WO2011082155A2 - Polishing pads including phase-separated polymer blend and method of making and using the same - Google Patents

Polishing pads including phase-separated polymer blend and method of making and using the same Download PDF

Info

Publication number
WO2011082155A2
WO2011082155A2 PCT/US2010/062204 US2010062204W WO2011082155A2 WO 2011082155 A2 WO2011082155 A2 WO 2011082155A2 US 2010062204 W US2010062204 W US 2010062204W WO 2011082155 A2 WO2011082155 A2 WO 2011082155A2
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
elements
polishing pad
major side
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2010/062204
Other languages
English (en)
French (fr)
Other versions
WO2011082155A3 (en
Inventor
William D. Joseph
Gary M. Palmgren
Stephen C. Loper
Christopher N. Loesch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Priority to US13/514,741 priority Critical patent/US9162340B2/en
Priority to KR1020127019847A priority patent/KR20120125612A/ko
Priority to CN2010800603140A priority patent/CN102686362A/zh
Priority to JP2012547231A priority patent/JP6004941B2/ja
Priority to SG2012043568A priority patent/SG181678A1/en
Publication of WO2011082155A2 publication Critical patent/WO2011082155A2/en
Publication of WO2011082155A3 publication Critical patent/WO2011082155A3/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/22Lapping pads for working plane surfaces characterised by a multi-layered structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/26Lapping pads for working plane surfaces characterised by the shape of the lapping pad surface, e.g. grooved

