. K.; Anfilov, K. L; Bekker, A. K.; Nifant'ev. E. E., Zhurnal Obshchei Khimii (1995), 65(12), 1946-50 (D2), (D6), (D7), (D20); Petrov, K. A.; Nifant'ev, E. E.; Shcheglov, A. A.; Khudyntsev, N. A. Zhurnal Obshchei Khimii (1962), 32 3074-80 (D3), (D4), (D5), (D22); Chen, Min-dong; Yuan, Jian-chao; Zhang, Yu-hua; Lu, Shi-jie; Sun, Wei; Wang, Lai-Iai., Fenzi Cuihua (2001 ), 15(5), 385-387 (D8), (D9);
Kurochkina, G. I.; Grachev, M. K.; Vasyanina, L. K.; Piskaev, A. E.; Nifant'ev, E. F., Doklady Akademii Nauk (2000), 371(2), 189-193 (D10), (D25), US 5,569,015 (D11 ), (D26); Reetz, Manfred T.; Neugebauer, Torsten, Angew. Chem., Int. Ed. (1999), 38(1/2), 179-181 (D12), (D13), (D15), (D16), (D17); Dieguez, Montserrat; Pamies, Oscar; Claver, Carmen., Journal of Organic Chemistry (2005), 70(9), 3363-3368 (D14), DE-A 197 41 777 (D18), (D19), (D21 ); Nifant'ev, E. E.; Tuseev, A. P.; Koshurin, Yu. I., Otd. Obshch. i Tekhn. Khim. (1965), 38-41 (D23);
Nifant'ev, E. E.; Markov, S. M.; Tuseev, A. P.; Vasil'ev, A. F. Otd. Obshch. i Tekhn. Khim.
(1965), 42-5 (D24); Hauptman, Elisabeth; Shapiro, Rafael; Marshall, William, Organometallics (1998), 17(23), 4976-4982, (D27), (D28), (D29), (D30).
Gegenstand der Erfindung ist daher die Verwendung von Phosphorverbindungen der Formel (I) als Flammschutzmittel,
Figure imgf000004_0001
R P— O— A O Y (I)
FT wobei die Symbole in der Formel (I) folgende Bedeutungen haben:
A ist eine Gruppe
Figure imgf000005_0001
(Ii) (IV)
Y ist -P(=X2)SR3R4, H, eine geradkettige oder verzweigte C1-C12-
Alkylgruppe, C5-C6-Cycloalkyl, C6-Ci2-Aryl, Benzyl, wobei die vier letztgenannten Gruppen unsubstituiert oder durch einen oder mehrere Reste CrC4-Alkyl oder C2-C4-Alkenyl substituiert sind;
R1, R2, R3 und R4 sind gleich oder verschieden Wasserstoff, OH, C Ci6-Alkyl, C2-
Ci6-Alkenyl, CrCi6-Alkoxy, C2-Ci6-Alkenoxy, C3-Ci0-Cycloalkyl, C3-Cio-Cycloalkoxy, C6-Ci0-Aryl, C6-Ci0-Aryloxy, C6-Ci0-Aryl-Ci-
Cie-Alkyl, C6-Cio-Aryl-Ci-Ci6-Alkoxy, SR9 COR10, COOR11, CONR12R13 oder zwei Reste R1, R2, R3, R4 bilden zusammen mit dem Phosphoratom, an das sie gebunden sind, oder der Gruppe P-O-A-O-P ein Ringsystem;
R5, R6, R7, R8 sind gleich oder verschieden H, C Ci6-Alkyl, C2-Ci6-Alkenyl,
Ci-Ci6-Alkoxy, C2-Ci6-Alkenoxy;
R9, R10, R11, R12, R13 sind gleich oder verschieden H C Ci6-Alkyl, C2-Ci6- Alkenyl, C6-Ci0-Aryl, C6-Cio-Aryl-Ci-Ci6-Alkyl, , C6-Ci0-
Aryl-C Ci6-Alkoxy;
X1, X2 sind gleich oder verschieden S oder O; r, s sind gleich oder verschieden, vorzugsweise gleich, 0 oder 1 ;
X3, X4, X5, X6 sind gleich oder verschieden S oder O und n ist eine natürliche Zahl von 1 bis 50.
Gegenstand der Erfindung sind auch Phosphorverbindungen der Formel (I), wobei folgende Verbindungen ausgenommen sind: HO OH 2,5-Anhydro-3,4-dideoxy-hexitol- bis(dihydrogen phosphat) )
Figure imgf000006_0001
1 ,4:3,6-Dianhydro-hexitol-2,5-bis(P,P-diphenylphosphinit) (D2)
Figure imgf000006_0002
1 ,4:3,6-Dianhydro-hexitol-bis(dipropylphosphinat) (D3)
Figure imgf000006_0003
1 ,4:3,6-Dianhydro-hexitol-bis(diethylphosphinit) (D4)
Figure imgf000006_0004
1 ,4:3,6-Dianhydro-hexitol-bis(dipropylphosphinothioat) (D5)
Figure imgf000006_0005
1 ,4:3,6-Dianhydro-hexitol-bis(diphenylphosphinothioat) (D6)
Figure imgf000007_0001
1 ,4:3,6-Dianhydro-2,5-bis-0-(5,5-dimethyl-1 ,3,2-dioxaphosphorinan-
2-yl)-hexitol (D7)
Figure imgf000007_0002
1 ,4:3,6-Dianhydro-2,5-di-0-1 ,3,2- benzodioxaphosphol-2-yl-hexitol (D8)
Figure imgf000007_0003
1 ,4:3,6-Dianhydro-2,5-di-0-1 ,3,2-benzodioxaphosphol-2-yl-hexitol (D 9)
Figure imgf000008_0001
1 ,4 : 3 , 6-Dian hyd ro-2 , 5-bis-0-(6-su If ido- dibenzo[d,f][1 ,3,2]dioxaphosphepin-6-yl)-hexitol (D10)
OH
Figure imgf000008_0002
1 ,4:3,6-Dianhydro-bis(dihydrogen phosphit)-hexitol (D11 )
Figure imgf000008_0003
1 ,4:3,6-Dianhydro-2,5-bis-0- [(11 bR)-dinaphtho[2,1-d:1',2'-f][1 ,3,2]dioxaphosphepin-4-yl]-hexitol (D12)
Figure imgf000009_0001
1 ,4:3,6-Dianhydro-2,5-bis-0- (16H-dinaphtho[2, 1 -d:1',2'-g][1 ,3,2]dioxaphosphocin-8-yl)-hexitol (D13)
Figure imgf000009_0002
1 ,4 : 3 , 6-Dian hyd ro-2 , 5-bis-0-[2 ,4 ,8, 10-tetrakis( 1 ,1- dimethylethyl)dibenzo[d,f][1 ,3,2]dioxaphosphepin-6-yl]-hexitol (D14)
Figure imgf000010_0001
1 ,4 : 3 , 6-Dian hyd ro-2 , 5-bis-0-(4 , 8- dimethyldibenzo[d,f][1 ,3,2]dioxaphosphepin-6-yl)-hexitol (D15)
Figure imgf000010_0002
1 ,4:3,6-Dianhydro-2,5-di-0- dibenzo[d,f][1 ,3,2]dioxaphosphepin-6-yl-hexitol (D16)
Figure imgf000011_0001
1 ,4:3,6-Dianhydro-bis(di-2- naphthalenyl phosphit)-hexitol (D17) n
Figure imgf000011_0002
P
Figure imgf000011_0003
1 ,4:3,6-Dianhydro-2,5-bis-0-(5-methyl-5-propyl-1 ,3,2- dioxaphosphorinan-2-yl)-hexitol (D18)
Et
I
Et O—CH2— CH—Bu-n
I I
Figure imgf000011_0004
1 ,4:3,6-Dianhydro-bis[bis(2-ethylhexyl) phosphit]-hexitol (D19)
Figure imgf000012_0001
1 ,4:3,6-Dianhydro-2,5-bis-0-(5,5-dimethyl-2- sulfido-1 ,3,2-dioxaphosphorinan-2-yl)-hexitol (D20)
Figure imgf000012_0002
1 ,4:3,6-Dianhydro-2,5-bis-0-(5,5-dimethyl-1 ,3,2- dioxaphosphorinan-2-yl)-hexitol (D21 )
Figure imgf000012_0003
1 ,4:3,6-Dianhydro-hexitol-bis(dipropylphosphinit) (D22)
Figure imgf000012_0004
1 ,4:3,6-Dianhydro-hexitol-bis(methylphosphonit) (D23)
Figure imgf000013_0001
1 ,4:3,6-Dianhydro-hexitol-bis(hydrogenphosphonat) (D24)
Figure imgf000013_0002
1 ,4:3,6-Dianhydro-D-Glucitol-2,5':2',5"- bis(phenylphosphonothioat) (D25)
(CH2)5-Me
Me~ (CH2)5 O CH2 CH (CH2)7
Figure imgf000013_0003
Me— (CH2) 7— CH— CH2— O— P—O
I I
Me— (CH2)5 O—CH2~ CH— (CH2) 7 -Me
I
(CH2)5—Me
1 ,4:3,6-Dianhydro-hexitol-2,2'-(2-hexyldecyl phosphit)-5,5'-bis[bis(2- hexyldecyl) phosphit] (D26)
Figure imgf000014_0001
Hexitol-2,3,4,5-tetradeoxy-2,5-epithio-bis(diphenylphosphinit) (D27)
Figure imgf000014_0002
Hexito 1-2, 3,4, 5-tetradeoxy-2,5-epithio-bis[bis(2,4,6-trimethylphenyl)phosphinit] (D28)
Figure imgf000014_0003
Hexitol-2,3,4,5-tetradeoxy-2,5-epithio-bis(dicyclohexylphosphinit) (D29)
Figure imgf000015_0001
Hexitol-2,3,4,5-tetradeoxy-2,5-epithio-bis(diethylphosphinit) (D30)
Weiterhin Gegenstand der Erfindung ist ein Verfahren zur flammhemmenden Ausrüstung eines Materials, wobei man dem Material ein Flammschutzmittel, enthaltend eine oder mehrere Verbindungen der Formel (I) zusetzt.
Ebenfalls Gegenstand der Erfindung ist ein Polymerschaumstoff, enthaltend eine oder mehrere Verbindungen der Formel (I), vorzugsweise ein expandierbares Styrolpolymer, insbesondere erhältlich durch ein Extrusionsverfahren oder ein Suspensionsverfahren. Gegenstand der Erfindung ist daher auch ein Verfahren zur Herstellung eines flammgeschützten, expandierbaren Styrolpolymers (EPS), beispielhaft umfassend die Schritte:
a) Einmischen eines organischen Treibmittels und einer oder mehrerer Verbindungen der Formel (I) sowie gegebenenfalls weiterer Hilfs-und Zusatzstoffein eine Styrolpolymerschmelze mittels statischer und/oder dynamischer Mischer bei einer Temperatur von mindestens 150°C,
b) Kühlen der treibmittelhaltigen Styrolpolymerschmelze auf eine Temperatur von mindestens 120°C,
c) Austrag durch eine Düsenplatte mit Bohrungen, deren Durchmesser am Düsenaustritt höchstens 1 ,5 mm beträgt und
d) Granulieren der treibmittelhaltigen Schmelze direkt hinter der Düsenplatte unter Wasser bei einem Druck im Bereich von 1 bis 20 bar.
Ebenso bevorzugt ist ein Verfahren zur Herstellung eines erfindungsgemäßen expandierbaren Styropolpolymers, umfassend die Schritte:
a) Polymerisation einer oder mehrerer Styrolmonomere in Suspension;
b) Zugabe einer oder mehrerer Verbindungen der Formel (I) sowie gegebenenfalls weiterer Hilfs-und Zusatzstoffe vor, während und/oder nach der Polymerisation; c) Zugabe eines organischen Treibmittels vor, während und/oder nach der Polymerisation und
d) Abtrennen der expadierbaren, eine oder mehrere Verbindungen der Formel (I) enthaltenden Styrolpolymerteilchen von der Suspension.
Weiterhin Gegenstand der Erfindung ist sowie ein Verfahren zur Herstellung eines Styrolextrusionsschaumstoffes (XPS) umfassend die Schritte: a) Erhitzen einer Polymerkomponente P, die mindestens ein Polystyrolpolymer enthält, zur Ausbildung einer Polymerschmelze,
b) Einbringen einer Treibmittelkomponente T in die Polymerschmelze zur Ausbil- dung einer schäumbaren Schmelze,
c) Extrusion der schäumbaren Schmelze in einen Bereich niedrigeren Drucks unter Aufschäumen zu einem Extrusionsschaum und
d) Zugabe von mindestens einer Verbindung der Formel (I) als Flammschutzmittel sowie gegebenenfalls weiterer Hilfs- und Zusatzstoffen in mindestens einem der Schritte a) und b).
Die Verbindungen der Formel (I) sind halogenfrei und weisen auch in geringen Mengen eine deutlich bessere Wirksamkeit als Flammschutzmittel, insbesondere in Schaumstoffen, auf, als die aus dem Stand der Technik bekannten Flammschutzmittel, wie Disflamoll TP® (Triphenylphosphat (0)P(OPh)3) oder Dibenz[c,e][1 ,2]-oxaphosphorin-6- oxid (DOPO, EP-A 1 791 896).
Bevorzugt haben die Symbole in der Formel (I) folgende Bedeutungen: A ist bevorzugt eine Gruppe der Formel (II), (III) oder (IV). Y ist bevorzugt (X2)rPR3R4 oder H.
R1, R2, R3, R4 sind bevorzugt gleich oder verschieden C6-Ci0-Aryl, C6-Ci0-Aryloxy, C6- Cio-Aryl-Ci-Ci6-Alkyl oder C6-Cio-Aryl-Ci-Ci6-Alkoxy.
R5, R6, R7, R8 sind bevorzugt H, C Ci6-Alkyl, C2-Ci6-Alkenyl, C Ci6-Alkoxy oder C2- Ci6-Alkenoxy. Sie sind gleich oder verschieden, bevorzugt gleich. X1, X2 sind bevorzugt gleich oder verschieden S oder O. r, s sind bevorzugt gleich 0 oder 1 .
X3, X4, X5, X6 sind bevorzugt O. n ist bevorzugt eine natürliche Zahl von 1 bis 30.
Bevorzugt sind Verbindungen der Formel (I), in denen alle Symbole die bevorzugten Bedeutungen haben. Besonders bevorzugt haben die Symbole in der Formel (I) folgende Bedeutungen:
A ist besonders bevorzugt eine Gruppe der Formel (II), (III) oder (IV). Y ist besonders bevorzugt (X2)rPR3R4.
R1, R2, R3, R4 sind besonders bevorzugt gleich oder verschieden Phenyl, Phenoxy, Phenyl-C Ci6-Alkyl, Phenyl-C Ci6-Alkoxy. R5, R6, R7, R8 sind besonders bevorzugt H.
X1, X2 sind besonders bevorzugt gleich oder verschieden S oder O. r, s sind besonders bevorzugt gleich 0 oder 1.
X3, X4, X5, X6 sind besonders bevorzugt O. n ist besonders bevorzugt 1 . Besonders bevorzugt sind Verbindungen der Formel (I), in denen alle Symbole und Indizes die besonders bevorzugten Bedeutungen haben.
Bevorzugt sind Verbindungen der Formel (I), in denen R1 und R2 gleich sind. Weiterhin bevorzugt sind Verbindungen der Formel (I), in denen R1 und R3 oder R1 und R4 gleich sind. Weiter besonders bevorzugt sind Verbindungen der Formel (I), in denen R2 und R3 oder R2 und R4 gleich sind.
Weiter bevorzugt sind Verbindungen, in denen R1, R2, R3 und R4 gleich sind.
Insbesondere bevorzugt haben die Symbole und Indizes in der Formel (I) folgende Bedeutungen:
A ist insbesondere bevorzugt eine Gruppe der Formel (II), (III) oder (IV).
Y ist insbesondere bevorzugt (X2)rPR3R4.
R1, R2, R3, R4 sind insbesondere bevorzugt gleich Phenyl oder Phenoxy. R5, R6, R7, R8 sind insbesondere bevorzugt H. X1, X2 sind insbesondere bevorzugt gleich S oder O. r, s sind insbesondere bevorzugt gleich 0 oder 1.
X3, X4, X5, X6 sind insbesondere bevorzugt Sauerstoff. n ist insbesondere bevorzugt 1. Insbesondere bevorzugt sind Verbindungen der Formel (I), in denen alle Symbole und Indizes die insbesondere bevorzugten Bedeutungen haben.
Bevorzugt sind Verbindungen der Formel (I), in denen jeweils zwei der Reste R1, R2, R3, R4 zusammen mit dem Phosphoratom, an das sie gebunden sind, oder der Gruppe P-O-A-O-P- ein drei- bis zwölfgliedriges Ringsystem bilden.
Bevorzugt sind weiterhin Verbindungen der Formel (I), in denen zwei Reste R1, R2, R3, R4 zusammen kein Ringsystem bilden.
