WO2011078315A1 - 複合酸化物、その製造法及び排ガス浄化用触媒 - Google Patents

複合酸化物、その製造法及び排ガス浄化用触媒 Download PDF

Info

Publication number
WO2011078315A1
WO2011078315A1 PCT/JP2010/073306 JP2010073306W WO2011078315A1 WO 2011078315 A1 WO2011078315 A1 WO 2011078315A1 JP 2010073306 W JP2010073306 W JP 2010073306W WO 2011078315 A1 WO2011078315 A1 WO 2011078315A1
Authority
WO
WIPO (PCT)
Prior art keywords
cerium
composite oxide
oxide
less
pore volume
Prior art date
Application number
PCT/JP2010/073306
Other languages
English (en)
French (fr)
Inventor
尚孝 大竹
和彦 横田
Original Assignee
阿南化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44195840&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011078315(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to KR1020127019534A priority Critical patent/KR101822925B1/ko
Priority to CA2785411A priority patent/CA2785411C/en
Priority to JP2011547644A priority patent/JP5706339B2/ja
Priority to PL10839545T priority patent/PL2518018T3/pl
Priority to RU2012131748/05A priority patent/RU2560376C2/ru
Application filed by 阿南化成株式会社 filed Critical 阿南化成株式会社
Priority to US13/518,735 priority patent/US20120309614A1/en
Priority to CN201080064766.6A priority patent/CN102770373B/zh
Priority to EP10839545.0A priority patent/EP2518018B1/en
Publication of WO2011078315A1 publication Critical patent/WO2011078315A1/ja
Priority to ZA2012/05522A priority patent/ZA201205522B/en
Priority to US14/790,057 priority patent/US9757711B2/en
Priority to US15/680,415 priority patent/US20180001303A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/10Preparation or treatment, e.g. separation or purification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/65150-500 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/229Lanthanum oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/241Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion containing two or more rare earth metals, e.g. NdPrO3 or LaNdPrO3
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/32Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 oxide or hydroxide being the only anion, e.g. NaCeO2 or MgxCayEuO
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/32Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 oxide or hydroxide being the only anion, e.g. NaCeO2 or MgxCayEuO
    • C01F17/34Aluminates, e.g. YAlO3 or Y3-xGdxAl5O12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2061Yttrium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2063Lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2066Praseodymium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2068Neodymium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/30Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9202Linear dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter

Definitions

  • the present invention can be used for catalysts, functional ceramics, solid electrolytes for fuel cells, abrasives, etc., and can be particularly suitably used as a promoter material in exhaust gas purification catalysts for automobiles, and exhibits excellent catalytic performance.
  • the present invention relates to a composite oxide having a large pore volume, a method for producing the same, and a catalyst for exhaust gas purification using the composite oxide.
  • An exhaust gas purifying catalyst for automobiles and the like is configured, for example, by supporting a catalyst metal such as alumina or cordierite with platinum, palladium, or rhodium as a catalytic metal and a co-catalyst for enhancing their catalytic action.
  • the co-catalyst material has the property of absorbing oxygen under an oxidizing atmosphere and releasing the oxygen under a reducing atmosphere, and the exhaust gas-purifying catalyst contains hydrocarbons, carbon monoxide and carbon dioxide which are harmful components in the exhaust gas. In order to efficiently purify nitrogen oxides, the fuel / air ratio is optimally maintained.
  • the efficiency of exhaust gas purification by the exhaust gas purification catalyst is generally proportional to the contact area between the active species of the catalytic metal and the exhaust gas. In addition, it is also important to maintain the ratio of the fuel and the amount of air optimally. For this purpose, it is necessary to increase the pore volume of the promoter and maintain high oxygen absorption / release capacity. . Furthermore, for example, cerium-based oxides used as cocatalysts cause sintering, etc. due to use at high temperatures such as exhaust gas purification, resulting in agglomeration of the catalyst metal due to a decrease in pore volume. There is a tendency that the contact area with the exhaust gas decreases and the efficiency of exhaust gas purification decreases.
  • Patent Document 1 proposes a method for producing a cerium composite oxide containing cerium and other rare earth metal elements in order to improve the heat resistance of cerium oxide.
  • the production method produces a liquid medium containing a cerium compound, heats the medium at at least 100 ° C., separates the precipitate obtained at the end of the heating step, and adds a rare earth compound solution other than cerium. To produce another liquid medium.
  • the liquid medium thus obtained is heated at least at 100 ° C., the resulting reaction medium is used as a basic pH to obtain a precipitate, and this precipitate is separated and calcined. It is described that the composite oxide obtained by this method has a pore volume of 200 nm or less after calcination at 1000 ° C.
  • the pore volume of 200 nm or less after firing at 1000 ° C. for 5 hours is 0.24 cm 3 / g.
  • the pore volume of 200 nm or less after calcination at 900 ° C. for 5 hours of this composite oxide is 0.25 cm 3 / g, and further improvement is necessary.
  • Patent Document 2 in order to improve the thermal stability of cerium oxide (ceria), the group consisting of ceria and 5 to 25 mol% lanthanum, neodymium, yttrium and mixtures thereof based on the number of moles of ceria.
  • cerium oxide the group consisting of ceria and 5 to 25 mol% lanthanum, neodymium, yttrium and mixtures thereof based on the number of moles of ceria.
  • Such a composition comprises mixing a ceria precursor with a ceria stabilizer selected from the group consisting of 5-25 mol% lanthanum, neodymium, yttrium and mixtures thereof, and evaporating the resulting mixture, Alternatively, it is described that it is produced by precipitating as a hydroxide or carbonate thereof to form a dense mixture of a ceria precursor and a ceria stabilizer, and calcining the produced dense mixture.
  • Patent Document 2 does not describe the pore volume of 200 nm or less after calcination at 900 ° C. for 5 hours as the physical properties of the stabilized ceria that is the obtained composition. According to the above-mentioned method, those having a pore volume of 200 nm or less after baking at 900 ° C. for 5 hours described in Patent Document 1 cannot be obtained.
  • cerium and at least one element selected from a rare earth metal containing yttrium and not containing cerium, aluminum, and silicon are in a range of 85:15 to 99: 1 in terms of mass ratio in terms of oxide.
  • a composite oxide having a physical property in which the pore volume with a pore diameter of 200 nm or less after firing at 900 ° C. for 5 hours is 0.30 cm 3 / g or more is provided.
  • the composite oxide of the present invention contains at least one element selected from a rare earth metal containing yttrium and not containing cerium (hereinafter sometimes referred to as a specific rare earth metal), aluminum, and silicon in a specific ratio, and a high temperature environment. Even when used underneath, it exhibits physical properties capable of maintaining a large pore volume. Therefore, particularly when used as a co-catalyst for an exhaust gas purification catalyst, exhaust gas can be efficiently purified.
  • the surfactant is added in steps (a) to (g), particularly in step (f), after step (e). Can be easily obtained.
  • the composite oxide of the present invention has a pore volume with a pore diameter of 200 nm or less after firing at 900 ° C. for 5 hours of 0.30 cm 3 / g or more, preferably 0.40 cm 3 / g or more, particularly preferably 0.50 cm 3. / G or more.
  • the composite oxide of the present invention which will be described later, contains at least one silicon selected from a rare earth metal not containing cerium and containing cerium, aluminum and silicon, and after firing at 900 ° C. for 5 hours.
  • the pore volume having a pore diameter of 200 nm or less preferably has a physical property of 0.60 cm 3 / g or more.
  • the composite oxide of the present invention has a pore volume of 200 nm or less after firing at 800 ° C. for 5 hours, usually 0.32 cm 3 / g or more, preferably 0.42 cm 3 / g or more, particularly preferably 0.52 cm. It has the physical property of showing 3 / g or more.
  • the upper limit of the physical property value of the pore volume having a pore diameter of 200 nm or less after baking at 900 ° C. or 800 ° C. for 5 hours is not particularly limited, but is about 0.80 cm 3 / g.
  • the pore volume is a value obtained by measuring a pore volume having a pore diameter of 200 nm or less by a mercury intrusion method.
  • the composite oxide of the present invention exhibits the physical properties described above, and furthermore, cerium and at least one element selected from a specific rare earth metal, aluminum, and silicon in an oxide-converted mass ratio of 85:15 to 99: 1, preferably in the range of 85:15 to 95: 5.
  • cerium in terms of CeO 2 in the oxide of cerium and at least one element selected from a specific rare earth metal, aluminum and silicon is less than 85% by mass, and more than 99% by mass, it is excellent.
  • the catalytic function may not be exhibited.
  • Examples of the specific rare earth metal include yttrium, lanthanum, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, or a mixture of two or more thereof. It is preferable to use yttrium, lanthanum, praseodymium, neodymium, or a mixture of two or more thereof.
  • the production method of the present invention is a method by which the composite oxide of the present invention can be obtained easily and with good reproducibility.
  • a step of preparing a cerium solution in which 90 mol% or more of cerium ions are tetravalent Includes a.
  • the cerium solution used in the step (a) include ceric nitrate solution and ceric ammonium nitrate, and the use of ceric nitrate solution is particularly preferable.
  • the initial concentration of the cerium solution in which 90 mol% or more of cerium ions are tetravalent is usually 5 to 100 g / L, preferably 5 to 80 g / L, particularly preferably 10 in terms of CeO 2. It can be adjusted to 70 g / L.
  • the concentration of the cerium solution usually water is used, and the use of deionized water is particularly preferred. If the initial concentration is too high, the crystallinity of the precipitate described later does not increase, and it is sufficient to contain an oxide precursor of at least one element selected from the specific rare earth metal, aluminum and silicon described later. There is a possibility that pores having a volume cannot be formed, and the pore volume of the finally obtained composite oxide cannot be set to a size showing desired physical properties. On the other hand, if the concentration is too low, the productivity is low, which is not industrially advantageous.
  • the cerium solution is then reacted by performing step (b) of heating and holding the cerium solution prepared in step (a) at 60 ° C. or higher.
  • a cerium suspension is formed by producing cerium oxide hydrate from the cerium solution by heating and holding in step (b).
  • the reactor used in step (b) may be either a closed type container or an open type container.
  • an autoclave reactor can be used.
  • the heating and holding temperature is 60 ° C. or higher, preferably 60 to 200 ° C., particularly preferably 80 to 180 ° C., more preferably 90 to 160 ° C.
  • the heating and holding time is usually 10 minutes to 48 hours, preferably 30 minutes to 36 hours, more preferably 1 hour to 24 hours.
  • the heating and holding are not sufficient, the crystallinity of the precipitate described later does not increase, and the volume sufficient to contain an oxide precursor of at least one element selected from the specific rare earth metal, aluminum and silicon described later In other words, the pore volume of the finally obtained composite oxide cannot be made to have a desired physical property. Further, if the heating and holding time is too long, it is not industrially advantageous.
  • the cerium suspension obtained by heating and holding in step (b) contains an oxide of at least one element selected from rare earth metals, aluminum and silicon containing yttrium and not containing cerium.
  • a precursor (c) may be a compound that can be an oxide of at least one element selected from a specific rare earth metal, aluminum, and silicon by an oxidation treatment such as firing.
  • the amount of the precursor added is usually a mass ratio in terms of oxide of cerium in the cerium suspension and at least one element selected from the specific rare earth metal, aluminum and silicon in the precursor. It can be adjusted to be in the range of 85:15 to 99: 1, preferably 85:15 to 95: 5. It is obtained when the CeO 2 content in terms of CeO 2 in the oxide of cerium and at least one element selected from the specific rare earth metals, aluminum and silicon is less than 85% by mass and more than 99% by mass. There is a possibility that the pore volume of the composite oxide cannot be set to a size showing desired physical properties.
  • Step (c) may be performed after cooling the cerium suspension obtained by heating and holding in step (b).
  • the cooling can usually be performed with stirring, and a generally known method can be used. Natural slow cooling or forced cooling using a cooling pipe may be used.
  • the cooling temperature is usually about 40 ° C. or less, preferably about 20 to 30 ° C.
  • the salt concentration of the cerium suspension may be adjusted by removing the mother liquor from the cerium suspension or adding water before adding the precursor.
  • the mother liquor can be removed by, for example, decantation, Nutsche method, centrifugal separation, or filter press method. At this time, a small amount of cerium is removed together with the mother liquor. Then, the amount of the next precursor and water added can be adjusted.
  • the production method of the present invention includes a step (d) of heating and holding the cerium suspension containing the precursor at 100 ° C. or higher, preferably 100 to 200 ° C., particularly preferably 100 to 150 ° C.
  • the heating and holding time is usually 10 minutes to 6 hours, preferably 20 minutes to 5 hours, more preferably 30 minutes to 4 hours.