Definitions

  • the present disclosure relates to polishing pads, and to methods of making and using polishing pads in a polishing process, for example, in a chemical mechanical planarization process.
  • CMP chemical mechanical planarization
  • a substrate such as a wafer is pressed against and relatively moved with respect to a polishing pad in the presence of a working liquid that is typically a slurry of abrasive particles in water and/or an etching chemistry.
  • a working liquid typically a slurry of abrasive particles in water and/or an etching chemistry.
  • CMP polishing pads for use with abrasive slurries have been disclosed, for example, U.S. Pat. Nos. 5,257,478; 5,921,855; 6,126,532; 6,899,598 B2; and 7,267,610.
  • Fixed abrasive polishing pads are also known, as exemplified by U.S. Pat. No.
  • 6,908,366 B2 in which the abrasive particles are generally fixed to the surface of the pad, often in the form of precisely shaped abrasive composites extending from the pad surface.
  • a polishing pad having a multiplicity of polishing elements extending from a compressible underlayer and affixed to the underlayer by a guide plate was described in PCT International Pub. No. WO 2006/057714.
  • polishing pads are known and used, the art continues to seek new and improved polishing pads for CMP, particularly in CMP processes where larger die diameters are being used, or where higher levels of wafer surface flatness and polishing uniformity are required.
  • the present disclosure describes a textured polishing pad including a first continuous polymer phase and a second discontinuous polymer phase, wherein the polishing pad has a first major side and a second major side opposite the first major side, and further wherein at least one of the first and second major sides comprises a
  • the grooves have a depth of from about 1 micrometer ( ⁇ ) to about 5,000 ⁇ .
  • the polishing pad has a circular cross-section in a direction substantially normal to the first and second major sides, wherein the circular cross-section defines a radial direction, and further wherein the plurality of grooves are circular, concentric, and spaced apart in the radial direction.
  • the present disclosure describes a polishing pad including a sheet having a first major side and a second major side opposite the first major side, and a multiplicity of polishing elements extending outwardly from the first major side along a first direction substantially normal to the first major side, wherein at least a portion of the polishing elements are integrally formed with the sheet and laterally connected so as to restrict lateral movement of the polishing elements with respect to one or more of the other polishing elements, but remaining moveable in an axis substantially normal to a polishing surface of the polishing elements, wherein at least a portion of the plurality of polishing elements comprise a first continuous polymer phase and a second discontinuous polymer phase.
  • the polishing pad further includes a polishing composition distribution layer covering at least a portion of the first major side.
  • the present disclosure describes a polishing pad including a support layer having a first major side and a second major side opposite the first major side, and a multiplicity of polishing elements bonded to the first major side of the support layer, wherein each polishing element has an exposed polishing surface, and wherein the polishing elements extend from the first major side of the support layer along a first direction substantially normal to the first major side, further wherein at least a portion of the plurality of polishing elements comprise a first continuous polymer phase and a second discontinuous polymer phase.
  • each polishing element is affixed to the first major side by bonding to the support layer, preferably using direct thermal bonding or an adhesive.
  • polishing pads including polishing elements as described above, at least one of the polishing elements is a porous polishing element, wherein each porous polishing element includes a multiplicity of pores.
  • substantially all of the polishing elements are porous polishing elements.
  • the pores are distributed throughout substantially the entire porous polishing element.
  • at least one of the polishing elements is a transparent polishing element.
  • the polishing elements further comprise abrasive particulates having a median diameter of less than one micrometer. In other exemplary embodiments, at least a portion of the polishing elements are substantially free of abrasive particulates. In additional exemplary embodiments, the polishing pad is substantially free of abrasive particulates.
  • the polishing pad includes a compliant layer affixed to the second major side. In further exemplary embodiments of polishing pads as described above, the polishing pad includes a pressure sensitive adhesive layer affixed to the compliant layer opposite the second major side.
  • the present disclosure describes a method of using a polishing pad as described above, the method including contacting a surface of a substrate with a polishing surface of the polishing pad, and relatively moving the polishing pad with respect to the substrate to abrade the surface of the substrate.
  • the method further includes providing a polishing composition to an interface between the polishing pad surface and the substrate surface.
  • the present disclosure describes a method of making a polishing pad as described above, the method including mixing a first polymer with a second polymer with application of heat to form a fluid molding composition, dispensing the fluid molding composition into a mold, cooling the fluid molding composition to form a polishing pad including a first continuous polymer phase comprising the first polymer, and a second discontinuous polymer phase comprising the second polymer, wherein the polishing pad has a first major surface and a second major surface opposite the first major surface.
  • dispersing the first polymer in the second polymer comprises melt mixing, kneading, extrusion, or combinations thereof.
  • dispensing the fluid molding composition into the mold comprises at least one of reaction injection molding, extrusion molding, compression molding, vacuum molding, or a combination thereof.
  • dispensing comprises continuously extruding the fluid molding composition through a film die onto a casting roller, further wherein the surface of the casting roller comprises the mold.
  • the method further includes milling at least one of the first and second major surfaces to form a multiplicity of grooves in the surface.
  • the grooves have a depth of from about 1 ⁇ to about 5,000 ⁇ .
  • the polishing pad has a circular cross-section in a direction substantially normal to the first and second surfaces, wherein the circle defines a radial direction, and further wherein the plurality of grooves are circular, concentric, and spaced in the radial direction.
  • the mold includes comprises a
  • the first major surface comprises a multiplicity of polishing elements corresponding to an impression of the three-dimensional pattern, wherein the plurality of polishing elements extend outwardly from the first major side along a first direction substantially normal to the first major side, further wherein the polishing elements are integrally formed with the sheet and laterally connected so as to restrict lateral movement of the polishing elements with respect to one or more of the other polishing elements, but remaining moveable in an axis substantially normal to a polishing surface of the polishing elements.
  • the present disclosure describes a method of making a polishing pad as described above, the method including forming a multiplicity of polishing elements including a first continuous polymer phase comprising a first polymer and a second discontinuous polymer phase comprising a second polymer, and bonding the polishing elements to a first major side of a support layer having a second major side opposite the first major side to form a polishing pad.
  • the method further includes affixing a compliant layer to the second major side.
  • the method further includes affixing a polishing composition distribution layer covering at least a portion of the first major side.
  • the method additionally includes forming a pattern with the polishing elements on the first major side.
  • forming a pattern comprises reaction injection molding the polishing elements in the pattern, extrusion molding the polishing elements in the pattern, compression molding the polishing elements in the pattern, arranging the polishing elements within a template corresponding to the pattern, or arranging the polishing elements on the support layer in the pattern.
  • bonding the polishing elements to the support layer comprises thermal bonding, ultrasonic bonding, actinic radiation bonding, adhesive bonding, and combinations thereof.
  • polishing elements comprise porous polishing elements.
  • the polishing elements comprise substantially non-porous polishing elements.
  • the porous polishing elements are formed by injection molding of a gas saturated polymer melt, injection molding of a reactive mixture that evolves a gas upon reaction to form a polymer, injection molding of a mixture comprising a polymer dissolved in a supercritical gas, injection molding of a mixture of incompatible polymers in a solvent, injection molding of porous thermoset particulates dispersed in a thermoplastic polymer, injection molding of a mixture comprising microballoons, and combinations thereof.
  • the pores are formed by reaction injection molding, gas dispersion foaming, and combinations thereof.
  • polishing pads according to the present disclosure have various features and characteristics that enable their use in a variety of polishing applications.
  • polishing pads of the present disclosure may be particularly well suited for chemical mechanical planarization (CMP) of wafers used in manufacturing integrated circuits and semiconductor devices.
  • CMP chemical mechanical planarization
  • the polishing pad described in this disclosure may provide some or all of the following advantages.
  • a polishing pad according to the present disclosure may act to better retain a working liquid used in the CMP process at the interface between the polishing surface of the pad and the substrate surface being polished, thereby improving the effectiveness of the working liquid in augmenting polishing.
  • a polishing pad according to the present disclosure may reduce or eliminate dishing and/or edge erosion of the wafer surface during polishing.
  • polishing pad with porous elements may permit processing of larger diameter wafers while maintaining the required degree of surface uniformity to obtain high chip yield, processing of more wafers before conditioning of the pad surface is needed in order to maintain polishing uniformity of the wafer surfaces, or reducing process time and wear on the pad conditioner.
  • CMP pads with porous polishing elements may also offer the benefits and advantages of conventional CMP pads having surface textures such as grooves, but may be manufactured more reproducibly at a lower cost.
  • bonding of the polishing elements to the support layer may eliminate the need to use a guide plate or an adhesive to affix the elements to the support layer.
  • FIG. 1 is a cross-sectional side view of a polishing pad including a sheet of integrally formed polishing elements according to one exemplary embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional side view of a polishing pad including a plurality of polishing elements bonded to a support layer according to another exemplary embodiment of the present disclosure.
  • FIG. 3 A is a perspective view of a polishing pad with polishing elements arranged in a pattern according to an exemplary embodiment of the present disclosure.
  • FIG. 3B is a top view of a polishing pad with polishing elements arranged in a pattern according to another exemplary embodiment of the present disclosure.
  • a wafer possessing a characteristic topography is put in contact with a polishing pad and a polishing solution containing an abrasive and a polishing chemistry. If the polishing pad is compliant, the phenomenon of dishing and erosion may occur due to the soft pad polishing the low areas on the wafer at the same rate as the raised areas. If the polishing pad is rigid, dishing and erosion may be greatly reduced; however, even though rigid polishing pads may advantageously yield good within die planarization uniformity, they may also
  • the present disclosure is directed to improved CMP polishing pads which, in various embodiments, combine some of the advantageous characteristics of both compliant and rigid polishing pads, while eliminating or reducing some of the disadvantageous characteristics of the respective pads.
  • the present disclosure provides a polishing pad 2 comprising a sheet 13' having a first major side 32 and a second major side 33 opposite the first major side 32, and a plurality of polishing elements 4 extending outwardly from the first major side 32 along a first direction substantially normal to the first major side 32 as shown in Fig.
  • polishing elements 4 are integrally formed with the sheet 13' and laterally connected so as to restrict lateral movement of the polishing elements 4 with respect to one or more of the other polishing elements 4, but remaining moveable in an axis substantially normal to a polishing surface 14 of the polishing elements 4, wherein at least a portion of the plurality of polishing elements 4 comprise a first continuous polymer phase 13 and a second discontinuous polymer phase 15.
  • sheet 13' is affixed to an optional compliant layer 16 positioned on a side opposite the plurality of polishing elements 4 (i.e. on second major side 33).
  • an optional adhesive layer 12 is shown at an interface between compliant layer 16 and the sheet 13'.
  • Optional adhesive layer 12 may be used to affix the second major side 33 of the sheet 13' to the compliant layer 16.
  • an optional pressure sensitive adhesive layer 18, affixed to the compliant layer 16 opposite the plurality of polishing elements 4 may be used to temporarily (e.g. removably) secure the polishing pad 2 to a polishing platen (not shown in FIG. 1) of a CMP polishing apparatus (not shown in FIG. 1).
  • the polishing pad 2 further includes an optional polishing composition distribution layer 8 covering at least a portion of the first major side, as shown in FIG. 1.
  • the optional polishing composition distribution layer 8 aids distribution of the working liquid and/or polishing slurry to the individual polishing elements 4.
  • a plurality of apertures 6 are provided extending through the polishing composition distribution layer 8. A portion of each polishing element 4 extends into a corresponding aperture 6.
  • the present disclosure provides a polishing pad 2' including a support layer 10 having a first major side 34 and a second major side 35 opposite the first major side 34, and a plurality of polishing elements 4 bonderd to the first major side 34 of the support layer 10, wherein each polishing element 4 has an exposed polishing surface 14, and wherein the polishing 4 elements extend from the first major side 34 of the support layer 10 along a first direction substantially normal to the first major side 34, further wherein at least a portion of the plurality of polishing elements 4 comprise a first continuous polymer phase 13 and a second discontinuous polymer phase.
  • each polishing element 4 is affixed to the first major side 34 by direct thermal bonding to the support layer 10, or by using an adhesive (not shown in FIG. 2) to bond the polishing elements 4 to the support layer 10.
  • the polishing pad further includes an optional guide plate 28 opposite the support layer 10 on the first major side 34, wherein the guide plate 28 comprises a plurality of apertures 6 extending through the guide plate 28, and further wherein at least a portion of each polishing element 4 extends into a corresponding aperture 6.
  • a portion of each polishing element 4 passes through the corresponding aperture 6.
  • each polishing element has a flange 17, and each flange 17 has a perimeter greater than the perimeter of the corresponding aperture 6, as shown in FIG. 2.
  • support layer 10 is affixed to an optional compliant layer 16 positioned on the second major side 35 of the support layer 10 opposite the plurality of polishing elements 4 affixed to the first major side 34 of the support layer 10.
  • an optional adhesive layer 12 is shown at an interface between compliant layer 16 and the support layer 10.
  • Optional adhesive layer 12 may be used to affix the second major side 35 of the support layer 10 to the compliant layer 16.