Weiterhin insbesondere bevorzugt sind die folgenden Verbindungen:
Figure imgf000018_0001
Figure imgf000019_0001
Figure imgf000020_0001
Die Synthese der als Flammschutzagonisten wirkenden phosphorylierten furan- bzw. thiophenbasierten Diole (I) gelingt beispielsweise durch Umsetzung der entsprechenden furan- oder thiophenbasierten Diolgrundkörper (ΙΓ bis IV)
Figure imgf000020_0002
mit den Chlorphosphorverbindungen (V)
R
I
=P-CI
I
R
(V) (R in Gegenwart einer Base. Der hier zugrundeliegende Reaktionstyp der Umsetzung von Chlorphosphorverbindungen mit Alkoholen ist in der Literatur weitreichend bekannt [siehe z.B. WO-A 2003/062251 ; Dhawan, Bairam; Redmore, Derek, J. Org. Chem. (1986), 51 (2), 179-83; WO 96/17853; Kumar, K. Ananda; Kasthuraiah, M.; Reddy, C. Suresh; Nagaraju, C, Heterocyclic Communications (2003), 9(3), 313-318; Givelet, Cecile; Tinant, Bernard; Van Meerveit, Luc; Buffeteau, Thierry; Marchand-Geneste, Nathalie; Bibal, Brigitte. J. Org. Chem. (2009), 74(2), 652-659.] Die furan- oder thiophenbasierten Diol-Grundkörper sind größtenteils kommerziell erhältlich oder können leicht nach literaturbekannten Methoden ausgehend von Zuckern dargestellt werden [siehe z.B.: WO 2006/063287 (Darstellung von 2,5- Bis(hydroxymethyl)tetrahydrofuran); Cottier, Louis; Descotes, Gerard; Soro, Yaya. Synth. Comm. (2003), 33(24), 4285 - 4295),(Darstellung von 2,5-Bis(hydroxy- methyl)furan); CA 2196632, Katritzky, Alan R.; Zhang, Zhongxing; Lang, Hengyuan; Jubran, Nusrallah; Leichter, Louis M.; Sweeny, Norman. J. Heterocycl. C em. (1997), 34(2), 561 -565]. Auch die Darstellung von in 2,5-Position substituierten furanbasierten Derivaten ist in der Literatur wohlbekannt (R5 -R8 ganz oder teilweise gleich oder verschieden ungleich z. B. die Darstellung a2,a5-arylierter 2,5-Bis(hydroxymethyl)furane): Ishii, Akihiko; Horikawa, Yasuaki; Takaki, Ikuo; Shibata, Jun; Nakayama, Juzo; Hoshino, Masamatsu, Tetrahedron Lett. (1991 ), 32(34), 4313-16; Jang, Yong-Sung; Kim, Han-Je; Lee, Phil- Ho; Lee, Chang-Hee. Tetrahedron Lett. (2000), 41 (16), 2919-2923,
z. B. die Darstellung a2,a5-alkylierter 2,5-Bis(hydroxymethyl)furane): Krauss, Juergen; Unterreitmeier, Doris; Antlsperger, Dorothee, Archiv der Pharmazie, (2003), 336(8), 381 -384, z. B. die Darstellung a2,a5-alkylierter 2,5- Bis(hydroxymethyl)tetrahydrofurane): Walba, D. M.; Wand, M. D.; Wilkes, M. C, J. Am. Chem. Soc, (1979), 101 (15), 4396-4397, oder
z. B. die Darstellung a2,a5-alkenylierter 2,5-Bis(hydroxymethyl)tetrahydrofurane): Morimoto, Yoshiki; Kinoshita, Takamasa; Iwai, Toshiyuki, Chirality (2002), 14(7), 578- 586.
Auch die Synthese in 2,5-Position unsymmetrisch substituierter furanbasierender Diole dieser Art ist literaturbekannt, z. B. die Darstellung a2-alkylierter 2,5- Bis(hydroxymethyl)tetrahydrofurane: Donohoe, Timothy J.; Williams, Oliver; Churchill, Gwyd ian H, Angew. Chem. Int. Ed. (2008), 47(15), 2869-2871 ; oder die Synthese α2- alkylierter, a5-alkinylierter 2,5-Bis(hydroxymethyl)tetrahydrofurane: Abe, Masato; Kubo, Akina; Yamamoto, Shuhei; Hatoh, Yoshinori; Murai, Masatoshi; Hattori, Yasunao; Makabe, Hidefumi; Nishioka, Takaaki; Miyoshi, Hideto. Biochemistry (2008), 47(23), 6260-6266; oder die Darstellung a2-alkoxylierter 2,5-Bis(hydroxymethyl)furane: Lu, Dan; Li, Pingya; Liu, Jinping; Li, Haijun, CN 101544624 A.
Auch ist die Synthese der Thioanaloga (X=S) von (II) ist literaturbekannt [vgl. Kuszmann, J.; Sohar, P., Carbohydrate Research (1972), 21 (1 ), 19-27].
Figure imgf000021_0001
(IV)
(II) (IN) Ebenso ist die Synthese der Thioanaloga (X=S) von (III), [vgl. Garrigues, Bernard., Phosph., Sulfur and Silicon (1990), 53(1 -4), 75-9.] und. substituierter Thioanaloga von (III), z.B. a2,a5-arylierter 2,5-Bis(hydroxymethyl)thiophene bekannt [vgl. Kumaresan, D.; Agarwal, Neeraj; Gupta, Iti; Ravikanth, M. Tetrahedron (2002), 58(26), 5347- 5356.]
Weiterhin ist die Synthese der Thioanaloga (X=S) von (IV) beschrieben [vgl. Luttringhaus, A.; Merz, H. Archiv der Pharmazie und Berichte der Deutschen Pharmazeutischen Gesellschaft (1960), 293 881 -890.] bzw. substituierter Thioanaloga von (IV), z.B. a2,a5-alkylierter 2,5-Bis(hydroxymethyl)tetrahydrothiophene bekannt [vgl. Block, Eric; Ahmad, Saleem. Phosph. Sulfur and the Related Elements (1985), 25(2), 139-145].
Die furan- oder thiophenbasierten Diole liegen teilweise in enantiomeren- bzw. diastereomerenreiner Form vor. Die furan- oder thiophenbasierten Diole können in Form ihrer reinen Enantiomere oder Diastereomere eingesetzt werden. Bevorzugt sind jedoch Mischungen der respektiven Konfigurationsisomere.
Die zur Synthese der Flammschutzagonisten geeigneten Chlorphosphorderivate der Formel (V)
R
I
X=P-CI
I
R
(V) (R = R -R4, X = X , X2) sind üblicherweise kommerziell erhältlich oder lassen sich über in der Literatur gut be- kannte Synthesewege darstellen [vgl. Science of Synthesis (former Houben Weyl) 42 (2008); Houben Weyl E1 -2 (1982); Houben Weyl 12 (1963-1964)]. Als explizite Beispiele seien genannt:
Chlordiphenylphosphin (X=/; R1 = R2 = Ph), [vgl. Sun, Dengli; Wang, Chunyu; Gong, Shengming; Sun, Shengwen. CN 101481390 A 20090715];
Diphenylphosphinsäurechlorid (X=0; R1 = R2 = Ph),[vgl. Caminade, Anne Marie; El Khatib, Fayez; Baceiredo, Antoine; Koenig, Max. Phosphorus and Sulfur and the Related Elements (1987), 29(2-4), 365-7.]; Diphenylthiophosphinsäurechlorid (X=S; R1 = R2 = Ph), [vgl. Hodgson, Linda M.; Platel, Rachel H.; White, Andrew J. P.; Williams, Charlotte K. Macromolecules (Washington, DC, United States) (2008), 41 (22), 8603-8607.]; - Diphenylchlorphosphat (X=0; R1 = R2 = OPh), [vgl. Fadeicheva, A. G.; Rudenko, L. G.; Skuratovskaya, T. N. Metody Polucheniya Khimicheskikh Reaktivov i Preparatov (1969), No. 18 207-9.].
Geeignete Lösemittel sind inerte organische Lösemittel, z.B. DMSO, halogenierte Koh- lenwasserstoffe, z.B. Methylenchlorid, Chloroform, 1 ,2-Dichlorethan und Chlorbenzol. Weiterhin geeignete Lösemittel sind Ether z.B. Diethylether, Methyltertbutylether, Dibutylether, Dioxan oder Tetra hydrofu ran. Weiterhin geeignete Lösemittel sind Kohlenwasserstoffe, z.B. Hexan, Benzol oder Toluol. Weiterhin geeignete Lösemittel sind Nitrile z.B. Acetonitril oder Propionitril. Weiterhin geeignete Lösemittel sind Ketone z.B. Aceton, Butanon oder tert.Butyl-methylketon.
Es können auch Gemische der Lösemittel verwendet werden.
Geeignete Basen sind Metallhydride, z.B. Natriumhydrid, oder nicht nukleophile Aminbasen, z.B. Triethylamin, Hünigbase, bicyclische Amine wie 1 ,8 Diazabicyclo[5.4.0]undec-7-en (DBU), N-Methylimidazol und N-Methylmorpholin, N- Methylpiperidin, Pyridin und substituierte Pyridine wie Lutidin. Besonders bevorzugt sind Triethylamin und N-Methylimidazol. Die Basen werden im Allgemeinen in äquimolaren Mengen eingesetzt. Sie können aber auch im Überschuss oder gegebenenfalls als Lösemittel eingesetzt werden.
Die Edukte werden im Allgemeinen in stöchiometrischen Mengen im Verhältnis 1 :2 (Diol : Chlorphosphorkomponente) umgesetzt. Es kann vorteilhaft sein, die Chlorphos- phorkomponente im Überschuss zu den Hydroxyfunktionalitäten des Diols einzusetzen. Statistische partielle Phosphorylierung kann durch Einsatz der Chlorphosphorkomponente im Unterschuss erreicht werden.
Die selektive Einfachphosphorylierung gelingt durch Schützen einer der beiden Diol- Hydroxygruppen im Vorfeld mit Hilfe einer geeigneten Schutzgruppe, welche nach erfolgreicher Phosphorylierungssequenz wieder zu entschützen ist. Geeignete Schutzgruppen sind beispielsweise Silyletherschutzgruppen (TMS, TPDMS) oder Methoxymethylether (MOM). Die Verwendung von Schutzgruppen ist in der einschlägigen Literatur wohlbekannt [vgl. Peter G. M. Wuts, Theodora W. Greene in: Greene's Protective Groups in Organic Synthesis, 4th Edition, VCH Wiley 2006]. Das Heteroatom X kann wie beschrieben direkt durch Kupplung der respektiven Chlorphosphorkomponente eingeführt werden. Eine zweite Möglichkeit stellt zunächst die Kupplung einer dreiwertigen Phosphorspezies an die Hydroxyfunktionalität und subse- quente Oxidation zur Einführung des Heteroelementes X mit oxidierenden oder sulfidierenden Reagenzien dar [vgl. Grachev, M. K.; Anfilov, K. L; Bekker, A. K.; Nifant'ev. E. E. Zhurnal Obshchei Khimii (1995), 65(12), 1946-50].
Die Reaktionen werden üblicherweise bei Temperaturen von 0 °C bis zum Siedepunkt des Reaktionsgemisches, vorzugsweise von 0 °C bis 1 10 °C, besonders bevorzugt bei Raumtemperatur bis 1 10 °C durchgeführt.
Die Reaktionsgemische werden in üblicher Weise aufgearbeitet, z.B. durch Filtration, Mischen mit Wasser, Trennung der Phasen und gegebenenfalls chromatographische Aufreinigung der Rohprodukte. Die Produkte fallen z.T. in Form zäher Öle an, die unter vermindertem Druck und bei mäßig erhöhter Temperatur von flüchtigen Anteilen befreit oder gereinigt werden. Sofern die Produkte als Feststoffe erhalten werden, kann die Reinigung auch durch Umkristallisieren oder Digerieren erfolgen. Die Ausbeute der isolierten Produkte beträgt üblicherweise 40-100 %, bevorzugt 90- 100 %.
Bevorzugt wird eine 1 Verbindung der Formel (I) als Flammschutzmittel verwendet. Weiterhin bevorzugt wird eine Mischung von mindestens zwei, besonders bevorzugt zwei bis vier, insbesondere bevorzugt zwei, Verbindungen der Formel (I) als Flammschutzmittel verwendet.
Die erfindungsgemäß eingesetzten Verbindungen der Formel (I) werden in der Regel in einer Menge im Bereich von 0,1 bis 25 Gew.-%, bezogen auf das zu schützende Material, insbesondere Polymermaterial, eingesetzt. Mengen von 2 bis 15 Gew.-%, bezogen auf das Polymer, gewährleisten insbesondere bei Schaumstoffen aus expandierbarem Polystyrol einen ausreichenden Flammschutz. Die Wirksamkeit der Verbindungen (I) kann durch den Zusatz geeigneter Flammschutzsynergisten, insbesondere thermischer Radikalbildner, bevorzugt organischer Peroxide, wie Dicumylperoxid oder Di-tert.-butylperoxid, organischer Polysulfide, d.h. Sulfide mit einer Kette aus drei oder mehr Schwefelatomen, oder C-C spaltender Initiatoren, wie Biscumyl (2,3-Diphenyl-2,3-dimethyl-butan), noch weiter verbessert werden. In diesem Falle werden üblicherweise zusätzlich zu der oder den Verbindun- gen (I) 0,05 bis 5 Gew.-% des Flammschutzsynergisten, bezogen auf das zu schützende Material, insbesondere Polymermaterial, eingesetzt.
Ebenso bevorzugt als Synergist ist elementarer Schwefel, bevorzugt in einem Anteil von 0,05 bis 4 Gew.-%, besonders bevorzugt 0,1 bis 2,5 Gew.-% (bezogen auf das zu schützende Material, insbesondere Polymermaterial).
Der elementare Schwefel kann auch in Form von Ausgangsverbindungen eingesetzt werden, die unter den Verfahrensbedingungen zu elementarem Schwefel zersetzt wer- den.
Weiterhin ist es möglich, elementaren Schwefel in verkapselter Form einzusetzen. Als Materialien zum Verkapseln eignen sich zum Beispiel Melaminharze (analog US- A 4,440,880) und Harnstoff-Formaldehyd-Harze (analog US-A 4,698,215). Weitere Materialien und Literaturzitate finden sich in der WO 99/10429.
Eine bevorzugte Ausführungsform ist daher auch eine erfindungsgemäße Verwendung, wobei die Verbindung(en) der Formel (I) in Mischung mit einem oder mehreren weiteren flammhemmenden Verbindungen und/oder einem oder mehreren Synergisten ein- gesetzt werden.
Auch können zusätzlich weitere flammhemmende Materialien, wie Melamin, Melamin- cyanurate, Metalloxide, Metallhydroxide, Phosphate, Phosphinate und Blähgraphit, oder Synergisten, wie Sb203 oder Zn-Verbindungen, eingesetzt werden. Geeignete zusätzliche halogenfreie flammhemmende Materialien sind beispielsweise im Handel unter der Bezeichnung Exolit OP 930, Exolit OP 1312, DOPO, HCA-HQ, M-Ester Cyagard RF-1241 , Cyagard RF-1243, Fyrol PMP, Phoslite IP-A (Aluminiumhypophosphit), Melapur 200, Melapur MC, APP (Ammoniumpolyphosphat) erhältlich.