  • the crystallinity of the precipitate described later does not increase, and there is a possibility that the pore volume of the finally obtained composite oxide cannot be made to have a desired physical property. . Further, if the heating and holding time is too long, it is not industrially advantageous.
  • the production method of the present invention includes a step (e) of neutralizing the suspension obtained in the step (d).
  • the neutralization in step (d) produces cerium oxide hydrate containing the precursor in suspension.
  • the neutralization in the step (e) can be performed, for example, by adding a base of sodium hydroxide, potassium hydroxide, ammonia water, ammonia gas or a mixture thereof, particularly ammonia water.
  • the neutralization can be performed, for example, by a method of adding the suspension obtained in step (d) with stirring, or in the case of ammonia gas, a method of blowing into the reactor with stirring.
  • Neutralization can usually be carried out so that the pH of the suspension is about 7 to 9, and preferably 7 to 8.5.
  • Step (e) may be performed after cooling the heated and maintained cerium suspension in step (d).
  • the cooling can usually be performed with stirring, and a generally known method can be used. Natural slow cooling or forced cooling using a cooling pipe may be used.
  • the cooling temperature is usually about 40 ° C. or less, preferably about 20 to 30 ° C.
  • the production method of the present invention includes a step (f) of adding a surfactant to the suspension neutralized in the step (e) to obtain a precipitate.
  • the surfactant used in step (f) include anionic surfactants such as ethoxycarboxylate, nonionic surfactants such as alcohol ethoxylate, polyethylene glycol, and carboxylic acids and mixtures thereof.
  • carboxylic acids is preferred.
  • Preferred examples of the carboxylic acid include saturated carboxylic acids such as decanoic acid, lauric acid, myristic acid, and palmitic acid, and lauric acid is particularly preferable.
  • the addition amount of the surfactant used in the step (f) is usually per 100 parts by mass of the total amount in terms of oxides of cerium, specific rare earth metal, aluminum and silicon in the suspension neutralized in the step (e). 5 to 50 parts by mass, preferably 7 to 40 parts by mass, particularly preferably 10 to 30 parts by mass. If the addition amount is smaller than the above range, the pore volume of the finally obtained composite oxide may not be made to have a desired physical property. The effect on the volume is negligible and is not industrially advantageous.
  • the surfactant used in step (f) is a solid, it may be dissolved in water or an aqueous ammonia solution and used as a surfactant solution.
  • the concentration of the surfactant is not particularly limited as long as it is stable as a solution, but is usually about 10 g / L to 500 g / L, preferably about 50 to 300 g / L from the viewpoint of workability and efficiency.
  • step (f) the surfactant is uniformly adsorbed on the surface of the cerium oxide hydrate particles containing the precursor present in the suspension neutralized in step (e).
  • a holding time is usually 10 minutes to 6 hours, preferably 20 minutes to 5 hours, more preferably 30 minutes to 4 hours.
  • the holding is preferably performed while stirring the precipitate.
  • the addition of the surfactant in step (f) is performed, for example, after step (c) and before step (d), and after step (d) and before step (e). The effect of the addition cannot be obtained, and the pore volume of the finally obtained composite oxide cannot be made to have a desired physical property. Therefore, step (f) needs to be performed after step (e).
  • a slurry containing a precipitate of cerium oxide hydrate containing the precursor having high crystallinity and having the surfactant uniformly adsorbed on the particle surface can be obtained.
  • the precipitate can be separated by, for example, Nutsche method, centrifugal separation method, or filter press method. Moreover, the precipitate can be washed with water as much as necessary. Furthermore, in order to efficiently perform the next step (g), a step of appropriately drying the obtained precipitate may be added. Drying can be carried out at about 60 to 200 ° C.
  • the production method of the present invention includes a step (g) of firing the obtained precipitate.
  • the firing temperature is usually 250 to 700 ° C., preferably 300 to 600 ° C.
  • the firing time can be appropriately set in consideration of the firing temperature, and can usually be determined in the range of 1 to 10 hours.
  • the powder particle diameter of the composite oxide obtained by the production method of the present invention can be adjusted to a desired particle diameter by pulverization.
  • the average particle diameter is 1 to 50 ⁇ m. It is preferable that
  • the exhaust gas purifying catalyst of the present invention is not particularly limited as long as it includes the co-catalyst containing the composite oxide of the present invention, and for example, known materials can be used for its production and other materials.
  • Example 1 This example relates to a composite oxide of cerium oxide and lanthanum oxide having a mass ratio of 90:10. After 50 g of a cerium nitrate solution containing 90 mol% or more of tetravalent cerium ions was collected in terms of CeO 2 , the total amount was adjusted to 1 L with pure water. Next, after heating up the obtained solution to 100 degreeC and hold
  • lanthanum nitrate solution containing 5.2 g in terms of La 2 O 3
  • the cerium suspension containing the lanthanum oxide precursor was kept at 120 ° C. for 2 hours, then naturally cooled, and neutralized to pH 8.5 by adding aqueous ammonia.
  • an ammonium laurate solution obtained by dissolving 10.4 g of lauric acid in 100 ml of 1.2% aqueous ammonia was added and stirred for 30 minutes, and then the slurry was solid-liquid separated by Nutsche filtration. A filter cake was obtained.
  • the cake was baked in the atmosphere at 300 ° C. for 10 hours to obtain a cerium oxide-based composite oxide powder containing 10% by mass of lanthanum oxide.
  • the pore volume with a pore diameter of 200 nm or less after firing at 800 ° C. for 5 hours and after firing at 900 ° C. for 5 hours was measured by a mercury intrusion method. .
  • the results are shown in Table 1.
  • Example 2 This example relates to a composite oxide of cerium oxide and lanthanum oxide having a mass ratio of 85:15.
  • a powder was obtained.
  • the physical properties of the obtained composite oxide powder were evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 This example relates to a composite oxide of cerium oxide and praseodymium oxide having a mass ratio of 90:10.
  • a cerium oxide-based material containing 10% praseodymium oxide by mass ratio.
  • a composite oxide powder was obtained.
  • the physical properties of the obtained composite oxide powder were evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 4 This example relates to a composite oxide of cerium oxide, lanthanum oxide and praseodymium oxide having a mass ratio of 90: 5: 5.
  • the addition amount of the lanthanum nitrate solution was 10.4 ml (containing 2.6 g in terms of La 2 O 3 ), and 10.3 ml of praseodymium nitrate solution (containing 2.6 g in terms of Pr 6 O 11 ) was added at the same timing.
  • the physical properties of the obtained composite oxide powder were evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 5 This example relates to a composite oxide of cerium oxide and neodymium oxide having a mass ratio of 90:10.
  • a composite oxide powder was obtained.
  • the pore volume having a pore diameter of 200 nm or less after firing at 900 ° C. for 5 hours was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 6 This example relates to a composite oxide of cerium oxide and yttrium oxide having a mass ratio of 90:10.
  • a composite oxide powder was obtained.
  • the pore volume having a pore diameter of 200 nm or less after firing at 900 ° C. for 5 hours was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 7 This example relates to a composite oxide of cerium oxide and aluminum oxide having a mass ratio of 90:10. Oxidation containing 10% by weight of aluminum oxide in the same manner as in Example 1 except that 38.2 g of aluminum nitrate nonahydrate (containing 5.2 g in terms of Al 2 O 3 ) was added instead of the lanthanum nitrate solution. A cerium-based composite oxide powder was obtained. In order to measure the physical properties of the obtained composite oxide powder, the pore volume having a pore diameter of 200 nm or less after firing at 900 ° C. for 5 hours was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 8 This example relates to a composite oxide of cerium oxide, lanthanum oxide, praseodymium oxide and aluminum oxide having a mass ratio of 85: 5: 5: 5.
  • the addition amount of the lanthanum nitrate solution was 11.2 ml (containing 2.8 g in terms of La 2 O 3 ), and further 11.1 ml of praseodymium nitrate solution (containing 2.8 g in terms of Pr 6 O 11 ) and aluminum nitrate nonahydrate.
  • a composite oxide powder was obtained.
  • the pore volume having a pore diameter of 200 nm or less after firing at 900 ° C. for 5 hours was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 9 This example relates to a composite oxide of cerium oxide and silicon oxide having a mass ratio of 90:10.
  • a powder was obtained.
  • the pore volume having a pore diameter of 200 nm or less after firing at 900 ° C. for 5 hours was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 10 This example relates to a composite oxide of cerium oxide, lanthanum oxide, praseodymium oxide and silicon oxide having a mass ratio of 85: 5: 5: 5.
  • the addition amount of the lanthanum nitrate solution was 11.2 ml (containing 2.8 g in terms of La 2 O 3 ), and further 11.1 ml of praseodymium nitrate solution (containing 2.8 g in terms of Pr 6 O 11 ) and 13.7 g of colloidal silica ( A cerium oxide-based composite oxide powder containing 5% by mass of lanthanum oxide, praseodymium oxide and silicon oxide in the same manner as in Example 1 except that 2.8 g in terms of SiO 2 was added at the same timing. Obtained.
  • the pore volume having a pore diameter of 200 nm or less after firing at 900 ° C. for 5 hours was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Comparative Example 5 A cerium oxide-based composite oxide powder containing 10% by weight of lanthanum oxide was obtained in the same manner as in Example 1 except that the ammonium laurate solution was added immediately after the addition of the lanthanum nitrate solution. In order to measure the physical properties of the obtained composite oxide powder, the pore volume having a pore diameter of 200 nm or less after firing at 900 ° C. for 5 hours was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Comparative Example 6 A cerium oxide-based composite oxide powder containing 10% by weight of lanthanum oxide was obtained in the same manner as in Example 1 except that the ammonium laurate solution was added immediately before neutralization with aqueous ammonia. In order to measure the physical properties of the obtained composite oxide powder, the pore volume having a pore diameter of 200 nm or less after firing at 900 ° C. for 5 hours was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • the composite oxides of the examples obtained by the production method of the present invention are:
  • the pore volume after firing under the same conditions showed a large value.
  • Comparative Examples 1 to 4 in the process of obtaining the composite oxide by baking the filter cake, the evaporation of moisture present at the particle interface in the precipitate induces aggregation of the particles, and a sufficient pore volume is obtained. I can guess that there wasn't.
  • the surface of the particles is hydrophobized by uniformly adsorbing the surfactant on the surface of the particles in the precipitate, which is caused by evaporation of moisture during firing. It is thought that the aggregation of particles was prevented. As a result, it seems that the composite oxides of the examples were able to maintain a large pore volume that could not be realized by the one described in Patent Document 1, even after high-temperature firing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Nanotechnology (AREA)