  • an optional pressure sensitive adhesive layer 18, affixed to the compliant layer 16 opposite the plurality of polishing elements 4 may be used to temporarily (e.g. removably) secure the polishing pad 2' to a polishing platen (not shown in FIG. 2) of a CMP polishing apparatus (not shown in FIG. 2).
  • An optional guide plate 28 is also shown in the exemplary embodiment of FIG. 2.
  • the optional guide plate 28, which may also serve as an alignment template for arranging the plurality of polishing elements 4 on the first major side of support layer 10, is not generally required in order to produce polishing pads 2' according to the present disclosure.
  • the optional guide plate 28 may be entirely eliminated from the polishing pad, as illustrated by polishing pad 2 of FIG. 1. Such embodiments may advantageously be easier and less expensive to fabricate than other known polishing pads comprising a multiplicity of polishing elements.
  • An optional polishing composition distribution layer 8' which may also serve as a guide plate for the polishing elements 4, is additionally shown in FIG. 2.
  • the optional polishing composition distribution layer 8' aids distribution of the working liquid and/or polishing slurry to the individual polishing elements 4.
  • the polishing composition distribution layer 8' may be positioned on the first major side 34 of the support layer 10 to facilitate arrangement of the plurality of polishing elements 4, such that a first major surface of the polishing composition distribution layer 8' is distal from the support layer 10, and a second major surface of the polishing composition distribution layer 8' opposite the first major surface of the polishing composition distribution layer 8' is proximate the support layer 10, as shown in FIG. 2.
  • a plurality of apertures 6 may also be provided extending through at least the optional guide plate 28 (if present) and/or the optional polishing composition distribution layer 8' (if present), as shown in FIG. 2.
  • each polishing element 4 extends from the first major surface of the optional guide plate 28 along a first direction substantially normal to the first major side of support layer 10.
  • each polishing element 4 has a mounting flange 17, and each polishing element 4-4' is bonded to the first major side of the support layer 10 by engagement of the corresponding flange 17 to the first major side 34 of the support layer 10, and optionally, the second major surface of optional polishing composition distribution layer 8' or the optional guide plate 28.
  • each polishing element 4 is free to independently undergo displacement in a direction substantially normal to the first major side 34 of support layer 10, while still remaining bonded to the support layer 10, and optionally additionally affixed to the support layer 10 by the optional polishing composition distribution layer 8' and/or optional guide plate 28.
  • each polishing element 4 extends into a corresponding aperture 6, and more preferably, each polishing element 4 also passes through the corresponding aperture 6 and extends outwardly from the first major surface of the optional guide plate 28.
  • the plurality of apertures 6 of optional guide plate 28 and/or optional polishing composition distribution layer 8' may also serve as a template to guide the lateral arrangement of polishing elements 4 on the first major side 34 of support layer 10.
  • optional guide plate 28 and/or optional polishing composition distribution layer 8' may be used as a template or guide to arrange the plurality of polishing elements 4 on the first major side 34 of support layer 10 during the polishing pad fabrication process.
  • the optional guide plate 28 may comprise an adhesive (not shown) positioned at the interface between the support layer 10 and the polishing composition distribution layer 8'.
  • the optional guide plate 28 may thus be used to adhere the optional polishing composition distribution layer 8' to the support layer 10, thereby securely affixing the plurality of polishing elements 4 to the first major side 34 of support layer 10.
  • other bonding methods may be used, including direct thermal bonding of the polishing elements 4 to the support layer 10 using, for example, heat and pressure.
  • the plurality of apertures may be arranged as an array of apertures, wherein at least a portion of the apertures 6 comprise a main bore formed by optional polishing composition distribution layer 8', and an undercut region formed by optional guide plate 28, and the undercut region forms a shoulder that engages with the corresponding polishing element flange 17, thereby securely affixing polishing elements 4 to support layer 10 without requiring direct bonding of the polishing elements 4 to support layer 10.
  • the apertures 6 comprise a main bore formed by optional polishing composition distribution layer 8', and an undercut region formed by optional guide plate 28, and the undercut region forms a shoulder that engages with the corresponding polishing element flange 17, thereby securely affixing polishing elements 4 to support layer 10 without requiring direct bonding of the polishing elements 4 to support layer 10.
  • the multiplicity of polishing elements 4 may be arranged in a pattern, for example, as a two-dimensional array of elements arranged on a major surface of the support layer 10, or in a template or jig used to arrange the polishing elements 4 before bonding to the support layer 10.
  • polishing elements 4 may be porous polishing elements, and some portion of the polishing elements 4' may be substantially nonporous polishing elements. It will be understood, however, that in other exemplary embodiments, all of the polishing elements 4 may be selected to be porous polishing elements, or all of the polishing elements may be selected to be substantially nonporous polishing elements 4'. In some exemplary embodiments, at least one of the polishing elements is a porous polishing element, wherein each porous polishing element includes a plurality of pores. In certain exemplary embodiments, substantially all of the polishing elements are porous polishing elements. In some particular exemplary embodiments, the pores are distributed throughout substantially the entire porous polishing element.
  • Suitable porous polishing elements are disclosed in PCT International Pub. No. WO 2009/158665.
  • the plurality of pores is created by at least partially removing at least a portion of the second discontinuous polymer phase 15 from at least a portion of the polishing elements 4 of polishing pad 2-2', thereby leaving a void or pore volume corresponding to the volume previously occupied by the second discontinuous polymer phase 15.
  • the second discontinuous polymer phase may be soluble in a solvent in which the first continuous polymer phase 13 is substantially insoluble or only partially soluble.
  • the second discontinuous polymer phase comprises a water soluble, water swellable or hydrophilic polymer, and water or an aqueous solvent is used to dissolve and thereby remove at least a portion of the second discontinuous polymer phase 15 from one or more polishing elements 4, thereby creating one or more porous polishing elements.
  • the aqueous solvent is selected to be the working liquid used in a chemical mechanical polishing process, and this working liquid is used to dissolve and thereby remove at least a portion of the second discontinuous polymer phase 15 from one or more polishing elements 4, thereby creating one or more porous polishing elements.
  • FIGs. 1-2 two porous polishing elements 4 are shown along with one substantially nonporous polishing element 4'.
  • polishing elements 4 may be used, and that any number of polishing elements 4 may be selected to be porous polishing elements 4 or substantially nonporous polishing elements 4'.
  • at least a portion of the polishing elements 4 are porous polishing elements, which in certain embodiments at least have a porous polishing surface (14 in FIGs. 1-2), which may make sliding or rotational contact with a substrate (not shown in FIG. 1) to be polished.
  • the polishing surface 14 of polishing elements 4 may be a substantially flat surface, or may be textured.
  • each polishing element 4 is made porous, for example with microscopic surface openings or pores 15, which may take the form of orifices, passageways, grooves, channels, and the like.
  • Such pores 15 at the polishing surface may act to facilitate distributing and maintaining a polishing composition (e.g., a working liquid and/or abrasive polishing slurry not shown in the figures) at the interface between a substrate (not shown) and the corresponding porous polishing elements.
  • the polishing surface 14 comprises pores 15 that are generally cylindrical capillaries.
  • the pores 15 may extend from the polishing surface 14 into the polishing element 4.
  • the polishing surface comprises pores 15 that are generally cylindrical capillaries extending from the polishing surface 14 into the porous polishing element 4.
  • the pores need not be cylindrical, and other pore geometries are possible, for example, conical, rectangular, pyramidal, and the like.
  • the characteristic dimensions of the pores can, in general, be specified as a depth, along with a width (or diameter), and a length.
  • the characteristic pore dimensions may range from about 25 ⁇ to about 6,500 ⁇ in depth, from about 5 ⁇ to about 1000 ⁇ in width (or diameter), and from about 10 ⁇ to about 2,000 ⁇ in length.
  • the porous polishing elements may not have a porous polishing surface 14, but in these and other exemplary embodiments, pores 15 may be distributed throughout substantially the entire porous polishing element 4.
  • Such porous polishing elements may be useful as compliant polishing elements exhibiting some of the advantageous characteristics of a compliant polishing pad.
  • the polishing elements 4 may comprise a plurality of pores distributed throughout substantially the entire polishing element 4 in the form of a porous foam.
  • the foam may be a closed cell foam, or an open cell foam. Closed cell foams may be preferred in some embodiments.
  • the plurality of pores 15 in the foam exhibits a unimodal distribution of pore size, for example, pore diameter.
  • the plurality of pores exhibits a mean pore size of at least about 1 nanometer (nm), at least about 100 nm, at least about 500 nm, or at least about 1 ⁇ . In other exemplary embodiments, the plurality of pores exhibits a mean pore size of at most about 300 ⁇ , at most about 100 ⁇ , at most about 50 ⁇ , at most about 10 ⁇ , or at most about 1 ⁇ . In certain presently preferred embodiments, the plurality of pores exhibits a mean pore size from about 1 nm to about 300 ⁇ , about 0.5 ⁇ to about 100 ⁇ , about 1 ⁇ to about 100 ⁇ , or about 2 ⁇ to about 50 ⁇ .
  • polishing pads 2-2' including
  • the nonporous polishing elements 4' is preferably a transparent polishing element.
  • the sheet 13' or support layer 10, the optional guide plate 28, the optional polishing composition distribution layer 8-8', the optional compliant layer 16, the optional adhesive 12, layer, at least one substantially nonporous polishing elements 4', or a combination thereof is transparent.
  • at least one transparent nonporous polishing element 4' is affixed to a transparent portion of the first major side 32 of sheet 13', e.g. using direct thermal bonding or with an adhesive (not shown in FIG. 1).
  • polishing pads 2-2' need not comprise only substantially identical polishing elements 4.
  • any combination or arrangement of porous polishing elements and non-porous polishing elements may make up the plurality of polishing elements 4.
  • any number, combination or arrangement of porous polishing elements and substantially nonporous polishing elements 4' may be used advantageously in certain embodiments to form a polishing pad having a plurality of polishing elements 4.
  • the polishing elements (4-4' in FIGs. 1-2) may be distributed on the first major side of sheet 13' (FIG. 1) or support layer 10 (FIG. 2) in a wide variety of patterns, depending on the intended application, and the patterns may be regular or irregular.
  • the plurality of polishing elements 4 may be arranged in a pre-determined regular pattern, for example, on a major surface of the support layer 10, or in a template or jig (not shown in the FIGs.) used to arrange the polishing elements before bonding to the support layer 10.
  • the first major side 34 of the support layer 10 may be contacted with and bonded to the plurality of polishing elements 4, for example, by direct thermal bonding to the support layer 10, or by using an adhesive, or other bonding material.
  • the polishing elements may reside on substantially the entire surface of the sheet 13' or support layer 10, or there may be regions of the sheet 13' or support layer 10 that include no polishing elements.
  • the polishing elements have an average surface coverage of the support layer of at least 30%, at least 40%, or at least 50%.
  • the polishing elements have an average surface coverage of the support layer of at most about 80%, at most about 70%, or at most about 60% of the total area of the major surface of the support layer, as determined by the number of polishing elements, the cross-sectional area of each polishing element, and the
  • the polishing elements 4 are integrally formed with sheet 13' and arranged in a two-dimensional array pattern on the first major side 32 of sheet 13'. It will be understood that any of the optional layers (e.g. the optional polishing composition distribution layer 8, the optional adhesive 12, the optional compliant layer 16, the optional pressure sensitive adhesive layer 18, and the at least one substantially
  • nonporous/transparent polishing element 4' as described above as suitable for use in a polishing pad 2 may be combined to form the polishing pad shown in FIG. 3A-3B.
  • FIG. 3A illustrates one particular shape of a polishing element 4. It will be understood that the polishing elements 4 may be formed in virtually any shape, and that a plurality of polishing elements 4 having two or more different shapes may be
  • polishing pad 2-2' advantageously used and optionally arranged in a pattern to form a polishing pad 2-2' as described above. It will be further understood that the same shape or a different shape may be used to produce a porous polishing element or alternatively, a substantially nonporous polishing element.
  • the cross-sectional shape of the polishing elements 4, taken through a polishing element 4 in a direction generally parallel to the polishing surface 14, may vary widely depending on the intended application.
  • FIG. 3 A shows a generally cylindrical polishing element 4 having a generally circular cross section, other cross-sectional shapes are possible and may be desirable in certain embodiments.
  • the polishing elements are selected to have a cross-section, taken in the first direction, selected from circular, elliptical, triangular, square, rectangular, and trapezoidal, and combinations thereof.
  • the cross-sectional diameter of the polishing element 4 in a direction generally parallel to the polishing surface 14 is, in some embodiments, at least about 50 ⁇ , more preferably at least about 1 mm, still more preferably at least about 5 mm. In certain embodiments, the cross-sectional diameter of the polishing element 4 in a direction generally parallel to the polishing surface 14 is at most about 20 mm, more preferably at most about 15 mm, still more preferably at most about 12 mm.
  • the diameter of the polishing element, taken at the polishing surface 14, may be from about 50 ⁇ to about 20 mm, in certain embodiments the diameter is from about 1 mm to about 15 mm, and in other embodiments the cross-sectional diameter is from about 5 mm to about 12 mm.
  • the polishing elements 4 may be characterized by a characteristic dimension in terms of a height, width, and/or length.
  • the characteristic dimension may be selected to be at least about 50 ⁇ , more preferably at least about 1 mm, still more preferably at least about 5 mm.
  • the cross-sectional diameter of the polishing element 4 in a direction generally parallel to the polishing surface 14 is at most about 20 mm, more preferably at most about 15 mm, still more preferably at most about 12 mm.
  • the polishing elements are characterized by at least one of a height from 250 to 2,500 ⁇ , a width 1 mm to 50 mm, a length from 5 mm to 50 mm, or a diameter of from 1 mm to 50 mm.
  • one or more of the polishing elements 4-4' may be hollow.
  • the cross-sectional area of each polishing element 4 in a direction generally parallel to the polishing surface 14, may be at least about 1 mm 2 , in other embodiments at least about 10 mm 2 , and in still other embodiments at least about or 20 mm 2 . In other exemplary embodiments, the cross-sectional area of each polishing element 4 in a direction generally parallel to the polishing surface 14, may be at most about 1,000 mm 2 , in other embodiments at most about 500 mm 2 , and in still other embodiments at most about 250 mm 2 .