Falls auf vollständige Halogenfreiheit verzichtet werden kann, können halogenreduzierte Materialien durch die Verwendung der erfindungsgemäßen Verbindungen (I) und den Zusatz geringerer Mengen an halogenhaltigen, insbesondere bromierten Flammschutzmitteln, wie Hexabromcyclododecan (HBCD), bevorzugt in Mengen im Bereich von 0,05 bis 1 , insbesondere 0,1 bis 0,5 Gew.-% (bezogen auf das zu schützende Material, insbesondere die Polymerzusammensetzung) hergestellt werden.
In einer bevorzugten Ausführungsform ist das erfindungsgemäße Flammschutzmittel halogenfrei. Besonders bevorzugt ist die Zusammensetzung aus dem zu schützenden Material, Flammschutzmittel und weiteren Zusatzstoffen halogenfrei.
Bei dem zu schützenden Material handelt es sich vorzugsweise um eine Polymerzusammensetzung, d.h. eine Zusammensetzung, die ein oder mehrere Polymere enthält und bevorzugt aus einem oder mehreren Polymeren besteht. Bevorzugt sind thermoplastische Polymere. Besonders bevorzugt ist das Polymermaterial ein Schaumstoff. Die erfindungsgemäßen Flammschutzmittel, d.h. Verbindungen der Formel (I) allein oder in Mischung untereinander und/oder mit Synergisten und/oder weiteren flammhemmenden Substanzen, werden erfindungsgemäß für die Herstellung flammhemmend ausgerüsteter (bzw. flammgeschützter) Polymere, insbesondere thermoplastischer Polymere, verwendet. Hierfür werden die Flammschutzmittel vorzugsweise phy- sikalisch mit dem entsprechenden Polymer in der Schmelze vermischt und dann entweder als Polymermischung mit Phosphorgehalten zwischen 0,05 Gew.-% und 5 Gew.-% (bezogen auf das Polymer) zunächst fertig konfektioniert und dann in einem zweiten Verfahrensschritt zusammen mit demselben oder mit einem anderen Polymer weiterverarbeitet. Alternativ ist im Falle von Styrolpolymeren auch der Zusatz der erfin- dungsgemäßen Verbindungen (I) vor, während und/oder nach der Herstellung durch Suspensionspolymerisation bevorzugt.
Gegenstand der Erfindung ist auch eine, vorzugsweise thermoplastische, Polymerzusammensetzung, enthaltend eine oder mehrere Verbindungen der Formel (I) als Flammschutzmittel.
Als Polymer können beispielsweise geschäumte oder ungeschäumte Styrolpolymere, einschließlich ABS, ASA, SAN, AMSAN, SB und HIPS Polymere, Polyimide, Polysulfone, Polyolefine wie Polyethylen und Polypropylen, Polyacrylate, Polyetheretherketone, Polyurethane, Polycarbonate, Polyphenylenoxide, ungesättigte Polyesterharze, Phenolharze, Polyamide, Polyethersulfone, Polyetherketone und Polyethersulfide, jeweils einzeln oder in Mischung als Polymerblends eingesetzt werden. Bevorzugt sind thermoplastische Polymere, wie geschäumte oder ungeschäumte Styrolhomopolymere und -copolymere jeweils einzeln oder in Mischung als Polymerblends.
Bevorzugt sind flammgeschützte Polymerschaumstoffe, insbesondere auf Basis von Styrolpolymeren, vorzugsweise EPS und XPS. Die flammgeschützten Polymerschaumstoffe weisen bevorzugt eine Dichte im Bereich von 5 bis 200 kg/m3, besonders bevorzugt im Bereich von 10 bis 50 kg/m3, auf und sind bevorzugt zu mehr als 80 %, besonders bevorzugt zu 90 bis 100 % geschlossenzellig.
Die erfindungsgemäßen flammgeschützten, expandierbaren Styrolpolymere (EPS) und Styrolpolymerextrusionsschaumstoffe (XPS) können durch Zugabe des Treibmittels und des erfindungsgemäßen Flammschutzmittels vor, während oder nach der Suspen- sionspolymerisation oder durch Einmischen eines Treibmittels und des erfindungsgemäßen Flammschutzmittels in die Polymerschmelze und anschließende Extrusion und Granulierung unter Druck zu expandierbaren Granulaten (EPS) oder durch Extrusion und Entspannung unter Verwendung entsprechend geformter Düsen zu Schaumstoffplatten (XPS) oder Schaumstoffsträngen verarbeitet werden.
Erfindungsgemäß umfasst der Begriff Styrolpolymer Polymere, auf Basis von Styrol, alpha-Methylstyrol oder Mischungen von Styrol und alpha-Methylstyrol; analog gilt dies für den Styrolanteil in SAN, AMSAN, ABS, ASA, MBS und MABS (siehe unten). Erfindungsgemäße Styrolpolymere basieren auf mindestens 50 Gew.-% Styrol und/oder alpha-Methylstyrol Monomeren.
In einer bevorzugten Ausführungsform ist das Polymer ein expandierbares Polystyrol (EPS). In einer weiteren bevorzugten Ausführungsform ist der Schaumstoff ein Styrolpoly- merextrusionsschaumstoff (XPS).
Bevorzugt weisen expandierbare Styrolpolymere ein Molekulargewicht Mw im Bereich von 120.000 bis 400.000 g/mol, besonders bevorzugt im Bereich von 180.000 bis 300.000 g/mol, gemessen mittels Gelpermeationschromatographie mit refraktiometrischer Detektion (Rl) gegenüber Polystyrolstandards, auf. Aufgrund des Molekulargewichtsabbaus durch Scherung und/oder Temperatureinwirkung liegt das Molekulargewicht des expandierbaren Polystyrols in der Regel etwa 10.000 g/mol unter dem Molekulargewicht des eingesetzten Polystyrols.
Bevorzugt werden als Styrolpolymere glasklares Polystyrol (GPPS), Schlagzähpolystyrol (HIPS), anionisch polymerisiertes Polystyrol oder Schlagzähpolystyrol (A-IPS), Sty- rol-alpha-Methylstyrol-copolymere, Acrylnitril-Butadien-Styrolpolymerisate (ABS), Sty- rol-Butadien-Copolymere (SB), Styrol-Acrylnitril-Copolymere (SAN), Acrylnitril-alpha- Methylstyrol-Copolymere (AMSAN), Acrylnitril-Styrol-Acrylester (ASA), Methylmethacrylat-Butadien-Styrol (MBS), Methylmethacrylat-Acrylnitril-Butadien-Styrol (MABS)-polymerisate oder Mischungen davon oder mit Polyphenylenether (PPE) eingesetzt. Die genannten Styrolpolymere können zur Verbesserung der mechanischen Eigenschaften oder der Temperaturbeständigkeit gegebenenfalls unter Verwendung von Verträglichkeitsvermittlern mit thermoplastischen Polymeren, wie Polyamiden (PA), Polyolefinen, wie Polypropylen (PP) oder Polyethylen (PE), Polyacrylaten, wie Polymethylmethacrylat (PMMA), Polycarbonat (PC), Polyestern, wie Polyethylenterephthalat (PET) oder Polybutylenterephthalat (PBT), Polyethersulfonen (PES), Polyetherketonen oder Polyethersulfiden (PES) oder Mischungen davon in der Regel in Anteilen von insgesamt bis maximal 30 Gew.-%, bevorzugt im Bereich von 1 bis 10 Gew.-%, bezogen auf die Polymerschmelze, abgemischt werden. Des Weiteren sind Mischungen in den genannten Mengenbereichen auch mit z. B hydrophob modifi- zierten oder funktionalisierten Polymeren oder Oligomeren, Kautschuken, wie Polyacrylaten oder Polydienen, z. B. Styrol-Butadien-Blockcopolymeren oder biologisch abbaubaren aliphatischen oder aliphatisch/aromatischen Copolyestern möglich.
Als Verträglichkeitsvermittler eignen sich z.B. Maleinsäureanhydrid-modifizierte Styrolcopolymere, epoxidgruppenhaltige Polymere oder Organosilane.
Der Styrolpolymerschmelze können auch Polymerrecyklate der genannten thermoplastischen Polymeren, insbesondere Styrolpolymere und expandierbare Styrolpolymere (EPS) in Mengen zugemischt werden, die deren Eigenschaften nicht wesentlich ver- schlechtem, in der Regel in Mengen von maximal 50 Gew.-%, insbesondere in Mengen von 1 bis 20 Gew.-%.
Die treibmittelhaltige Styrolpolymerschmelze enthält in der Regel ein oder mehrere Treibmittel in homogener Verteilung in einem Anteil von insgesamt 2 bis 10 Gew.-% bevorzugt 3 bis 7 Gew.-%, bezogen auf die treibmittelhaltige Styrolpolymerschmelze. Als Treibmittel, eigenen sich die üblicherweise in EPS eingesetzten physikalische Treibmittel, wie aliphatischen Kohlenwasserstoffe mit 2 bis 7 Kohlenstoffatomen, Alkohole, Ketone, Ether oder halogenierte Kohlenwasserstoffe. Bevorzugt wird iso-Butan, n-Butan, iso-Pentan, n-Pentan eingesetzt. Für XPS wird bevorzugt C02 oder dessen Mischungen mit Alkoholen und/oder C2-C4-Carbonylverbindungen, insbesondere Keto- nen, eingesetzt.
Zur Verbesserung der Verschäumbarkeit können feinverteilte Innenwassertröpfchen in die Styrolpolymermatrix eingebracht werden. Dies kann beispielsweise durch die Zu- gäbe von Wasser in die aufgeschmolzene Styrolpolymermatrix erfolgen. Die Zugabe des Wassers kann örtlich vor, mit oder nach der Treibmitteldosierung erfolgen. Eine homogene Verteilung des Wassers kann mittels dynamischer oder statischer Mischer erreicht werden. In der Regel sind 0 bis 2, bevorzugt 0,05 bis 1 ,5 Gew.-% Wasser, bezogen auf das Styrolpolymer, ausreichend.
Expandierbare Styrolpolymere (EPS) mit mindestens 90% des Innenwassers in Form von Innenwassertröpfchen mit einem Durchmesser im Bereich von 0,5 bis 15 μηη bilden beim Verschaumen Schaumstoffe mit ausreichender Zellzahl und homogener Schaumstruktur.
Die zugesetzte Treibmittel- und Wassermenge wird so gewählt, dass die expandierbaren Styrolpolymere (EPS) ein Expansionsvermögen a, definiert als Schüttdichte vor dem Verschäumen/Schüttdichte nach dem Verschaumen höchstens 125 bevorzugt 15 bis 100 aufweisen.
Die erfindungsgemäßen expandierbaren Styrolpolymergranulate (EPS) weisen in der Regel eine Schüttdichte von höchstens 700 g/l bevorzugt im Bereich von 590 bis 660 g/l auf. Bei Verwendung von Füllstoffen können in Abhängigkeit von der Art und Menge des Füllstoffes Schüttdichten im Bereich von 590 bis 1200 g/l auftreten.
Des weiteren können der Styrolpolymerschmelze Additive, Keimbildner, Füllstoffe, Weichmacher, lösliche und unlösliche anorganische und/oder organische Farbstoffe und Pigmente, z.B. IR-Absorber, wie Ruß, Graphit oder Aluminiumpulver gemeinsam oder räumlich getrennt, z.B. über Mischer oder Seitenextruder zugegeben werden. In der Regel werden die Farbstoffe und Pigmente in Mengen im Bereich von 0,01 bis 30, bevorzugt im Bereich von 1 bis 5 Gew.-% zugesetzt. Zur homogenen und mikrodispersen Verteilung der Pigmente in dem Styrolpolymer kann es insbesondere bei polaren Pigmenten zweckmäßig sein ein Dispergierhilfsmittel, z.B. Organosilane, epoxygruppenhaltige Polymere oder Maleinsäureanhydrid-gepfropfte Styrolpolymere, einzusetzen. Bevorzugte Weichmacher sind Mineralöle, Phthalate, die in Mengen von 0,05 bis 10 Gew.-%, bezogen auf das Styrolpolymerisat, eingesetzt werden können. Analog können diese Stoffe auch vor, während oder nach der Suspensionspolymerisation zu erfindungsgemäßem EPS zugegeben werden. Zur Herstellung der erfindungsgemäßen expandierbaren Styrolpolymerisate nach dem Granulierverfahren kann das Treibmittel in die Polymerschmelze eingemischt werden. Ein mögliches Verfahren umfasst die Stufen a) Schmelzerzeugung, b) Mischen c) Kühlen d) Fördern und e) Granulieren. Jede dieser Stufen kann durch die in der Kunststoffverarbeitung bekannten Apparate oder Apparatekombinationen ausgeführt werden. Zur Einmischung eignen sich statische oder dynamische Mischer, beispielsweise Extruder. Die Polymerschmelze kann direkt aus einem Polymerisationsreaktor entnommen werden oder direkt in dem Mischextruder oder einem separaten Aufschmelzextruder durch Aufschmelzen von Polymergranulaten erzeugt werden. Die Kühlung der Schmelze kann in den Mischaggregaten oder in separaten Kühlern erfolgen. Für die Granulierung kommen beispielsweise die druckbeaufschlagte Unterwassergranulierung, Granulierung mit rotierenden Messern und Kühlung durch Sprühvernebelung von Temperierflüssigkeiten oder Zerstäubungsgranulation in Betracht. Zur Durchführung des Verfahrens geeignete Apparateanordnungen sind z.B.: a) Polymerisationsreaktor - statischer Mischer/Kühler - Granulator
b) Polymerisationsreaktor - Extruder - Granulator
c) Extruder - statischer Mischer - Granulator