Abstract

 高温環境下で使用される場合でも高い細孔容積を維持しうる、優れた耐熱性及び触媒活性を有する複合酸化物、その製造法及びそれを利用した排ガス浄化用触媒を提供する。本発明の複合酸化物は、セリウムと、イットリウムを含み、セリウムを含まない希土類金属、アルミニウム及びケイ素から選ばれる少なくとも1種の元素とを酸化物換算の質量比で、85:15~99:1の範囲で含み、且つ900℃で5時間焼成後の細孔径200nm以下の細孔容積が0.30cm3/g以上、好ましくは0.40cm3/g以上を示す物性を有し、特に、自動車等に用いる排ガス浄化用触媒の助触媒として適している。

Description

複合酸化物、その製造法及び排ガス浄化用触媒
 本発明は、触媒、機能性セラミックス、燃料電池用固体電解質、研磨剤等に利用可能であり、特に、自動車等の排ガス浄化用触媒における助触媒材料として好適に利用でき、優れた触媒性能を発揮しうる大きな細孔容積を有する複合酸化物、その製造法及び前記複合酸化物を利用した排ガス浄化用触媒に関する。
 自動車等の排ガス浄化用触媒は、例えば、アルミナ、コージェライト等の触媒担持体に、触媒金属である白金、パラジウム又はロジウムとこれらの触媒作用を高めるための助触媒とが担持されて構成される。該助触媒材料は、酸化雰囲気下で酸素を吸収し、還元雰囲気下でその酸素を放出するという特性を有し、排ガス浄化用触媒が、排ガス中の有害成分である炭化水素、一酸化炭素及び窒素酸化物を効率良く浄化するために、燃料と空気量との比を最適に維持するよう作用する。
 排ガス浄化用触媒による排ガス浄化の効率は、一般に触媒金属の活性種と排ガスとの接触面積に比例する。また、上記燃料と空気量との比を最適に維持することも重要な問題であって、そのためには、助触媒の細孔容積を大きくし、酸素吸収・放出能を高く維持する必要がある。更に、助触媒として用いられる、例えば、セリウム系酸化物は、排ガス浄化等の高温下における使用によりシンタリング等が生じ、細孔容積が低下することで触媒金属の凝集を引き起こし、排ガスと触媒金属との接触面積が減少し、排ガス浄化の効率が低下する傾向にある。
 そこで、特許文献1には、酸化セリウムの耐熱性を改善するために、セリウムとその他の希土類金属元素を含むセリウム複合酸化物の製造法が提案されている。該製造法は、セリウム化合物を含有する液状媒体を生成させ、該媒体を少なくとも100℃で加熱し、該加熱工程の終わりに得られた沈殿物を分離し、セリウム以外の希土類化合物溶液を添加して、別の液状媒体を生成させる。このようにして得られた液状媒体を少なくとも100℃で加熱し、得られた反応媒体を塩基性pHとして沈殿物を得、この沈殿物を分離して焼成する方法である。
 この方法で得られる複合酸化物は、1000℃で5時間焼成後の200nm以下の細孔容積が少なくとも0.2cm3/gを示すことが記載されている。
 しかし、特許文献1に記載された具体的な実施例においては、最も大きな細孔容積の複合酸化物でも、1000℃で5時間焼成後の200nm以下の細孔容積が0.24cm3/gであり、この複合酸化物の900℃で5時間焼成後の200nm以下の細孔容積は0.25cm3/gであって、さらなる改善が必要である。
 特許文献2には、酸化セリウム(セリア)の熱安定性を改善するために、セリアと、セリアのモル数を基にして5~25モル%のランタン、ネオジム、イットリウムおよびそれらの混合物からなる群から選択されるセリア安定剤を含んでなる組成物が提案されている。このような組成物は、セリア先駆体を、5~25モル%のランタン、ネオジム、イットリウムおよびそれらの混合物からなる群から選択されるセリア安定剤に混合し、得られた混合物を蒸発させるか、またはその水酸化物や、炭酸塩として沈澱させて、セリア先駆体およびセリア安定剤の密な混合物を生成させ、生成した密な混合物を仮焼して製造されることが記載されている。
 しかし、特許文献2には、得られた組成物である安定化されたセリアの物性として、900℃で5時間焼成後の200nm以下の細孔容積については記載が無く、また、この文献に記載された上記方法では、特許文献1に記載された900℃で5時間焼成後の200nm以下の細孔容積以上のものは得られない。
国際公開第2008/156219号 特開平4-214026号公報
 本発明の課題は、高温環境下で使用される場合でも大きな細孔容積を維持しうる物性を示し、優れた耐熱性及び触媒活性を発揮させうる、特に、排ガス浄化用触媒の助触媒に適した複合酸化物及びそれを利用した排ガス浄化用触媒を提供することにある。
 本発明の別の課題は、高温環境下で使用される場合でも高い細孔容積を維持しうる物性を示す上記本発明の複合酸化物を容易に得ることができる複合酸化物の製造法を提供することにある。
 本発明によれば、セリウムと、イットリウムを含み、セリウムを含まない希土類金属、アルミニウム及びケイ素から選ばれる少なくとも1種の元素とを酸化物換算の質量比で、85:15~99:1の範囲で含み、且つ900℃で5時間焼成後の細孔径200nm以下の細孔容積が0.30cm3/g以上を示す物性を有する、複合酸化物が提供される。
 また本発明によれば、セリウムイオンの90モル%以上が4価であるセリウム溶液を準備する工程(a)と、工程(a)で準備したセリウム溶液を60℃以上に加熱保持する工程(b)と、加熱保持して得たセリウム懸濁液に、イットリウムを含み、セリウムを含まない希土類金属、アルミニウムおよびケイ素から選ばれる少なくとも1種の元素の酸化物の前駆体を加える工程(c)と、該前駆体を含むセリウム懸濁液を100℃以上に加熱保持する工程(d)と、工程(d)で得た懸濁液を中和する工程(e)と、工程(e)で中和した懸濁液に、界面活性剤を添加して沈殿物を得る工程(f)と、得られた沈殿物を焼成する工程(g)とを含む複合酸化物の製造法が提供される。
 更に本発明によれば、上記本発明の複合酸化物を備えた排ガス浄化用触媒が提供される。
 本発明の複合酸化物は、イットリウムを含みセリウムを含まない希土類金属(以下、特定の希土類金属と称することがある)、アルミニウム及びケイ素から選ばれる少なくとも1種の元素を特定割合で含み、高温環境下で使用される場合でも大きな細孔容積を維持しうる物性を示すので、特に、排ガス浄化用触媒の助触媒として使用した場合、排ガスを効率良く浄化することができる。
 本発明の複合酸化物の製造法は、工程(a)~(g)、特に、工程(f)における界面活性剤の添加を、工程(e)の後に行うので、上記本発明の複合酸化物を容易に得ることができる。
 以下、本発明を更に詳細に説明する。
 本発明の複合酸化物は、900℃で5時間焼成後の細孔径200nm以下の細孔容積が0.30cm3/g以上、好ましくは0.40cm3/g以上、特に好ましくは0.50cm3/g以上を示すという物性を有する。また、本発明の複合酸化物は、後述する、イットリウムを含み、セリウムを含まない希土類金属、アルミニウム及びケイ素から選ばれる少なくとも1種の元素として、少なくともケイ素を含む場合、900℃で5時間焼成後の細孔径200nm以下の細孔容積が、好ましくは0.60cm3/g以上を示すという物性を有する。
 本発明の複合酸化物は、800℃で5時間焼成後の細孔径200nm以下の細孔容積が通常0.32cm3/g以上、好ましくは0.42cm3/g以上、特に好ましくは0.52cm3/g以上を示すという物性を有する。900℃もしくは800℃で5時間焼成後の細孔径200nm以下の細孔容積の物性値の上限は特に限定されないが、0.80cm3/g程度である。該細孔容積の物性値が0.30cm3/g未満の場合には、特に、排ガス浄化用触媒とした際に、優れた触媒機能が発揮されない恐れがある。
 ここで、細孔容積とは、細孔径200nm以下の細孔容積を水銀圧入法により測定した値である。
 本発明の複合酸化物は、上記物性を示し、更に、セリウムと、特定の希土類金属、アルミニウム及びケイ素から選ばれる少なくとも1種の元素とを酸化物換算の質量比で、85:15~99:1、好ましくは85:15~95:5の範囲で含む。セリウムと、特定の希土類金属、アルミニウム及びケイ素から選ばれる少なくとも1種の元素との酸化物におけるセリウムのCeO2換算の含有割合が85質量%未満、また、99質量%を超える場合には、優れた触媒機能が発揮されない恐れがある。
 前記特定の希土類金属としては、例えば、イットリウム、ランタン、プラセオジム、ネオジム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウム又はこれらの2種以上の混合物が挙げられ、特に、イットリウム、ランタン、プラセオジム、ネオジム又はこれらの2種以上の混合物の使用が好ましい。
