WO2011080901A1 - 非水電解質二次電池用正極およびそれを用いた非水電解質二次電池 - Google Patents

非水電解質二次電池用正極およびそれを用いた非水電解質二次電池 Download PDF

Info

Publication number
WO2011080901A1
WO2011080901A1 PCT/JP2010/007484 JP2010007484W WO2011080901A1 WO 2011080901 A1 WO2011080901 A1 WO 2011080901A1 JP 2010007484 W JP2010007484 W JP 2010007484W WO 2011080901 A1 WO2011080901 A1 WO 2011080901A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
material layer
positive electrode
current collector
secondary battery
Prior art date
Application number
PCT/JP2010/007484
Other languages
English (en)
French (fr)
Inventor
かおる 長田
芳幸 村岡
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011080901A1 publication Critical patent/WO2011080901A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a positive electrode for a non-aqueous electrolyte secondary battery, and more particularly to improvement of an active material layer included in the positive electrode.
  • the nonaqueous electrolyte secondary battery includes a positive electrode, a negative electrode, a porous insulating layer interposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte.
  • the positive electrode, the negative electrode, and the porous insulating layer are wound to form an electrode group.
  • the positive electrode includes a sheet-like current collector and an active material layer formed on at least one surface of the current collector.
  • Patent Documents 1 and 2 a paste containing an active material is applied to a current collector, and an active material layer is formed on the current collector.
  • a paste application method although the thickness of the active material layer can be easily controlled, there is a limit to the improvement in the filling rate of the active material.
  • an object of the present invention is to provide a positive electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery that have a high capacity and have improved flexibility of an active material layer.
  • a positive electrode for a non-aqueous electrolyte secondary battery of the present invention has a long and sheet-like current collector, and a first active material layer formed on one surface of the current collector, and the first active material The thickness of the layer decreases continuously or stepwise in the direction from one end to the other end in the longitudinal direction of the current collector, and the first active material layer includes Li and a transition metal element
  • An active material composed of a complex oxide containing Me is included, and the filling ratio of the active material in the first active material layer is 85 to 95%.
  • the present invention also includes the above-described positive electrode, negative electrode, a porous insulating layer interposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte, and the positive electrode, the negative electrode, and the porous insulating layer are wound to form an electrode group.
  • the nonaqueous electrolyte secondary battery is provided in which one end portion is disposed on the outer peripheral side of the electrode group and the other end portion is disposed on the center side.
  • the positive electrode of the present invention it is possible to provide a non-aqueous electrolyte secondary battery having high capacity and improved flexibility of the active material layer.
  • the positive electrode of the present invention has a long and sheet-like current collector and a first active material layer formed on one surface of the current collector.
  • the thickness of the first active material layer decreases continuously or stepwise in the direction from one end to the other end in the longitudinal direction of the current collector.
  • the positive electrode of the present invention is wound together with the negative electrode and the porous insulating layer to constitute an electrode group. At this time, one end of the positive electrode is disposed on the outer peripheral side of the electrode group, and the other end is disposed on the center side. That is, the thickness of the active material layer is reduced on the winding start side of the electrode group having a small curvature radius, and the thickness of the first active material layer is increased on the winding end side having a large curvature radius.
  • the stress generated by winding when producing the electrode group is larger on the inner peripheral side than on the outer peripheral side. Therefore, by increasing the thickness of the active material layer on the outer peripheral side and reducing the thickness of the active material layer on the inner peripheral side, it is possible to efficiently relieve the stress caused by winding while maintaining the battery capacity. Can do.
  • the thickness of the active material layer only needs to decrease on average from the outer peripheral side to the inner peripheral side of the electrode group, and a region where the thickness is locally increased may be included.
  • the state in which the thickness of the first active material layer is continuously or gradually reduced is, for example, the following state.
  • the thicknesses of arbitrary three points are measured, and the average thickness of each region is obtained.
  • the average thickness of the first active material layer in the vicinity of one end and T 1 the average thickness of the first active material layer in the vicinity of the center and T 2, the average of the first active material layer in the vicinity of the other end the thickness and T 3.
  • T 1 , T 2 and T 3 satisfy T 1 ⁇ T 2 ⁇ T 3 (where T 1 ⁇ T 3 ), the thickness of the first active material layer decreases continuously or stepwise. It can be said.
  • the vicinity of the end means an area from the outermost part to L / 10
  • the vicinity of the center means from the center in the longitudinal direction to the left and right.
  • the average thickness T 1 in the vicinity of one end (first end) of the first active material layer is 1.05 to 4 times the average thickness T 3 in the vicinity of the other end (second end). It is preferable that the ratio is 1.1 to 2 times.
  • the average thickness of the first active material layer is preferably 10 to 80 ⁇ m, and more preferably 10 to 50 ⁇ m.
  • the average thickness of the first active material layer may be determined an average of T 1, T 2 and T 3.
  • the filling rate of the active material in the first active material layer is 85 to 95%.
  • a preferable lower limit of the filling ratio of the active material in the first active material layer is 85%, and a preferable upper limit is 90%.
  • the filling rate of the active material may be combined with any lower limit and upper limit.
  • the active material filling rate is the volume ratio of the active material to the entire active material layer. The higher the active material filling rate, the higher the capacity of the battery can be obtained, but the active material layer is more likely to break or peel off. Therefore, the thickness of the active material layer is reduced continuously or stepwise in the direction from one end portion to the other end portion in the longitudinal direction of the current collector, and the stress caused by winding is efficiently reduced. Is effective.
  • the filling rate of the active material can be obtained by measuring the weight of the active material layer and the thickness of the active material layer, or by measuring the thickness of the active material layer and the amount of the active material.
  • the abundance of the active material can be measured by ICP emission spectral analysis or the like.
  • FIG. 1 is a cross-sectional view schematically showing a positive electrode according to an embodiment of the present invention. 1 includes a sheet-like current collector 20, a first active material layer 21 formed on one surface of the current collector, and a second active material formed on the other surface of the current collector. Layer 22.
  • the thickness of the second active material layer decreases continuously or stepwise in the direction from one end to the other end in the longitudinal direction of the current collector. It is preferable.
  • the state where the thickness of the second active material layer is reduced continuously or stepwise refers to the following state, like the first active material layer.
  • the average thickness of the second active material layer near one end is t 1
  • the average thickness of the second active material layer near the center is t 2
  • the average of the second active material layer near the other end Let thickness be t 3 .
  • t 1 , t 2 and t 3 satisfy t 1 ⁇ t 2 ⁇ t 3 (where t 1 ⁇ t 3 ), the thickness of the second active material layer decreases continuously or stepwise. It can be said.
  • the vicinity of the end portion refers to a region from the outermost end portion to 1/10 when the dimension in the longitudinal direction of the second active material layer is l, and the vicinity of the center means the left and right sides from the center in the longitudinal direction. An area up to 1/10.
  • the average thickness t 1 in the vicinity of one end corresponding to the first end 23 of the first active material layer is the average in the vicinity of the other end corresponding to the second end 24.
  • the thickness is preferably 1.1 to 3 times the thickness t 3 , more preferably 1.1 to 2 times.
  • the average thickness of the second active material layer is preferably 15 to 90 ⁇ m, and more preferably 15 to 80 ⁇ m.
  • the average thickness of the second active material layer may be determined an average of t 1, t 2 and t 3.
  • the average thickness of the second active material layer may be t 2 .
  • the filling rate of the active material in the second active material layer is preferably 85 to 95% as in the first active material layer.
  • a preferable lower limit of the filling ratio of the active material in the second active material layer is 85%, and a preferable upper limit is 90%.
  • the filling rate of the active material may be combined with any lower limit and upper limit.
  • the filling rate of the active material in the second active material layer can be obtained by the same method as that for the first active material layer.
  • the average thickness of the first active material layer is preferably smaller than the average thickness of the second active material layer. At this time, a region where the thickness of the first active material layer is locally larger than the thickness of the second active material layer may be included.
  • the first active material layer is disposed on the inner peripheral surface of the current collector, and the second active material layer is disposed on the other surface.
  • the average thickness of the first active material layer is preferably 0.7 to 0.95 times, more preferably 0.85 to 0.95 times the average thickness of the second active material layer.
  • the structure of the active material layer is not particularly limited. It may be a homogeneous film or may have a structure containing active material particles such as a columnar or dendritic shape.
  • the active material forms a deposited film that does not contain a binder. Thereby, the filling rate of the active material can be improved.
  • the binder is made of a resin component and does not contribute to the charge / discharge capacity. Therefore, a non-aqueous electrolyte secondary battery with a higher capacity can be obtained by forming a deposited film that does not contain a binder.
  • the deposited film preferably contains dendritic active material particles.
  • the dendritic active material particles are branched into a plurality of branches from the bottom on the current collector side toward the surface of the deposited film.
  • the positive electrode for nonaqueous electrolyte secondary batteries which has a favorable charging / discharging characteristic by especially a high current density is obtained.
  • the bottom is bonded to the current collector.
  • branching decreases, and the contact area between the current collector and the dendritic active material particles increases. Therefore, the electronic resistance between the current collector and the active material layer is reduced.
  • the number of branches increases as it goes to the surface side of the active material layer.
  • the active material layer containing the dendritic active material particles has excellent flexibility, it is more difficult to peel off from the current collector even when wound. Therefore, when the active material layer according to the present invention includes dendritic active material particles, the stress generated by the winding can be sufficiently relaxed, and the active material layer becomes more difficult to peel from the current collector.
  • the dendritic active material particles include, for example, active material particles such as cocoons, tufts, and broccolis.
  • the above active material layer preferably contains a polymer gel having ion conductivity between the dendritic active material particles. Thereby, damage to the active material particles due to external stress and peeling of the active material layer can be further suppressed.
  • the polymer gel includes a non-aqueous electrolyte, a conductive aid, and a polymer that holds them.
  • a non-aqueous electrolyte When the polymer gel holds the non-aqueous electrolyte, ion conductivity is exhibited, and charge / discharge characteristics at a high current density can be sufficiently ensured.
  • peeling of the active material layer derived from the stress caused by winding or the volume expansion of the active material accompanying charging / discharging can be suppressed more favorably.
  • the polymer gel can be included in the active material layer by applying the polymer gel on the surface of the active material layer or immersing the positive electrode on which the active material layer is formed in the polymer gel.
  • the method for producing the first active material layer and the second active material layer is not particularly limited, and examples thereof include a thermal plasma method and a spray pyrolysis method. Among these, it is preferable to form a deposited film not containing a binder by a thermal plasma method. According to the thermal plasma method, the filling rate of the active material can be easily increased, and appropriate voids can be formed in the active material layer.
  • FIG. 2A is a cross-sectional view schematically illustrating an example of a film forming apparatus.
  • the film forming apparatus includes a chamber 1 that provides a space for film formation and a thermal plasma generation source.
  • the thermal plasma generation source includes a torch 10 that provides a space for generating thermal plasma, and an induction coil 2 that surrounds the torch 10.
  • a power source 9 is connected to the induction coil 2.
  • the chamber 1 may or may not include the exhaust pump 5 as necessary. By removing the air remaining in the chamber 1 with the exhaust pump 5 and then generating thermal plasma, contamination of the active material can be suppressed. By using the exhaust pump 5, the shape of the plasma gas flow can be easily controlled. Furthermore, it becomes easy to control the film forming conditions such as the pressure in the chamber 1.
  • the chamber 1 may include a filter (not shown) for collecting dust.