d) Extruder - Granulator Weiterhin kann die Anordnung Seitenextruder zur Einbringung von Additiven, z.B. von Feststoffen oder thermisch empfindlichen Zusatzstoffen aufweisen.
Die treibmittelhaltige Styrolpolymerschmelze wird in der Regel mit einer Temperatur im Bereich von 140 bis 300°C, bevorzugt im Bereich von 160 bis 240°C durch die Düsen- platte gefördert. Eine Abkühlung bis in den Bereich der Glasübergangstemperatur ist nicht notwendig.
Die Düsenplatte wird mindestens auf die Temperatur der treibmittelhaltigen Polystyrolschmelze beheizt. Bevorzugt liegt die Temperatur der Düsenplatte im Bereich von 20 bis 100°C über der Temperatur der treibmittelhaltigen Polystyrolschmelze. Dadurch werden Polymerablagerungen in den Düsen verhindert und eine störungsfreie Granulierung gewährleistet.
Um marktfähige Granulatgrößen zu erhalten sollte der Durchmesser (D) der Düsen- bohrungen am Düsenaustritt im Bereich von 0,2 bis 1 ,5 mm, bevorzugt im Bereich von 0,3 bis 1 ,2 mm, besonders bevorzugt im Bereich von 0,3 bis 0,8 mm liegen. Damit lassen sich auch nach Strangaufweitung Granulatgrößen unter 2 mm, insbesondere im Bereich 0,4 bis 1 ,4 mm gezielt einstellen.
Besonders bevorzugt wird ein Verfahren zur Herstellung von halogenfrei flammgeschützten, expandierbaren Styrolpolymeren (EPS), umfassend die Schritte a) Einmischen eines organischen Treibmittels und 1 -25 Gew.-% des erfindungsgemäßen Flammschutzmittels in die Polymerschmelze mittels stati- sehen oder dynamischen Mischer bei einer Temperatur von mindestens 150°C,
b) Kühlen der treibmittelhaltigen Styrolpolymerschmelze auf eine Temperatur von mindestens 120°C
c) Austrag durch eine Düsenplatte mit Bohrungen, deren Durchmesser am Düsenaustritt höchstens 1 ,5 mm beträgt und
d) Granulieren der treibmittelhaltigen Schmelze direkt hinter der Düsenplatte unter Wasser bei einem Druck im Bereich von 1 bis 20 bar. Bevorzugt ist es auch, die erfindungsgemäßen, expandierbaren Styrolpolymere (EPS) durch Suspensionspolymerisation in wässriger Suspension in Gegenwart des erfindungsgemäßen Flammschutzmittels und eines organischen Treibmittels herzustellen.
Bei der Suspensionspolymerisation wird als Monomer bevorzugt Styrol allein einge- setzt. Es kann jedoch zu bis zu 20 % seines Gewichts durch andere ethylenisch ungesättigte Monomere, wie Alkylstyrole, Divinylbenzol, Acrylnitril, 1 ,1 -Diphenylether oder alpha-Methylstyrol ersetzt sein.
Bei der Suspensionspolymerisation können die üblichen Hilfsmittel, wie z.B. Peroxid- Initiatoren, Suspensionsstabilisatoren, Treibmittel, Kettenüberträger, Expandierhilfsmittel, Keimbildner und Weichmacher zugesetzt werden. Das erfindungsgemäße Flammschutzmittel wird bei der Polymerisation in Mengen von 0,5 bis 25 Gew.-%, vorzugsweise von 5 bis 15 Gew.-%, zugesetzt. Treibmittel werden in Mengen von 2 bis 10 Gew.-%, bezogen auf Monomer zugesetzt. Man kann sie vor, wäh- rend oder nach der Polymerisation der Suspension zusetzen. Geeignete Treibmittel sind zum Beispiel aliphatische Kohlenwasserstoffe mit 4 bis 6 Kohlenstoffatomen. Es ist vorteilhaft, als Suspensionsstabilisatoren anorganische Pickering-Dispergatoren, z.B. Magnesiumpyrophosphat oder Calciumphosphat einzusetzen. Bei der Suspensionspolymerisation entstehen periförmige, im Wesentlichen runde Teilchen mit einem mittleren Durchmesser im Bereich von 0,2 bis 2 mm.
Zur Verbesserung der Verarbeitbarkeit können die fertigen expandierbaren Styrolpolymergranulate durch Glycerinester, Antistatika oder Antiverklebungsmittel beschichten werden.
Das EPS Granulat kann mit Glycerinmonostearat GMS (typisch erweise 0,25 %), Glycerintristearat (typischerweise 0,25 %) feinteiliger Kieselsäure Aerosil R972 (typischerweise 0,12 %) und Zn-Stearat (typisch erweise 0,15 %), sowie Antistatikum be- schichtet werden. Die erfindungsgemäßen expandierbaren Styrolpolymergranulate können in einem ersten Schritt mittels Heißluft oder Wasserdampf zu Schaumpartikeln mit einer Dichte im Bereich von 5 bis 200 kg/m3, insbesondere 10 bis 50 kg/m3 vorgeschäumt und in ei- nem zweiten Schritt in einer geschlossenen Form zu Partikelformteilen verschweißt werden.
Die expandierbaren Polystyrolteilchen können zu Polystyrolschaumstoffen mit Dichten von 8 bis 200 kg/m3 bevorzugt von 10 bis 50 kg/m3, verarbeitet werden. Hierzu werden die expandierbaren Partikel vorgeschäumt. Dies geschieht zumeist durch Erwärmen der Partikel mit Wasserdampf in sogenannten Vorschäumern. Die so vorgeschäumten Partikel werden danach zu Formkörpern verschweißt. Hierzu werden die vorgeschäumten Partikel in nicht gasdicht schließende Formen gebracht und mit Wasserdampf beaufschlagt. Nach dem Abkühlen können die Formteile entnommen werden.
In einer weiteren bevorzugten Ausführungsform ist der Schaumstoff ein extrudiertes Polystyrol (XPS), erhältlich durch:
(a) Erhitzen einer Polymerkomponente P zur Ausbildung einer Polymerschmelze, (b) Einbringen einer Treibmittelkomponente T in die Polymerschmelze zur Ausbildung einer schäumbaren Schmelze,
(c) Extrusion der schäumbaren Schmelze in einen Bereich niedrigeren Drucks unter Aufschäumen zu einem Extrusionsschaum und
(d) Zugabe des erfindungsgemäßen Flammschutzmittels sowie gegebenenfalls weiterer Hilfs- und Zusatzstoffe in mindestens einem der Schritte a) und/oder b).
Erfindungsgemäße Schaumstoffe auf Basis von Styrolpolymeren, insbesondere EPS und XPS, eignen sich beispielsweise zur Verwendung als Dämm- und/oder Isolierstoffe, insbesondere in der Bauindustrie. Bevorzugt ist eine Verwendung als halogenfreies Dämm- und/oder Isoliermaterial, insbesondere in der Bauindustrie.
Erfindungsgemäße Schaumstoffe, insbesondere auf Basis von Styrolpolymeren, wie EPS und XPS, zeigen bevorzugt eine Verlöschzeit (Brandtest B2 nach DIN 4102 bei einer Schaumstoffdichte von 15 g/l und einer Ablagerungszeit von 72 h) von < 15 sec, besonders bevorzugt < 10 sec, und erfüllen damit die Bedingungen zum Bestehen des genannten Brandtests, solange die Flammenhöhe die in der Norm angegebene Messmarke nicht überschreitet. Die Erfindung wird durch die nachfolgenden Beispiele näher erläutert, ohne sie da- durch zu beschränken.
Beispiele:
A. Synthesebeispiele
Allgemeine Vorschrift zur Synthese der Phosphorester:
In einer 4 L-Standardrührapparatur wird das furanbasierende Diol (2 mol) in Toluol (2000 mL) und Triethylamin (5 mol) bei RT (Raumtemperatur) eingebracht. Bei RT bis 50 °C wird die respektive Chlorphosphorkomponente (4 mol) innerhalb von 5 h zugetropft. Der Ansatz wird über Nacht bei RT nachrührt. Reaktionskontrolle via 31P-NMR indiziert quantitativen Umsatz. Bei unvollständigem Umsatz wird die Reaktionszeit verlängert.
Anschließend wird das ausgefallene Triethylammoniumchlorid abfiltriert und der Filterkuchen mit Toluol (1x 300mL) nachgewaschen. Das Filtrat wird mit gesättigter, wässri- ger Na2C03-Lösung (2 x 500 mL) intensiv ausgeschüttelt, anschließend mit Wasser (2 x 500 mL) nachgewaschen und über Na2S04 getrocknet. Das Na2S04 wird abgesaugt und mit Toluol (1 x 300 mL) nachgewaschen. Das Filtrat wird am Rotationsverdampfer im Vakuum eingeengt (65 °C, 77 mbar), anschließend 4 h bei 80°C am Ölpumpenva- kuum getrocknet, um das jeweilige Produkt als Rückstand in Ausbeuten von 75-99 % zu erhalten. A.1 Synthese von Isosorbid-bis-diphenylphosphat (11.1)
Apparatur
4000 ml-Rührapparatur, Argoinertisierung
Ansatz:
298,2 g (2,0 mol) Isosorbid 98 %
506 g (5,0 mol) Triethylamin
2000 mL Toluol
1 120 g (4,0 mol) Chlordiphenylphosphat 96 % In einer 4 L-Standardrührapparatur wurde Isosorbid (298,2 g, 2 mol) in Toluol (2000 mL) und Triethylamin (506 g, 5,0 mol) bei Raumtemperatur (RT) eingebracht. Bei 22 bis 42°C wurde Chlordiphenylphosphat (1 120 g, 4,0 mol) innerhalb von 5 h zugetropft. Der gelbe, trübe Ansatz wurde über Nacht bei RT nachrührt. Reaktionskontrolle durch 31P-NMR zeigte einen quantitativen Umsatz. Das ausgefallene Triethylammoniumchlorid wurde abfiltriert und mit Toluol (1 x 300ml_) nachgewaschen. Das Filtrat wurde mit gesättigter, wässriger Na2C03-Lösung (2 x 500 ml_) intensiv ausgeschüttelt, anschließend mit Wasser (2 x 500 ml_) nachgewaschen und über Na2S04 über Nacht getrocknet. Das Na2S04 wurde abgesaugt und mit Toluol (1 x 300 ml_) nachgewaschen. Das Filtrat wurde am Rotationsverdampfer im Vakuum eingeengt (65 °C, 77 mbar) und anschließend 4 h bei 80°C am Ölpumpenvakuum getrocknet.
Das Produkt wurde als rotbraunes Öl (1046g, 86 % d.Th.) erhalten, Reinheit >96 %
(basierend auf P-NMR).
Eine wässrige Emulsion des Produkts wies einen pH- Wert von 5,0 auf.
Analytische Daten:
31 P-N MR (toluoU), [ppm] : -1 1 .2 (d, 3JP,H=7 Hz), -1 1 .9 (d, 3JP,H=7 Hz) (2 Isomere).
1 H-N MR (toluoU), [ppm] : 7.37-7.22 (m, 8 H, ar), 7.16-7.00 (m, 8 H , ar), 7.00-6.89 (m, 4H, ar), 5.15-5.01 (m, 1 H, CHisosorbid), 4.95-4.82 (m, 1 H, CHisosorbid), 4.62-4.52 (m, 1 H, CHisosorbid), 4.50-4.40 (m, 1 H, CHisosorbid), 4.08-3.96 (m, 1 H, CHisosorbid), 3.83-3.71 (m, 1 H, CHisosorbid), 3.69-3.59 (m, 1 H, CHisosorbid), 3.59-3.47 (m, 1 H, CHisosorbid).
Analog wurden folgenden Verbindungen erhalten:
A.2 lsosorbid-0,0'-bis(dipnenylphosphinsäureester) (II.2) Analytische Daten:
1H-NMR (360 MHz, Toluol-d8, 300 K): = 3.62 (dd, 1 H, CH2, 3J=6.2 Hz, 2J= 9.2 Hz), 3.69 (dd, 1 H , CH2, 3J=6,5 Hz, 2J= 9.3 Hz), 3.77 (dd, 1 H, CH2, 3J=3.2 Hz, 2J= 10.6 Hz), 4.17 (d, 1 H, CH2, 2J= 10.6 Hz), 4.46 (d, 1 H, CH,sosorbid, 3J=4.4 Hz), 4.52 (d, 1 H, CH,sosorbid, 3J=4.4 Hz), 4.60-4.68 (m, CH,sosorbid), 4. 85 (dd, 1 H, CH,sosorbid, 3J=3.0 Hz, 3J=8.1 Hz), 7.04-7.15 (m, 12H , CHm,p), 7.96-8.03 (m, 8H, CH0) ppm.
13C-NMR (90 MHz, CDCI3, 300 K): δ = 70.1 (d, CH2,
Figure imgf000034_0001
HZ), 73.7 (d, CH|SOSOrbid, JC-P=6.0 Hz), 74.0 (d, CH2,
Figure imgf000034_0002
HZ), 78.3 (d, CH,sosorbid, JC-P=5.7 HZ), 80.6 (d, CH Isosorbidi JC-P=4.7 Hz), 85.8 (d, CH Isosorbidi Jc-p=5.3 Hz), 127.9 (d, CHm;|Somere, JC-p=13.3 Hz), 128.0 (d, CHmjsomere,
Figure imgf000034_0003
Hz), 128.0 (d, CHm,|Somere, Hz), 128.0 (d,
CHmjsomere,
Hz), 130.8
CH /, Isomerei
Figure imgf000034_0004
P=27.6 Hz), 131 .9 (m, 4C, CHp,|Somere) ppm. 31
P-NMR (145 MHz, Toluol-d8, 300 K): δ = 26.170 (m), 26.6 (m) ppm.
ESI(+)-HRMS (m/z): ber.: 547.1439 [C3oH2906P2]+
gef.: 547.1416 [M+H]+.
Thermogravimetrische Analyse (TGA) (unter Argon): 302 °C (2 % Massenverlust), 340 °C (5 % Massenverlust), 358 °C (10 % Massenverlust). A.3 lsosorbid-0,0'-bis(diphenylthiophosphinsäureester) (II.3) Analytische Daten:
1H-NMR (360 MHz, CDCI3, 300 K): = 3.68 (dd, 1 H, CH2, 3J=7.1 Hz, 2J= 9.2 Hz), 3.82 (dd, 1 H, CH2, 3J=6.2 Hz, 2J= 9.2 Hz), 3.96 (dd, 1 H, CH2, 3J=3.7 Hz, 2J= 10.6 Hz), 4.1 1 („d", 1 H, CH2, J=10.6 Hz), 4.55 („d", CH,sosorbid, 3J=4.7 Hz), 4.71 (t, 1 H, CH,sosorbid, 3J=4.6 Hz), 4.97 (m, CH,sosorbid), 5.10 (dd, 1 H, CH,sosorbid, 3J=3.0 Hz, 3J=1 1.8 Hz), 7.35-7.50 (m, 12H, CHm,p), 7.78-8.00 (m, 8H, CH0) ppm. 13C-NMR (90 MHz, CDCI3, 300 K): δ = 70.3 (d, CH2,
Figure imgf000035_0001
HZ), 74.4 (m, 2C, CH2, CH,sosorbid), 79.0 (d, CH Isosorbidi JC-P=5.3 Hz), 81 .2 (d, CH Isosorbidi JC-P=5.0 Hz), 86.3 (d,
CH Isosorbidi Jc-p-5.6 Hz), 128.4 (d, 2C, CHm;|Somere2, Jc-p-13.3 Hz), 128.5 (d, CHm;|Somere,
Figure imgf000035_0002
P=3.0 Hz) ppm.
31P-NMR (145 MHz, CDCI3, 300 K): δ = 83.3 (m), 84.8 (m) ppm.
ESI(+)-HRMS (m/z): ber.: 579.0983 [C30H29O4P2 S2]+
gef.: 579.1016 [M+H]+.
Elementaranalyse [%]: ber.: C: 62.3; O: 1 1 .1 ; S: 1 1 .1 ; H: 4.9
gef.: C: 61 .1 ; O: 1 1 .3; S: 1 1 .9; H: 4.8
TGA (unter Argon): 293 °C (2 % Massenverlust), 319 °C (5 % Massenverlust), 335 °C (10 % Massenverlust). A.4 lsosorbid-0,0'-bis(diphenylphosphinit) (11.4)
Analytische Daten:
1H-NMR (360 MHz, Toluol-d8, 300 K): = 3.49 (dd, 1 H, CH2, 3J=6.2 Hz, 2J= 9.0 Hz), 3.62 (dd, 1 H, CH2, 3J=6,7 Hz, 2J= 9.0 Hz), 3.71 (dd, 1 H, CH2, 3J=3.2 Hz, 2J= 10.4 Hz), 3.95 („d", 1 H, CH2, J= 10.2 Hz), 4.01 -4.09 (m, 1 H, CH,SOSORBID), 4.34 (dd, 1 H, CH,SOSORBID, 3J=0.93 Hz, 3J= 4.16 Hz), 4.40 (dd, CH|SOSORBID, 3J=3.2 Hz, 3J= 9.3 Hz), 4.49 (t, 1 H, CH|SOSOrbid, 3J=4.6 Hz), 6.99-7.13 (m, 12H, CHM,P), 7.42-7.54 (m, 6H, CH0), 7.62-7.67 (m, 2H, CH0) ppm.
13C-NMR (90 MHz, CDCI3, 300 K): δ = 71.0 (d, CH2, 3JC-P=6.6 Hz), 74.9 (d, CH2, 3JC- P=7.0 Hz), 79.7 (d, CHOP, 2JC-P=17.6 HZ), 81 .4 (d, CHOC,
CHOP, 2JC-P=18.6 Hz), 92.0 (d, CHOC, HZ), 128.2
Hz), 128.3 (d, CHmjsomere, Jc-P=7.0 Hz),
Figure imgf000036_0001
128.3 (d, CHmjsomere,
CHm,,somere, Hz), 129.3 (s, 2C, CHP), 129.5 (s, CHP), 129.53 (s, CHP), 130.1 (d, CH o, Isomerei
Figure imgf000036_0002
Hz), 130.4 (d, CH o, Isomerei Hz), 130.4 (d, CH o, Isomerei <JC-
P=21.9 Hz), 130.5 (d, CH0,,somere, 2JC-P=21.6 Hz), 141 .2 (d, CH,,|Somere, 1JC-P=15.6 Hz), 141 .4 (d, CH,,|Somere,
Figure imgf000036_0003
Hz), 141 .7 (d, CH , Isomerei ^=17.0 Hz) ppm.
31P-NMR (145 MHz, Toluol-d8, 300 K): δ = 1 12.2 (Sextett, 7.8 Hz), 1 16.0 (Sextett, 8.0 Hz) ppm.
ESI(+)-HRMS (m/z): ber.: 515.1541 [C3oH2904P2]+
gef.: 515.1510 [M+H]+.
TGA (unter Argon): 300 °C (2 % Massenverlust), 322 °C (5 % Massenverlust), 337 °C (10 % Massenverlust).
A.5 Furan-2,5-yl-dimethyl-2,5-bis(diphenylphosphinsäureester) (III.2) Analytische Daten:
1H-NMR (500 MHz, Toluol-d8, 300 K): = 4.79 (d, 4H, CH2, 3JP-H=8.2 Hz), 5.89 (s, 2H, CHFuran), 7.01 -7.07 (m, 12H, CHM, P), 7.82-7.87 (m, 8H, CHG) ppm.
13C-NMR (125 MHz, Toluol-d8, 300 K): δ = 58.1 (d, CH2, 2JC-P=5.2 HZ), 1 1 1 .6 (s, CH), 128.6 (d, CHm,
Figure imgf000036_0004
HZ), 131 .9 (d, CHP, 4JC-P=2.9 HZ), 132.1 (d, CHG, 2JC-P=9.7 Hz), 133.0 (d, CH„ 1JC-P=135.4 Hz) ppm. 31P-NMR (145 MHz, Toluol-d8, 300 K): δ = 31 ,2 (m) ppm.
ESI(+)-HRMS (m/z): ber.: 529.1334 [C3oH2705P2]+
gef.: 529.1328 [M+H]+.
TGA (unter Argon): 155 °C (2 % Masseverlust), 160 °C (5 % Masseverlust), 200 °C (10 % Masseverlust).
A.6 2,3,4,5-Tetrahydrofuran-2,5-yl-dimethyl-2,5-bis(diphenylphosphatester) (IV.1 )
Analytische Daten:
1H-NMR (360 MHz, Toluol-d8, 300 K): = 1 .29-1 .35 (m, 4H, CH2, THF), 3.78-3.82 (m, 2H, CHTHF), 3.91 -4.05 (m, 4H , CHZ Melhy en), 6.81 -6.85 (m, 4H , CHP), 6.98-7.03 (m, 8H , CHm), 7.27-7.30 (m, 8H , CH0) ppm.
13C-NMR (125 MHz, Toluol-d8, 300 K): δ = 27.3 (s, CH2,THF), 70.5 (d, CH2,Methyien, 2Jc- P=6.3 Hz), 78.1 (d, CHTHF,
Figure imgf000037_0001
HZ), 120.6 (d, CHG, 2JC-P=4.6 HZ), 125.4 (s, CHP), 129.9 (s, CHm), 151 .4 (d, CH i, Isomerl
Figure imgf000037_0002
Hz) ppm.
31P-NMR (145 MHz, Toluol-d8, 300 K): δ = -15.8 („t", J=18.4 Hz) ppm.
ESI(+)-HRMS (m/z): ber.: 597.1443 [C3oH3i09P2]+
gef.: 597.1429 [M+H]+.
TGA (unter Argon): 260 °C (2 % Masseverlust), 265 °C (5 % Masseverlust), 270 °C (10 % Masseverlust). A.7 2,3,4,5-Tetrahydrofuran-2,5-yl-dimethyl-2,5-bis(diphenylphosphin-säureester) (IV.2)
Analytische Daten: 1H-NMR (360 MHz, Toluol-d8, 300 K): = 1 .44-1 .46 (m, 4H, CH2,THF), 3.88-3.91 (m, 4H, CH2,Methyien), 3.97-4.03 (m, 2H, CHTHF), 7.08-7.18 (m, 12H, CHM,P), 7.89-7.89 (m, 8H, CH0) ppm.
13C-NMR (90 MHz, CDCI3, 300 K): δ = 27.3 (s, CH2, THF), 66.2 (d, CH2,Methyien, 2JC-p=6.0 Hz), 78.1 (d, CHTHF,
Figure imgf000037_0003
HZ), 128.2 (d, CHM,,„I/2, HZ), 128.4 (d,
Figure imgf000037_0004
Hz), 130.1 (d, CH,, lsomer1 Hz), 131 .3 (d, CHG, lsomer1
Figure imgf000038_0001
Hz), 131 .4 (d, CHG, lsomer1/2, 2JC-P=10.0 Hz), 131 .6 (d, CH,-, ,_I/2, 1.0 Hz), 132 („t", C p somer1/2) ppm.
31P-NMR (145 MHz, Toluol-d8, 300 K): δ = 25.2 (m) ppm.
ESI(+)-HRMS (m/z): ber.: 533.1647 [C3oH3i05P2]+
gef.: 533.1629 [M+H]+.
TGA (unter Argon): 307 °C (2 % Massenverlust), 320 °C (5 % Massenverlust), 323 °C (10 % Massenverlust).
A.8 2,3,4,5-Tetrahydrofuran-2,5-yl-dimethyl-2,5-bis(diphenylthiophosphin- säureester) (IV.3) Analytische Daten:
1H-NMR (360 MHz, CDCI3, 300 K): = 1 .65-1 .80 (m, 2H, CH2, THF), 1 .82-2.00 (m, 2H, CH2, THF), 3.90-4.04 (m, 4H, CHZ Melhy en), 4.15-4.30 (m, 2H, CHTHF), 7.32-7.43 (m, 12H, CHm, p), 7.82-7.93 (m, 8H, CHG) ppm.
13C-NMR (125 MHz, CDCI3, 300 K): δ = 27.5 (s, CH2,THF), 66.3 (d, CH2,Methyien, 2Jc-p= 6.0 Hz), 78.1 (d, CHTHF,
Figure imgf000038_0002
HZ), 128.2 (d, CHm,,„i/2, HZ), 128.3 (d,
Hz), 131 .0 (d, CH o,lsomer1/2i CHp,,_i/2, 4JC-P=2.9 HZ),
Figure imgf000038_0003
=27.0 Hz) ppm.
31P-NMR (145 MHz, CDCI3, 300 K): δ = 83.2 (m) ppm.
ESI(+)-HRMS (m/z): ber.: 565.1 190 [C30H31O2P2S2]+
gef.: 565.1 165 [M+H]+.
TGA (unter Argon): 323 °C (2 % Massenverlust), 329 °C (5 % Massenverlust), 333 °C (10 % Massenverlust). A.9 2,3,4,5-Tetrahydrofuran-2,5-yl-dimethyl-2,5-bis(diphenyl-phosphinit) (IV.4)
Analytische Daten:
1H-NMR (360 MHz, CDCI3, 300 K): = 1 .67-1.94 (m, 4H, CH2,THF), 3.71 -3.85 (m, 4H, CH2,Methyien), 4.08-4.22 (m, 2H, CHTHF), 7.25-7.32 (m, 12H, CHM,P), 7.44-7.52 (m, 8H, CH0) ppm. 13C-NMR (125 MHz, CDCI3, 300 K): δ = 27.7 (s, CH2, THF), 72.1 (d, CH2, Methylen, 2Jc- Hz), 129.1 (s, CHP), 141 .9 (d, CH, ,somer2,
Figure imgf000039_0001
31P-NMR (145 MHz, CDCI3, 300 K): δ = 1 15.7 (Produkt, „Heptett", J=7.6 Hz), 1 16.4 (Nebenprodukt,„Quintett", J=7.6 Hz) ppm.
ESI(+)-HRMS (m/z): ber.: 501.1748
Figure imgf000039_0002
gef.: 501 .1762 [M+H]+.
TGA (unter Argon): 310 °C (2 % Masseverlust), 336 °C (5 % Masseverlust), 347 °C (10 % Masseverlust). B. Anwendungsbeispiele
Flammschutztests:
Beschreibung der Versuche:
Die Ermittlung des Brandverhaltens der Schaumstoffplatten erfolgte, wenn nicht anders angegeben, bei einer Schaumstoffdichte von 15 kg/m3 nach DIN 4102 (Brandtest B2).
Als Vergleich wurde Hexabromcyclododecan (im Folgenden als HBCD bezeichnet) eingesetzt.
Expandierbare Styrolpolymerisate (Extrusionsprozess)
7 Gew.-Teile n-Pentan wurden in eine Polystyrolschmelze aus PS 148H (Mw = 240 000 g/mol, Mn = 87 000 g/mol, bestimmt mittels GPC, Rl-Detektor, Polystyrol (PS) als Standard) der BASF SE mit einer Viskositätszahl VZ von 83 ml/g eingemischt. Nach Abkühlen der treibmittelhaltigen Schmelze von ursprünglich 260°C auf eine Temperatur von 190°C, wurde eine Polystyrolschmelze, welche die in der Tabelle genannten Flammschutzmittel enthielt, über einen Seitenstromextruder in den Hauptstrom eingemischt. Die angegebenen Mengen in Gew.-Teilen beziehen sich auf die gesamte Polystyrolmenge.
Das Gemisch aus Polystyrolschmelze, Treibmittel und Flammschutzmittel wurde mit 60 kg/h durch eine Düsenplatte mit 32 Bohrungen (Durchmesser der Düsen 0,75 mm) gefördert. Mit Hilfe einer druckbeaufschlagten Unterwassergranulierung wurden kompakte Granulate mit enger Größenverteilung hergestellt. Das Molekulargewicht der Granulate betrug 220 000 g/mol (Mw) bzw. 80 000 g/mol (Mn) (bestimmt mittels GPC, Rl-Detektor, PS als Standard). Durch Einwirkung von strömendem Wasserdampf wurden die Granulate vorgeschäumt und nach 12-stündiger Lagerung durch weitere Behandlung mit Wasserdampf in einer geschlossenen Form zu Schaumstoffblöcken einer Dichte von 15 kg/m3 verschweißt. Die Ermittlung des Brandverhaltens der Schaumstoffplatten erfolgte nach 72-stündiger Lagerung bei einer Schaumstoffdichte von 15 kg/m3 nach DIN 4102. Die Ergebnisse sind in Tabelle 1 a (B.1 -B.12) zusammengestellt.
Expandierbare Styrolpolymerisate (Suspensionsprozess)
Für die Herstellung von EPS wurden Dibenzoylperoxid, Dicumylperoxid, gegebe- nenfalls weitere Synergisten und Ceridust 3620 (Polyethylenwachs, Clariant) in Styrol gelöst. Dazu wurde das erfindungsgemäße, phosphorhaltige Flammschutzmittel gegeben. Die organische Phase wurde in vollentsalztes Wasser in einem Rührkessel eingebracht. Die wässrige Phase enthielt weiterhin Natriumpyrophosphat und sowie Magnesiumsulfat *Heptahydrat (Bittersalz). Man erhitzte die Suspension innerhalb von 1 ,75 Stunden auf 104°C und anschließend binnen 5,5 Stunden auf 136°C. 1 .8 Stunden nach Erreichen von 80°C wurde Emul- gator K30 (ein Gemisch verschiedener linearer Alkylsulfonate, Lanxess AG) zudosiert. Nach einer weiteren Stunde wurden 7,8 Gew.-% Pentan nachdosiert. Schließlich wird bei einer Endtemperatur von 136°C auspolymerisiert.
Die erhaltenen treibmittelhaltigen Polystyrolperlen wurden abdekantiert, von Innenwasser getrocknet und mit einem Standard EPS Coating beschichtet.
Durch Einwirkung von strömendem Wasserdampf wurden die treibmittelhaltigen Polystyrolperlen vorgeschäumt und nach 12-stündiger Lagerung durch weitere Be- handlung mit Wasserdampf in einer geschlossenen Form zu Schaumstoffblöcken einer Dichte von 15 kg/m3 verschweißt. Die Ermittlung des Brandverhaltens der Schaumstoffplatten erfolgte nach 72-stündiger Lagerung bei einer Schaumstoffdichte von 15 kg/m3 nach DIN 4102.
Die Ergebnisse Suspensionspolymerisation sind in Tabelle 1 b (B.13-B.20) zusammengestellt. Tabelle 1 a: Brandverhalten von erfindungsgemäßer Polymerzusammensetzung (Bei spiele) und von Vergleichsbeispielen (kursiv geschrieben)
Figure imgf000041_0001
Tabelle 1 b: Brandverhalten von erfindungsgemäßer Polymerzusammensetzung (Bei spiele) und von Vergleichsbeispielen (kursiv geschrieben)
BeiFlammschutzmittel Synergist (Gew.- Brandtest (B2 nach DIN spiel (Gew.-% bezogen auf % bezogen auf 4102) / Verlöschzeit (s) Styrol) Styrol)
V3 - - nicht bestanden / brennt al
V4 HBCD (3,5) - bestanden / 7, 1 s
B.13 11.1 (5,0) DCP1 (1 ,5) bestanden / 6,4 s
B.14 11.1 (6,0) DCP1 (1 ,7) bestanden / 5.6 s
B.15 II.2 (6,0) DCP1 (1 ,5) bestanden / 9,2 s
B.16 II.3 (6,0) DCP1 (1 ,5) bestanden / 7,4 s B.17 II.4 (6,0) DCP1 (1 ,5) bestanden / 10,6 s
B.18 IV.1 (6,0) DCP1 (1 ,7) bestanden / 8,7 s
B.19 IV.3 (6,0) DCP1 (1 ,7) bestanden / 6,9 s
B.20 IV.4 (5,0) DCP (1 ,7) bestanden / 1 1 ,2 s
1 : Dicumylperoxid (CAS: 80-43-3)
Tabelle 2: Einfluss der Schaumstoffdichte von Polystyrolschaumstoffprüfkörpern her- gestellt aus EPS auf das Brandergebnis. Die in den Beispielen beschriebenen Teile sind Gewichtsteile.
Figure imgf000042_0001
Extrudierte Polystyrol-Schaumstoffplatten
100 Gew.-Teile Polystyrol 158K (Mw = 261 000 g/mol, Mn = 77 000 g/mol bestimmt mittels GPC, Rl-Detektor, PS als Standard) der BASF SE mit einer Viskositätszahl von 98 ml/g, 0,1 Teile Talkum als Keimbildner zur Regelung der Zellgröße und die in der Tabelle angegebenen Teile an Flammschutzmitteln sowie gegebenenfalls Schwefel oder anderen Synergisten wurden einem Extruder mit einem inneren Schnecken- durchmesser von 120 mm kontinuierlich zugeführt. Durch eine in den Extruder angebrachte Einlassöffnung wurde gleichzeitig ein Treibmittelgemisch aus 3,25 Gew. -Teilen Ethanol und 3,5 Gew.-Teilen C02 kontinuierlich eingedrückt. Das in dem Extruder bei 180 °C gleichmäßig geknetete Gel wurde durch eine Beruhigungszone geführt und nach einer Verweilzeit von 15 Minuten mit einer Austrittstemperatur von 105 °C durch eine 300 mm breite und 1 ,5 mm weite Düse in die Atmosphäre extrudiert. Der Schaum wurde durch einen mit dem Extruder verbundenen Formkanal geführt, wobei eine geschäumte Plattenbahn mit einem Querschnitt 650 mm x 50 mm und einer Dichte von 35 g/l entstand. Das Molekulargewicht des Polystyrols betrug 240 000 g/mol (Mw) bzw. 70 000 g/mol (Mn) (bestimmt mittels GPC, Rl-Detektor, PS als Standard). Das Produkt wurde in Platten geschnitten. Geprüft wurde das Brandverhalten der Proben mit Dicken von 10 mm nach einer Ablagerungszeit von 30 Tagen nach DIN 4102.
Die Ergebnisse der Beispiele sind in der Tabelle 3 zusammengefasst. Tabelle 3:
Figure imgf000043_0001
Die Anwendungsbeispiele belegen, dass mit den erfindungsgemäßen Flammschutzmitteln ein Schaumstoff hergestellt werden kann, der ohne den Einsatz halogenierter Flammschutzmittel ein gleiches oder besseres Brandverhalten als mit diesen Mitteln zeigt.