 本発明においてイットリウムはY2O3、ランタンはLa2O3、セリウムはCeO2、プラセオジムはPr6O11、ネオジムはNd2O3、サマリウムはSm2O3、ユウロピウムはEu2O3、ガドリニウムはGd2O3、テルビウムはTb4O7、ジスプロシウムDy2O3、ホルミウムはHo2O3、エルビウムはEr2O3、ツリウムはTm2O3、イッテルビウムはYb2O3、ルテチウムはLu2O3、アルミニウムはAl2O3、ケイ素はSiO2として、それぞれ酸化物に換算される。
 本発明の製造法は、本発明の複合酸化物を容易に、再現性良く得ることができる方法であって、まず、セリウムイオンの90モル%以上が4価であるセリウム溶液を準備する工程(a)を含む。
 工程(a)に用いるセリウム溶液としては、例えば、硝酸第二セリウム溶液、硝酸第二セリウムアンモニウムを挙げることができ、特に、硝酸第二セリウム溶液の使用が好ましい。
 工程(a)において、セリウムイオンの90モル%以上が4価であるセリウム溶液の初期濃度は、セリウムをCeO2換算で通常5~100g/L、好ましくは5~80g/L、特に好ましくは10~70g/Lに調整することができる。セリウム溶液の濃度調整には、通常水を用い、脱イオン水の使用が特に好ましい。該初期濃度は、高すぎると後述する沈澱物の結晶性が上がらず、後述する特定の希土類金属、アルミニウム及びケイ素から選ばれる少なくとも1種の元素の酸化物の前駆体を含有させるのに十分な容積を有する細孔を形成できず、最終的に得られる複合酸化物の細孔容積を所望の物性を示す大きさにできない恐れがある。また、濃度が低すぎると生産性が低いため工業的に有利でない。
 本発明の製造法は、次いで、工程(a)で準備したセリウム溶液を60℃以上に加熱保持する工程(b)を行ってセリウム溶液を反応させる。工程(b)の加熱保持により、セリウム溶液から酸化セリウム水和物が生成することでセリウム懸濁液が形成される。工程(b)に使用する反応器としては、密閉タイプの容器、開放タイプの容器のどちらでも良い。好ましくはオートクレーブ反応器を用いることができる。
 工程(b)において加熱保持温度は、60℃以上、好ましくは60~200℃、特に好ましくは80~180℃、更に好ましくは90~160℃である。加熱保持時間は、通常10分~48時間、好ましくは30分~36時間、より好ましくは1時間~24時間である。加熱保持が十分でないと、後述する沈澱物の結晶性が上がらず、後述する特定の希土類金属、アルミニウム及びケイ素から選ばれる少なくとも1種の元素の酸化物の前駆体を含有させるのに十分な容積を有する細孔を形成できず、最終的に得られる複合酸化物の細孔容積を所望の物性を示す大きさにできない恐れがある。また、加熱保持時間が長すぎると工業的に有利でない。
 本発明の製造法は、工程(b)の加熱保持で得られたセリウム懸濁液に、イットリウムを含み、セリウムを含まない希土類金属、アルミニウム及びケイ素から選ばれる少なくとも1種の元素の酸化物の前駆体を加える工程(c)を含む。
 前記前駆体は、焼成等の酸化処理により特定の希土類金属、アルミニウム及びケイ素から選ばれる少なくとも1種の元素の酸化物となりうる化合物であれば良く、例えば、特定の希土類金属含有硝酸溶液、硝酸アルミニウム、コロイダルシリカ、シリコネート、第4アンモニウムケイ酸塩のゾルが挙げられる。
 前記前駆体の添加量は、上記セリウム懸濁液中のセリウムと、前記前駆体中の特定の希土類金属、アルミニウム及びケイ素から選ばれる少なくとも1種の元素とを酸化物換算の質量比で、通常85:15~99:1、好ましくは85:15~95:5の範囲となるように調整することができる。セリウムと、特定の希土類金属、アルミニウム及びケイ素から選ばれる少なくとも1種の元素との酸化物におけるセリウムのCeO2換算の含有割合が85質量%未満、また99質量%を超える場合には、得られる複合酸化物の細孔容積を所望の物性を示す大きさにできない恐れがある。
 工程(c)は、工程(b)の加熱保持で得られたセリウム懸濁液を冷却した後に行っても良い。
 冷却は、通常、攪拌下に行うことができ、一般的に知られている方法を用いることができる。自然徐冷又は冷却管を用いる強制冷却でも良い。冷却温度は、通常40℃以下、好ましくは20~30℃の室温程度である。
 工程(c)において、前記前駆体を加える前にセリウム懸濁液から母液を除去したり、水を加えることにより、セリウム懸濁液の塩濃度を調整しても良い。母液の除去は、例えば、デカンテーション法、ヌッチェ法、遠心分離法、フィルタープレス法で行うことができ、この際、若干量のセリウムが母液と共に除去されるが、この除去されたセリウム量を考慮して、次の前記前駆体及び水の加える量を調整することができる。
 本発明の製造法では、前記前駆体を含むセリウム懸濁液を100℃以上、好ましくは100~200℃、特に好ましくは100~150℃に加熱保持する工程(d)を含む。
 工程(d)において、加熱保持時間は、通常10分~6時間、好ましくは20分~5時間、より好ましくは30分~4時間である。
 この工程(d)の加熱保持において、100℃未満では後述する沈澱物の結晶性が上がらず、最終的に得られる複合酸化物の細孔容積を所望の物性を示す大きさにできない恐れがある。また、加熱保持時間が長すぎると工業的に有利でない。
 本発明の製造法では、工程(d)で得られた懸濁液を中和する工程(e)を含む。工程(d)の中和により、懸濁液中に前記前駆体を含む酸化セリウム水和物が生成する。
 工程(e)における中和は、例えば、水酸化ナトリウム、水酸化カリウム、アンモニア水、アンモニアガス又はこれらの混合物の塩基、特に、アンモニア水を添加することにより行うことができる。
 前記中和は、例えば、工程(d)で得られた懸濁液に撹拌しながら加える方法、また、アンモニアガスの場合は撹拌しながら反応器内に吹き込む方法により実施できる。中和は、通常、懸濁液のpHが7~9程度の沈澱が生じる量、好ましくはpH7~8.5とするように行うことができる。
 工程(e)は、工程(d)の加熱保持したセリウム懸濁液を冷却した後に行っても良い。
冷却は、通常、攪拌下に行うことができ、一般的に知られている方法を用いることができる。自然徐冷又は冷却管を用いる強制冷却でも良い。冷却温度は、通常40℃以下、好ましくは20~30℃の室温程度である。
 本発明の製造法では、次に、工程(e)で中和した懸濁液に、界面活性剤を添加して沈殿物を得る工程(f)を含む。
 工程(f)に用いる界面活性剤は、例えば、エトキシカルボキシレート等の陰イオン界面活性剤、アルコールエトキシレート等の非イオン界面活性剤、ポリエチレングリコール、並びにカルボン酸及びそれらの混合物が挙げられ、特にカルボン酸の使用が好ましい。
 前記カルボン酸としては、例えば、デカン酸、ラウリン酸、ミリスチン酸、パルミチン酸等の飽和カルボン酸が好ましく挙げられ、特にラウリン酸が好ましい。
 工程(f)に用いる界面活性剤の添加量は、工程(e)で中和した懸濁液中のセリウム、特定の希土類金属、アルミニウム、ケイ素の酸化物換算の合計量100質量部あたり、通常5~50質量部、好ましくは7~40質量部、特に好ましくは10~30質量部である。該添加量が、上記範囲より小さいと、最終的に得られる複合酸化物の細孔容積を所望の物性を示す大きさにできない恐れがあり、また添加量が上記範囲を超えても、細孔容積への影響は微々たるものであり、工業的に有利でない。
 工程(f)に用いる界面活性剤が固体の場合は、水あるいはアンモニア水溶液に溶解して界面活性剤溶液として使用しても良い。その際、界面活性剤の濃度は、溶液として安定していれば特に限定されないが、通常10g/L~500g/L、好ましくは50~300g/L程度が作業性及び効率性の点で好ましい。
 工程(f)においては、工程(e)で中和した懸濁液中に存在する前記前駆体を含む酸化セリウム水和物粒子の表面に界面活性剤を均一に吸着させるために、界面活性剤を添加した後、保持時間を設けることが好ましい。該保持時間は、通常10分~6時間、好ましくは20分~5時間、より好ましくは30分~4時間である。保持に際しては、沈殿物を撹拌しながら行うことが好ましい。
 工程(f)の界面活性剤の添加は、例えば、工程(c)の後で、工程(d)の前に行うと、また、工程(d)の後で、工程(e)の前に行うとその添加の効果が得られず、最終に得られる複合酸化物の細孔容積を所望の物性を示す大きさにすることができない。従って、工程(f)は、工程(e)の後に行う必要がある。
 工程(f)により、結晶性が高く、粒子表面に界面活性剤が均一に吸着した前記前駆体を含む酸化セリウム水和物の沈澱物を含むスラリーを得ることができる。該沈澱物は、例えば、ヌッチェ法、遠心分離法、フィルタープレス法で分離できる。また、必要程度に沈澱物の水洗を付加することもできる。更に、次の工程(g)を効率よく行うために、得られた沈澱物を適度に乾燥する工程を付加しても良い。乾燥は、60~200℃程度で実施することができる。
 本発明の製造法では、得られた沈殿物を焼成する工程(g)を含む。焼成温度は、通常250~700℃、好ましくは300~600℃で行うことができる。