  • the stage 3 is installed vertically below the torch 10. Although the material of the stage 3 is not specifically limited, It is preferable that it is excellent in heat resistance, for example, stainless steel etc. are mentioned.
  • a current collector 4 is disposed on the stage 3.
  • the stage 3 may have a cooling unit (not shown) that cools the current collector as necessary.
  • the stage 3 may be a roll. In this case, the film thickness is continuously reduced in the direction from one end to the other end in the longitudinal direction of the current collector by forming a film on the current collector surface while sequentially changing the rotation speed of the roll.
  • the active material layer can be easily formed.
  • the torch 10 is preferably made of, for example, ceramics (quartz or silicon nitride). By increasing the inner diameter of the torch, the reaction field can be made wider. Therefore, an active material layer can be formed efficiently.
  • a gas supply port 11 and a raw material supply port 12 are arranged at the other end of the torch 10.
  • the gas supply port 11 is connected to gas supply sources 6a and 6b via valves 7a and 7b.
  • the raw material supply port 12 is connected to the raw material supply source 8.
  • a plurality of gas supply ports 11 may be provided.
  • the direction in which the gas is introduced is not particularly limited, and may be the axial direction of the torch 10, a direction perpendicular to the axial direction of the torch 10, or the like.
  • the gas flow in the thermal plasma becomes thinner and the central portion of the gas flow becomes higher temperature, so that the raw material is easily vaporized and decomposed.
  • the voltage to be applied may be a high frequency voltage or a DC voltage.
  • a high frequency voltage and a DC voltage may be used in combination.
  • the induction coil 2 and the torch 10 become high temperature. Therefore, it is preferable to provide a cooling unit (not shown) around the induction coil 2 and the torch 10.
  • a cooling unit (not shown) around the induction coil 2 and the torch 10.
  • a water-cooled cooling device or the like may be used as the cooling unit.
  • the first active material layer and the second active material layer can be formed as follows.
  • thermal plasma is generated.
  • the thermal plasma is preferably generated in an atmosphere containing at least one gas selected from the group consisting of argon, helium, oxygen, hydrogen and nitrogen. From the viewpoint of generating thermal plasma stably and efficiently, it is more preferable to generate thermal plasma in an atmosphere containing diatomic molecules such as hydrogen.
  • a reactive gas such as oxygen, hydrogen, nitrogen, or an organic gas
  • an active material is generated using the reaction between the raw material and the reactive gas. Also good.
  • the thermal plasma is generated by applying a high frequency to the coil from an RF power source.
  • the frequency of the power supply is preferably 1000 Hz or more, for example, 13.56 MHz.
  • the injection speed of the gas ejected from the gas supply port is slower than the case of generating plasma by DC arc discharge (several thousand m / s), about several ten to 100 m / s. For example, it can be 900 m / s or less.
  • DC arc discharge severe thousand m / s
  • the time for which the raw material stays in the thermal plasma can be made relatively long, and the raw material can be sufficiently dissolved, vaporized or decomposed in the thermal plasma. Therefore, it is possible to efficiently synthesize the active material and form a film on the current collector.
  • the raw material of the active material layer is supplied into the thermal plasma.
  • grains used as the precursor of an active material in a thermal plasma are produced
  • the respective raw materials may be separately supplied into the thermal plasma, but it is preferable to supply the raw plasma after sufficiently mixing the raw materials.
  • the particles generated in the thermal plasma are supplied from the substantially normal direction of the surface of the current collector and are deposited on the current collector to form a positive electrode active material layer.
  • the thickness of the active material layer can be reduced continuously or stepwise in the direction from one end to the other end in the longitudinal direction of the current collector as follows.
  • the surface on which the active material layer is formed is divided into a plurality of regions having an arbitrary size, and active material layers having different thicknesses are formed in the respective regions. Thereby, the thickness of the active material layer can be reduced stepwise in the direction from one end to the other end in the longitudinal direction of the current collector.
  • the region other than the region where the active material layer is formed may be covered with a shielding object such as a mask.
  • the thickness of the active material layer can be changed in each region, for example, by controlling the film formation time and the supply rate of the raw material into the thermal plasma.
  • the stage 3 may be a roll, and the active material layer may be formed on the current collector surface while sequentially changing the rotation speed of the roll. Also by this method, the thickness of the active material layer can be reduced continuously or stepwise in the direction from one end to the other end in the longitudinal direction of the current collector.
  • the raw material supplied into the thermal plasma may be in a liquid state or a powder state. However, it is easier to supply the raw material in the thermal plasma in a powder state, which is advantageous in terms of manufacturing cost. Powdered raw materials are also relatively cheaper than liquid state raw materials such as alkoxides.
  • the raw material is supplied into the thermal plasma in a liquid state, it may be necessary to remove impurities such as solvent and carbon.
  • impurities such as solvent and carbon.
  • a positive electrode having excellent electrochemical characteristics can be obtained.
  • D50 volume-based median diameter measured by a laser diffraction particle size distribution measuring device
  • D50 volume-based median diameter measured by a laser diffraction particle size distribution measuring device
  • the feed rate of the raw material into the thermal plasma varies depending on the volume of the apparatus, the temperature of the plasma, etc., but is, for example, 0.0002 to 0.05 g / min per kilowatt output of the high frequency voltage applied to the induction coil. preferable.
  • the feed rate of the raw material into the thermal plasma is 0.05 g / min or less per kilowatt output of the high-frequency voltage applied to the induction coil, it becomes easy to ensure adhesion with the current collector.
  • the structure of the active material layer can be controlled by the supply rate of the raw material into the thermal plasma. Therefore, it is preferable to obtain in advance information on the relationship between the supply rate of the raw material into the thermal plasma and the structure of the active material layer.
  • An active material layer having a desired structure can be formed by controlling the supply rate of the raw material into the thermal plasma based on the obtained information.
  • a raw material containing a lithium compound and a compound containing a transition metal element Me (i) a raw material containing a composite oxide containing Li and the transition metal element Me, or the like is used.
  • lithium compound examples include lithium oxide, lithium hydroxide, lithium carbonate, and lithium nitrate. These may be used alone or in combination of two or more.
  • Examples of the compound containing the transition metal element Me include a nickel compound, a cobalt compound, a manganese compound, and an iron compound. These may be used alone or in combination of two or more.
  • Examples of the nickel compound include nickel oxide, nickel carbonate, nickel nitrate, nickel hydroxide, nickel oxyhydroxide, and the like.
  • Examples of the cobalt compound include cobalt oxide, cobalt carbonate, cobalt nitrate, and cobalt hydroxide.
  • Examples of the manganese compound include manganese oxide and manganese carbonate.
  • Examples of the iron compound include iron oxide and iron carbonate.
  • a lithium compound and a compound containing a transition metal are supplied into thermal plasma as a raw material for the active material.
  • These compounds may be supplied separately into the thermal plasma, but it is preferable to supply them to the thermal plasma after sufficient mixing.
  • the mixing ratio of the lithium compound in the raw material is preferably larger than the stoichiometric ratio of lithium in the target active material.
  • a composite oxide (positive electrode active material) containing Li and the transition metal element Me may be supplied into the thermal plasma as a raw material.
  • the composite oxide containing Li and the transition metal element Me supplied into the thermal plasma is dissolved, vaporized, decomposed, then synthesized again into the composite oxide and deposited on the current collector.
  • the positive electrode active material layer of the present invention includes a positive electrode active material made of a composite oxide containing Li and a transition metal element Me (hereinafter also simply referred to as a composite oxide).
  • the composite oxide preferably has a layered or hexagonal crystal structure or a spinel structure.
  • the transition metal element Me include Co, Ni, Mn, Fe, and the like.
  • Specific composite oxides include LiCoO 2 , LiNi 1/2 Mn 1/2 O 2 , LiNi 1/2 Co 1/2 O 2 , LiNiO 2 , LiNi 1/3 Mn 1/3 Co 1/3 O. 2 , LiNi 1/2 Fe 1/2 O 2 , LiMn 2 O 4 , LiFePO 4 , LiCoPO 4 , LiMnPO 4 , Li 4/3 Ti 5/3 O 4 and the like.
  • the positive electrode active material may contain Al.
  • the positive electrode active material containing Al is, for example, a general formula: Li x Me y Al 1-y O 2 + a (Me is at least one selected from the group consisting of Co, Ni, Mn, and Fe, 0.9 ⁇ x ⁇ 1.5, 0.01 ⁇ y ⁇ 0.3, 0 ⁇ a ⁇ 0.2). Only one type of positive electrode active material may be used alone, or two or more types may be used in combination.
  • the method of forming the active material layer is not limited to the thermal plasma method as described above.
  • a method capable of forming an active material layer having an active material filling rate of 85 to 95% can be arbitrarily selected.
  • the positive electrode current collector is not particularly limited, and for example, a conductive material generally used in an electrochemical element can be used. Specifically, it is desirable to use Al, Ti, stainless steel (SUS), Au, Pt, or the like. These current collectors have relatively little metal elution from the current collector even when Li is desorbed from the active material to about 3.5 to 4.5 V (vs. Li / Li + ). Is preferable.
  • the nonaqueous electrolyte secondary battery of the present invention will be described.
  • the non-aqueous electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode, a porous insulating layer interposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte, and the positive electrode, the negative electrode, and the porous insulating layer are wound. To constitute an electrode group.
  • the porous insulating layer is impregnated with a nonaqueous electrolyte.
  • the case housing the positive electrode, the negative electrode, and the porous insulating layer and the sealing plate may be insulated from each other by a gasket or may be welded.
  • the non-aqueous electrolyte secondary battery of the present invention includes the positive electrode for a non-aqueous electrolyte secondary battery described above, and other configurations are not particularly limited.
  • one end of the current collector is disposed on the outer peripheral side of the electrode group, and the other end is disposed on the center side. That is, the thickness of the active material layer is small on the winding start side (center side) of the electrode group having a small curvature radius. Therefore, on the winding start side with a small curvature radius, the stress generated by winding can be sufficiently suppressed.
  • the thickness of the first active material layer is large on the winding end side (outer peripheral side) having a large curvature radius. On the winding end side with a large curvature radius, the stress generated by winding is relatively small, and therefore the active material layer is difficult to peel off from the current collector during winding. Therefore, it is possible to increase the thickness of the active material layer toward the winding end side having a large curvature radius. According to the present invention, it is possible to increase the capacity while suppressing the peeling of the active material layer.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer formed on the negative electrode current collector.
  • a carbon material, a metal, an alloy, a metal oxide, a metal nitride, or the like is used as the negative electrode active material contained in the negative electrode active material layer.
  • the carbon material natural graphite, artificial graphite and the like are preferable.
  • the metal or alloy lithium alone, lithium alloy, silicon alone, silicon alloy, tin alone, tin alloy and the like are preferable.
  • the metal oxide is preferably SiO x (0 ⁇ x ⁇ 2, preferably 0.1 ⁇ x ⁇ 1.2).
  • the negative electrode current collector it is desirable to use Cu, Ni, SUS or the like.
  • porous insulating layer for example, a nonwoven fabric or a microporous film made of polyethylene, polypropylene, aramid resin, amideimide, polyphenylene sulfide, polyimide or the like can be used.
  • the nonwoven fabric or microporous film may be a single layer or a multilayer structure.
  • the inside or the surface of the porous insulating layer may contain a heat resistant filler such as alumina, magnesia, silica, titania.
  • the non-aqueous electrolyte includes a non-aqueous solvent and a solute dissolved in the non-aqueous solvent.
  • the solute is not particularly limited, and may be appropriately selected in consideration of the redox potential of the active material.
  • Preferred solutes include LiPF 6 and LiBF 4 .
  • As the solute only one kind may be used alone, or two or more kinds may be used in combination.
  • the non-aqueous solvent is not particularly limited.
  • ethylene carbonate (EC), propylene carbonate, butylene carbonate, vinylene carbonate, dimethyl carbonate (DMC), diethyl carbonate, ethyl methyl carbonate (EMC), or the like may be used.
  • a non-aqueous solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Example 1 (i) Production of Positive Electrode
  • a torch made of a silicon nitride tube having a diameter of 42 mm and a copper induction coil surrounding the torch were used.
  • a sheet-like current collector (5 ⁇ 20 cm, thickness 20 ⁇ m) containing Al was placed on the stage. Thereafter, the air in the chamber was replaced with argon gas. Argon gas was introduced into the chamber at a flow rate of 50 L / min, and oxygen gas was introduced at a flow rate of 30 L / min. The pressure in the chamber was 18 kPa. A high frequency voltage of 42 kW and a frequency of 3.5 MHz was applied to the induction coil to generate thermal plasma.