  • the cross-sectional area of the polishing pad in a direction generally parallel to a major surface of the polishing pad may, in some exemplary embodiments, range from about 100 cm 2 to about 300,000 cm 2 , in other embodiments from about 1,000 cm 2 to about 100,000 cm 2 , and in yet other embodiments, from about 2,000 cm 2 to about 50,000 cm 2 .
  • each polishing element (4-4' in FIGs. 1-2) extends along the first direction substantially normal to the first major side of the support layer (10 in FIGs. 1-2).
  • the polishing elements extend along the first direction at least about 0 mm, at least about 0.1 mm, at least about 0.25 mm, at least about 0.3 mm, or at least about 0.5 mm above a plane including the optional polishing composition distribution layer (8 in FIG. 1, 8' in FIG. 2) and/or optional guide plate (28 in FIG. 2).
  • the polishing elements extend along the first direction at most about 10 mm, at most about 7.5 mm, at most about 5 mm, at most about 3 mm, at most about 2 mm, or at most about 1 mm above a plane including the optional polishing composition distribution layer (8 in FIG. 1, 8' in FIG. 2) and/or optional guide plate (28 in FIG. 2).
  • the polishing surfaces of the polishing elements may be made flush with the exposed major surface of the optional polishing composition distribution layer.
  • the polishing surfaces of the polishing elements may be made recessed below the exposed major surface of the optional polishing composition distribution layer, and subsequently made flush with, or made to extend beyond, the exposed major surface of the optional polishing composition distribution layer, for example, by removal of a portion of the optional polishing composition distribution layer.
  • Such embodiments may be
  • polishing composition distribution layers that are selected to be abraded or eroded during the polishing process or in optional conditioning processes applied to the polishing pad before, during, or after contact with a workpiece.
  • each polishing element 4-4' extends along the first direction at least about 0.25 mm, at least about 0.3 mm, or at least about 0.5 mm above a plane including the sheet 13' (FIG. 1) or support layer 10 (FIG. 2).
  • the height of the polishing surface (14 in FIGs. 1-2) above the base or bottom of the polishing element that is, the height (H) of the polishing element may be 0.25 mm, 0.5 mm, 1.0 mm, 1.5 mm, 2.0 mm, 2.5 mm, 3.0 mm, 5.0 mm, 10 mm or more, depending on the polishing composition used and the material selected for the polishing elements.
  • the depth and spacing of the apertures (6 in FIG. 1-2) throughout the optional polishing composition distribution layer (8 in FIG. 1, 8' in FIG. 2) and/or optional guide plate 28 (FIG. 2) may be varied as necessary for a specific CMP process.
  • the polishing elements (4-4' in FIGs. 1-2) are each maintained substantially in planar orientation with respect to one other and the polishing composition distribution layer (8 in FIG. 1, 28 in FIG. 2) and guide plate 31, and project above the surface of the optional polishing composition distribution layer (8 in FIG. 1, 8' in FIG. 2) and/or optional guide plate 28.
  • the void volume created by the extension of the polishing elements 4 above any optional guide plate (28 in FIG. 2) and any optional polishing composition distribution layer (8 in FIG. 1, 8' in FIG. 2) may provide room for distribution of a polishing composition on the surface of the optional polishing
  • polishing elements 4 protrude above the polishing composition distribution layer (8 in FIG. 1, 8' in FIG. 2) by an amount that depends at least in part on the material characteristics of the polishing elements and the desired flow of polishing composition (working liquid and or abrasive slurry) over the surface of the polishing composition distribution layer (8 in FIG. 1, 8' in FIG. 2).
  • the present disclosure provides a textured polishing pad including a first continuous polymer phase and a second discontinuous polymer phase, wherein the polishing pad has a first major side and a second major side opposite the first major side, and further wherein at least one of the first and second major sides comprises a multiplicity of grooves extending into the side.
  • the depth of each groove in a direction substantially normal to the polishing surface of the polishing elements is selected to be in the range of at least about 10 ⁇ , 25 ⁇ , 50 ⁇ , 100 ⁇ ; to about 10,000 ⁇ , 7,500 ⁇ , 5,000 ⁇ , 2,500 ⁇ , 1,000 ⁇ ⁇ 1 micrometer ( ⁇ ) to about 5,000 ⁇ .
  • the polishing pad has a circular cross-section in a direction substantially normal to the first and second sides, wherein the circle defines a radial direction, and further wherein the plurality of grooves are circular, concentric, and spaced apart in the radial direction.
  • the polishing surface of the textured polishing pad comprises pores in the form of a plurality of channels, wherein each channel extends across at least a portion of the polishing surface, preferably in a direction generally parallel to the polishing surface.
  • each channel is a circular channel that extends radially around a circumference of the polishing surface in a direction generally parallel to the polishing surface.
  • the plurality of channels form a series of radially spaced concentric circular grooves in the polishing surface.
  • the pores may take the form of a two-dimensional array of channels in which each channel extends across only a portion of the polishing surface.
  • the channels may have virtually any shape, for example, cylindrical, triangular, rectangular, trapezoidal, hemispherical, and combinations thereof.
  • the depth of each channel in a direction substantially normal to the polishing surface of the polishing elements is selected to be in the range of at least about 10 ⁇ , 25 ⁇ , 50 ⁇ , 100 ⁇ ; to about 10,000 ⁇ , 7,500 ⁇ , 5,000 ⁇ , 2,500 ⁇ , 1,000 ⁇ .
  • the cross-sectional area of each channel in a direction substantially parallel to the polishing surface of the polishing elements is selected to be in the range from about 75 square micrometers ( ⁇ 2 ) to about 3 x 10 6 ⁇ 2 .
  • the polishing elements 4 may comprise a wide variety of materials, with polymeric materials being preferred.
  • suitable polymeric materials include, for example, polyurethanes, polyacrylates, polyvinyl alcohol, poly(ethylene oxide), poly (vinyl alcohol), poly (vinyl pyrollidone), polyacrylic acid, poly(meth)acrylic acid, polycarbonates, and poly(acetals) available under the trade designation DELRIN
  • polishing elements comprise a thermoplastic polyurethane, a polyacrylate, polyvinyl alcohol, or combinations thereof.
  • the polishing elements may also comprise a reinforced polymer or other composite material, including, for example, metal particulates, ceramic particulates, polymeric particulates, fibers, combinations thereof, and the like.
  • polishing elements may be made electrically and/or thermally conductive by including therein fillers such as, carbon, graphite, metals or combinations thereof.
  • electrically conductive polymers such as, for example, polyanilines (PANI) sold under the trade designation ORMECOM (available from Ormecon Chemie,
  • Ammersbek, Germany may be used, with or without the electrically or thermally conductive fillers referenced above.
  • the polishing surface is formed by a phase separated polymer blend comprising a first continuous polymer phase and a second discontinuous polymer phase immiscible in the first continuous polymer phase at room temperature. While not wishing to be bound by any particular theory, Applicant presently believes that the polymer blends are miscible at an elevated processing temperature (e.g. at or above the softening or melt temperature of at least the polymer forming the first continuous polymer phase), thereby forming fluid, binary solutions of polymers or a complex solution containing multiple polymer types.
  • an elevated processing temperature e.g. at or above the softening or melt temperature of at least the polymer forming the first continuous polymer phase
  • the polymers phase Upon cooling below the elevated processing temperature (e.g. below the crystallization temperature of at least the polymer forming the second discontinuous polymer phase), the polymers phase separate into a first continuous polymer phase and a second discontinuous dispersed polymer phase, depending on the thermodynamics and volume ratio of each polymer used in the mixture.
  • the size of the dispersed phase domains can be controlled by the loading of the dispersed phase, the polymer properties of both phases and the thermal/mechanical environment which the polymer blend
  • Polymeric films generated from these type of immiscible blend systems characteristically shed the dispersed (i.e. discontinuous) polymer phase when subjected to fracture or scoring. Therefore if a pad surface is generated from this type of polymeric blend, the surface would be characterized has having porosity resulting from the shedding or release of the dispersed polymer phase.
  • composition of the polymer blend is preferably selected to include at least two different polymer types, although multiple polymer types may be used in each phase.
  • the polymeric blend comprises at least one polymer type generally
  • thermoplastic elastomer as a major component in the first continuous phase
  • polymer type generally characterized as a soft thermoplastic polymer in the second discontinuous phase
  • the first continuous polymer phase preferably comprises a thermoplastic elastomer selected from a polyurethane, a polyolefm elastomer, a fluoroelastomer, a silicone elastomer, synthetic rubber, natural rubber, and combinations thereof.
  • the second discontinuous polymer phase comprises a crystalline polymer or a thermoplastic polymer.
  • the second discontinuous polymer phase comprises at least one of a polyolefm, a cyclic polyolefm, or a polyolefmic thermoplastic elastomer.
  • the polyolefm is selected from polyethylene, polypropylene, polybutylene, polyisobutylene, polyoctene, copolymers thereof, and combinations thereof.
  • a plurality of pores is created in at least some of the polishing elements by at least partially removing at least a portion of the second discontinuous polymer phase 15 from at least a portion of the polishing elements 4 of polishing pad 2-2', thereby leaving a void or pore volume corresponding to the volume previously occupied by the second discontinuous polymer phase 15.
  • the second discontinuous polymer phase may be soluble in a solvent in which the first continuous polymer phase 13 is substantially insoluble or only partially soluble.
  • the second discontinuous polymer phase comprises a water soluble, water swellable or hydrophilic thermoplastic polymer, and water or an aqueous solvent is used to dissolve and thereby remove at least a portion of the second discontinuous polymer phase 15 from one or more polishing elements 4, thereby creating one or more porous polishing elements.
  • Suitable water soluble polymers include poly(ethylene oxide), poly (vinyl alcohol), poly (vinyl pyrollidone), polyacrylic acid, poly(meth)acrylic acid, copolymers thereof with other monomers, and combinations thereof.
  • the aqueous solvent is selected to be the working liquid used in a chemical mechanical polishing process, and this working liquid is used to dissolve and thereby remove at least a portion of the second discontinuous polymer phase 15 from one or more polishing elements 4, thereby creating one or more porous polishing elements.
  • the second discontinuous polymer phase comprises from about 1%, 2.5%, 5%, or 10%; to about 50%), 60%o, 70%>, 80%>, or 90%> by weight of each polishing element. In additional exemplary embodiments, the second discontinuous polymer phase comprises from about 5% to about 90% by weight of each polishing element. In certain exemplary embodiments,
  • the second discontinuous polymer phase is characterized by at least one of a length from 5 to 5,000 ⁇ , a width from 5 to 250 ⁇ , an equivalent spherical diameter of from 5 to 100 ⁇ , or a combination thereof.
  • the volume defined by the second discontinuous polymer phase domains has a substantially uniform spherical shape, and exhibits a median diameter of at least ⁇ , 5 ⁇ , 10 ⁇ , 20 ⁇ , 30 ⁇ , 40 ⁇ , 50 ⁇ ; and at most 200 ⁇ , 150 ⁇ , 100 ⁇ , 90 ⁇ , 80 ⁇ , 70 ⁇ , or 60 ⁇ .
  • the sheet 13', support layer 10 or textured polishing pad may be substantially
  • the sheet or support layer may comprise a flexible and compliant material, such as a compliant rubber or polymer.
  • the sheet, support layer or pad is preferably made of a compressible polymeric material, foamed polymeric materials being preferred.
  • closed cell foams may be preferred, although in other embodiments, and open cell foam may be used.
  • the polishing elements may be formed with the support layer as a unitary sheet of polishing elements affixed to the support layer, which may be a compressible or compliant support layer.
  • the sheet or support layer is preferably liquid impermeable, to prevent penetration or permeation of a working liquid into or through the support layer.
  • the sheet or support layer may comprise liquid permeable materials, alone or in combination with an optional barrier that acts to prevent or inhibit liquid penetration or permeation through the support layer.
  • a porous sheet or support layer may be used advantageously, for example, to retain a working liquid (e.g. a polishing slurry) at the interface between the polishing pad and a workpiece during polishing.
  • the sheet or support layer may comprise a polymeric material selected from silicone, natural rubber, styrene -butadiene rubber, neoprene, polyurethane, polyester, polyethylene, and combinations thereof.
  • the sheet or support layer may further comprise a wide variety of additional materials, such as fillers, particulates, fibers, reinforcing agents, and the like.
  • the support layer is a film comprising one or more TPU, for example, an ESTANE TPU (available from Lubrizol Advanced Materials, Inc., Cleveland, OH), a TEXIN or DESMOPAN TPU (available from Bayer Material Science, Pittsburgh, PA), a PELLETHANE TPU (available from Dow Chemical Company, Midland, MI), and the like.
  • TPU thermoplastic polyurethanes
  • the support layer is a film comprising one or more TPU, for example, an ESTANE TPU (available from Lubrizol Advanced Materials, Inc., Cleveland, OH), a TEXIN or DESMOPAN TPU (available from Bayer Material Science, Pittsburgh, PA), a PELLETHANE TPU (available from Dow Chemical Company, Midland, MI), and the like.
  • the polishing pad further comprises a compliant layer 16 affixed to the support layer opposite the polishing elements.
  • the compliant layer may be affixed to the support layer by any means of bonding surfaces, but preferably, an adhesive layer positioned at an interface between the compliant layer and the support layer is used to affix the support layer to the compliant layer opposite the polishing elements.
  • the compliant layer is preferably compressible to provide a positive pressure directing the polishing surfaces of the polishing elements toward a workpiece during polishing.
  • the support layer may comprise a flexible and compliant material, such as a compliant rubber or polymer.
  • the support layer is preferably made of a compressible polymeric material, foamed polymeric materials being preferred.
  • closed cell foams may be preferred, although in other embodiments, and open cell foam may be used.
  • the compliant layer may comprise a polymeric material selected from silicone, natural rubber, styrene -butadiene rubber, neoprene, polyurethane, polyethylene and its copolymers, and combinations thereof.
  • the compliant layer may further comprise a wide variety of additional materials, such as fillers, particulates, fibers, reinforcing agents, and the like.
  • the compliant layer is preferably liquid impermeable (although permeable materials may be used in combination with an optional barrier to prevent or inhibit liquid penetration into the compliant layer.
  • polyurethanes are polyurethanes, with TPUs being particularly preferred.
  • Suitable polyurethanes include, for example, those available under the trade designation PORON from Rogers Corp.,
  • PET polyethylene terepthalates
  • MYLAR polyethylene terepthalates
  • BONDTEX bonded rubber sheets
  • polishing pads 2-2' may have certain advantages when used in a CMP process, for example, improved within wafer polishing uniformity, a flatter polished wafer surface, an increase in edge die yield from the wafer, and improved CMP process operating latitude and consistency. While not wishing to be bound by any particular theory, these advantages may result from decoupling of the polishing surfaces of the polishing elements from the compliant layer underlying the support layer, thereby allowing the polishing elements to "float" in a direction substantially normal to the polishing surface of the elements when contacting the polishing pad to a workpiece during a polishing process.