 工程(g)において焼成時間は、焼成温度との兼ね合いで適宜設定でき、通常1~10時間の範囲で決定することができる。
 本発明の製造法により得られる複合酸化物の粉末粒径は、粉砕により所望粒径とすることができるが、例えば、排ガス浄化用触媒の助触媒として用いる場合には、平均粒径1~50μmとすることが好ましい。
 本発明の排ガス浄化用触媒は、本発明の複合酸化物を含む助触媒を備えたものであれば特に限定されず、その製造や他の材料等は、例えば、公知のものが使用できる。
 以下、実施例及び比較例により本発明を更に詳細に説明するが、本発明はこれらに限定されない。
 実施例1
 この例は、質量割合が90:10の酸化セリウム及び酸化ランタンの複合酸化物に関する。
 4価のセリウムイオンを90モル%以上含有する硝酸第二セリウム溶液を、CeO2換算で50g分取した後、純水にて総量を1Lに調整した。次に、得られた溶液を100℃まで昇温し、30分保持した後、室温まで自然冷却し、セリウム懸濁液を得た。
 得られたセリウム懸濁液から母液を除去した後、硝酸ランタン溶液20.8ml(La2O3換算で5.2g含有)を添加し、純水にて総量を1Lに調整した。
 次いで、酸化ランタンの前駆体を含むセリウム懸濁液を120℃にて2時間保持した後、自然冷却し、アンモニア水を加えてpH8.5まで中和した。
 得られたスラリーに、ラウリン酸10.4gを100mlの1.2%アンモニア水に溶解して得られたラウリン酸アンモニウム溶液を添加し30分間撹拌した後、スラリーをヌッチェろ過にて固液分離し、ろ過ケーキを得た。該ケーキを大気中、300℃で10時間焼成して、酸化ランタンを質量比で10%含む酸化セリウム主体の複合酸化物粉末を得た。
 得られた複合酸化物粉末の物性を測定するために、大気中、800℃で5時間焼成後、並びに900℃で5時間焼成後の細孔径200nm以下の細孔容積を水銀圧入法により測定した。結果を表1に示す。
 実施例2
 この例は、質量割合が85:15の酸化セリウム及び酸化ランタンの複合酸化物に関する。
 硝酸ランタン溶液の添加量を33.2ml(La2O3換算で8.3g含有)とした以外は実施例1と同様にして、酸化ランタンを質量比で15%含む酸化セリウム主体の複合酸化物粉末を得た。得られた複合酸化物粉末の物性を実施例1と同様の方法で評価した。結果を表1に示す。
 実施例3
 この例は、質量割合が90:10の酸化セリウム及び酸化プラセオジムの複合酸化物に関する。
 硝酸ランタン溶液の代わりに硝酸プラセオジム溶液20.5ml(Pr6O11換算で5.2g含有)を添加した以外は実施例1と同様にして、酸化プラセオジムを質量比で10%含む酸化セリウム主体の複合酸化物粉末を得た。得られた複合酸化物粉末の物性を実施例1と同様の方法で評価した。結果を表1に示す。
 実施例4
 この例は、質量割合が90:5:5の酸化セリウム、酸化ランタン及び酸化プラセオジムの複合酸化物に関する。
 硝酸ランタン溶液の添加量を10.4ml(La2O3換算で2.6g含有)とし、さらに硝酸プラセオジム溶液10.3ml(Pr6O11換算で2.6g含有)を同じタイミングで添加した以外は実施例1と同様にして、酸化ランタンと酸化プラセオジムとをそれぞれ質量比で5%含む酸化セリウム主体の複合酸化物粉末を得た。得られた複合酸化物粉末の物性を実施例1と同様の方法で評価した。結果を表1に示す。
 実施例5
 この例は、質量割合が90:10の酸化セリウム及び酸化ネオジムの複合酸化物に関する。
 硝酸ランタン溶液の代わりに硝酸ネオジム溶液23.5ml(Nd2O3換算で5.2g含有)を添加した以外は実施例1と同様にして、酸化ネオジムを質量比で10%含む酸化セリウム主体の複合酸化物粉末を得た。得られた複合酸化物粉末の物性を測定するために、900℃で5時間焼成後の細孔径200nm以下の細孔容積を実施例1と同様の方法で評価した。結果を表1に示す。
 実施例6
 この例は、質量割合が90:10の酸化セリウム及び酸化イットリウムの複合酸化物に関する。
 硝酸ランタン溶液の代わりに硝酸イットリウム溶液22.9ml(Y2O3換算で5.2g含有)を添加した以外は実施例1と同様にして、酸化イットリウムを質量比で10%含む酸化セリウム主体の複合酸化物粉末を得た。得られた複合酸化物粉末の物性を測定するために、900℃で5時間焼成後の細孔径200nm以下の細孔容積を実施例1と同様の方法で評価した。結果を表1に示す。
 実施例7
 この例は、質量割合が90:10の酸化セリウム及び酸化アルミニウムの複合酸化物に関する。
 硝酸ランタン溶液の代わりに硝酸アルミニウム9水和物38.2g(Al2O3換算で5.2g含有)を添加した以外は実施例1と同様にして、酸化アルミニウムを質量比で10%含む酸化セリウム主体の複合酸化物粉末を得た。得られた複合酸化物粉末の物性を測定するために、900℃で5時間焼成後の細孔径200nm以下の細孔容積を実施例1と同様の方法で評価した。結果を表1に示す。
 実施例8
 この例は、質量割合が85:5:5:5の酸化セリウム、酸化ランタン、酸化プラセオジム及び酸化アルミニウムの複合酸化物に関する。
 硝酸ランタン溶液の添加量を11.2ml(La2O3換算で2.8g含有)とし、さらに硝酸プラセオジム溶液11.1ml(Pr6O11換算で2.8g含有)と硝酸アルミニウム9水和物20.6g(Al2O3換算で2.8g含有)を同じタイミングで添加した以外は実施例1と同様にして、酸化ランタン、酸化プラセオジム及び酸化アルミニウムをそれぞれ質量比で5%含む酸化セリウム主体の複合酸化物粉末を得た。得られた複合酸化物粉末の物性を測定するために、900℃で5時間焼成後の細孔径200nm以下の細孔容積を実施例1と同様の方法で評価した。結果を表1に示す。
 実施例9
 この例は、質量割合が90:10の酸化セリウム及び酸化ケイ素の複合酸化物に関する。
 硝酸ランタン溶液の代わりにコロイダルシリカ25.4g(SiO2換算で5.2g含有)を添加した以外は実施例1と同様にして、酸化ケイ素を質量比で10%含む酸化セリウム主体の複合酸化物粉末を得た。得られた複合酸化物粉末の物性を測定するために、900℃で5時間焼成後の細孔径200nm以下の細孔容積を実施例1と同様の方法で評価した。結果を表1に示す。
 実施例10
 この例は、質量割合が85:5:5:5の酸化セリウム、酸化ランタン、酸化プラセオジム及び酸化ケイ素の複合酸化物に関する。
 硝酸ランタン溶液の添加量を11.2ml(La2O3換算で2.8g含有)とし、さらに硝酸プラセオジム溶液11.1ml(Pr6O11換算で2.8g含有)とコロイダルシリカ13.7g(SiO2換算で2.8g含有)を同じタイミングで添加した以外は実施例1と同様にして、酸化ランタン、酸化プラセオジム及び酸化ケイ素をそれぞれ質量比で5%含む酸化セリウム主体の複合酸化物粉末を得た。得られた複合酸化物粉末の物性を測定するために、900℃で5時間焼成後の細孔径200nm以下の細孔容積を実施例1と同様の方法で評価した。結果を表1に示す。
 比較例1~4
 ラウリン酸アンモニウム塩処理を施さなかった以外は実施例1~4と同様にして各複合酸化物粉末を調製した。すなわちこれは、特許文献1に記載の製造法により得られた複合酸化物である。得られた複合酸化物粉末の物性を実施例1と同様の方法で評価した。結果を表1に示す。
 比較例5
 ラウリン酸アンモニウム溶液を硝酸ランタン溶液添加の直後に投入した以外は実施例1と同様にして、酸化ランタンを質量比で10%含む酸化セリウム主体の複合酸化物粉末を得た。得られた複合酸化物粉末の物性を測定するために、900℃で5時間焼成後の細孔径200nm以下の細孔容積を実施例1と同様の方法で評価した。結果を表1に示す。
 比較例6
 ラウリン酸アンモニウム溶液を、アンモニア水にて中和する直前に投入した以外は実施例1と同様にして、酸化ランタンを質量比で10%含む酸化セリウム主体の複合酸化物粉末を得た。得られた複合酸化物粉末の物性を測定するために、900℃で5時間焼成後の細孔径200nm以下の細孔容積を実施例1と同様の方法で評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から明らかなとおり、特許文献1に記載の製造法により得られた比較例1~4の複合酸化物に比べ、本発明の製造法で得られた実施例の複合酸化物は、同条件で焼成した後の細孔容積は大きい値を示した。比較例1~4では、ろ過ケーキを焼成して複合酸化物を得る工程において、沈殿物中の粒子界面に存在する水分の蒸発が粒子同士の凝集を誘発し、十分な細孔容積が得られなかったと推測できる。一方、本発明の製造法で得られた実施例の複合酸化物では、界面活性剤を沈殿物中の粒子表面に均一に吸着させることで粒子表面が疎水化され、焼成時の水分の蒸発による粒子の凝集が防止されたと考えられる。結果、実施例の複合酸化物は、特許文献1に記載のものでは実現し得ない大きい細孔容積を高温焼成後においても維持できたものと思われる。