  • Argon gas was introduced into one flow path at 50 L / min and oxygen gas at 30 L / min, and these mixed gases were introduced into the chamber from two directions.
  • the ratio of the gas introduction amount from the axial direction of the torch and the gas introduction amount from the direction substantially perpendicular to the axial direction of the torch (hereinafter referred to as D x : D y ) was set to 35:45.
  • An active material layer A was formed by dividing one surface of the current collector into a first region to a fourth region each having a size of about 5 ⁇ 5 cm.
  • the supply rate of the raw material into the thermal plasma was set to 0.1 g / min.
  • the temperature in the vicinity of the current collector during film formation was about 500 ° C.
  • a film is formed for 300 minutes in a region (fourth region) on the other end (second end) side in the direction from one end to the other end in the longitudinal direction of the current collector, and the thickness is 15 ⁇ m.
  • a film was formed.
  • a film was formed for 450 minutes in a region (third region) adjacent to the fourth region to form a film having a thickness of 22 ⁇ m.
  • a film having a thickness of 33 ⁇ m was formed in a region adjacent to the third region (second region) for 680 minutes.
  • a film having a thickness of 50 ⁇ m was formed in a region (first region) on one end (first end) side adjacent to the second region for 1015 minutes.
  • an active material layer A having a thickness that gradually decreases in the direction from one end to the other end in the longitudinal direction of the current collector was formed.
  • the thickness of the first region to the fourth region of the active material layer A was measured at three points for each region, and the average was obtained.
  • the average thickness of the active material layer A was 30 ⁇ m.
  • the other surface of the current collector was divided into a first region to a fourth region in the same manner as the active material layer A, and an active material layer B was formed.
  • the first region to the fourth region of the active material layer B correspond to the first region to the fourth region of the active material layer A.
  • the raw material for the active material layer B was the same as that for the active material layer A.
  • the supply rate of the raw material into the thermal plasma was set to 0.1 g / min as in the active material layer A.
  • the temperature in the vicinity of the current collector during film formation was about 500 ° C.
  • a film having a thickness of 10 ⁇ m was formed in the fourth region corresponding to the fourth region of the active material layer A for 200 minutes.
  • a film having a thickness of 15 ⁇ m was formed in the third region corresponding to the third region of the active material layer A for 300 minutes. Further, a film having a thickness of 22 ⁇ m was formed in the second region corresponding to the second region of the active material layer A for 450 minutes. Finally, a film having a thickness of 33 ⁇ m was formed in the first region corresponding to the first region of the active material layer A for 675 minutes. In this manner, an active material layer B having a thickness that gradually decreases in the direction from one end portion to the other end portion in the longitudinal direction of the current collector was formed. The thicknesses of the first region to the fourth region of the active material layer B were obtained in the same manner as the active material layer A. In the above, the active material layer A corresponds to the second active material layer, and the active material layer B corresponds to the first active material layer. The average thickness of the active material layer B was 20 ⁇ m.
  • Example 1 It was confirmed by X-ray diffraction measurement that an active material layer containing LiCoO 2 was formed in Example 1.
  • the filling rate of the active material in the positive electrode was 90% when determined from the average thickness of the active material layer and the weight of the active material. Thereafter, the positive electrode was cut to a width that can be accommodated in a cylindrical battery case.
  • the prepared positive electrode was wound around a SUS core having a diameter of 4 mm. Winding was started from the end of the positive electrode on the fourth region side, and wound so that the end of the first region side was arranged on the outer peripheral side. When the positive electrode was confirmed, the active material layer was not damaged or peeled off.
  • negative electrode 150 parts by weight of graphite as a negative electrode active material, 9 parts by weight of styrene-butadiene copolymer (SBR) as a negative electrode binder, and 1.5 parts by weight of a thickener.
  • SBR styrene-butadiene copolymer
  • a thickener 1.5 parts by weight of a thickener.
  • Carboxymethylcellulose (CMC) and an appropriate amount of water as a dispersion medium were mixed to prepare a negative electrode mixture paste.
  • a negative electrode mixture paste was applied to both sides of a copper foil having a thickness of 8 ⁇ m, which was a negative electrode current collector, and dried.
  • the dried coating film was rolled with a roller to produce a negative electrode having a sheet-like current collector and a negative electrode active material layer.
  • the total thickness of the current collector and the negative electrode active material layer (both sides) (negative electrode thickness) was 190 ⁇ m. Thereafter, the negative electrode was cut to a width that could be accommodated in a cylindrical battery case.
  • non-aqueous electrolyte was prepared by dissolving LiPF 6 as a solute at a concentration of 1.25 mol / L in a non-aqueous solvent.
  • the non-aqueous solvent is a mixed solvent of ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) in a volume ratio of 1: 1: 8, and 4% by volume of vinylene carbonate (VC) as an additive. What was added was used.
  • a cylindrical nonaqueous electrolyte secondary battery shown in FIG. 3 was produced by the following procedure.
  • One end of an aluminum positive electrode lead 35 a was connected to the current collector of the positive electrode 35.
  • One end of a copper negative electrode lead 36 a was connected to the current collector of the negative electrode 36.
  • the positive electrode 35 and the negative electrode 36 were wound through a separator 37 between them to produce a columnar electrode group.
  • one end of the current collector of the positive electrode 35 was arranged on the outer peripheral side of the electrode group, and the other end was arranged on the center side.
  • the first active material layer was disposed on the inner peripheral surface of the current collector, and the second active material layer was disposed on the other surface.
  • the both end surfaces of the obtained electrode group were sandwiched between the upper insulating plate 38a and the lower insulating plate 38b and accommodated in a cylindrical battery case 31 having a predetermined size.
  • the other end of the negative electrode lead 36 a was connected to the inner bottom surface of the battery case 31.
  • 5 g of the nonaqueous electrolyte was poured into the battery case 31, and the electrode group was impregnated with the nonaqueous electrolyte under reduced pressure.
  • Example 2 First paste was prepared by mixing N-methyl-2-pyrrolidone (NMP), polyvinylidene fluoride (PVDF, Kureha Co., Ltd. # 7200) and acetylene black in a weight ratio of 2: 98: 2. .
  • NMP N-methyl-2-pyrrolidone
  • PVDF polyvinylidene fluoride
  • acetylene black in a weight ratio of 2: 98: 2. .
  • LiPF 6 as a solute is dissolved at a concentration of 1.25 mol / L, and a liquid non-aqueous electrolyte is obtained.
  • This liquid non-aqueous electrolyte, PVDF (# 8500 manufactured by Kureha Corporation), and dimethyl carbonate (DMC) were mixed at a weight ratio of 3:45:52 to prepare a second paste.
  • a positive electrode similar to that in Example 1 was immersed in the first paste for 10 seconds, the positive electrode was impregnated with the first layer solution, and then dried at 80 ° C. for 15 minutes. Thereafter, the positive electrode was immersed in the second paste for 10 seconds and dried at 80 ° C. for 30 minutes. In this way, the polymer gel was included in the active material layer. This produced the positive electrode of Example 2.
  • a cylindrical nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the above positive electrode was used.
  • Comparative Example 1 >> The active material layer A having a thickness of 22 ⁇ m is formed on almost the entire surface of one surface of the sheet-like current collector similar to that in Example 1 at a raw material supply rate similar to that in Example 1 for 450 minutes. did. Thereafter, a film was formed on almost the entire other surface of the current collector for 450 minutes at the same raw material supply rate as in Example 1 to form an active material layer B having a thickness of 22 ⁇ m. Thereby, the positive electrode of Comparative Example 1 was produced. The thicknesses of the active material layers A and B of Comparative Example 1 hardly changed in the direction from one end to the other end in the longitudinal direction of the current collector. When the produced positive electrode was evaluated in the same manner as in Example 1, the active material layer was peeled off from the current collector. Therefore, a cylindrical battery could not be manufactured.
  • Comparative Example 2 A current collector (thickness 1 mm) made of an Au plate was placed on the stage, and an active material layer was formed on the current collector using a magnetron sputtering apparatus. LiCoO 2 was used as a target. The target diameter was 3 inches. The distance between the current collector on the stage and the target was 3.5 cm.
  • the degree of vacuum in the chamber was set to 5 ⁇ 10 ⁇ 2 Pa using a rotary pump and a diffusion pump. Thereafter, argon gas was introduced into the chamber at a flow rate of 8 ⁇ 10 ⁇ 2 L / min and oxygen gas was introduced at a flow rate of 2 ⁇ 10 ⁇ 2 L / min so that the degree of vacuum in the chamber was 1 Pa.
  • a high frequency voltage of 80 W and a frequency of 13.56 MHz was applied to the target to generate plasma.
  • the temperature in the vicinity of the current collector was set to 300 ° C., and one surface of the current collector was divided into a first region to a fourth region each having a size of about 5 ⁇ 5 cm to form an active material layer A.
  • a film is formed for 900 minutes in a region (fourth region) on the other end (second end) side in the direction from one end to the other end in the longitudinal direction of the current collector, and the thickness is 15 ⁇ m.
  • a film was formed.
  • a film having a thickness of 22 ⁇ m was formed in a region adjacent to the fourth region (third region) for 1320 minutes.
  • a film having a thickness of 33 ⁇ m was formed in a region adjacent to the third region (second region) for 1980 minutes.
  • a film having a thickness of 50 ⁇ m was formed in a region (first region) adjacent to the second region on one end (first end) side (first region) for 3000 minutes.
  • an active material layer A having a thickness that gradually decreases in the direction from one end to the other end in the longitudinal direction of the current collector was formed.
  • the average thickness of the active material layer A was 30 ⁇ m.
  • the other surface of the current collector was divided into a first region to a fourth region in the same manner as described above to form an active material layer B.
  • the first region to the fourth region of the active material layer B correspond to the first region to the fourth region of the active material layer A.
  • the raw material for the active material layer B was the same as that for the active material layer A.
  • the temperature in the vicinity of the current collector during film formation was about 300 ° C.
  • a film having a thickness of 10 ⁇ m was formed in a fourth region corresponding to the fourth region of the active material layer A for 600 minutes.
  • a film having a thickness of 15 ⁇ m was formed in a third region corresponding to the third region of the active material layer A for 900 minutes.
  • a film having a thickness of 22 ⁇ m was formed in the second region corresponding to the second region of the active material layer A for 1320 minutes.
  • a film having a thickness of 33 ⁇ m was formed in the first region corresponding to the first region of the active material layer for 1980 minutes.
  • an active material layer B having a thickness that gradually decreases in the direction from one end to the other end in the longitudinal direction of the current collector was formed.
  • the active material layer A corresponds to the second active material layer
  • the active material layer B corresponds to the first active material layer.
  • the average thickness of the active material layer B was 20 ⁇ m.
  • Example 1 After charging / discharging, the batteries of the examples and comparative examples were disassembled, the electrode group was taken out, and the presence or absence of peeling of the positive electrode was confirmed. In both Example 1 and Example 2, no breakage or peeling of the active material layer was confirmed.
  • the active material layer was peeled off from the current collector.
  • the active material layer formed by sputtering has an excessively high filling rate of the active material. Therefore, the flexibility of the electrode becomes insufficient, the expansion and contraction associated with charge / discharge cannot be relieved, and the active material layer is considered to have peeled from the current collector.
  • Example 2 Compared to Comparative Example 2, in Examples 1 and 2, the discharge capacity at the 20th cycle was larger. In Comparative Example 2, it is considered that the active material layer was formed excessively densely, so that the active material layer was peeled off from the current collector without being able to withstand the expansion and contraction associated with charge and discharge, and the capacity was significantly reduced. . In Example 2 in which the active material layer contains a polymer gel, the discharge capacity at the 20th cycle was further improved than in Example 1.
  • the positive electrode for a non-aqueous electrolyte secondary battery of the present invention has a high capacity and the active material layer is difficult to peel off from the current collector.
  • the present invention it is possible to provide a positive electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery that have a high capacity and in particular have improved the flexibility of the active material layer.
  • the nonaqueous electrolyte secondary battery of the present invention is useful as a power source for small electronic devices such as mobile phones and large electronic devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 長尺かつシート状の集電体と、集電体の一方の面に形成された第1活物質層と、を有し、第1活物質層の厚さが、集電体の長手方向における一方の端部から他方の端部に向かう方向において、連続的または段階的に小さくなっており、第1活物質層が、Liおよび遷移金属元素Meを含む複合酸化物からなる活物質を含み、第1活物質層における活物質の充填率が85~95%である、非水電解質二次電池用正極。この非水電解質二次電池用正極は、高容量であり、かつ活物質層が集電体から剥がれにくい。