  • decoupling of the polishing surfaces of the polishing elements from the compliant underlayer may be augmented by incorporating into the polishing article an optional guide plate 28 including a plurality of apertures extending through the guide plate from a first major surface to a second major surface, wherein at least a portion of each polishing element extends into a corresponding aperture, and wherein each polishing element extends outwardly from the second major surface of the guide plate.
  • the optional guide plate which preferably comprises a stiff or non-compliant material, may be used to maintain the spatial orientation of polishing surface, as well as to maintain lateral movement of the elements on the polishing pad. In other embodiments, however, the optional guide plate is not required, because the spatial orientation of the polishing elements is maintained and lateral movement is prevented by bonding the elements to the support layer, preferably by thermally bonding the polishing elements directly to the support layer.
  • the optional guide plate 28 can be made of a wide variety of materials, such as polymers, copolymers, polymer blends, polymer composites, or combinations thereof.
  • a rigid, non-compliant, non-conducting and liquid impermeable polymeric material is generally preferred, and polycarbonates have been found to be particularly useful.
  • polishing pads of the present disclosure may further comprise an optional polishing composition distribution layer 8-8' covering at least a portion of a first major side of the sheet or support layer, as well as the first major surface of the optional guide plate (if present).
  • the optional polishing composition distribution layer may be made of a wide variety of polymeric materials.
  • the optional polishing composition distribution layer may, in some embodiments, comprise at least one hydrophilic polymer. Preferred hydrophilic polymers include polyurethanes,
  • the polishing composition layer may comprise a hydrogel material, such as, for example a hydrophilic polyurethane or polyacrylate, that can absorb water, preferably in a range of about 5 to about 60 percent by weight, to provide a lubricious surface during polishing operations.
  • a hydrogel material such as, for example a hydrophilic polyurethane or polyacrylate, that can absorb water, preferably in a range of about 5 to about 60 percent by weight, to provide a lubricious surface during polishing operations.
  • the optional polishing composition distribution layer comprises a compliant material, for example, a porous polymer or foam, to provide a positive pressure directed toward to substrate during polishing operations when the polishing composition distribution layer is compressed.
  • the compliance of the polishing composition distribution layer is selected to be less than the compliance of the optional compliant layer.
  • Porous or foamed materials with open or closed cells may be preferred compliant materials for use in an optional polishing composition distribution layer in certain embodiments.
  • the optional polishing composition distribution layer has between about 10 and about 90 percent porosity.
  • the compliant layer is affixed to the second major side by an adhesive layer at an interface between the compliant layer and the second major side.
  • the polishing surfaces of the polishing elements may be made flush with or recessed below the exposed major surface of the optional polishing composition distribution layer. Such embodiments may be
  • the polishing composition distribution may be advantageously selected to comprise a material that is abraded or eroded during the polishing process or in optional conditioning processes applied to the polishing surface of the polishing pad before, during, or after contact with a workpiece.
  • the polishing composition distribution layer may act to substantially uniformly distribute a polishing composition across the surface of the substrate undergoing polishing, which may provide more uniform polishing.
  • the polishing composition distribution layer may optionally include flow resistant elements such as baffles, grooves (not shown in the figures), pores, and the like, to regulate the flow rate of the polishing composition during polishing.
  • the polishing composition distribution layer can include various layers of different materials to achieve desired polishing composition flow rates at varying depths from the polishing surface.
  • one or more of the polishing elements may include an open core region or cavity defined within she polishing element, although such an arrangement is not required.
  • the core of the polishing element can include sensors to detect pressure, conductivity, capacitance, eddy currents, and the like.
  • the polishing pad may include a window extending through the pad in the direction normal to the polishing surface, or may use transparent layers and/or transparent polishing elements, to allow for optical end-pointing of a polishing process, as described in PCT International Pub. No. WO 2009/140622.
  • the present disclosure is further directed to a method of using a polishing pad as described above in a polishing process, the method including contacting a surface of a substrate with a polishing surface of a polishing pad comprising a plurality of polishing elements, at least some of which are porous, and relatively moving the polishing pad with respect to the substrate to abrade the surface of the substrate.
  • a working liquid may be provided to an interface between the polishing pad surface and the substrate surface. Suitable working liquids are known in the art, and may be found, for example, in U.S. Pat. Nos. 6,238,592 Bl; 6,491,843 Bl; and PCT
  • polishing pads described herein may, in some embodiments, be relatively easy and inexpensive to manufacture.
  • a brief discussion of some exemplary methods for making polishing pads according to the present disclosure is described below, which discussion is not intended to be exhaustive or otherwise limiting.
  • the present disclosure provides a method of making polishing pads as described above, the method including mixing a first polymer with a second polymer with application of heat to form a fluid molding composition, dispensing the fluid molding composition into a mold, cooling the fluid molding composition to form a polishing pad including a first continuous polymer phase comprising the first polymer, and a second discontinuous polymer phase comprising the second polymer, wherein the polishing pad has a first major side or surface and a second major side or surface opposite the first major side or surface.
  • dispersing the first polymer in the second polymer comprises melt mixing, kneading, extrusion, or combinations thereof.
  • dispensing the fluid molding composition into the mold comprises at least one of reaction injection molding, extrusion molding, compression molding, vacuum molding, or a combination thereof.
  • dispensing comprises continuously extruding the fluid molding composition through a film die onto a casting roller, further wherein the surface of the casting roller comprises the mold.
  • the method further includes milling at least one of the first and second major sides to form a multiplicity of grooves extending into the side.
  • the grooves have a depth of from about 1 ⁇ to about 5,000 ⁇ .
  • the polishing pad has a circular cross-section in a direction substantially normal to the first and second sides, wherein the circle defines a radial direction, and further wherein the plurality of grooves are circular, concentric, and spaced apart in the radial direction.
  • the mold includes comprises a three-dimensional pattern, and the first major surface comprises a multiplicity of polishing elements corresponding to an impression of the three-dimensional pattern, wherein the plurality of polishing elements extend outwardly from the first major side along a first direction substantially normal to the first major side, further wherein the polishing elements are integrally formed with the sheet and laterally connected so as to restrict lateral movement of the polishing elements with respect to one or more of the other polishing elements, but remaining moveable in an axis substantially normal to a polishing surface of the polishing elements.
  • the plurality of polishing elements may be formed from a molten polymer or composite sheet of polymeric film using, for example, extrusion molding or compression molding, respectively.
  • extrusion molding a mixture of two different molten polymers capable of undergoing phase separation on cooling could be fed into a twin screw extruder equipped with a film die and casting rolls possessing the desired pre-determined pattern of polishing elements.
  • a phase separated polymeric film could be made and compression molded in a second operation with molding plates possessing the desired pre-determined pattern of polishing elements.
  • the sheet Upon creation of the desired pattern of polishing elements on the sheet, the sheet could be secured to a compliant support layer, for example, by thermal bonding to a thermal bonding film or by use of an adhesive.
  • the compliant support layer could be laminated to the back side of the polishing surface or support layer during film casting or compression molding.
  • a multi-cavity mold may be provided with a back-fill chamber, wherein each cavity corresponds to a polishing element.
  • a plurality of polishing elements which may include porous polishing elements and nonporous polishing element as described herein, may be formed by injection molding a suitable polymer melt into the multi-cavity mold, and backfilling the back-fill chamber with the same polymer melt or another polymer melt to form a support layer. The polishing elements remain affixed to the support layer upon cooling of the mold, thereby forming a plurality of polishing elements as a unitary sheet of polishing elements with the support layer.
  • the mold may, in some embodiments, comprise a rotating roll mold.
  • the integrally molded sheet of polishing elements could be scored between the individual raised polishing elements to generate a polishing surface of individually floating polishing elements.
  • the segregation could also be accomplished in the molding process by incorporating raised areas in the mold between the individual raised elements.
  • the present disclosure provides a method of making a polishing pad 2' as described above, the method including forming a multiplicity of polishing elements including a first continuous polymer phase comprising a first polymer and a second discontinuous polymer phase comprising a second polymer, and bonding the polishing elements to a first major side of a support layer having a second major side opposite the first major side to form a polishing pad.
  • the method further includes affixing a compliant layer to the second major side.
  • the method further includes affixing a polishing composition distribution layer covering at least a portion of the first major side.
  • the method additionally includes forming a pattern with the polishing elements on the first major side.
  • forming a pattern comprises reaction injection molding the polishing elements in the pattern, extrusion molding the polishing elements in the pattern, compression molding the polishing elements in the pattern, arranging the polishing elements within a template corresponding to the pattern, or arranging the polishing elements on the support layer in the pattern.
  • bonding the polishing elements to the support layer comprises thermal bonding, ultrasonic bonding, actinic radiation bonding, adhesive bonding, and combinations thereof.
  • the polishing elements are thermally bonded to the support layer.
  • Thermal bonding may be achieved, for example, by contacting a major surface of the support layer with a surface of each polishing element to form a bonding interface, and heating the polishing elements and the support layer to a temperature at which the polishing elements and support layer soften, melt, or flow together to form a bond at the bonding interface.
  • Ultrasonic welding may also be used to effect thermal bonding of the polishing elements to the support layer.
  • pressure is applied to the bonding interface while heating the polishing elements and the support layer.
  • the support layer is heated to a temperature greater than the temperature to which the polishing elements are heated.
  • bonding the polishing elements to the support layer involves using a bonding material that forms a physical and/or chemical union at an interface between the polishing elements and a major surface of the support layer.
  • a physical and/or chemical union may, in certain embodiments, be formed using an adhesive positioned at the bonding interface between each polishing element and the major surface of the support layer.
  • the bonding material may be a material that forms a bond by curing, for example, by thermally curing, radiation curing (e.g. curing using actinic radiation such as ultraviolet light, visible light, infrared light, electron beams or other radiation sources), and the like.
  • polishing elements comprise porous polishing elements.
  • the polishing elements comprise substantially non-porous polishing elements.
  • the porous polishing elements are formed by injection molding of a gas saturated polymer melt, injection molding of a reactive mixture that evolves a gas upon reaction to form a polymer, injection molding of a mixture comprising a polymer dissolved in a supercritical gas, injection molding of a mixture of incompatible polymers in a solvent, injection molding of porous thermoset particulates dispersed in a thermoplastic polymer, injection molding of a mixture comprising microballoons, and combinations thereof.
  • the pores are formed by reaction injection molding, gas dispersion foaming, and combinations thereof.
  • the porous polishing elements have pores distributed substantially throughout the entire polishing element. In other embodiments, the pores may be distributed substantially at the polishing surface of the porous polishing elements. In some additional embodiments, the porosity imparted to the polishing surface of a porous polishing element may be imparted, for example, by injection molding, calendaring, mechanical drilling, laser drilling, needle punching, gas dispersion foaming, chemical processing, and combinations thereof.
  • polishing pad need not comprise only substantially identical polishing elements.
  • any combination or arrangement of porous polishing elements and non-porous polishing elements may make up the plurality of porous polishing elements.
  • any number, combination or arrangement of porous polishing elements and substantially nonporous polishing elements may be used advantageously in certain embodiments to form a polishing pad having floating polishing elements bonded to a support layer.
  • the polishing elements may be arranged to form a pattern. Any pattern may be advantageously employed.
  • the polishing elements may be arranged to form a two-dimensional array, for example, a rectangular, triangular, or circular array of polishing elements.
  • the polishing elements may include both porous polishing elements and substantially nonporous polishing elements arranged in a pattern on the support layer.
  • the porous polishing elements may be advantageously arranged with respect to any substantially nonporous polishing elements to form an arrangement of porous polishing elements and nonporous polishing elements on the major surface of the support layer. In such embodiments, the number and arrangement of porous polishing elements relative to substantially nonporous polishing elements may be selected advantageously to obtain desirable polishing performance.
  • porous polishing elements may be arranged substantially near the center of a major surface of the polishing pad, and substantially nonporous polishing elements may be arranged substantially near the peripheral edge of the major surface of the polishing pad.
  • Such exemplary embodiments may desirably more effectively retain a working liquid, for example an abrasive polishing slurry, in the contact zone between the polishing pad and the wafer surface, thereby improving wafer surface polishing uniformity (e.g. reduced dishing at the wafer surface) as well as reducing the quantity of waste slurry generated by the CMP process.
  • Such exemplary embodiments may also desirably provide more aggressive polishing at the edges of the die, thereby reducing or eliminating the formation of an edge ridge, and improving yield and die polish uniformity.
  • porous polishing elements may be arranged substantially near the edge of a major surface of the polishing pad, and substantially nonporous polishing elements may be arranged substantially near the center of the major surface of the polishing pad.