Claims (9)

  1.  セリウムと、イットリウムを含み、セリウムを含まない希土類金属、アルミニウム及びケイ素から選ばれる少なくとも1種の元素とを酸化物換算の質量比で、85:15~99:1の範囲で含み、且つ900℃で5時間焼成後の細孔径200nm以下の細孔容積が0.30cm3/g以上を示す物性を有する複合酸化物。
  2.  900℃で5時間焼成後の細孔径200nm以下の細孔容積が0.40cm3/g以上を示す物性を有する請求項1記載の複合酸化物。
  3.  900℃で5時間焼成後の細孔径200nm以下の細孔容積が0.50cm3/g以上を示す物性を有する請求項1または2記載の複合酸化物。
  4.  800℃で5時間焼成後の細孔径200nm以下の細孔容積が0.32cm3/g以上を示す物性を有する請求項1~3のいずれかに記載の複合酸化物。
  5.  イットリウムを含み、セリウムを含まない希土類金属、アルミニウム及びケイ素から選ばれる少なくとも1種の元素として、少なくともケイ素を含み、且つ900℃で5時間焼成後の細孔径200nm以下の細孔容積が0.60cm3/g以上を示す物性を有する請求項1記載の複合酸化物。
  6.  イットリウムを含み、セリウムを含まない希土類金属が、イットリウム、ランタン、プラセオジム及びネオジムからなる群より選択される少なくとも1種を含む請求項1~5のいずれかに記載の複合酸化物。
  7.  セリウムイオンの90モル%以上が4価であるセリウム溶液を準備する工程(a)と、
     工程(a)で準備したセリウム溶液を60℃以上に加熱保持する工程(b)と、
     加熱保持して得たセリウム懸濁液に、イットリウムを含み、セリウムを含まない希土類金属、アルミニウム及びケイ素から選ばれる少なくとも1種の元素の酸化物の前駆体を加える工程(c)と、
     イットリウムを含み、セリウムを含まない希土類金属、アルミニウム及びケイ素から選ばれる少なくとも1種の元素の酸化物の前駆体を含むセリウム懸濁液を100℃以上に加熱保持する工程(d)と、
     工程(d)で得た懸濁液を中和する工程(e)と、
     工程(e)で中和した懸濁液に、界面活性剤を添加して沈殿物を得る工程(f)と、
     得られた沈殿物を焼成する工程(g)とを含む複合酸化物の製造法。
  8.  工程(a)のセリウム溶液中のセリウム濃度が、CeO2換算で5~100g/Lである請求項7記載の製造法。
  9.  請求項1~6のいずれかに記載の複合酸化物を備えた排ガス浄化用触媒。
PCT/JP2010/073306 2009-12-25 2010-12-24 複合酸化物、その製造法及び排ガス浄化用触媒 WO2011078315A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP10839545.0A EP2518018B1 (en) 2009-12-25 2010-12-24 Complex oxide, method for producing same, and exhaust gas purifying catalyst
CA2785411A CA2785411C (en) 2009-12-25 2010-12-24 Complex oxide, method for producing same, and exhaust gas purifying catalyst
JP2011547644A JP5706339B2 (ja) 2009-12-25 2010-12-24 複合酸化物、その製造法及び排ガス浄化用触媒
PL10839545T PL2518018T3 (pl) 2009-12-25 2010-12-24 Tlenek złożony, sposób jego wytwarzania, oraz katalizator do oczyszczania spalin
RU2012131748/05A RU2560376C2 (ru) 2009-12-25 2010-12-24 Сложный оксид, способ его получения и катализатор для очистки выхлопных газов
KR1020127019534A KR101822925B1 (ko) 2009-12-25 2010-12-24 복합 산화물, 그 제조법 및 배기가스 정화용 촉매
US13/518,735 US20120309614A1 (en) 2009-12-25 2010-12-24 Complex oxide, method for producing same, and exhaust gas purifying catalyst
CN201080064766.6A CN102770373B (zh) 2009-12-25 2010-12-24 复合氧化物、其制备方法及排气净化用催化剂
ZA2012/05522A ZA201205522B (en) 2009-12-25 2012-07-23 Complex oxide, method producing same, and exhaust gas purifying catalyst
US14/790,057 US9757711B2 (en) 2009-12-25 2015-07-02 Complex oxide, method for producing same, and exhaust gas purifying catalyst
US15/680,415 US20180001303A1 (en) 2009-12-25 2017-08-18 Complex oxide, method for producing same, and exhaust gas purifying catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009294338 2009-12-25
JP2009-294338 2009-12-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/518,735 A-371-Of-International US20120309614A1 (en) 2009-12-25 2010-12-24 Complex oxide, method for producing same, and exhaust gas purifying catalyst
US14/790,057 Continuation US9757711B2 (en) 2009-12-25 2015-07-02 Complex oxide, method for producing same, and exhaust gas purifying catalyst

Publications (1)

Publication Number Publication Date
WO2011078315A1 true WO2011078315A1 (ja) 2011-06-30

Family

ID=44195840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073306 WO2011078315A1 (ja) 2009-12-25 2010-12-24 複合酸化物、その製造法及び排ガス浄化用触媒

Country Status (10)

Country Link
US (3) US20120309614A1 (ja)
EP (1) EP2518018B1 (ja)
JP (1) JP5706339B2 (ja)
KR (1) KR101822925B1 (ja)
CN (1) CN102770373B (ja)
CA (1) CA2785411C (ja)
PL (1) PL2518018T3 (ja)
RU (1) RU2560376C2 (ja)
WO (1) WO2011078315A1 (ja)
ZA (1) ZA201205522B (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013156550A1 (fr) 2012-04-20 2013-10-24 Rhodia Operations Procede d'alcanation du co2 utilisant comme catalyseur un compose comprenant du nickel sur un support a base d'oxyde de cerium
WO2014034297A1 (ja) * 2012-08-31 2014-03-06 三井金属鉱業株式会社 触媒担体及び排ガス浄化用触媒
KR20170083075A (ko) * 2014-11-12 2017-07-17 로디아 오퍼레이션스 산화세륨 입자 및 이의 제조방법

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2749674B1 (en) 2011-09-28 2016-07-20 Hitachi Metals, Ltd. Method for removing rare earth impurities in electrolytic nickel plating solution
WO2013073381A1 (ja) * 2011-11-16 2013-05-23 株式会社三徳 複合酸化物
CN105051263B (zh) * 2013-03-25 2018-05-29 日立金属株式会社 镍电镀液中的稀土类杂质的除去方法
JP6319297B2 (ja) 2013-03-25 2018-05-09 日立金属株式会社 電気ニッケルめっき液中の希土類不純物の除去方法
US11253839B2 (en) 2014-04-29 2022-02-22 Archer-Daniels-Midland Company Shaped porous carbon products
JP7266603B2 (ja) * 2018-08-02 2023-04-28 日本碍子株式会社 多孔質複合体
CN110270321A (zh) * 2019-07-04 2019-09-24 南京大学 一种铈硅复合氧化物的制备方法及其产物和应用
RU2741920C1 (ru) * 2020-06-29 2021-01-29 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт химии силикатов им. И.В. Гребенщикова Российской академии наук (ИХС РАН) Способ жидкофазного синтеза наноструктурированного керамического материала в системе CeO2 - Sm2O3 для создания электролита твердооксидного топливного элемента