Description

非水電解質二次電池用正極およびそれを用いた非水電解質二次電池
 本発明は、非水電解質二次電池用正極に関し、特に正極に含まれる活物質層の改良に関する。
 近年、パソコン、携帯電話等の電子機器のモバイル化が急速に進んでいる。これらの電子機器の電源として、小型で軽量かつ高容量な二次電池が必要とされている。このような理由から、高エネルギー密度化が可能な非水電解質二次電池の開発が広くなされている。
 非水電解質二次電池は、正極、負極、正極と負極との間に介在する多孔質絶縁層、および非水電解質を具備する。また、正極と負極と多孔質絶縁層とが捲回されて電極群を構成している。正極は、シート状の集電体と、集電体の少なくとも一方の面に形成された活物質層とを有する。
 電極群の内周側では、捲回によって電極に生じる応力が大きい。そのため、活物質層の破損や、集電体からの活物質層の剥がれ等が起こりやすい。そこで、特許文献1および2では、活物質層の一部の厚さを小さくしている。これにより、捲回によって生じる応力を緩和できると述べられている。
 特許文献1および2では、活物質を含むペーストを集電体に塗布して、集電体に活物質層を形成している。このようなペースト塗布法では、活物質層の厚さを制御しやすいものの、活物質の充填率の向上に限界がある。
 そこで、活物質の充填率を向上させるために様々な取り組みが行われている。例えば、導電剤や結着剤を用いずに、集電体表面に活物質を堆積させ、緻密な活物質層を形成することが提案されている(特許文献3および4参照)。
特開2004-303622号公報 特開2009-181833号公報 特開2007-5219号公報 特開2002-298834号公報
 特許文献1および2のようなペースト塗布法において、活物質の充填率を高くするには、塗膜をできるだけ大きい圧力で圧延することが重要になる。一方、活物質層の厚さを連続的または段階的に変化させるには、集電体に供給するペースト量や塗膜に印加される圧力を、連続的または段階的に変化させる必要がある。しかし、圧延の圧力が大きくなると、このような制御は困難になる。例えば、高い圧力が印加される部分で集電体が裂けたりするため、活物質層の厚さを変化させるのは非常に困難である。すなわち、ペースト塗布法では、活物質の充填率が高く、かつ活物質層の厚さを連続的または段階的に変化させた電極を形成することは困難である。
 特許文献3および4の活物質層は、活物質の充填率が高すぎるため、電極の柔軟性が不十分である。このような活物質層は、厚さを制御したとしても、捲回によって生じる応力を十分に緩和できない。
 そこで、本発明は、高容量であり、かつ活物質層の柔軟性を向上させた非水電解質二次電池用正極および非水電解質二次電池を提供することを目的とする。
 本発明の非水電解質二次電池用正極は、長尺かつシート状の集電体と、集電体の一方の面に形成された第1活物質層と、を有し、第1活物質層の厚さが、集電体の長手方向における一方の端部から他方の端部に向かう方向において、連続的または段階的に小さくなっており、第1活物質層が、Liおよび遷移金属元素Meを含む複合酸化物からなる活物質を含み、第1活物質層における活物質の充填率が85~95%である。
 また、本発明は、上記の正極、負極、正極と負極との間に介在する多孔質絶縁層、および非水電解質を具備し、正極と負極と多孔質絶縁層とが捲回されて電極群を構成しており、一方の端部が電極群の外周側に配置され、他方の端部が中心側に配置されている、非水電解質二次電池を提供する。
 本発明の正極を用いることにより、高容量であり、かつ活物質層の柔軟性を向上させた非水電解質二次電池を提供することができる。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本願の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
本発明の一実施形態に係る正極の構造を概略的に示す断面図である。 成膜装置の一形態を概略的に示す縦断面図である。 成膜装置の別の一形態に含まれるロール状のステージを概略的に示す縦断面図である。 円筒型の非水電解質二次電池を概略的に示す断面図である。
 本発明の正極は、長尺かつシート状の集電体と、集電体の一方の面に形成された第1活物質層とを有する。第1活物質層の厚さは、集電体の長手方向における一方の端部から他方の端部に向かう方向において、連続的または段階的に小さくなっている。本発明の正極は、負極および多孔質絶縁層とともに捲回され、電極群を構成する。このとき、正極の一方の端部が電極群の外周側に配置され、他方の端部が中心側に配置される。すなわち、曲率半径の小さい電極群の巻き始め側において、活物質層の厚さが小さくなり、曲率半径の大きい巻き終わり側において、第1活物質層の厚さが大きくなる。電極群を作製する際の捲回によって生じる応力は、外周側より内周側の方が大きい。そのため、外周側の活物質層の厚さを大きくし、内周側の活物質層の厚さを小さくすることで、電池の容量を維持しつつ、捲回によって生じる応力を効率よく緩和することができる。活物質層の厚さは、電極群の外周側から内周側に向かって平均的に小さくなっていればよく、局所的に厚さが大きくなっている領域が含まれていても良い。
 第1活物質層の厚さが連続的または段階的に小さくなっている状態とは、例えば、以下のような状態である。第1活物質層の一方の端部付近、中央付近および他方の端部付近のそれぞれの領域において、任意の3点の厚さを測定し、各領域の平均厚さを求める。一方の端部付近における第1活物質層の平均厚さをT1とし、中央付近における第1活物質層の平均厚さをT2とし、他方の端部付近における第1活物質層の平均厚さをT3とする。T1、T2およびT3が、T1≧T2≧T3(ただし、T1≠T3)を満たすとき、第1活物質層の厚さが連続的または段階的に小さくなっているといえる。ここで、端部付近とは、第1活物質層の長手方向における寸法をLとするとき、最端部からL/10までの領域をいい、中央付近とは、長手方向における中心から、左右にL/10までの領域をいう。
 第1活物質層の一方の端部(第1端部)付近における平均厚さT1は、他方の端部(第2端部)付近における平均厚さT3の1.05~4倍であることが好ましく、1.1~2倍であることがより好ましい。第1活物質層の厚さをこのように制御することで、電池の容量を維持しつつ、捲回によって生じる応力を効率よく緩和することが容易となる。
 第1活物質層の平均厚さは、10~80μmであることが好ましく、10~50μmであることがより好ましい。第1活物質層の平均厚さは、T1、T2およびT3の平均を求めればよい。なお、T2=T3である場合、第1活物質層の平均厚さは、T2としてもよい。
 第1活物質層における活物質の充填率は、85~95%である。第1活物質層における活物質の充填率の好ましい下限は85%であり、好ましい上限は90%である。活物質の充填率は、いずれの下限と上限とを組み合わせてもよい。活物質の充填率とは、活物質層全体に占める、活物質の体積割合である。活物質の充填率が高いほど、高容量な電池が得られるが、活物質層の破損や剥がれが起こりやすくなる。そのため、活物質層の厚さを、集電体の長手方向における一方の端部から他方の端部に向かう方向において、連続的または段階的に小さくし、捲回によって生じる応力を効率よく緩和することが有効となる。活物質の充填率は、活物質層の重量と活物質層の厚さとを測定し、または、活物質層の厚さと活物質の存在量とを測定することで求められる。活物質の存在量は、ICP発光分光分析などにより測定することができる。活物質の充填率を85%以上とすることで、十分に高容量な正極が得られる。また、活物質の充填率を95%以下とすることで、十分な電極の柔軟性が確保できるため、活物質層の破損や剥がれをより抑制しやすくなる。
 本発明の正極は、集電体の他方の面に形成された第2活物質層を更に有することが好ましい。以下、本発明の実施の一形態について、図面を参照しながら説明する。図1は、本発明の一実施形態に係る正極を概略的に示す断面図である。図1に示す正極は、シート状の集電体20と、集電体の一方の面に形成された第1活物質層21と、集電体の他方の面に形成された第2活物質層22とを有する。
 第2活物質層の厚さは、第1活物質層と同様に、集電体の長手方向における一方の端部から他方の端部に向かう方向において、連続的または段階的に小さくなっていることが好ましい。
 第2活物質層の厚さが連続的または段階的に小さくなっている状態とは、第1活物質層と同様に、以下のような状態をいう。一方の端部付近における第2活物質層の平均厚さをt1とし、中央付近における第2活物質層の平均厚さをt2とし、他方の端部付近における第2活物質層の平均厚さをt3とする。t1、t2およびt3が、t1≧t2≧t3(ただし、t1≠t3)を満たすとき、第2活物質層の厚さが連続的または段階的に小さくなっているといえる。ここで、端部付近とは、第2活物質層の長手方向における寸法をlとするとき、最端部からl/10までの領域をいい、中央付近とは、長手方向における中心から、左右にl/10までの領域をいう。
 第2活物質層において、第1活物質層の第1端部23に対応する一方の端部付近における平均厚さt1は、同第2端部24に対応する他方の端部付近における平均厚さt3の1.1~3倍であることが好ましく、1.1~2倍であることがより好ましい。
 第2活物質層の平均厚さは、15~90μmであることが好ましく、15~80μmであることがより好ましい。第2活物質層の平均厚さは、t1、t2およびt3の平均を求めればよい。なお、t2=t3である場合、第2活物質層の平均厚さは、t2としてもよい。
 第2活物質層における活物質の充填率は、第1活物質層と同様に、85~95%であることが好ましい。第2活物質層における活物質の充填率の好ましい下限は85%であり、好ましい上限は90%である。活物質の充填率は、いずれの下限と上限とを組み合わせてもよい。第2活物質層における活物質の充填率は、第1活物質層と同様の方法で求めることができる。
 第1活物質層の平均厚さは、第2活物質層の平均厚さよりも小さいことが好ましい。このとき、局所的に第1活物質層の厚さの方が第2活物質層の厚さより大きくなっている領域が含まれていても良い。電極群において、集電体の内周側の面に第1活物質層が配され、他方の面に第2活物質層が配される。活物質層をこのように配置することで、捲回によって生じる応力を効率よく緩和することができる。