  • Other arrangements and/or patterns of polishing elements are contemplated as falling within the scope of the present disclosure.
  • the polishing elements may be arranged in a pattern by placement on a major surface of the support layer.
  • the polishing elements may be arranged in a pattern using a template of the desired pattern, and the support layer may be positioned over or under the polishing elements and the template prior to bonding, with a major surface of the support layer contacting each polishing element at a bonding interface.
  • polishing pads having polishing elements according to the present disclosure may have various features and characteristics that enable their use in a variety of polishing applications.
  • polishing pads of the present disclosure may be particularly well suited for chemical mechanical planarization (CMP) of wafers used in manufacturing integrated circuits and
  • polishing pad described in this disclosure may provide advantages over polishing pads that are known in the art.
  • a polishing pad according to the present disclosure may act to better retain a working liquid used in the CMP process at the interface between the polishing surface of the pad and the substrate surface being polished, thereby improving the effectiveness of the working liquid in augmenting polishing.
  • a polishing pad according to the present disclosure may reduce or eliminate dishing and/or edge erosion of the wafer surface during polishing.
  • use of a polishing pad according to the present disclosure in a CMP process may result in improved within wafer polishing uniformity, a flatter polished wafer surface, an increase in edge die yield from the wafer, and improved CMP process operating latitude and consistency.
  • use of a polishing pad with porous elements may permit processing of larger diameter wafers while maintaining the required degree of surface uniformity to obtain high chip yield, processing of more wafers before conditioning of the pad surface is required in order to maintain polishing uniformity of the wafer surface, or reducing process time and wear on the pad conditioner.
  • phase-separated polymer blends for textured polishing pads is the apparent ease of machining or milling of the surface.
  • Commercially available CMP pads are typically composed of cross-linked polyurethane foams which resist milling, and which are extremely difficult to mill without tearing or damaging the foam.
  • a solid thermoplastic textured polishing pad material as described herein deforms less during the milling operations, therefore making it easier to mill and to generate a clean surface.
  • the following non-limiting examples illustrate various methods for preparing polishing pads comprising a plurality of polishing elements, or a textured polishing pad, as described above.
  • Fabrication of a polishing pad 2 according to an exemplary embodiment of the present disclosure was conducted in a three step process: extrusion of a polymeric blend to form a polymeric film, compression molding several sheets of the polymeric film into a composite sheet having three dimensional polishing element structures, and laminating the composite film to a compliant layer comprising a foam material.
  • the extrusion process was carried out as follows. Pellets of a thermoplastic polyurethane, Estane® 58144 (from Lubrizol Corporation, Wickliffe, Ohio), were pre- mixed with pellets of a very low density polyethylene-butylene copolymer resin, Flexomer DFDB-1085 NT (from Dow Chemical Co, Midland, MI). The 80/20 (wt. %) mixture of Estane® 58144/Flexomer DFDB-1085 NT was placed into the hopper of a co-rotating Berstorff twin screw extruder (model EO 9340/91 from Krauss-Maffei Berstorff GmbH, Hanover, Germany).
  • a melt pump and 12 inch (30.5 cm) wide film die were attached to the output end of the extruder. Extrusion conditions were as follows: 215°C for all zones and the melt pump, a screw speed of 300 rpm, a pellet feed-rate of 20 lbs/hr (9.1 kg/hr) and a 3/1 melt pump outlet/inlet pressure differential. Film from the die was cast onto an 18 inch (45.7 cm) diameter, matte finish cast roll set at 104°C. The casting roll speed and extruder melt pump speed were set such that a 500 ⁇ thick film was cast.
  • Sheets of the film were cut into approximately 4 inch x 4 inch (10.2 cm x 10.2 cm) square pieces. Three film pieces were stacked one on top of the other, with the corners of the pieces aligned. The stacked film pieces were placed between the top and bottom aluminum plates of a compression mold bearing a pre-determined pattern corresponding to the desired size and shape of polishing elements.
  • the bottom plate was approximately 4 inch x 4 inch (10.2 cm x 10.2 cm) square and about 6 mm thick.
  • the bottom plate was etched to comprise a square array of truncated, conical shaped features.
  • the conical features had a diameter of 7.5 mm at the base and a diameter of 6.5 mm at the cavity bottom. The feature depth was about 2 mm.
  • the truncated, conical shaped features were spaced about 11 mm on center, leaving an approximate 4 mm land region between the features.
  • the total bearing area of the features represented about 50% of the area of the plate.
  • the circumferences of the truncated, conical features in the cavity bottom were chamfered.
  • the top plate was 4 inch x 4 inch (10.2 cm x 10.2 cm) square and about 1.5 mm thick.
  • the mold with film pieces was place between the platens of a hydraulic press (model number AP-22 from Pasadena Hydraulics, Inc., El Monte, CA).
  • the compression molding was conducted at a temperature of 232°C and a pressure of about 7.0 kg/cm 2 for 30 seconds. After compression molding, the mold was removed from the press and allowed to cool at room temperature.
  • the resulting composite film having three dimensional structures approximately the size and shape of the conical structures of the mold, was then removed from mold.
  • the composite film was hand laminated to a 4 inch x 4 inch (10.2 cm x 10.2 cm) square sheet of VOLTEC VOLARA Type EO foam 12 pounds per cubic foot (from Voltek, a division of Sekisui America Corp., Lawrence, MA) using a pressure sensitive adhesive (3M Adhesive Transfer Tape 9671 from the 3M Company, St. Paul, MN.), forming a polishing pad 2' of the present disclosure.
  • Scanning electron microscopy was conducted on cross sections of the extruded film and the compression molded, composite film using standard techniques. Results revealed a two phase morphological structure with a discrete, discontinuous minor phase encompassed by a major continuous phase. Surprisingly, the phase morphology didn't change through the pressing process in either the highly compressed areas (land area) or in the post area. The shape and size of the minor phase domains appeared to be
  • Fabrication of a polishing pad 2 according to an exemplary embodiment of the present disclosure was conducted in a three step process: extrusion of a polymeric blend to form a polymeric film, compression molding a sheet of the polymeric film into a film having three dimensional structures and laminating the composite film to a compliant layer comprising a foam material.
  • the extrusion process was carried out as follows.
  • the pellet blend was identical to Example 1. It was placed into the hopper of a counter-rotating Davis-Standard twin screw extruder (model D-TEX 47 from Davis-Standard, LLC, Pawcatuck, CT). A melt pump and 91.5 cm wide film die were attached to the output end of the extruder. Extrusions conditions were as follows: 205°C for all zones and melt pump, a screw speed of 200 rpm, a pellet feed-rate of 250 lb/hr (113 kg/hr) and a 2/1 melt pump outlet/inlet pressure differential.
  • Film from the die was drop cast between an 8 inch (20.3 cm) diameter chrome cast roll set at 50°C and an 8 inch (20.3 cm) chill roll diameter set at 50°C.
  • the cast roll speed and extruder melt pump speed were set such that a 1,170 ⁇ thick film was cast.
  • a 30 cm x 30 cm sheet of film was cut, placed on a Teflon® film lined aluminum plate of similar length and width and heated in an air flow through oven set at 250°C for 9 minutes. After removing from the oven, a Teflon® coated metal screen about 12 inch x 12 inch (30.5 cm x 30.5 cm) and about 0.0625 inch (1.6 mm) in thickness, having a hexagonal array of circular holes each about 6.2 mm in diameter and a center to center distance of about 8 mm (the total bearing area of the features represented about 58% of the area of the screen), was placed on top of the film sheet. A Teflon® sheet was subsequently placed on top of the screen.
  • the four films with three dimensional structure were assembled in a 60 cm x 60 cm square and hand laminated to a 60 cm x 60 cm square sheet of Rogers PORONTM urethane foam, part # 4704-50-20062-04 from American Flexible Products, Inc, Chaska, MN, using a 127 ⁇ thick transfer adhesive, 3M Adhesive Transfer Tape 9672 (from 3M Company), forming a polishing pad 2' of the present disclosure.
  • Fabrication of a polishing pad 2 according to an embodiment of the present disclosure was conducted in a three step process: extrusion of a polymeric blend to form a polymeric film, embossing a sheet of the polymeric film forming a film having three dimensional structures and laminating the composite film to a compliant layer comprising a foam material.
  • the extrusion process was as follows.
  • the pellet blend was identical to
  • Example 1 The extruder and extruder conditions were identical to that of Example 2, with the following changes.
  • Film from the die was drop cast between an 8 inch (20.3 cm) diameter embossed roll set at 50°C and an 8 inch (20.3 cm) chill roll set at 50°C.
  • the embossed roll speed and extruder melt pump speed were set such that a 1,372 ⁇ thick film was achieved.
  • the pattern on the embossing roll was made up of a series of hexagonal shaped protrusions measuring approximately 3.5 mm wide and 715 ⁇ in height.
  • the channels between the hexagonal protrusions measured approximately 1 mm wide.
  • the embossed film had hexagonal shaped depressions of approximately the same dimensions of that of the embossed roll.
  • the bearing area of the embossed features represented about 40% of the area of the film.
  • a 60 cm x 60 cm square sheet of the embossed film was hand laminated to a 60 cm x 60 cm square sheet of Rogers PORONTM urethane foam part # 4704-50-20062-04 (from American Flexible Products, Inc.) using a pressure sensitive adhesive, 3M Adhesive Transfer Tape 9671 (from 3M Company, St. Paul, MN), and die cut into a 51 cm circle forming the pad of the present disclosure.
  • Fabrication of a textured polishing pad according to an alternative embodiment of the present disclosure was conducted in a three step process: extrusion of a polymeric blend to form a polymeric film, milling of a plurality of concentric circular grooves spaced apart radially on the surface of a major side of the polymeric film, and laminating the composite film to a compliant layer comprising a foam material.
  • the polishing surface was generated by milling a cast film of 80% Estane 58144 thermoplastic polyurethane and 20% Dow FlexomerTM DFDB-1085 polyethylene -butylene copolymer as prepared in Example 1. Scanning electron microscopy was conducted on cross sections of the extruded composite film using standard techniques. Results revealed a two phase morphological structure with a discrete, discontinuous minor phase encompassed by a continuous major phase. The shape and size of the minor phase domains appeared to be approximately spherical with a diameter between about 2 and 5 microns.
  • the milled surface was created by mounting a piece of cast film on a vertical end mill (Mini Lathe, Central Machinery, Taiwan), rotating the piece at 1500 rpm and plunge cutting grooves with a shaped cutting tool.
  • the groove depth and width were 915 and 500 ⁇ , respectively.
  • the milled film was laminate with a 127 ⁇ transfer adhesive (3M 9672 adhesive, St Paul, MN) and adhered to a 15 cm diameter, 1.59 mm thick polyurethane foam (Rogers Poron urethane foam, Part#4701-50-20062-04, American Flexible, Chaska, MN).
  • a 127 ⁇ transfer adhesive (3M 9672 adhesive, St Paul, MN)
  • adhered to a 15 cm diameter, 1.59 mm thick polyurethane foam Ros Poron urethane foam, Part#4701-50-20062-04, American Flexible, Chaska, MN.
  • Examples 1-3 are directed to producing a polishing pad including a sheet having a first major side and a second major side opposite the first major side, and a multiplicity of polishing elements extending outwardly from the first major side along a first direction substantially normal to the first major side, wherein at least a portion of the polishing elements are integrally formed with the sheet and laterally connected so as to restrict lateral movement of the polishing elements with respect to one or more of the other polishing elements, but remaining moveable in an axis substantially normal to a polishing surface of the polishing elements, wherein at least a portion of the plurality of polishing elements comprise a first continuous polymer phase and a second discontinuous polymer phase.
  • Example 4 is directed to a textured polishing pad including a first continuous polymer phase and a second discontinuous polymer phase, wherein the polishing pad has a first major side and a second major side opposite the first major side, and further wherein at least one of the first and second major sides comprises a
  • any of the foregoing molded or roller embossed films of Examples 1-4 may be used to create polishing elements 4 for use in producing a polishing pad 2' including a support layer having a first major side and a second major side opposite the first major side, and a multiplicity of polishing elements bonded to the first major side of the support layer, wherein each polishing element has an exposed polishing surface, and wherein the polishing elements extend from the first major side of the support layer along a first direction substantially normal to the first major side, further wherein at least a portion of the plurality of polishing elements comprise a first continuous polymer phase and a second discontinuous polymer phase.
  • the molded or embossed elements polishing may, for example be cut out of the film (e.g.
  • the support layer may be placed on a temporary release layer and overlaid with a template bearing a desired patterns for the polishing elements before arranging the polishing elements in a two-dimensional array pattern in the template, and thermally bonding the polishing elements to an overlaid support layer (i.e. a thermal bonding film), for example, as described in PCT International Pub. No. WO 2010/009420.
  • a thermal bonding film i.e. a thermal bonding film
  • polishing pads of exemplary embodiments the present disclosure need not comprise only substantially identical polishing elements.
  • any combination or arrangement of porous polishing elements and non-porous polishing elements may make up the plurality of porous polishing elements.
  • any number, combination or arrangement of porous polishing elements and substantially nonporous polishing elements may be used advantageously in certain embodiments to form a polishing pad having floating polishing elements bonded to a support layer.
  • porous polishing elements may be substituted for nonporous polishing elements in any number,
  • porous and optionally, nonporous polishing elements may be affixed to (or integrally formed with) a support layer to provide polishing pads of various additional embodiments of the present disclosure.
  • polishing pads as disclosed herein may generally include optional elements disclosed herein in any combination, for example, an optional compliant layer affixed to the second major side with an optional adhesive layer, an optional pressure sensitive adhesive layer affixed to the compliant layer opposite the second major side, an optional guide plate (for polishing pad embodiments like 2'), an optional polishing composition distribution layer, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
PCT/US2010/062204 2009-12-30 2010-12-28 Polishing pads including phase-separated polymer blend and method of making and using the same Ceased WO2011082155A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/514,741 US9162340B2 (en) 2009-12-30 2010-12-28 Polishing pads including phase-separated polymer blend and method of making and using the same
KR1020127019847A KR20120125612A (ko) 2009-12-30 2010-12-28 상-분리 중합체 블렌드를 포함하는 폴리싱 패드 및 이의 제조 및 사용 방법
CN2010800603140A CN102686362A (zh) 2009-12-30 2010-12-28 包括分相共混聚合物的抛光垫及其制备和使用方法
JP2012547231A JP6004941B2 (ja) 2009-12-30 2010-12-28 相分離したポリマーブレンドを含む研磨パッド並びにその製造及び使用方法
SG2012043568A SG181678A1 (en) 2009-12-30 2010-12-28 Polishing pads including phase-separated polymer blend and method of making and using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US29117609P 2009-12-30 2009-12-30
US61/291,176 2009-12-30