Claims

Patentansprüche
1 . Verwendung einer Phosphorverbindung der Formel (I) als Flammschutzmittel,
Figure imgf000044_0001
wobei die Symbole in der Formel (I) folgende Bedeutungen haben: ist eine Gruppe
Figure imgf000044_0002
(II) (IV)
Y ist -P(=X2)SR3R4, H, eine geradkettige oder verzweigte C1-C12- Alkylgruppe, C5-C6-Cycloalkyl, C6-Ci2-Aryl, Benzyl, wobei die vier letztgenannten Gruppen unsubstituiert oder durch einen oder mehrere Reste CrC4-Alkyl oder C2-C4-Alkenyl substituiert sind;
R1, R2, R3 und R4 sind gleich oder verschieden Wasserstoff, OH, CrCi6-Alkyl, C2- Ci6-Alkenyl, CrCi6-Alkoxy, C2-Ci6-Alkenoxy, C3-Ci0-Cycloalkyl, C3-Ci0-Cycloalkoxy, C6-Ci0-Aryl, C6-Ci0-Aryloxy, C6-Ci0-Aryl-Ci- Cie-Alkyl, C6-Cio-Aryl-Ci-Ci6-Alkoxy, SR9 COR10, COOR11, CONR12R13 oder zwei Reste R1, R2, R3, R4 bilden zusammen mit dem Phosphoratom, an das sie gebunden sind, oder der Gruppe P-O-A-O-P ein Ringsystem;
R5, R6, R7, R1 sind gleich oder verschieden H, CrCi6-Alkyl, C2-Ci6-Alkenyl,
Ci-Ci6-Alkoxy, C2-Ci6-Alkenoxy; R9, R10, R11, R12, R sind gleich oder verschieden H CrCi6-Alkyl, C2-Ci6- Alkenyl, C6-Ci0-Aryl, C6-Cio-Aryl-Ci-Ci6-Alkyl, , C6-Ci0- Aryl-C Ci6-Alkoxy; X1, X2 sind gleich oder verschieden S oder O; r, s sind gleich oder verschieden 0 oder 1 ;
X3, X4, X5, X6 sind gleich oder verschieden S oder O und n ist eine natürliche Zahl von 1 bis 50.
2. Verwendung gemäß Anspruch 1 , wobei die Symbole und Indizes in der Formel (I) folgende Bedeutungen haben:
A ist eine Gruppe der Formel (II), (III) oder (IV); Y ist (X2)rPR3R4 oder H;
R1, R2, R3, R4 sind gleich oder verschieden C6-Cio-Aryloxy, Ci-Cio-Aryl-Ci-Ci6- Alkyl oder C6-Cio-Aryl-Ci-Ci6-Alkoxy; R5, R6, R7, R8 sind gleich oder verschieden H, d-de-Alkyl, C2-Ci6-Alkenyl, C
Ci6-Alkoxy, C2-Ci6-Alkenoxy;
X1, X2 sind gleich oder verschieden S oder O; r, s sind gleich 0 oder 1 ;
X3, X4, X5, X6 sind O und n ist eine natürliche Zahl von 1 bis 30.
3. Verwendung gemäß Anspruch 1 oder 2, wobei die Symbole und Indizes in der Formel (I) folgende Bedeutungen haben:
A ist eine Gruppe der Formel (II), (III) oder (IV);
Y ist (X2)rPR3R4;
R1, R2, R3, R4 sind gleich oder verschieden Phenyl, Phenoxy, Phenyl-CrCi6-Alkyl, Phenyl-C Ci6-Alkoxy; R5, R6, R7, R8 sind H;
X1, X2 sind gleich oder verschieden S oder O; r, s sind gleich 0 oder 1 ; X3, X4, X5, X6 sind O und n ist 1 .
4. Verwendung gemäß einem der Ansprüche 1 bis 3, wobei die Symbole und Indizes in der Formel (I) folgende Bedeutungen haben:
A ist eine Gruppe der Formel (II), (III) oder (IV);
Y ist (X2)rPR3R4;
R1, R2, R3, R4 sind gleich Phenyl oder Phenoxy; R5, R6, R7, R8 sind H;
X1, X2 sind gleich S oder O; r, s sind gleich 0 oder 1 ;
X3, X4, X5, X6 sind Sauerstoff und n ist 1 .
5. Verwendung gemäß einem der Ansprüche 1 bis 4, wobei die Verbindung der Formel (I) gewählt ist aus:
Figure imgf000047_0001
Figure imgf000048_0001
Figure imgf000048_0002
6. Verwendung gemäß einem der Ansprüche 1 bis 5, wobei 1 Verbindung der Formel (I) eingesetzt wird.
7. Verwendung gemäß einem der Ansprüche 1 bis 5, wobei mindestens zwei Verbindungen der Formel (I) eingesetzt werden.
8. Verwendung gemäß einem der Ansprüche 1 bis 7, wobei die Verbindung(en) der Formel (I) in Mischung mit einem oder mehreren weiteren flammhemmenden Ver- bindungen und/oder einem oder mehreren Synergisten eingesetzt wird.
9. Verwendung gemäß Anspruch 8, wobei ein Synergist aus der Gruppe bestehend aus organischen Peroxiden, organischen Polysulfiden, C-C-spaltenden Initiatoren und elementarem Schwefel eingesetzt wird.
10. Verfahren zur flammhemmenden Ausrüstung eines Materials, wobei man dem Material ein Flammschutzmittel gemäß einem der Ansprüche 1 bis 9 zusetzt.
1 1 . Verfahren gemäß Anspruch 10, wobei das Material ein Polymermaterial, enthaltend ein oder mehrere Polymere ist.
12. Polymermaterial, enthaltend ein oder mehrere Polymere und ein Flammschutzmittel gemäß einem der Ansprüche 1 bis 9.
13. Polymerzusammensetzung gemäß Anspruch 12, enthaltend 0,1 bis 25 Gew.-% (bezogen auf den Polymeranteil) an dem Flammschutzmittel.
14. Polymerzusammensetzung gemäß Anspruch 12 oder 13, dadurch gekennzeichnet, dass sie halogenfrei ist.
15. Polymerzusammensetzung gemäß einem der Ansprüche 12 bis 14, enthaltend ein Styrolpolymer.
16. Polymerzusammensetzung gemäß einem der Ansprüche 12 bis 15, dadurch gekennzeichnet, dass das Polymer ein Polymerschaumstoff ist.
17. Polymerzusammensetzung gemäß Anspruch 15 in Form eines expandierbaren Styrolpolymers (EPS).
18. Verfahren zur Herstellung eines expandierbaren Styrolpolymers (EPS) gemäß Anspruch 17, umfassend die Schritte:
a) Einmischen eines organischen Treibmittels und einer oder mehrerer Verbindungen der Formel (I) gemäß einen der Ansprüche 1 bis 5 sowie gege- benenfalls weiterer Hilfs-und Zusatzstoffen in eine Styrolpolymerschmelze mittels statischer und/oder dynamischer Mischer bei einer Temperatur von mindestens 150°C,
b) Kühlen der treibmittelhaltigen Styrolpolymerschmelze auf eine Temperatur von mindestens 120°C,
c) Austrag durch eine Düsenplatte mit Bohrungen, deren Durchmesser am Düsenaustritt höchstens 1 ,5 mm beträgt und
d) Granulieren der treibmittelhaltigen Schmelze direkt hinter der Düsenplatte unter Wasser bei einem Druck im Bereich von 1 bis 20 bar.
19. Verfahren zur Herstellung eines expandierbaren Styrolpolymers gemäß Anspruch 17, umfassend die Schritte:
a) Polymerisation einer oder mehrerer Styrolmonomere in Suspension;
b) Zugabe einer oder mehrerer Verbindungen der Formel (I) gemäß einem der Ansprüche 1 bis 5 sowie gegebenenfalls weiterer Hilfs- und Zusatzstoffe vor, während und/oder nach der Polymerisation
c) Zugabe eines organischen Treibmittels vor, während und/oder nach der Polymerisation und
d) Abtrenen der expadierbaren, eine oder mehrere Verbindungen der Formel (I) enthaltenden Styrolpolymerteilchen von der Suspension.
20. Polymerzusammensetzung gemäß Anspruch 16 in Form eines
Styrolpolymerextrusionsschaumstoffes (XPS).
21. Verfahren zur Herstellung eines Styrolextrusionsschaumstoffes (XPS) gemäß Anspruch 20,umfassend die Schritte:
a) Erhitzen einer Polymerkomponente P, die mindestens ein Styrolpolymer enthält, zur Ausbildung einer Polymerschmelze,
b) Einbringen einer Treibmittelkomponente T in die Polymerschmelze zur Ausbildung einer schäumbaren Schmelze,
c) Extrusion der schäumbaren Schmelze in einen Bereich niedrigeren Drucks unter Aufschäumen zu einem Extrusionsschaum und
d) Zugabe von mindestens einer Verbindung der Formel (i) gemäß einem der Ansprüche 1 bis 5 als Flammschutzmittel sowie gegebenenfalls weiterer Hilfs- und Zusatzstoffen in mindestens einem der Schritte a) und b).
22.Verwendung einer halogenfreien Polymerzusammensetzung gemäß Anspruch 20 und oder einer halogenfreien Polymerzusammensetzung gemäß Anspruch 17 in ex- pandierter Form als Dämm- und/oder Isoliermaterial.
23. Phosphorverbindung gemäß einem der Ansprüche 1 bis 5, wobei die folgenden Verbindungen ausgenommen sind:
a. 2,5-Anhydro-3,4-dideoxy-hexitol- bis(dihydrogen phosphat)
b. 1 ,4:3,6-Dianhydro-hexitol-215-bis(P,P-diphenylphosphinit)
c. 1 ,4:3,6-Dianhydro-hexitol-bis(dipropylphosphinat)
d. 1 ,4:3,6-Dianhydro-hexitol-bis(diethylphosphinit)
e. 1 ,4:3,6-Dianhydro-hexitol-bis(dipropylphosphinothioat)
f. 1 ,4:3,6-Dianhydro-hexitol-bis(diphenylphosphinothioat)
g. 1 ,4:3,6-Dianhydro-2,5-bis-0-(5,5-dimethyl- 1 ,3,2-dioxaphosphorinan-2- yl)-hexitol
h. 1 ,4:3,6-Dianhydro-2,5-di-0-1 ,3,2-benzodioxaphosphol-2-yl-hexitol i. 1,4:3,6-Dianhydro-2,5-bis-0-(6- sulfidodibenzo[d,f][1,3>2]dioxaphosphepin-6-yl)-hexitol
j. 1 ,4:3,6-Dianhydro-bis(dihydrogen phosphit)-hexitol
k. 1 ,4:3,6-Dianhydro-2,5-bis-0-[(11bR)-dinaphtho[2,1-d:1',2'- f] [1 ,3,2]dioxaphosphepin-4-yl]- hexitol
I. 1 ,4:3,6-Dianhydro-2,5-bis-0-(16H-dinaphtho[2, 1 -d: 1 \2'- g] [1,3,2]dioxaphosphocin-8-yl)-hexitol m. 1 ,4:3,6-Dianhydro-2,5-bis-0-[2,4,8,10-tetrakis(1 ,1 - dimethylethyl)dibenzo[d,f][1,3,2]dioxaphosphepin-6-yl]-hexitol n. 1 ,4:3,6-Dianhydro-2,5-bis-0-(4,8- dimethyldibenzo[d,f][1,3,2]dioxaphosphepin-6-yl)-hexitol
o. 1 ,4:3,6-Dianhydro-2,5-di-0-dibenzo[d,f][1 ,3,2]dioxaphosphepin-6-yl- hexitol
p. 1,4:3,6-Dianhydro-, bis(di-2-naphthalenyl phosphit)-hexitol
q. 1 ,4:3,6-Dianhydro-2,5-bis-0-(5-methyl-5-propyl-1 ,3,2- dioxaphosphorinan-2-y1)-hexitol
r. 1 ,4:3,6-Dianhydro-, bis[bis(2-ethylhexyl) phosphit]-hexitol
s. 1 ,4:3,6-Dianhydro-2,5-bis-0-(5,5-dimethyl-2-sulf ido-1 ,3,2- dioxaphosphorinan-2-yl)-hexitol
t. 1 ,4:3,6-Dianhydro-2,5-bis-0-(5,5-dimethyl-1 ,3,2-dioxaphosphorinan-2- yl)-hexitol
u. 1,4:3,6-Dianhydro-hexitol-bis(dipropytphosphinit)
v. 1 ,4:3,6-Dianhydro-hexitol-bis(methyIphosphonit)
w. 1 ,4:3,6-Dianhydro-hexitol-bis(hydrogenphosphonat)
x. 1 ,4:3,6-Dianhydro-D-Glucitol-2,5 ':2',5-bis(phenylphosphonothioat y. 1 ,4:3,6-Dianhydro-hexitol-2,2 '-(2-hexyldecylphosphit)-5,5 '-bis[bis(2- hexyldecyi)phosphit
z. Hexitol-2,3,4,5-tetradeoxy-2,5-epithio-bis(dip enylphosphinit) aa. Hexitol-2,3,4,5-tetradeoxy-2,5-epithio-bis[bis(2,4,6- trimethylphenyl)phosphonit]
bb. Hexitol-2,3,4,5-tetradeoxy-2,5-epithio-bis(dicyclohexy1phosphinit) und cc. Hexitol-2,3,4,5-tetradeoxy-2,5-epit io-bis(diethylphosphinit).
BERICHTIGTES BL-ATT (REGEL 91) ISA/EP
PCT/EP2010/069796 2009-12-16 2010-12-15 Flammschutzmittel WO2011083009A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
KR1020127018256A KR101824268B1 (ko) 2009-12-16 2010-12-15 난연제
MX2012006941A MX2012006941A (es) 2009-12-16 2010-12-15 Piroretardantes.
JP2012543729A JP5917410B2 (ja) 2009-12-16 2010-12-15 難燃剤
ES10790979.8T ES2545331T3 (es) 2009-12-16 2010-12-15 Agente ignífugo
RU2012129682/05A RU2012129682A (ru) 2009-12-16 2010-12-15 Огнезащитное средство
PL10790979T PL2513251T3 (pl) 2009-12-16 2010-12-15 Środek ogniochronny
US13/516,464 US9234137B2 (en) 2009-12-16 2010-12-15 Flame retardant
CN201080062708.XA CN102834488B (zh) 2009-12-16 2010-12-15 阻燃剂
BR112012014682A BR112012014682A2 (pt) 2009-12-16 2010-12-15 uso de um composto de fósforo, processo para fornecer retardância de chama a um material, composição polímerica, processo para a preparação de um polímero de estireno expansível, processo para a produção uma espuma de polímero de estireno extrusado, uso de uma composição polimérica livre de halogênio, e, composto de fósforo
EP20100790979 EP2513251B1 (de) 2009-12-16 2010-12-15 Flammschutzmittel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP09179445.3 2009-12-16
EP09179445 2009-12-16