 第1活物質層の平均厚さは、第2活物質層の平均厚さの0.7~0.95倍であることが好ましく、0.85~0.95倍であることがより好ましい。第1活物質層および第2活物質層の平均厚さを上記のように制御することで、電池の容量を維持しつつ、捲回によって生じる応力を効率よく緩和することが容易となる。
 活物質層の構造は特に限定されない。均質な膜であってもよく、柱状、樹枝状等の活物質粒子を含む構造であってもよい。
 本発明の好ましい一形態において、活物質は、結着剤を含まない堆積膜を形成している。これにより、活物質の充填率を向上させることができる。また、結着剤は、樹脂成分からなり、充放電容量には寄与しない。よって、結着剤を含まない堆積膜を形成させることで、より高容量な非水電解質二次電池が得られる。
 堆積膜は、樹枝状の活物質粒子を含むことが好ましい。樹枝状の活物質粒子は、集電体側の底部から堆積膜の表面側に向かって、複数の枝部に分岐している。
 堆積膜が樹枝状の活物質粒子を含むことで、活物質層の比表面積が大きくなるため、活物質層と非水電解質とが接する面積が大きくなる。これにより、特に高電流密度で良好な充放電特性を有する非水電解質二次電池用正極が得られる。
 樹枝状の活物質粒子において、底部は集電体と結合している。樹枝状の活物質粒子の底部へ行くほど枝分かれが少なくなり、集電体と樹枝状の活物質粒子との接触面積が大きくなる。そのため、集電体と活物質層との間の電子抵抗が小さくなる。枝部の数は、活物質層の表面側へ行くほど多くなる。
 樹枝状の活物質粒子を含む活物質層は優れた柔軟性を有するため、捲回しても集電体からより剥がれにくくなる。したがって、本発明に係る活物質層が樹枝状の活物質粒子を含むことで、捲回によって生じる応力を十分に緩和することができ、活物質層が集電体から更に剥がれにくくなる。
 樹枝状の活物質粒子には、例えば珊瑚状、房状、ブロッコリー状等の活物質粒子も含まれる。
 上記の活物質層は、樹枝状の活物質粒子間に、イオン伝導性を有するポリマーゲルを含むことが好ましい。これにより、外部からの応力による活物質粒子の破損や、活物質層の剥がれをさらに抑制できる。
 ポリマーゲルは、非水電解質、導電助材およびこれらを保持するポリマーを含む。ポリマーゲルが非水電解質を保持することでイオン伝導性が発現し、高電流密度での充放電特性を十分に確保できる。また、捲回によって生じる応力や、充放電に伴う活物質の体積膨張に由来する活物質層の剥がれをより良好に抑制できる。
 例えば、ポリマーゲルを活物質層の表面に塗布したり、活物質層を形成した正極をポリマーゲルに浸漬することにより、活物質層にポリマーゲルを含ませることができる。
 第1活物質層および第2活物質層を作製する方法は、特に限定されないが、熱プラズマ法、噴霧熱分解法などが挙げられる。なかでも、熱プラズマ法により、結着剤を含まない堆積膜を形成することが好ましい。熱プラズマ法によれば、活物質の充填率を容易に高くすることができ、かつ、適度な空隙を活物質層に形成することができる。
 熱プラズマを利用する成膜装置の一例について、図面を参照しながら説明する。
 図2Aは、成膜装置の一例を概略的に示す断面図である。成膜装置は、成膜のための空間を与えるチャンバー1と、熱プラズマ発生源とを備える。熱プラズマ発生源は、熱プラズマを発生させる空間を与えるトーチ10と、トーチ10を囲む誘導コイル2とを備える。誘導コイル2には、電源9が接続されている。
 チャンバー1は、必要に応じて、排気ポンプ5を備えてもよく、無くてもよい。排気ポンプ5でチャンバー1内に残存する空気を除去してから、熱プラズマを発生させることで、活物質のコンタミネーションを抑制することができる。排気ポンプ5を用いることで、プラズマのガス流の形状を制御しやすくなる。さらに、チャンバー1内の圧力等、成膜条件の制御が容易となる。チャンバー1は、粉塵を採取するためのフィルタ(図示せず)等を備えてもよい。
 トーチ10の鉛直下方には、ステージ3が設置されている。ステージ3の材質は特に限定されないが、耐熱性に優れたものであることが好ましく、例えばステンレス鋼等が挙げられる。ステージ3には、集電体4が配置される。ステージ3は、必要に応じて、集電体を冷却する冷却部(図示せず)を有してもよい。図2Bに示すように、ステージ3は、ロールになっていてもよい。この場合、ロールの回転速度を順次変化させながら集電体表面に成膜することで、集電体の長手方向における一方の端部から他方の端部に向かう方向において厚さが連続的に小さくなっている活物質層を、容易に形成することができる。
 トーチ10の一方の端部は、チャンバー1側に解放されている。トーチ10は、例えばセラミックス(石英や窒化珪素)等からなることが好ましい。トーチの内径を大きくすることで、反応場をより広くすることができる。よって、効率よく活物質層を形成することができる。
 トーチ10の他端には、ガス供給口11と、原料供給口12とが配置されている。ガス供給口11は、ガス供給源6a、6bと、バルブ7a、7bを介して接続されている。原料供給口12は、原料供給源8と接続されている。ガス供給口11からトーチ10へガスを供給することで、熱プラズマを効率よく発生させることができる。
 熱プラズマを安定化させ、熱プラズマ中のガス流を制御する観点から、ガス供給口11は複数設けられていてもよい。ガス供給口11を複数設ける場合、ガスを導入する方向は特に限定されず、トーチ10の軸方向や、トーチ10の軸方向と垂直な方向等であってもよい。トーチ10の軸方向からのガス導入量が多いほど、熱プラズマ中のガス流は細くなり、ガス流の中心部分が高温となるため、原料を気化、分解し易くなる。熱プラズマを安定化させる観点から、マスフローコントローラ(図示せず)等を用いてガス導入量を制御することが好ましい。
 電源9から誘導コイル2に電圧を印加すると、トーチ10内で熱プラズマが発生する。印加する電圧は、高周波電圧であってもよく、直流電圧であってもよい。もしくは、高周波電圧と直流電圧とを併用してもよい。
 熱プラズマを発生させる際、誘導コイル2およびトーチ10は高温となる。よって、誘導コイル2およびトーチ10の周囲には、冷却部(図示せず)を設けることが好ましい。冷却部としては、例えば水冷冷却装置等を用いればよい。
 上記の装置を用いて、以下のようにして第1活物質層および第2活物質層を形成させることができる。
 まず、熱プラズマを発生させる。熱プラズマは、アルゴン、ヘリウム、酸素、水素および窒素からなる群より選ばれる少なくとも1種のガスを含む雰囲気中で発生させることが好ましい。熱プラズマを安定かつ効率よく発生させる観点から、水素等の二原子分子を含む雰囲気中で熱プラズマを発生させることがより好ましい。酸素、水素、窒素、有機系ガスなどの反応性ガスと、希ガスなどの不活性ガスと、を併用する場合には、原料と反応性ガスとの反応を利用して活物質を生成させてもよい。
 高周波電磁場を利用する場合、熱プラズマは、RF電源によりコイルに高周波を印加することにより発生させる。このとき、電源の周波数は、例えば1000Hz以上であることが好ましく、例えば13.56MHzである。
 図2Aのような成膜装置を用いる場合、ガス供給口から噴出させるガスの噴射速度は、直流アーク放電でプラズマを発生させる場合(数1000m/s)よりも遅く、数10~100m/s程度、例えば900m/s以下とすることができる。これにより、原料が熱プラズマ中に滞留する時間を比較的長くすることができ、熱プラズマ中で原料を十分に溶解、気化もしくは分解させることができる。そのため、活物質の合成および集電体への成膜を効率よく行うことができる。
 次に、熱プラズマ中に活物質層の原料を供給する。これにより、熱プラズマ中で活物質の前駆体となる粒子が生成される。原料を複数種用いる場合、それぞれの原料を別々に熱プラズマ中へ供給してもよいが、原料を十分に混合してから熱プラズマへ供給することが好ましい。
 熱プラズマ中で生成した粒子は、集電体の表面の略法線方向から供給されて集電体に堆積し、正極活物質層を形成する。例えば以下のようにして、活物質層の厚さを、集電体の長手方向における一方の端部から他方の端部に向かう方向において、連続的または段階的に小さくすることができる。シート状の集電体において、活物質層を形成する面を任意の大きさの複数の領域に分けて、それぞれの領域に異なる厚さの活物質層を形成させる。これにより、活物質層の厚さを、集電体の長手方向における一方の端部から他方の端部に向かう方向において、段階的に小さくすることができる。活物質層を成膜する領域以外の領域は、マスク等の遮蔽物で覆ってもよい。活物質層の厚さは、例えば成膜時間や、原料の熱プラズマ中への供給速度を制御することにより、それぞれの領域において変化させることができる。
 他にも、図2Bに示すようにステージ3をロールとし、ロールの回転速度を順次変化させながら、集電体表面に活物質層を成膜してもよい。この方法によっても、活物質層の厚さを、集電体の長手方向における一方の端部から他方の端部に向かう方向において、連続的または段階的に小さくすることができる。
 熱プラズマ中に供給する原料は、液体状態であっても、粉末状態であってもよい。ただし、原料を粉末状態で熱プラズマ中に供給する方が簡便であり、製造コスト上も有利である。粉末状態の原料は、また、液体状態の原料、例えば、アルコキシドよりも比較的安価である。
 原料を液体状態で熱プラズマ中に供給すると、溶媒や炭素等の不純物の除去が必要になる場合がある。一方、原料を粉末状態で熱プラズマ中に供給する場合、上記のような不純物がほとんど含まれないため、優れた電気化学特性を有する正極を得ることができる。
 原料を粉末状態で熱プラズマ中に供給する場合、原料のD50(レーザ回折式粒度分布測定装置で測定される体積基準のメディアン径)が、20μm以下であることが好ましい。原料のメディアン径を20μm以下とすることで、熱プラズマ中で原料が十分に気化もしくは分解しやすくなり、活物質の生成が容易となる。
 原料の熱プラズマ中への供給速度は、装置の容積、プラズマの温度等によって異なるが、例えば、誘導コイルに印加する高周波電圧の出力1キロワットあたり0.0002~0.05g/minであることが好ましい。
 原料の熱プラズマ中への供給速度を、誘導コイルに印加する高周波電圧の出力1キロワットあたり0.05g/min以下とすることで、集電体との密着性の確保が容易となる。