Publications (2)

Publication Number Publication Date
WO2011082155A2 true WO2011082155A2 (en) 2011-07-07
WO2011082155A3 WO2011082155A3 (en) 2011-11-17

Family

ID=44227135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/062204 Ceased WO2011082155A2 (en) 2009-12-30 2010-12-28 Polishing pads including phase-separated polymer blend and method of making and using the same

Country Status (7)

Country Link
US (1) US9162340B2 (enExample)
JP (1) JP6004941B2 (enExample)
KR (1) KR20120125612A (enExample)
CN (1) CN102686362A (enExample)
SG (1) SG181678A1 (enExample)
TW (1) TWI552832B (enExample)
WO (1) WO2011082155A2 (enExample)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9776361B2 (en) 2014-10-17 2017-10-03 Applied Materials, Inc. Polishing articles and integrated system and methods for manufacturing chemical mechanical polishing articles
US9873180B2 (en) 2014-10-17 2018-01-23 Applied Materials, Inc. CMP pad construction with composite material properties using additive manufacturing processes
US10384330B2 (en) 2014-10-17 2019-08-20 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US10391605B2 (en) 2016-01-19 2019-08-27 Applied Materials, Inc. Method and apparatus for forming porous advanced polishing pads using an additive manufacturing process
US10399201B2 (en) 2014-10-17 2019-09-03 Applied Materials, Inc. Advanced polishing pads having compositional gradients by use of an additive manufacturing process
US10456886B2 (en) 2016-01-19 2019-10-29 Applied Materials, Inc. Porous chemical mechanical polishing pads
US10596763B2 (en) 2017-04-21 2020-03-24 Applied Materials, Inc. Additive manufacturing with array of energy sources
US10821573B2 (en) 2014-10-17 2020-11-03 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US10875145B2 (en) 2014-10-17 2020-12-29 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US10875153B2 (en) 2014-10-17 2020-12-29 Applied Materials, Inc. Advanced polishing pad materials and formulations
US11072050B2 (en) 2017-08-04 2021-07-27 Applied Materials, Inc. Polishing pad with window and manufacturing methods thereof
US11471999B2 (en) 2017-07-26 2022-10-18 Applied Materials, Inc. Integrated abrasive polishing pads and manufacturing methods
US11524384B2 (en) 2017-08-07 2022-12-13 Applied Materials, Inc. Abrasive delivery polishing pads and manufacturing methods thereof
US11745302B2 (en) 2014-10-17 2023-09-05 Applied Materials, Inc. Methods and precursor formulations for forming advanced polishing pads by use of an additive manufacturing process
US12208483B2 (en) 2017-08-04 2025-01-28 3M Innovative Properties Company Microreplicated polishing surface with enhanced co-planarity

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110033277A (ko) * 2008-07-18 2011-03-30 쓰리엠 이노베이티브 프로퍼티즈 캄파니 플로팅 요소를 구비한 연마 패드 및 이 연마 패드의 제작 방법과 이용 방법
WO2011133183A1 (en) * 2010-04-20 2011-10-27 University Of Utah Research Foundation Phase separation sprayed scaffold
US10722997B2 (en) * 2012-04-02 2020-07-28 Thomas West, Inc. Multilayer polishing pads made by the methods for centrifugal casting of polymer polish pads
SG10201608125WA (en) 2012-04-02 2016-11-29 Thomas West Inc Methods and systems for centrifugal casting of polymer polish pads and polishing pads made by the methods
US10022842B2 (en) 2012-04-02 2018-07-17 Thomas West, Inc. Method and systems to control optical transmissivity of a polish pad material
CN106163740B (zh) 2014-04-03 2019-07-09 3M创新有限公司 抛光垫和系统以及制造和使用该抛光垫和系统的方法
US9818618B2 (en) * 2014-05-07 2017-11-14 Cabot Microelectronics Corporation Multi-layer polishing pad for CMP
TWI689406B (zh) 2014-10-17 2020-04-01 美商應用材料股份有限公司 研磨墊及製造其之方法
WO2016183126A1 (en) * 2015-05-13 2016-11-17 3M Innovative Properties Company Polishing pads and systems for and methods of using same
KR101600393B1 (ko) * 2015-05-20 2016-03-07 에프엔에스테크 주식회사 연마 패드 및 이의 제조 방법
TWI769988B (zh) * 2015-10-07 2022-07-11 美商3M新設資產公司 拋光墊與系統及其製造與使用方法
EP3362224B1 (en) * 2015-10-16 2024-08-14 Applied Materials, Inc. Method and apparatus for forming advanced polishing pads using an additive manufacturing process
WO2017074773A1 (en) 2015-10-30 2017-05-04 Applied Materials, Inc. An apparatus and method of forming a polishing article that has a desired zeta potential
US10593574B2 (en) 2015-11-06 2020-03-17 Applied Materials, Inc. Techniques for combining CMP process tracking data with 3D printed CMP consumables
KR102302564B1 (ko) 2016-03-09 2021-09-15 어플라이드 머티어리얼스, 인코포레이티드 패드 구조 및 제조 방법들
CN109773671B (zh) * 2017-12-05 2020-11-20 长沙理工大学 一种有序微槽结构多层超硬磨料电镀砂轮
WO2019152222A1 (en) 2018-02-05 2019-08-08 Applied Materials, Inc. Piezo-electric end-pointing for 3d printed cmp pads
US11826876B2 (en) 2018-05-07 2023-11-28 Applied Materials, Inc. Hydrophilic and zeta potential tunable chemical mechanical polishing pads
EP3814053B1 (en) * 2018-06-29 2025-08-06 Saint-Gobain Abrasives, Inc. Abrasive articles and methods for forming same
KR20210042171A (ko) 2018-09-04 2021-04-16 어플라이드 머티어리얼스, 인코포레이티드 진보한 폴리싱 패드들을 위한 제형들
US11331767B2 (en) 2019-02-01 2022-05-17 Micron Technology, Inc. Pads for chemical mechanical planarization tools, chemical mechanical planarization tools, and related methods
US11851570B2 (en) 2019-04-12 2023-12-26 Applied Materials, Inc. Anionic polishing pads formed by printing processes
CN110776724B (zh) * 2019-10-23 2022-02-25 青岛科技大学 一种功能性弹性发泡材料及其制备方法和应用
US11813712B2 (en) * 2019-12-20 2023-11-14 Applied Materials, Inc. Polishing pads having selectively arranged porosity
US11806829B2 (en) 2020-06-19 2023-11-07 Applied Materials, Inc. Advanced polishing pads and related polishing pad manufacturing methods
US20230226660A1 (en) * 2020-07-16 2023-07-20 Korea Institute Of Industrial Technology Polishing pad, polishing device including same, and manufacturing method thereof
US11878389B2 (en) 2021-02-10 2024-01-23 Applied Materials, Inc. Structures formed using an additive manufacturing process for regenerating surface texture in situ
CN118290810B (zh) * 2024-06-05 2024-08-13 浙江新恒泰新材料股份有限公司 一种微孔发泡热塑性聚氨酯基材及其制备方法与应用