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256322A (ja) * 1985-07-03 1987-03-12 ロ−ヌ−プ−ラン・スペシアリテ・シミ−ク 酸化第二セリウムを主体とする組成物及びそれらの製造方法
JPH05270824A (ja) * 1991-12-09 1993-10-19 Rhone Poulenc Chim 酸化第二セリウムを基とする組成物、その製法及び使用法
JP2004002148A (ja) * 2002-03-29 2004-01-08 Toyota Central Res & Dev Lab Inc 金属酸化物及びその製造方法と触媒
JP2008150237A (ja) * 2006-12-15 2008-07-03 Toyota Motor Corp 金属酸化物の製造方法
WO2008156219A1 (en) * 2007-06-20 2008-12-24 Anan Kasei Co., Ltd High specific surface area mixed oxide of cerium and of another rare earth, preparation method and use in catalysis
JP2009530091A (ja) * 2006-03-21 2009-08-27 ロデイア・オペラシヨン 高い還元性および安定な比表面積を有する、酸化ジルコニウムおよび酸化セリウムに基づく組成物、調製方法、ならびに排気ガスの処理における使用

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA909211B (en) 1990-02-23 1991-09-25 Grace W R & Co High surface area ceria
JP4094689B2 (ja) * 1996-04-05 2008-06-04 阿南化成株式会社 酸素吸収放出能を有する複合酸化物の製造法
JP4053623B2 (ja) 1996-12-27 2008-02-27 阿南化成株式会社 ジルコニウム−セリウム系複合酸化物及びその製造方法
JP4006976B2 (ja) * 2000-11-15 2007-11-14 株式会社豊田中央研究所 複合酸化物粉末とその製造方法及び触媒
KR100890773B1 (ko) 2001-09-07 2009-03-31 아난 가세이 가부시키가이샤 산화 제2세륨 및 그 제조법 및 배기가스 정화용 촉매
RU2199389C1 (ru) * 2001-09-17 2003-02-27 Институт катализа им. Г.К. Борескова СО РАН Катализатор, носитель катализатора, способ их приготовления (варианты) и способ очистки отходящих газов от оксидов азота
US7214643B2 (en) 2002-03-22 2007-05-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Metal oxide and method for producing the same, and catalyst
JP2004176589A (ja) * 2002-11-26 2004-06-24 Toyota Motor Corp 排ガス浄化装置
FR2852592B1 (fr) 2003-03-18 2007-02-23 Rhodia Elect & Catalysis Compositions a base d'un oxyde de cerium, d'un oxyde de zirconium et, eventuellement d'un oxyde d'une autre terre rare, a surface specifique elevee a 1100 c, leur procede de preparation et leur utilisation comme catalyseur
FR2875149B1 (fr) 2004-09-15 2006-12-15 Rhodia Chimie Sa Procede de fabrication d'un filtre a particules catalyse et filtre ainsi obtenu
JP2006110485A (ja) * 2004-10-15 2006-04-27 Johnson Matthey Japan Inc 排気ガス触媒およびそれを用いた排気ガス処理装置
CN100563821C (zh) * 2006-01-05 2009-12-02 四川大学 低铈型储氧材料及其制备方法
PL2024084T3 (pl) * 2006-05-15 2020-01-31 RHODIA OPéRATIONS Kompozycja na bazie tlenków cyrkonu, ceru, lantanu i itru, gadolinu lub samaru, o dużej powierzchni właściwej i zdolności do redukcji, i zastosowanie jako katalizator
US8061120B2 (en) * 2007-07-30 2011-11-22 Herng Shinn Hwang Catalytic EGR oxidizer for IC engines and gas turbines
US20090108238A1 (en) * 2007-10-31 2009-04-30 Sud-Chemie Inc. Catalyst for reforming hydrocarbons
WO2011065416A1 (ja) * 2009-11-25 2011-06-03 阿南化成株式会社 複合酸化物、その製造法及び排ガス浄化用触媒
PL2505263T3 (pl) 2009-11-25 2020-06-29 Solvay Special Chem Japan, Ltd. Tlenek złożony, sposób jego wytwarzania i katalizator do oczyszczania spalin

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256322A (ja) * 1985-07-03 1987-03-12 ロ−ヌ−プ−ラン・スペシアリテ・シミ−ク 酸化第二セリウムを主体とする組成物及びそれらの製造方法
JPH05270824A (ja) * 1991-12-09 1993-10-19 Rhone Poulenc Chim 酸化第二セリウムを基とする組成物、その製法及び使用法
JP2004002148A (ja) * 2002-03-29 2004-01-08 Toyota Central Res & Dev Lab Inc 金属酸化物及びその製造方法と触媒
JP2009530091A (ja) * 2006-03-21 2009-08-27 ロデイア・オペラシヨン 高い還元性および安定な比表面積を有する、酸化ジルコニウムおよび酸化セリウムに基づく組成物、調製方法、ならびに排気ガスの処理における使用
JP2008150237A (ja) * 2006-12-15 2008-07-03 Toyota Motor Corp 金属酸化物の製造方法
WO2008156219A1 (en) * 2007-06-20 2008-12-24 Anan Kasei Co., Ltd High specific surface area mixed oxide of cerium and of another rare earth, preparation method and use in catalysis

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A.CORMA ET AL.: "Synthesis and catalytic properties of thermally and hydrothermally stable, high-surface-area Si02-Ce02 mesostructured composite materials and their application for the removal of sulfur compounds from gasoline", JOURNAL OF CATALYSIS, vol. 224, 2004, pages 441 - 448, XP004506504 *
See also references of EP2518018A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013156550A1 (fr) 2012-04-20 2013-10-24 Rhodia Operations Procede d'alcanation du co2 utilisant comme catalyseur un compose comprenant du nickel sur un support a base d'oxyde de cerium
WO2014034297A1 (ja) * 2012-08-31 2014-03-06 三井金属鉱業株式会社 触媒担体及び排ガス浄化用触媒
KR20170083075A (ko) * 2014-11-12 2017-07-17 로디아 오퍼레이션스 산화세륨 입자 및 이의 제조방법
JP2017533879A (ja) * 2014-11-12 2017-11-16 ローディア オペレーションズ 酸化セリウム粒子およびそれらの製造方法
KR102482605B1 (ko) * 2014-11-12 2022-12-30 로디아 오퍼레이션스 산화세륨 입자 및 이의 제조방법

Also Published As

Publication number Publication date
PL2518018T3 (pl) 2021-07-19
EP2518018A1 (en) 2012-10-31
CA2785411A1 (en) 2011-06-30
JPWO2011078315A1 (ja) 2013-05-09
KR20120123372A (ko) 2012-11-08
US20120309614A1 (en) 2012-12-06
CN102770373B (zh) 2015-04-15
ZA201205522B (en) 2013-05-29
CA2785411C (en) 2018-06-19
RU2560376C2 (ru) 2015-08-20
JP5706339B2 (ja) 2015-04-22
EP2518018A4 (en) 2016-02-24
US20180001303A1 (en) 2018-01-04
CN102770373A (zh) 2012-11-07
US9757711B2 (en) 2017-09-12
RU2012131748A (ru) 2014-01-27
KR101822925B1 (ko) 2018-01-30
EP2518018B1 (en) 2020-11-25
US20150321175A1 (en) 2015-11-12

Similar Documents

Publication Publication Date Title
JP5706339B2 (ja) 複合酸化物、その製造法及び排ガス浄化用触媒
JP5718823B2 (ja) 複合酸化物、その製造法及び排ガス浄化用触媒
JP5722790B2 (ja) 複合酸化物、その製造法及び排ガス浄化用触媒
JP6242807B2 (ja) 複合酸化物、その製造方法、および排ガス精製用の触媒
JP5911858B2 (ja) 複合酸化物、その製造法及び排ガス浄化用触媒
JP6223354B2 (ja) 複合酸化物、それの製造方法、および排ガス精製用の触媒
JP2023025987A (ja) ジルコニア系多孔質体、及び、ジルコニア系多孔質体の製造方法
JP5911483B2 (ja) 複合酸化物、その製造法及び排ガス浄化用触媒

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080064766.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839545

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011547644

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2785411

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010839545

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127019534

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 6510/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012131748

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 13518735

Country of ref document: US