Publications (1)

Publication Number Publication Date
WO2011083009A1 true WO2011083009A1 (de) 2011-07-14

Family

ID=43532681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/069796 WO2011083009A1 (de) 2009-12-16 2010-12-15 Flammschutzmittel

Country Status (11)

Country Link
US (1) US9234137B2 (de)
EP (1) EP2513251B1 (de)
JP (1) JP5917410B2 (de)
KR (1) KR101824268B1 (de)
CN (1) CN102834488B (de)
BR (1) BR112012014682A2 (de)
ES (1) ES2545331T3 (de)
MX (1) MX2012006941A (de)
PL (1) PL2513251T3 (de)
RU (1) RU2012129682A (de)
WO (1) WO2011083009A1 (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013017417A1 (de) * 2011-07-29 2013-02-07 Basf Se Polymeres flammschutzmittel
EP2574614A1 (de) 2011-09-30 2013-04-03 Basf Se Flammgeschützte Polymerschaumstoffe mit halogenfreien, phosphorhaltigen Flammschutzmitteln auf Zuckerbasis
EP2574615A1 (de) 2011-09-30 2013-04-03 Basf Se Verfahren zur Herstellung von Zucker(thio)phosphaten
EP2706086A1 (de) 2012-09-05 2014-03-12 Basf Se Verfahren zur Herstellung von Schaumstoffplatten niedriger Dichte durch Extrusion von Styrolpolymeren unter Verwendung von Hydrofluorolefinen als Treibmittel
EP2733166A1 (de) 2012-11-20 2014-05-21 Basf Se Verfahren zur herstellung von expandierbaren styrolpolymergranulaten und styrolpolymerschaumstoffen mit verringertem restmonomerengehalt
EP2733165A1 (de) 2012-11-20 2014-05-21 Basf Se Verfahren zur herstellung von halogenfrei flammgeschützten styrolpolymerschaumstoffen
EP2927302A1 (de) 2014-04-03 2015-10-07 Basf Se Flammschutzmittel auf basis von substituierten di-, tri- und tetra-arylethanverbindungen
EP2947115A1 (de) 2014-05-22 2015-11-25 Basf Se Halogenfreie Flammschutzmischungen für Polyolefinschaumstoffe
US9284414B2 (en) 2013-11-26 2016-03-15 Globalfoundries Inc. Flame retardant polymers containing renewable content
US9346922B2 (en) 2013-11-26 2016-05-24 International Business Machines Corporation Flame retardant block copolymers from renewable feeds

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112017016180B1 (pt) * 2015-01-29 2022-02-01 Adeka Corporation Composição de resina epóxi retardante de chamas, pré-impregnado e método para fabricar uma placa laminada de resina epóxi
CN105503948B (zh) * 2016-01-19 2018-06-19 苏州科技大学 苯基硫代膦酸二(四溴双酚a)酯化合物及其制备方法
US10155907B2 (en) 2016-12-12 2018-12-18 International Business Machines Corporation Cross-linkable flame retardant materials
US10106564B2 (en) 2016-12-12 2018-10-23 International Business Machines Corporation Furan-containing flame retardant molecules
US9822208B1 (en) * 2017-01-03 2017-11-21 International Business Machines Corporation Flame retardant materials derived from furan dicarboxylic methyl ester
CN106866016A (zh) * 2017-01-21 2017-06-20 陕西理工学院 水泥发泡剂配方
CN107459619A (zh) * 2017-08-30 2017-12-12 华南理工大学 一种基于可膨胀石墨的含磷阻燃硬质聚氨酯泡沫及其制备方法
CN108795039B (zh) * 2018-06-28 2020-05-19 浙江大学 二烷基二硫代次磷酸盐与有机亚磷酸盐协同的无卤阻燃体系及其应用
CN108948423B (zh) * 2018-06-28 2019-08-06 浙江大学 二烷基单硫代次磷酸盐与有机亚磷酸盐协同的无卤阻燃体系及其应用
CN109096540B (zh) * 2018-06-28 2019-10-01 浙江大学 一种基于二烷基单硫代次磷酸盐的tpe用复配无卤阻燃体系及其应用
CN109280219B (zh) * 2018-07-19 2021-06-08 中国科学院宁波材料技术与工程研究所 一种高效含呋喃环生物基阻燃剂及其合成方法和应用

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4440880A (en) 1980-11-19 1984-04-03 Saffa S.P.A. Process for stabilizing by encapsulation red phosphorus to be used as flame retardant of polymeric materials and product so obtained
US4698215A (en) 1985-03-19 1987-10-06 Saffa S.P.A. Stabilized red phosphorus for use as flame-retardant, in particular for compositions on the basis of polymers
WO1996017853A1 (en) 1994-12-07 1996-06-13 Akzo Nobel N.V. Process for making hydrocarbyl (dihydrocarbyl) phosphates
US5569015A (en) 1991-05-08 1996-10-29 Mars Incorporated Intermediate storage apparatus
CA2196632A1 (en) 1996-03-01 1997-09-01 Nusrallah Jubran Color-forming compounds and their use in carbonless imaging
DE19741777A1 (de) 1996-09-25 1998-03-26 Ciba Geigy Ag Monomere und oligomere Bisphosphite als Stabilisatoren für Polyvinylchlorid
WO1999010429A1 (en) 1997-08-27 1999-03-04 Albemarle Corporation Flame retardant compositions for use in styrenic polymers
WO2003062251A1 (de) 2002-01-24 2003-07-31 Basf Aktiengesellschaft Verfahren zur abtrennung von säuren aus chemischen reaktionsgemischen mit hilfe von ionischen flüssigkeiten
WO2006063287A2 (en) 2004-12-10 2006-06-15 Archer-Daniels-Midland Company Conversion of 2,5-(hydroxymethyl) furaldehyde to 2,5-bis (hydroxymethyl) tetrahydofuran, purification and industrial uses of the product
US20060229372A1 (en) * 2005-04-12 2006-10-12 Hideaki Onishi Flame-retarded foamed plastic compositions and shaped articles
EP1791896A1 (de) 2004-09-10 2007-06-06 Basf Aktiengesellschaft Halogenfreie, flammgeschützte polymerschaumstoffe
WO2008088487A2 (en) 2006-12-21 2008-07-24 Dow Global Technologies, Inc. Phosphorus-sulfur fr additives and polymer systems containing same
WO2009035881A2 (en) 2007-09-13 2009-03-19 Dow Global Technologies, Inc. Phosphorus-sulfur fr additives and polymer systems containing same
CN101481390A (zh) 2008-05-15 2009-07-15 招远市松鹤化工有限公司 一种二苯基氯化磷的原料组分、生产方法
CN101544624A (zh) 2009-05-11 2009-09-30 吉林大学 5-羟甲基糠醛缩-5-糠醛甲醇及其制备方法及其医药用途

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US659911A (en) * 1898-06-11 1900-10-16 De Lonson E Barnard Gas-engine.
EP0354323A3 (de) * 1988-08-12 1990-06-13 American Cyanamid Company Antidiabetische Phosphate
AU747242B2 (en) * 1997-01-08 2002-05-09 Proligo Llc Bioconjugation of macromolecules
JPH11189690A (ja) * 1997-12-25 1999-07-13 Asahi Chem Ind Co Ltd 耐摩耗性に優れたポリマー組成物及び電線・ケーブル被覆材
JP2002523586A (ja) * 1998-08-28 2002-07-30 ザ ダウ ケミカル カンパニー 減少した臭素化難燃剤をもつ難燃性スチレンポリマー発泡体
DE19856759A1 (de) * 1998-12-09 2000-06-15 Basf Ag Flammgeschützte Polystyrolschaumstoffe
RU2253658C2 (ru) * 1998-12-09 2005-06-10 Басф Акциенгезельшафт Способ получения расширяющихся полистирольных гранул
DE10100591A1 (de) * 2001-01-09 2002-07-11 Bayer Ag Phosphorhaltiges Flammschutzmittel und Flammwidrige thermoplastische Formmassen
JP2004277609A (ja) * 2003-03-17 2004-10-07 Kanegafuchi Chem Ind Co Ltd 難燃性熱可塑性樹脂組成物および発泡体
JP2004307602A (ja) * 2003-04-04 2004-11-04 Kanegafuchi Chem Ind Co Ltd 熱可塑性樹脂発泡体及びその製造方法
EP2045309B1 (de) 2006-06-27 2011-09-28 Asahi Glass Company, Limited Flüssigkristalline zusammensetzung, flüssigkristallines optisches element und verfahren zur herstellung eines flüssigkristallinen optischen elements
ES2674400T3 (es) * 2010-02-19 2018-06-29 Dover Chemical Corporation Estabilizadores de polímero de fosfito polimérico líquido libres de alquilfenoles

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4440880A (en) 1980-11-19 1984-04-03 Saffa S.P.A. Process for stabilizing by encapsulation red phosphorus to be used as flame retardant of polymeric materials and product so obtained
US4698215A (en) 1985-03-19 1987-10-06 Saffa S.P.A. Stabilized red phosphorus for use as flame-retardant, in particular for compositions on the basis of polymers
US5569015A (en) 1991-05-08 1996-10-29 Mars Incorporated Intermediate storage apparatus
WO1996017853A1 (en) 1994-12-07 1996-06-13 Akzo Nobel N.V. Process for making hydrocarbyl (dihydrocarbyl) phosphates
CA2196632A1 (en) 1996-03-01 1997-09-01 Nusrallah Jubran Color-forming compounds and their use in carbonless imaging
DE19741777A1 (de) 1996-09-25 1998-03-26 Ciba Geigy Ag Monomere und oligomere Bisphosphite als Stabilisatoren für Polyvinylchlorid
WO1999010429A1 (en) 1997-08-27 1999-03-04 Albemarle Corporation Flame retardant compositions for use in styrenic polymers
WO2003062251A1 (de) 2002-01-24 2003-07-31 Basf Aktiengesellschaft Verfahren zur abtrennung von säuren aus chemischen reaktionsgemischen mit hilfe von ionischen flüssigkeiten
EP1791896A1 (de) 2004-09-10 2007-06-06 Basf Aktiengesellschaft Halogenfreie, flammgeschützte polymerschaumstoffe
WO2006063287A2 (en) 2004-12-10 2006-06-15 Archer-Daniels-Midland Company Conversion of 2,5-(hydroxymethyl) furaldehyde to 2,5-bis (hydroxymethyl) tetrahydofuran, purification and industrial uses of the product
US20060229372A1 (en) * 2005-04-12 2006-10-12 Hideaki Onishi Flame-retarded foamed plastic compositions and shaped articles
WO2008088487A2 (en) 2006-12-21 2008-07-24 Dow Global Technologies, Inc. Phosphorus-sulfur fr additives and polymer systems containing same
WO2009035881A2 (en) 2007-09-13 2009-03-19 Dow Global Technologies, Inc. Phosphorus-sulfur fr additives and polymer systems containing same
CN101481390A (zh) 2008-05-15 2009-07-15 招远市松鹤化工有限公司 一种二苯基氯化磷的原料组分、生产方法
CN101544624A (zh) 2009-05-11 2009-09-30 吉林大学 5-羟甲基糠醛缩-5-糠醛甲醇及其制备方法及其医药用途

Non-Patent Citations (35)

* Cited by examiner, † Cited by third party
Title
ABE, MASATO; KUBO, AKINA; YAMAMOTO, SHUHEI; HATOH, YOSHINORI; MURAI, MASATOSHI; HATTORI, YASUNAO; MAKABE, HIDEFUMI; NISHIOKA, TAKA, BIOCHEMISTRY, vol. 47, no. 23, 2008, pages 6260 - 6266
BLOCK, ERIC; AHMAD, SALEEM, PHOSPH. SULFUR AND THE RELATED ELEMENTS, vol. 25, no. 2, 1985, pages 139 - 145
CAMINADE, ANNE MARIE; EI KHATIB, FAYEZ; BACEIREDO, ANTOINE; KOENIG, MAX, PHOSPHORUS AND SULFUR AND THE RELATED ELEMENTS, vol. 29, no. 2-4, 1987, pages 365 - 7
CHEN, MIN-DONG; YUAN, JIAN-CHAO; ZHANG, YU-HUA; LU, SHI-JIE; SUN, WEI; WANG, LAI-LAI., FENZI CUIHUA, vol. 15, no. 5, 2001, pages 385 - 387
COTTIER, LOUIS; DESCOTES, GERARD; SORO, YAYA, SYNTH. COMM., vol. 33, no. 24, 2003, pages 4285 - 4295
DEMAINE, M. M.; BENKOVIC, S. J., BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 88, no. 3, 1979, pages 835 - 40
DHAWAN, BALRAM; REDMORE, DEREK, J. ORG. CHEM., vol. 51, no. 2, 1986, pages 179 - 83
DIEGUEZ, MONTSERRAT; PAMIES, OSCAR; CLAVER, CARMEN, JOURNAL OFORGANIC CHEMISTRY, vol. 70, no. 9, 2005, pages 3363 - 3368
DONOHOE, TIMOTHY J.; WILLIAMS, OLIVER; CHURCHILL, GWYDIAN H, ANGEW. CHEM. INT. ED., vol. 47, no. 15, 2008, pages 2869 - 2871
ELISABETH HAUPTMAN, RAFAEL SHAPIRO, WILLIAM MARSHALL: "Synthesis of Chiral Bis(phosphinite) Ligands with a Tetrahydrothiophene Backbone: Use in Asymmetric Hydrogenation", ORGANOMETALLICS, vol. 17, 26 June 1998 (1998-06-26), pages 4976 - 4982, XP002632000 *
FADEICHEVA, A. G.; RUDENKO, L. G.; SKURATOVSKAYA, T. N., METODY POLUCHENIYA KHIMICHESKIKH REAKTIVOV I PREPARATOV, 1969, pages 207 - 9
GARRIGUES; BERNARD; PHOSPH, SULFUR AND SILICON, vol. 53, no. 1-4, 1990, pages 75 - 9
GIVELET, CECILE; TINANT, BERNARD; VAN MEERVELT, LUC; BUFFETEAU, THIERRY; MARCHAND-GENESTE, NATHALIE; BIBAL, BRIGITTE, J. ORG. CHEM., vol. 74, no. 2, 2009, pages 652 - 659
GRACHEV M K ANFILOV K L BEKKER A R ET AL: "Phosphorylation of 1,4:3,6-dianhydro-D-Mannitol", JOURNAL OF GENERAL CHEMISTRY USSR, CONSULTANTS BUREAU, NEW YORK, NY, US, vol. 65, no. 12 Part 1, 1 December 1995 (1995-12-01), pages 1785 - 1789, XP008135304, ISSN: 0022-1279 *
GRACHEV, M. K.; ANFILOV, K. L.; BEKKER, A. K.; NIFANT'EV. E. E., ZHURNAL OBSHCHEI KHIMII, vol. 65, no. 12, 1995, pages 1946 - 50
HAUPTMAN, ELISABETH; SHAPIRO, RAFAEL; MARSHALL, WILLIAM, ORGANOMETALLICS, vol. 17, no. 23, 1998, pages 4976 - 4982
HODGSON, LINDA M.; PLATEL, RACHEL H.; WHITE, ANDREW J. P.; WILLIAMS, CHARLOTTE K., MACROMOLECULES, vol. 41, no. 22, 2008, pages 8603 - 8607
ISHII, AKIHIKO; HORIKAWA, YASUAKI; TAKAKI, LKUO; SHIBATA, JUN; NAKAYAMA, JUZO; HOSHINO, MASAMATSU, TETRAHEDRON LETT., vol. 32, no. 34, 1991, pages 4313 - 16
JANG, YONG-SUNG; KIM, HAN-JE; LEE, PHIL-HO; LEE, CHANG-HEE, TETRAHEDRON LETT., vol. 41, no. 16, 2000, pages 2919 - 2923
KATRITZKY, ALAN R.; ZHANG, ZHONGXING; LANG, HENGYUAN; JUBRAN, NUSRALLAH; LEICHTER, LOUIS M.; SWEENY, NORMAN, J. HETEROCYCL. CHEM., vol. 34, no. 2, 1997, pages 561 - 565
KRAUSS, JUERGEN; UNTERREITMEIER, DORIS; ANTLSPERGER, DOROTHEE, ARCHIV DER PHARMAZIE, vol. 336, no. 8, 2003, pages 381 - 384
KUMAR, K. ANANDA; KASTHURAIAH, M.; REDDY, C. SURESH; NAGARAJU, C, HETEROCYCLIC COMMUNICATIONS, vol. 9, no. 3, 2003, pages 313 - 318
KUMARESAN, D.; AGARWAL, NEERAJ; GUPTA, ITI; RAVIKANTH, M., TETRAHEDRON, vol. 58, no. 26, 2002, pages 5347 - 5356
KUROCHKINA, G. I.; GRACHEV, M. K.; VASYANINA, L. K.; PISKAEV, A. E.; NIFANT'EV, E. F., DOKLADY AKADEMII NAUK, vol. 371, no. 2, 2000, pages 189 - 193
KUSZMANN, J.; SOHAR, P., CARBOHYDRATE RESEARCH, vol. 21, no. 1, 1972, pages 19 - 27
LUTTRINGHAUS, A.; MERZ, H., ARCHIV DER PHARMAZIE UND BERICHTE DER DEUTSCHEN PHARMAZEUTISCHEN GESELLSCHAFT, vol. 293, 1960, pages 881 - 890
M. M. DEMAINE, S. J. BENKOVIC: "Kinetic hysteresis for fructose bisphosphatase: A change in substrate configuration specificity", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 88, no. 3, 3 June 1979 (1979-06-03), pages 835 - 840, XP002631998 *
MANFRED T. REETZ, TORSTEN NEUGEBAUER: "New Diphosphite Ligands for Catalytic Asymmetric Hydrogenation: The Crucial Role of Conformationally Enantiomeric Diols", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 38, no. 1-2, 15 January 1999 (1999-01-15), pages 179 - 181, XP002631999 *
MORIMOTO, YOSHIKI; KINOSHITA, TAKAMASA; IWAI, TOSHIYUKI, CHIRALITY, vol. 14, no. 7, 2002, pages 578 - 586
NIFANT'EV, E. E.; MARKOV, S. M.; TUSEEV, A. P.; VASIL'EV, A. F., OTD. OBSHCH. I TEKHN. KHIM., 1965, pages 42 - 5
NIFANT'EV, E. E.; TUSEEV, A. P.; KOSHURIN, YU. 1., OTD. OBSHCH. I TEKHN. KHIM., 1965, pages 38 - 41
PETER G. M. WUTS; THEODORA W. GREENE: "Greene's Protective Groups in Organic Synthesis", 2006, VCH WILEY
PETROV, K. A.; NIFANT'EV, E. E.; SHCHEGLOV, A. A.; KHUDYNTSEV, N. A., ZHURNAL OBSHCHEI KHIMII, vol. 32, 1962, pages 3074 - 80
REETZ, MANFRED T.; NEUGEBAUER, TORSTEN, ANGEW. CHEM., INT. ED., vol. 38, no. 1/2, 1999, pages 179 - 181
WALBA, D. M.; WAND, M. D.; WILKES, M. C., J. AM. CHEM. SOC., vol. 101, no. 15, 1979, pages 4396 - 4397

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013017417A1 (de) * 2011-07-29 2013-02-07 Basf Se Polymeres flammschutzmittel
EP2574614A1 (de) 2011-09-30 2013-04-03 Basf Se Flammgeschützte Polymerschaumstoffe mit halogenfreien, phosphorhaltigen Flammschutzmitteln auf Zuckerbasis
EP2574615A1 (de) 2011-09-30 2013-04-03 Basf Se Verfahren zur Herstellung von Zucker(thio)phosphaten
EP2706086A1 (de) 2012-09-05 2014-03-12 Basf Se Verfahren zur Herstellung von Schaumstoffplatten niedriger Dichte durch Extrusion von Styrolpolymeren unter Verwendung von Hydrofluorolefinen als Treibmittel
EP2733166A1 (de) 2012-11-20 2014-05-21 Basf Se Verfahren zur herstellung von expandierbaren styrolpolymergranulaten und styrolpolymerschaumstoffen mit verringertem restmonomerengehalt
EP2733165A1 (de) 2012-11-20 2014-05-21 Basf Se Verfahren zur herstellung von halogenfrei flammgeschützten styrolpolymerschaumstoffen
US9284414B2 (en) 2013-11-26 2016-03-15 Globalfoundries Inc. Flame retardant polymers containing renewable content
US9346922B2 (en) 2013-11-26 2016-05-24 International Business Machines Corporation Flame retardant block copolymers from renewable feeds
US9738832B2 (en) 2013-11-26 2017-08-22 International Business Machines Corporation Flame retardant block copolymers from renewable feeds
US9994773B2 (en) 2013-11-26 2018-06-12 International Business Machines Corporation Flame retardant block copolymers from renewable feeds
EP2927302A1 (de) 2014-04-03 2015-10-07 Basf Se Flammschutzmittel auf basis von substituierten di-, tri- und tetra-arylethanverbindungen
EP2947115A1 (de) 2014-05-22 2015-11-25 Basf Se Halogenfreie Flammschutzmischungen für Polyolefinschaumstoffe

Also Published As

Publication number Publication date
EP2513251A1 (de) 2012-10-24
US20120252911A1 (en) 2012-10-04
JP2013514408A (ja) 2013-04-25
KR101824268B1 (ko) 2018-01-31
PL2513251T3 (pl) 2015-10-30
KR20120104602A (ko) 2012-09-21
US9234137B2 (en) 2016-01-12
MX2012006941A (es) 2012-09-12
CN102834488B (zh) 2015-06-24
JP5917410B2 (ja) 2016-05-11
ES2545331T3 (es) 2015-09-10
EP2513251B1 (de) 2015-05-13
RU2012129682A (ru) 2014-01-27
CN102834488A (zh) 2012-12-19
BR112012014682A2 (pt) 2016-04-05

Similar Documents

Publication Publication Date Title
EP2513251B1 (de) Flammschutzmittel
EP2478044B1 (de) Halogenfreie, flammgeschützte polymerschaumstoffe, enthaltend mindestens eine oligophosphorverbindung
EP2449018B1 (de) Flammgeschützte expandierbare polymerisate
EP2553008B1 (de) Flammschutzmittel
EP2658905B1 (de) Flammschutzsystem
EP2480598B1 (de) Flammgeschützte expandierbare styrol-polymerisate
AT511090B1 (de) Flammgeschützte expandierbare polymerisate
EP2531552A2 (de) Halogenfreie, phosphorhaltige flammgeschützte polymerschaumstoffe
WO2013017417A1 (de) Polymeres flammschutzmittel
EP2574614B1 (de) Flammgeschützte Polymerschaumstoffe mit halogenfreien, phosphorhaltigen Flammschutzmitteln auf Zuckerbasis
WO2013135701A1 (de) Synthese von polyphenoldisulfiden
EP2531557A1 (de) Flammschutzmittel
AT509959B1 (de) Flammgeschützte expandierbare polymerisate
AT508507B1 (de) Flammgeschützte expandierbare polymerisate
EP4263753B1 (de) Brandhindernde copolymere und formmassen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080062708.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10790979

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012543729

Country of ref document: JP

Ref document number: 13516464

Country of ref document: US

Ref document number: MX/A/2012/006941

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127018256

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010790979

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012129682

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012014682

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012014682

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120615