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5257478A (en) 1990-03-22 1993-11-02 Rodel, Inc. Apparatus for interlayer planarization of semiconductor material
US5578098A (en) * 1990-10-09 1996-11-26 Minnesota Mining And Manufacturing Company Coated abrasive containing erodible agglomerates
MY114512A (en) 1992-08-19 2002-11-30 Rodel Inc Polymeric substrate with polymeric microelements
US5489233A (en) 1994-04-08 1996-02-06 Rodel, Inc. Polishing pads and methods for their use
US5893796A (en) 1995-03-28 1999-04-13 Applied Materials, Inc. Forming a transparent window in a polishing pad for a chemical mechanical polishing apparatus
US5609517A (en) * 1995-11-20 1997-03-11 International Business Machines Corporation Composite polishing pad
JPH10156705A (ja) 1996-11-29 1998-06-16 Sumitomo Metal Ind Ltd 研磨装置および研磨方法
US6126532A (en) 1997-04-18 2000-10-03 Cabot Corporation Polishing pads for a semiconductor substrate
US5921855A (en) 1997-05-15 1999-07-13 Applied Materials, Inc. Polishing pad having a grooved pattern for use in a chemical mechanical polishing system
JP4293480B2 (ja) * 1999-01-12 2009-07-08 東洋ゴム工業株式会社 研磨パッドの製造方法
US6641463B1 (en) 1999-02-06 2003-11-04 Beaver Creek Concepts Inc Finishing components and elements
US6238592B1 (en) 1999-03-10 2001-05-29 3M Innovative Properties Company Working liquids and methods for modifying structured wafers suited for semiconductor fabrication
JP2000263423A (ja) * 1999-03-16 2000-09-26 Toray Ind Inc 研磨パッドおよび研磨装置
US6491843B1 (en) 1999-12-08 2002-12-10 Eastman Kodak Company Slurry for chemical mechanical polishing silicon dioxide
US20020068516A1 (en) 1999-12-13 2002-06-06 Applied Materials, Inc Apparatus and method for controlled delivery of slurry to a region of a polishing device
US6702954B1 (en) 2000-10-19 2004-03-09 Ferro Corporation Chemical-mechanical polishing slurry and method
US20020072296A1 (en) 2000-11-29 2002-06-13 Muilenburg Michael J. Abrasive article having a window system for polishing wafers, and methods
JP3804064B2 (ja) 2001-12-04 2006-08-02 株式会社東京精密 ウェーハ研磨装置の研磨終点検出方法及び装置
JP2003136397A (ja) * 2001-11-01 2003-05-14 Roki Techno Co Ltd 研磨パッド
US6722946B2 (en) 2002-01-17 2004-04-20 Nutool, Inc. Advanced chemical mechanical polishing system with smart endpoint detection
JP2003318140A (ja) * 2002-04-26 2003-11-07 Applied Materials Inc 研磨方法及び装置
US20050194681A1 (en) * 2002-05-07 2005-09-08 Yongqi Hu Conductive pad with high abrasion
US6913517B2 (en) 2002-05-23 2005-07-05 Cabot Microelectronics Corporation Microporous polishing pads
US20040171339A1 (en) 2002-10-28 2004-09-02 Cabot Microelectronics Corporation Microporous polishing pads
KR100465649B1 (ko) * 2002-09-17 2005-01-13 한국포리올 주식회사 일체형 연마 패드 및 그 제조 방법
JP2004160573A (ja) 2002-11-11 2004-06-10 Ebara Corp 研磨装置
US6908366B2 (en) 2003-01-10 2005-06-21 3M Innovative Properties Company Method of using a soft subpad for chemical mechanical polishing
US7086932B2 (en) * 2004-05-11 2006-08-08 Freudenberg Nonwovens Polishing pad
JP2007528794A (ja) 2003-07-01 2007-10-18 アプライド マテリアルズ インコーポレイテッド 電気化学機械的処理のための方法および装置
JP2007081322A (ja) 2005-09-16 2007-03-29 Jsr Corp 化学機械研磨パッドの製造方法
JP4697399B2 (ja) * 2004-06-11 2011-06-08 Jsr株式会社 化学機械研磨パッド及び化学機械研磨方法
US20060258276A1 (en) 2005-05-16 2006-11-16 Chien-Min Sung Superhard cutters and associated methods
US8075372B2 (en) 2004-09-01 2011-12-13 Cabot Microelectronics Corporation Polishing pad with microporous regions
US7523440B2 (en) 2004-11-16 2009-04-21 The Mathworks, Inc. Dynamic generation of formatted user interfaces in software environments
JP2006142439A (ja) 2004-11-22 2006-06-08 Sumitomo Bakelite Co Ltd 研磨パッドおよびこれを用いた研磨方法
US7846008B2 (en) * 2004-11-29 2010-12-07 Semiquest Inc. Method and apparatus for improved chemical mechanical planarization and CMP pad
WO2006057714A2 (en) 2004-11-29 2006-06-01 Rajeev Bajaj Method and apparatus for improved chemical mechanical planarization pad with uniform polish performance
US20080318505A1 (en) * 2004-11-29 2008-12-25 Rajeev Bajaj Chemical mechanical planarization pad and method of use thereof
TWI385050B (zh) * 2005-02-18 2013-02-11 Nexplanar Corp 用於cmp之特製拋光墊及其製造方法及其用途
US20070128991A1 (en) * 2005-12-07 2007-06-07 Yoon Il-Young Fixed abrasive polishing pad, method of preparing the same, and chemical mechanical polishing apparatus including the same
US7267610B1 (en) * 2006-08-30 2007-09-11 Rohm And Haas Electronic Materials Cmp Holdings, Inc. CMP pad having unevenly spaced grooves
US20090062414A1 (en) * 2007-08-28 2009-03-05 David Picheng Huang System and method for producing damping polyurethane CMP pads
KR20100082770A (ko) * 2007-09-03 2010-07-19 세미퀘스트, 인코포레이티드 폴리싱 패드
US8177603B2 (en) * 2008-04-29 2012-05-15 Semiquest, Inc. Polishing pad composition
WO2009140622A2 (en) * 2008-05-15 2009-11-19 3M Innovative Properties Company Polishing pad with endpoint window and systems and method using the same
WO2009158665A1 (en) 2008-06-26 2009-12-30 3M Innovative Properties Company Polishing pad with porous elements and method of making and using the same
KR20110033277A (ko) * 2008-07-18 2011-03-30 쓰리엠 이노베이티브 프로퍼티즈 캄파니 플로팅 요소를 구비한 연마 패드 및 이 연마 패드의 제작 방법과 이용 방법

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10493691B2 (en) 2014-10-17 2019-12-03 Applied Materials, Inc. Polishing articles and integrated system and methods for manufacturing chemical mechanical polishing articles
US10875145B2 (en) 2014-10-17 2020-12-29 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US10384330B2 (en) 2014-10-17 2019-08-20 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US12023853B2 (en) 2014-10-17 2024-07-02 Applied Materials, Inc. Polishing articles and integrated system and methods for manufacturing chemical mechanical polishing articles
US10399201B2 (en) 2014-10-17 2019-09-03 Applied Materials, Inc. Advanced polishing pads having compositional gradients by use of an additive manufacturing process
US9776361B2 (en) 2014-10-17 2017-10-03 Applied Materials, Inc. Polishing articles and integrated system and methods for manufacturing chemical mechanical polishing articles
US9873180B2 (en) 2014-10-17 2018-01-23 Applied Materials, Inc. CMP pad construction with composite material properties using additive manufacturing processes
US11958162B2 (en) 2014-10-17 2024-04-16 Applied Materials, Inc. CMP pad construction with composite material properties using additive manufacturing processes
US11724362B2 (en) 2014-10-17 2023-08-15 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US10821573B2 (en) 2014-10-17 2020-11-03 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US10537974B2 (en) 2014-10-17 2020-01-21 Applied Materials, Inc. CMP pad construction with composite material properties using additive manufacturing processes
US10875153B2 (en) 2014-10-17 2020-12-29 Applied Materials, Inc. Advanced polishing pad materials and formulations
US10953515B2 (en) 2014-10-17 2021-03-23 Applied Materials, Inc. Apparatus and method of forming a polishing pads by use of an additive manufacturing process
US11745302B2 (en) 2014-10-17 2023-09-05 Applied Materials, Inc. Methods and precursor formulations for forming advanced polishing pads by use of an additive manufacturing process
US11446788B2 (en) 2014-10-17 2022-09-20 Applied Materials, Inc. Precursor formulations for polishing pads produced by an additive manufacturing process
US10456886B2 (en) 2016-01-19 2019-10-29 Applied Materials, Inc. Porous chemical mechanical polishing pads
US11772229B2 (en) 2016-01-19 2023-10-03 Applied Materials, Inc. Method and apparatus for forming porous advanced polishing pads using an additive manufacturing process
US10391605B2 (en) 2016-01-19 2019-08-27 Applied Materials, Inc. Method and apparatus for forming porous advanced polishing pads using an additive manufacturing process
US10596763B2 (en) 2017-04-21 2020-03-24 Applied Materials, Inc. Additive manufacturing with array of energy sources
US11471999B2 (en) 2017-07-26 2022-10-18 Applied Materials, Inc. Integrated abrasive polishing pads and manufacturing methods
US11072050B2 (en) 2017-08-04 2021-07-27 Applied Materials, Inc. Polishing pad with window and manufacturing methods thereof
US12208483B2 (en) 2017-08-04 2025-01-28 3M Innovative Properties Company Microreplicated polishing surface with enhanced co-planarity
US11524384B2 (en) 2017-08-07 2022-12-13 Applied Materials, Inc. Abrasive delivery polishing pads and manufacturing methods thereof

Also Published As

Publication number Publication date
US20120315830A1 (en) 2012-12-13
TW201136710A (en) 2011-11-01
JP6004941B2 (ja) 2016-10-12
TWI552832B (zh) 2016-10-11
SG181678A1 (en) 2012-07-30
WO2011082155A3 (en) 2011-11-17
KR20120125612A (ko) 2012-11-16
CN102686362A (zh) 2012-09-19
US9162340B2 (en) 2015-10-20
JP2013516768A (ja) 2013-05-13

Similar Documents

Publication Publication Date Title
US9162340B2 (en) Polishing pads including phase-separated polymer blend and method of making and using the same
US20130102231A1 (en) Organic particulate loaded polishing pads and method of making and using the same
EP2323808B1 (en) Polishing pad with floating elements and method of making and using the same
TWI396603B (zh) 具多孔元件之研磨墊及其製造及使用方法
EP3359335B1 (en) Polishing pads and systems and methods of making and using the same
CN102770239B (zh) 具有局部区域透明部的化学机械抛光垫
JP2004119657A (ja) 研磨パッド、研磨装置、およびそれを用いた研磨方法
JP5145683B2 (ja) 研磨方法、研磨パッド、研磨パッドの製造方法
JP2004358596A (ja) 研磨用積層体の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080060314.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10841628

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13514741

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012547231

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127019847

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10841628

Country of ref document: EP

Kind code of ref document: A2