 原料の熱プラズマ中への供給速度により、活物質層の構造を制御することが可能である。よって、原料の熱プラズマ中への供給速度と、活物質層の構造との関係の情報を、予め求めることが好ましい。得られた情報に基づいて原料の熱プラズマ中への供給速度を制御することで、所望の構造を有する活物質層を形成することができる。
 活物質の原料には、様々な材料を用いることができる。例えば、(i)リチウム化合物と遷移金属元素Meを含む化合物とを含む原料、(ii)Liおよび遷移金属元素Meを含む複合酸化物を含む原料などが用いられる。
 リチウム化合物としては、例えば酸化リチウム、水酸化リチウム、炭酸リチウムおよび硝酸リチウムが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 遷移金属元素Meを含む化合物としては、例えば、ニッケル化合物、コバルト化合物、マンガン化合物および鉄化合物が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。ニッケル化合物としては、例えば、酸化ニッケル、炭酸ニッケル、硝酸ニッケル、水酸化ニッケル、オキシ水酸化ニッケルなどが挙げられる。コバルト化合物としては、例えば、酸化コバルト、炭酸コバルト、硝酸コバルト、水酸化コバルトなどが挙げられる。マンガン化合物は、例えば、酸化マンガン、炭酸マンガンなどが挙げられる。鉄化合物としては、例えば、酸化鉄、炭酸鉄などが挙げられる。
 複合酸化物を含む正極活物質層を形成する場合、例えば、リチウム化合物と、遷移金属を含む化合物とを、活物質の原料として熱プラズマ中へ供給する。これらの化合物は、別々に熱プラズマ中へ供給してもよいが、十分に混合してから熱プラズマへ供給することが好ましい。
 リチウム化合物を熱プラズマ中に供給する場合、リチウムが蒸発しやすいため、原料におけるリチウム化合物の混合比を、目的とする活物質におけるリチウムの化学量論比よりも大きくすることが好ましい。
 Liおよび遷移金属元素Meを含む複合酸化物(正極活物質)を、原料として熱プラズマ中へ供給してもよい。熱プラズマ中へ供給されたLiおよび遷移金属元素Meを含む複合酸化物は、溶解し、気化し、分解した後、再度複合酸化物に合成されて、集電体に堆積する。
 本発明の正極活物質層は、Liおよび遷移金属元素Meを含む複合酸化物(以下、単に複合酸化物ともいう)からなる正極活物質を含む。複合酸化物は、層状もしくは六方晶の結晶構造またはスピネル構造を有することが好ましい。遷移金属元素Meとしては、例えばCo、Ni、Mn、Fe等が挙げられる。具体的な複合酸化物としては、LiCoO2、LiNi1/2Mn1/22、LiNi1/2Co1/22、LiNiO2、LiNi1/3Mn1/3Co1/32、LiNi1/2Fe1/22、LiMn24、LiFePO4、LiCoPO4、LiMnPO4、Li4/3Ti5/34等が挙げられる。
 また、正極活物質は、Alを含んでいてもよい。Alを含む正極活物質は、例えば、一般式:LixMeyAl1-y2+a(MeはCo、Ni、Mn、Feよりなる群から選ばれる少なくとも1種であり、0.9≦x≦1.5、0.01≦y≦0.3、0≦a≦0.2)示される複合酸化物である。正極活物質は1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本発明において、活物質層を形成する方法は、上記のような熱プラズマ法に限られない。熱プラズマ法の他にも、85~95%の活物質の充填率を有する活物質層を形成できる方法を、任意に選択できる。
 正極用集電体は、特に限定されず、例えば一般的に電気化学素子で使用される導電性材料を用いることができる。具体的には、Al、Ti、ステンレス鋼(SUS)、Au、Pt等を用いることが望ましい。これらの集電体は、3.5~4.5V(vs. Li/Li+)程度まで活物質からLiの脱離反応を行っても、集電体からの金属の溶出が比較的少ない点で好ましい。
 本発明の非水電解質二次電池について説明する。
 本発明の非水電解質二次電池は、正極、負極、正極と負極との間に介在する多孔質絶縁層、および非水電解質を具備し、正極と負極と多孔質絶縁層とが捲回されて電極群を構成している。多孔質絶縁層には、非水電解質が含浸されている。正極、負極および多孔質絶縁層を収容するケースと封口板とは、ガスケットによって互いに絶縁されていてもよく、溶接されていてもよい。本発明の非水電解質二次電池は、上記の非水電解質二次電池用正極を含むものであり、その他の構成は特に限定されない。
 上記の非水電解質二次電池では、集電体の一方の端部が電極群の外周側に配置され、他方の端部が中心側に配置される。つまり、曲率半径の小さい電極群の巻き始め側(中心側)において、活物質層の厚さが小さくなっている。そのため、曲率半径の小さい巻き始め側では、捲回によって生じる応力を十分に抑制できる。一方、曲率半径の大きい巻き終わり側(外周側)において、第1活物質層の厚さが大きくなっている。曲率半径の大きい巻き終わり側では、捲回によって生じる応力が比較的小さいことから、活物質層が捲回時に集電体から剥れにくい。そのため、曲率半径の大きい巻き終わり側に向かって活物質層の厚さを大きくすることが可能である。本発明によれば、活物質層の剥がれを抑制しつつ高容量化することが可能となる。
 負極は、負極集電体と、負極集電体に形成される負極活物質層とを含む。
 負極活物質層に含まれる負極活物質としては、炭素材料、金属、合金、金属酸化物、金属窒化物などが用いられる。炭素材料としては、天然黒鉛、人造黒鉛などが好ましい。金属もしくは合金としては、リチウム単体、リチウム合金、ケイ素単体、ケイ素合金、スズ単体、スズ合金などが好ましい。金属酸化物としては、SiOx(0<x<2、好ましくは0.1≦x≦1.2)などが好ましい。
 負極用集電体としては、Cu、Ni、SUS等を用いることが望ましい。
 多孔質絶縁層には、例えば、ポリエチレン、ポリプロピレン、アラミド樹脂、アミドイミド、ポリフェニレンスルフィド、ポリイミド等からなる不織布や微多孔膜を用いることができる。不織布や微多孔膜は、単層であってもよく、多層構造であってもよい。多孔質絶縁層の内部または表面には、アルミナ、マグネシア、シリカ、チタニア等の耐熱性フィラーが含まれていてもよい。
 非水電解質は、非水溶媒と、非水溶媒に溶解した溶質とを含む。溶質は、特に限定されず、活物質の酸化還元電位等を考慮して適宜選択すればよい。好ましい溶質としては、LiPF6、LiBF4等が挙げられる。溶質は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 非水溶媒も特に限定されない。例えば、エチレンカーボネート(EC)、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、ジメチルカーボネート(DMC)、ジエチルカーボネート、エチルメチルカーボネート(EMC)等を用いればよい。非水溶媒は1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 以下、実施例および比較例を用いて、本発明を具体的に説明する。なお、これらの実施例および比較例は、本発明を限定するものではない。
《実施例1》
(i)正極の作製
 成膜装置として、内容積6250cm3のチャンバーと、熱プラズマ発生源とを備える日本電子(株)製の高周波誘導熱プラズマ発生装置(TP-12010)を用いた。熱プラズマ発生源には、Φ42mmの窒化珪素管からなるトーチと、トーチを囲む銅製の誘導コイルとを用いた。
 ステージ上には、Alを含むシート状の集電体(5×20cm、厚さ20μm)を配置した。その後、アルゴンガスを用いてチャンバー内の空気を置換した。
 チャンバーにアルゴンガスを流量50L/minで導入し、酸素ガスを流量30L/minで導入した。チャンバー内の圧力は18kPaとした。誘導コイルに42kW、周波数3.5MHzの高周波電圧を印加し、熱プラズマを発生させた。 
 原料には、Li2OとCo34との混合物を用いた。Li2Oは30μm以下に分級した。Co34の体積基準の平均粒径D50は5μmとした。Li2OとCo34は、化学量論比でLi:Co=1.3:1となるように混合した。アルゴンガスを50L/min、酸素ガスを30L/minで一本の流路に導入し、これらの混合ガスを2方向からチャンバーに導入した。ここでは、トーチの軸方向からのガス導入量と、トーチの軸方向と略垂直な方向からのガス導入量との比率(以下、Dx:Dyとする)を35:45とした。
 集電体の一方の面をそれぞれ5×5cm程度の大きさである第1領域~第4領域に分けて、活物質層Aを成膜した。原料の熱プラズマ中への供給速度は、0.1g/minとした。成膜の際の集電体付近の温度は、500℃程度とした。まず、集電体の長手方向における一方の端部から他方の端部に向かう方向における他方の端部(第2端部)側の領域(第4領域)に300分間成膜し、厚さ15μmの膜を形成した。次に、第4領域と隣接する領域(第3領域)に450分間成膜し、厚さ22μmの膜を形成した。さらに、第3領域と隣接する領域(第2領域)に680分間成膜し、厚さ33μmの膜を形成した。最後に、第2領域と隣接する、一方の端部(第1端部)側の領域(第1領域)に1015分間成膜し、厚さ50μmの膜を形成した。このようにして、厚さが集電体の長手方向における一方の端部から他方の端部に向かう方向において段階的に小さくなっている活物質層Aを形成した。なお、活物質層Aの第1領域~第4領域の厚さは、それぞれの領域毎に3点測定し、平均を求めた。活物質層Aの平均厚さは、30μmであった。
 その後、集電体の他方の面を上記の活物質層Aと同様に第1領域~第4領域に分けて、活物質層Bを成膜した。活物質層Bの第1領域~第4領域は、活物質層Aの第1領域~第4領域に対応させた。活物質層Bの原料は、活物質層Aと同じものを用いた。原料の熱プラズマ中への供給速度は、活物質層Aと同様に0.1g/minとした。成膜の際の集電体付近の温度は、500℃程度とした。まず、活物質層Aの第4領域と対応する第4領域に200分間成膜し、厚さ10μmの膜を形成した。活物質層Aの第3領域と対応する第3領域に300分間成膜し、厚さ15μmの膜を形成した。さらに、活物質層Aの第2領域と対応する第2領域に450分間成膜し、厚さ22μmの膜を形成した。最後に、活物質層Aの第1領域と対応する第1領域に675分間成膜し、厚さ33μmの膜を形成した。このようにして、集電体の長手方向における一方の端部から他方の端部に向かう方向において厚さが段階的に小さくなっている活物質層Bを形成した。活物質層Bの第1領域~第4領域の厚さは、活物質層Aと同様にして求めた。上記において、活物質層Aは第2活物質層に相当し、活物質層Bは第1活物質層に相当する。活物質層Bの平均厚さは、20μmであった。
 X線回折測定により、実施例1において、LiCoO2を含む活物質層が形成されていることを確認した。
 正極における活物質の充填率を、活物質層の平均厚さおよび活物質の重量から求めたところ、90%であった。その後、円筒型の電池ケースに収容可能な幅に、正極を裁断した。
[活物質層の破損および剥がれの評価]
 Φ4mmのSUSの巻き芯に、作製した正極を巻きつけた。正極の第4領域側の端部から巻き始め、外周側に第1領域側の端部が配されるように巻きつけた。正極を確認したところ、活物質層の破損や剥がれは確認されなかった。
 (ii)負極の作製
 負極活物質である150重量部の黒鉛と、負極結着剤である9重量部のスチレン-ブタジエン共重合体(SBR)と、増粘剤である1.5重量部のカルボキシメチルセルロース(CMC)と、分散媒である適量の水とを混合し、負極合剤ペーストを調製した。
 負極集電体である厚さ8μmの銅箔の両面に、負極合剤ペーストを塗布し、乾燥させた。乾燥後の塗膜をローラで圧延して、シート状の集電体と、負極活物質層とを有する負極を作製した。集電体の厚さと負極活物質層(両面)の厚さの合計(負極の厚さ)は、190μmとした。その後、円筒型の電池ケースに収容可能な幅に、負極を裁断した。
(iii)非水電解質の調製
 非水溶媒に対して、溶質であるLiPF6を1.25mol/Lの濃度で溶解させて、非水電解質を調製した。非水溶媒には、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)の体積割合1:1:8の混合溶媒に、添加剤として4体積%のビニレンカーボネート(VC)を添加したものを用いた。
 (iv)非水電解質二次電池の作製
 以下に示す手順で、図3に示す円筒型の非水電解質二次電池を作製した。
 正極35の集電体には、アルミの正極リード35aの一端を接続した。負極36の集電体には、銅の負極リード36aの一端を接続した。
 正極35と負極36とを、これらの間にセパレータ37を介して捲回し、円柱状の電極群を作製した。このとき、正極35の集電体の一方の端部が電極群の外周側に配置され、他方の端部が中心側に配置されるようにした。電極群において、集電体の内周側の面に第1活物質層を配し、他方の面に第2活物質層を配した。
 得られた電極群の両端面を、上部絶縁板38aおよび下部絶縁板38bで挟み、所定の大きさの円筒型の電池ケース31に収容した。負極リード36aの他端を電池ケース31の内底面に接続した。その後、非水電解質5gを電池ケース31に注液し、減圧下で、電極群に非水電解質を含浸させた。
 その後、正極リード35aの他端を封口体32の下面に接続した。
 電池ケース31の開口部の端部を、ガスケット33を介して封口体32にかしめつけた。これにより、設計容量が337mAhである円筒型の非水電解質二次電池を作製した。
《実施例2》
 N-メチル-2-ピロリドン(NMP)と、ポリフッ化ビニリデン(PVDF、(株)クレハ製の#7200)とアセチレンブラックを2:98:2の重量割合で混合して、第1ペーストを調製した。
 ECとEMCとジエチルカーボネート(DEC)とを、2:3:5の体積割合で含む混合溶媒に、溶質であるLiPF6を1.25mol/Lの濃度で溶解させて、液状の非水電解質を調製した。この液状の非水電解質と、PVDF((株)クレハ製の#8500)と、ジメチルカーボネート(DMC)とを、3:45:52の重量割合で混合して、第2ペーストを調製した。
 実施例1と同様の正極を、上記の第1ペーストに10秒間浸漬し、正極に第1層溶液を含浸させた後、80℃で15分間乾燥させた。その後、正極を第2ペーストに10秒間浸漬し、80℃で30分間乾燥させた。このようにして、活物質層にポリマーゲルを含ませた。これにより、実施例2の正極を作製した。
 作製した正極について、実施例1と同様に評価したところ、活物質層の破損や剥がれは確認されなかった。
 上記の正極を用いたこと以外、実施例1と同様にして、円筒型の非水電解質二次電池を作製した。
《比較例1》
 実施例1と同様のシート状の集電体の一方の面のほぼ全面に対して、実施例1と同様の原料の供給速度で450分間成膜し、厚さ22μmの活物質層Aを形成した。その後、集電体の他方の面のほぼ全面に対して、実施例1と同様の原料の供給速度で450分間成膜し、厚さ22μmの活物質層Bを形成した。これにより、比較例1の正極を作製した。
 比較例1の活物質層AおよびBの厚さは、集電体の長手方向における一方の端部から他方の端部に向かう方向において、ほとんど変化していなかった。作製した正極について、実施例1と同様に評価したところ、活物質層が集電体から剥がれた。そのため、円筒型の電池を作製することができなかった。
《比較例2》
 ステージ上にAu板からなる集電体(厚さ1mm)を配置し、マグネトロンスパッタリング装置を用いて、集電体上に活物質層を形成した。ターゲットには、LiCoO2を用いた。ターゲットの径は3インチとした。ステージ上の集電体とターゲットとの距離は、3.5cmとした。
 ロータリーポンプと拡散ポンプとを用いて、チャンバー内の真空度を5×10-2Paとした。その後、チャンバー内の真空度が1Paとなるように、チャンバー内にアルゴンガスを流量8×10-2L/minで導入し、酸素ガスを流量2×10-2L/minで導入した。ターゲットに80W、周波数13.56MHzの高周波電圧を印加し、プラズマを発生させた。
 集電体付近の温度を300℃とし、集電体の一方の面をそれぞれ5×5cm程度の大きさである第1領域~第4領域に分けて、活物質層Aを成膜した。まず、集電体の長手方向における一方の端部から他方の端部に向かう方向における他方の端部(第2端部)側の領域(第4領域)に900分間成膜し、厚さ15μmの膜を形成した。次に、第4領域と隣接する領域(第3領域)に1320分間成膜し、厚さ22μmの膜を形成した。さらに、第3領域と隣接する領域(第2領域)に1980分間成膜し、厚さ33μmの膜を形成した。最後に、第2領域と隣接する、一方の端部(第1端部)側の領域(第1領域)に3000分間成膜し、厚さ50μmの膜を形成した。このようにして、厚さが集電体の長手方向における一方の端部から他方の端部に向かう方向において段階的に小さくなっている活物質層Aを形成した。活物質層Aの平均厚さは、30μmであった。
 その後、集電体の他方の面を、上記と同様に第1領域~第4領域に分けて、活物質層Bを成膜した。活物質層Bの第1領域~第4領域は、活物質層Aの第1領域~第4領域に対応させた。活物質層Bの原料は、活物質層Aと同じものを用いた。成膜の際の集電体付近の温度は、300℃程度とした。まず、活物質層Aの第4領域と対応する第4領域に600分間成膜し、厚さ10μmの膜を形成した。活物質層Aの第3領域と対応する第3領域に900分間成膜し、厚さ15μmの膜を形成した。さらに、活物質層Aの第2領域と対応する第2領域に1320分間成膜し、厚さ22μmの膜を形成した。最後に、活物質層の第1領域と対応する第1領域に1980分間成膜し、厚さ33μmの膜を形成した。このようにして、厚さが集電体の長手方向における一方の端部から他方の端部に向かう方向において段階的に小さくなっている活物質層Bを形成した。上記において、活物質層Aは第2活物質層に相当し、活物質層Bは第1活物質層に相当する。活物質層Bの平均厚さは、20μmであった。その後、500℃で1時間焼成し、LiCoO2の結晶性を向上させ、正極を作製した。
 活物質層に対してICP分析を行ったところ、活物質層における元素比は、Li:Co=0.98:1であることが確認できた。 正極における活物質の充填率を、活物質層の平均厚さおよび活物質の重量から求めたところ、96%であった。
 上記の正極を用いたこと以外、実施例1と同様にして円筒型電池を作製した。
[電池の評価]
 実施例1、2および比較例2の電池について、Li/Li+を基準として3.05~4.25Vの範囲で充放電を行い、0.2Cでの初期の放電容量(1サイクル目の放電容量)および20サイクル目の放電容量を測定した。温度条件は20℃とした。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 充放電を行った後、各実施例および比較例の電池を分解して電極群を取り出し、正極の剥がれの有無を確認した。実施例1および実施例2のいずれにおいても、活物質層の破損や剥がれは確認されなかった。
 一方、比較例2の電池は、活物質層が集電体から剥がれていた。スパッタリングで形成した活物質層は、活物質の充填率が過度に高い。そのため、電極の柔軟性が不十分となり、充放電に伴う膨張および収縮を緩和できず、活物質層が集電体から剥がれたと考えられる。
 比較例2に対し、実施例1~2では、20サイクル目の放電容量が大きくなっていた。
 比較例2は、活物質層が過度に緻密に成膜されたことにより、充放電に伴う膨張収縮に耐えられず集電体から活物質層が剥れ、容量が大幅に低下したと考えられる。活物質層がポリマーゲルを含む実施例2は、実施例1よりも更に20サイクル目の放電容量が向上していた。
 以上より、本発明の非水電解質二次電池用正極は、高容量であり、かつ活物質層が集電体から剥がれにくいことがわかった。
 本発明によれば、高容量であり、かつ特に活物質層の柔軟性を向上させた非水電解質二次電池用正極および非水電解質二次電池を提供することができる。本発明の非水電解質二次電池は、携帯電話などの小型電子機器や、大型の電子機器等の電源として有用である。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
 1 チャンバー
 2 誘導コイル
 3 ステージ
 4 集電体
 5 排気ポンプ
 6a、6b ガス供給源
 7a、7b バルブ
 8 原料供給源
 9 電源 
 10 トーチ
 11 ガス供給口
 12 原料供給口
 20 集電体
 21 第1活物質層
 22 第2活物質層
 23 第1端部
 24 第2端部
 31 電池ケース
 32 封口体
 33 ガスケット
 35 正極
 35a 正極リード
 36 負極
 36a 負極リード
 37 セパレータ
 38a 上部絶縁板
 38b 下部絶縁板 

Claims (10)

  1.  長尺かつシート状の集電体と、前記集電体の一方の面に形成された第1活物質層と、を有し、
     前記第1活物質層の厚さが、前記集電体の長手方向における一方の端部から他方の端部に向かう方向において、連続的または段階的に小さくなっており、
     前記第1活物質層が、Liおよび遷移金属元素Meを含む複合酸化物からなる活物質を含み、
     前記第1活物質層における前記活物質の充填率が85~95%である、非水電解質二次電池用正極。
  2.  前記集電体の他方の面に形成された第2活物質層、を更に有し、
     前記第2活物質層の厚さが、前記方向において、連続的または段階的に小さくなっており、
     前記第2活物質層が、Liおよび遷移金属元素Meを含む複合酸化物からなる活物質を含み、
     前記第2活物質層における前記活物質の充填率が85~95%である、請求項1記載の非水電解質二次電池用正極。
  3.  前記一方の端部付近における前記第1活物質層の平均厚さが、前記他方の端部付近における前記第1活物質層の平均厚さの1.05~4倍である、請求項1記載の非水電解質二次電池用正極。
  4. [規則91に基づく訂正 28.02.2011] 
     前記一方の端部付近における前記第2活物質層の平均厚さが、前記他方の端部付近における前記第2活物質層の平均厚さの1.05~4倍である、請求項2記載の非水電解質二次電池用正極。
  5.  前記第1活物質層の平均厚さが、前記第2活物質層の平均厚さよりも小さい、請求項2記載の非水電解質二次電池用正極。
  6.  前記活物質が、結着剤を含まない堆積膜を形成している、請求項1~5のいずれか1項に記載の非水電解質二次電池用正極。
  7.  前記堆積膜が、樹枝状の活物質粒子を含み、前記樹枝状の活物質粒子が、前記集電体側の底部から前記堆積膜の表面側に向かって、複数の枝部に分岐している、請求項6記載の非水電解質二次電池用正極。
  8.  さらに、前記樹枝状の活物質粒子間に、イオン伝導性を有するポリマーゲルを含み、前記ポリマーゲルが、非水電解質、導電助材およびこれらを保持するポリマーを含む、請求項7記載の非水電解質二次電池用正極。
  9.  正極、負極、前記正極と前記負極との間に介在する多孔質絶縁層、および非水電解質を具備し、
     前記正極と前記負極と前記多孔質絶縁層とが捲回されて電極群を構成しており、
     前記正極が、請求項1記載の正極であり、
     前記一方の端部が前記電極群の外周側に配置され、前記他方の端部が中心側に配置されている、非水電解質二次電池。
  10.  正極、負極、前記正極と前記負極との間に介在する多孔質絶縁層、および非水電解質を具備し、
     前記正極と前記負極と前記多孔質絶縁層とが捲回されて電極群を構成しており、
     前記正極が、請求項2~8のいずれか1項に記載の正極であり、
     前記一方の端部が前記電極群の外周側に配置され、前記他方の端部が中心側に配置されており、
     前記電極群において、前記集電体の内周側の面に前記第1活物質層が配され、前記集電体の他方の面に前記第2活物質層が配されている、非水電解質二次電池。
     
PCT/JP2010/007484 2009-12-28 2010-12-24 非水電解質二次電池用正極およびそれを用いた非水電解質二次電池 WO2011080901A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009297713A JP2013051028A (ja) 2009-12-28 2009-12-28 非水電解質二次電池用正極およびそれを用いた非水電解質二次電池
JP2009-297713 2009-12-28

Publications (1)

Publication Number Publication Date
WO2011080901A1 true WO2011080901A1 (ja) 2011-07-07

Family

ID=44226328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007484 WO2011080901A1 (ja) 2009-12-28 2010-12-24 非水電解質二次電池用正極およびそれを用いた非水電解質二次電池

Country Status (2)

Country Link
JP (1) JP2013051028A (ja)
WO (1) WO2011080901A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117005A1 (de) * 2011-03-01 2012-09-07 Varta Microbattery Gmbh Spiralförmig gewickelte elektrode, batterie und herstellung derselben
JP2014137907A (ja) * 2013-01-17 2014-07-28 Kawasaki Heavy Ind Ltd 二次電池およびその製造方法
FR3059159A1 (fr) * 2016-11-23 2018-05-25 Commissariat A L'energie Atomique Et Aux Energies Alternatives Electrode pour faisceau electrochimique d'un accumulateur metal-ion a forte densite d'energie, accumulateur cylindrique ou prismatique associe
CN110010902A (zh) * 2019-03-29 2019-07-12 宁德新能源科技有限公司 电极极片和包含所述电极极片的电化学装置
CN112542616A (zh) * 2020-12-04 2021-03-23 东莞新能安科技有限公司 电化学装置和电子装置
US11043669B2 (en) 2017-06-09 2021-06-22 Lg Chem, Ltd. Electrode and secondary battery comprising the same
CN114050233A (zh) * 2021-11-25 2022-02-15 珠海冠宇电池股份有限公司 一种负极极片及电池
US11682765B2 (en) 2019-03-29 2023-06-20 Dongguan Poweramp Technology Limited Electrode and electrochemical device including the same
EP4016691A4 (en) * 2019-08-13 2024-02-28 Samsung SDI Co., Ltd. ELECTRODE ARRANGEMENT AND SECONDARY BATTERY THEREFROM

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6819107B2 (ja) * 2016-07-12 2021-01-27 株式会社村田製作所 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
US20230361268A1 (en) * 2020-11-24 2023-11-09 Panasonic Energy Co., Ltd. Non-aqueous electrolyte secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021453A (ja) * 1998-07-02 2000-01-21 Nikkiso Co Ltd 非水電解質二次電池
JP2006216461A (ja) * 2005-02-04 2006-08-17 Toyota Motor Corp 2次電池
JP2009021214A (ja) * 2007-06-12 2009-01-29 Panasonic Corp 非水電解質二次電池用電極の製造方法
JP2009295383A (ja) * 2008-06-04 2009-12-17 Panasonic Corp 非水電解質二次電池用正極およびそれを用いた非水電解質二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021453A (ja) * 1998-07-02 2000-01-21 Nikkiso Co Ltd 非水電解質二次電池
JP2006216461A (ja) * 2005-02-04 2006-08-17 Toyota Motor Corp 2次電池
JP2009021214A (ja) * 2007-06-12 2009-01-29 Panasonic Corp 非水電解質二次電池用電極の製造方法
JP2009295383A (ja) * 2008-06-04 2009-12-17 Panasonic Corp 非水電解質二次電池用正極およびそれを用いた非水電解質二次電池

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117005A1 (de) * 2011-03-01 2012-09-07 Varta Microbattery Gmbh Spiralförmig gewickelte elektrode, batterie und herstellung derselben
JP2014137907A (ja) * 2013-01-17 2014-07-28 Kawasaki Heavy Ind Ltd 二次電池およびその製造方法
FR3059159A1 (fr) * 2016-11-23 2018-05-25 Commissariat A L'energie Atomique Et Aux Energies Alternatives Electrode pour faisceau electrochimique d'un accumulateur metal-ion a forte densite d'energie, accumulateur cylindrique ou prismatique associe
US11043669B2 (en) 2017-06-09 2021-06-22 Lg Chem, Ltd. Electrode and secondary battery comprising the same
CN110010902A (zh) * 2019-03-29 2019-07-12 宁德新能源科技有限公司 电极极片和包含所述电极极片的电化学装置
US11682765B2 (en) 2019-03-29 2023-06-20 Dongguan Poweramp Technology Limited Electrode and electrochemical device including the same
US11728474B2 (en) 2019-03-29 2023-08-15 Dongguan Poweramp Technology Limited Electrode and electrochemical device including the same
EP4016691A4 (en) * 2019-08-13 2024-02-28 Samsung SDI Co., Ltd. ELECTRODE ARRANGEMENT AND SECONDARY BATTERY THEREFROM
CN112542616A (zh) * 2020-12-04 2021-03-23 东莞新能安科技有限公司 电化学装置和电子装置
CN114050233A (zh) * 2021-11-25 2022-02-15 珠海冠宇电池股份有限公司 一种负极极片及电池
CN114050233B (zh) * 2021-11-25 2023-03-10 珠海冠宇电池股份有限公司 一种负极极片及电池

Also Published As

Publication number Publication date
JP2013051028A (ja) 2013-03-14

Similar Documents

Publication Publication Date Title
WO2011080901A1 (ja) 非水電解質二次電池用正極およびそれを用いた非水電解質二次電池
JP4865673B2 (ja) リチウム二次電池
JP4831075B2 (ja) 非水電解質二次電池
TWI425703B (zh) 高能量密度之鋰二次電池
JP2009021214A (ja) 非水電解質二次電池用電極の製造方法
JP6070966B2 (ja) リチウム二次電池用負極活物質及びこれを含むリチウム二次電池
WO2011067982A1 (ja) 活物質粒子およびその利用
JP5961910B2 (ja) リチウム二次電池用負極活物質、リチウム二次電池、リチウム二次電池の製造方法、及び、リチウム二次電池用の負極の製造方法
JP2010073571A (ja) リチウムイオン二次電池およびその製造方法
JP2007234336A (ja) リチウム二次電池
WO2007046322A1 (ja) 電池
JP2009266737A (ja) リチウムイオン二次電池およびその製造方法
JP5119584B2 (ja) 非水電解質二次電池およびその負極の製造法
JP2017011068A (ja) 蓄電デバイス用電極の製造方法および前記電極の製造装置
JP2013131322A (ja) 非水電解液二次電池
WO2015015883A1 (ja) リチウム二次電池及びリチウム二次電池用電解液
JP5030369B2 (ja) リチウム二次電池
JP6272996B2 (ja) 負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池およびそれらの製造方法
JP2005190902A (ja) リチウム前駆体電池及びリチウム二次電池の製造方法
WO2009153966A1 (ja) 非水電解質二次電池用正極およびそれを用いた非水電解質二次電池
JP6897228B2 (ja) 活物質、電極及びリチウムイオン二次電池
JP2009295383A (ja) 非水電解質二次電池用正極およびそれを用いた非水電解質二次電池
JP2011014279A (ja) 非水電解質二次電池用正極およびその製造方法
KR101171555B1 (ko) 비수 전해질 이차전지용 양극 및 그 제조방법
JP7017108B2 (ja) 活物質、電極及びリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10840761

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10840761

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP