WO2011078315A1 - 複合酸化物、その製造法及び排ガス浄化用触媒 - Google Patents
複合酸化物、その製造法及び排ガス浄化用触媒 Download PDFInfo
- Publication number
- WO2011078315A1 WO2011078315A1 PCT/JP2010/073306 JP2010073306W WO2011078315A1 WO 2011078315 A1 WO2011078315 A1 WO 2011078315A1 JP 2010073306 W JP2010073306 W JP 2010073306W WO 2011078315 A1 WO2011078315 A1 WO 2011078315A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cerium
- composite oxide
- oxide
- less
- pore volume
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 19
- 238000004519 manufacturing process Methods 0.000 title abstract description 21
- 239000011148 porous material Substances 0.000 claims abstract description 66
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 61
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims abstract description 56
- 230000000704 physical effect Effects 0.000 claims abstract description 35
- 238000010304 firing Methods 0.000 claims abstract description 30
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 24
- 150000002910 rare earth metals Chemical class 0.000 claims abstract description 23
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 21
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 21
- 239000010703 silicon Substances 0.000 claims abstract description 21
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 19
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 16
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000002131 composite material Substances 0.000 claims description 77
- 239000000725 suspension Substances 0.000 claims description 26
- 238000010438 heat treatment Methods 0.000 claims description 20
- 239000002244 precipitate Substances 0.000 claims description 19
- 239000002243 precursor Substances 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 16
- 239000004094 surface-active agent Substances 0.000 claims description 13
- -1 cerium ions Chemical class 0.000 claims description 7
- 229910052779 Neodymium Inorganic materials 0.000 claims description 6
- 229910052746 lanthanum Inorganic materials 0.000 claims description 6
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 6
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims description 6
- 238000001354 calcination Methods 0.000 claims description 5
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 4
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 claims description 4
- 230000003472 neutralizing effect Effects 0.000 claims description 3
- 230000003197 catalytic effect Effects 0.000 abstract description 8
- 239000000843 powder Substances 0.000 description 27
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 26
- 229910000420 cerium oxide Inorganic materials 0.000 description 23
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 23
- 239000007789 gas Substances 0.000 description 18
- 239000000203 mixture Substances 0.000 description 12
- FYDKNKUEBJQCCN-UHFFFAOYSA-N lanthanum(3+);trinitrate Chemical compound [La+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O FYDKNKUEBJQCCN-UHFFFAOYSA-N 0.000 description 11
- 238000001816 cooling Methods 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- 238000000746 purification Methods 0.000 description 10
- MMKQUGHLEMYQSG-UHFFFAOYSA-N oxygen(2-);praseodymium(3+) Chemical compound [O-2].[O-2].[O-2].[Pr+3].[Pr+3] MMKQUGHLEMYQSG-UHFFFAOYSA-N 0.000 description 8
- 229910003447 praseodymium oxide Inorganic materials 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 7
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 6
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 6
- 235000011114 ammonium hydroxide Nutrition 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 6
- 238000006386 neutralization reaction Methods 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 229940056585 ammonium laurate Drugs 0.000 description 4
- VJCJAQSLASCYAW-UHFFFAOYSA-N azane;dodecanoic acid Chemical compound [NH4+].CCCCCCCCCCCC([O-])=O VJCJAQSLASCYAW-UHFFFAOYSA-N 0.000 description 4
- KKFPIBHAPSRIPB-UHFFFAOYSA-N cerium(3+);oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Ce+3].[Ce+3] KKFPIBHAPSRIPB-UHFFFAOYSA-N 0.000 description 4
- 239000003426 co-catalyst Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000012452 mother liquor Substances 0.000 description 4
- PLDDOISOJJCEMH-UHFFFAOYSA-N neodymium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Nd+3].[Nd+3] PLDDOISOJJCEMH-UHFFFAOYSA-N 0.000 description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 4
- YWECOPREQNXXBZ-UHFFFAOYSA-N praseodymium(3+);trinitrate Chemical compound [Pr+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O YWECOPREQNXXBZ-UHFFFAOYSA-N 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 239000005639 Lauric acid Substances 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 150000001735 carboxylic acids Chemical class 0.000 description 3
- 239000008119 colloidal silica Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- XNDZQQSKSQTQQD-UHFFFAOYSA-N 3-methylcyclohex-2-en-1-ol Chemical compound CC1=CC(O)CCC1 XNDZQQSKSQTQQD-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910052692 Dysprosium Inorganic materials 0.000 description 2
- 229910052691 Erbium Inorganic materials 0.000 description 2
- 229910052693 Europium Inorganic materials 0.000 description 2
- 229910052688 Gadolinium Inorganic materials 0.000 description 2
- 229910052689 Holmium Inorganic materials 0.000 description 2
- 229910052765 Lutetium Inorganic materials 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- 229910017493 Nd 2 O 3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 229910052772 Samarium Inorganic materials 0.000 description 2
- 229910052771 Terbium Inorganic materials 0.000 description 2
- 229910052775 Thulium Inorganic materials 0.000 description 2
- 229910052769 Ytterbium Inorganic materials 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 239000012693 ceria precursor Substances 0.000 description 2
- XMPZTFVPEKAKFH-UHFFFAOYSA-P ceric ammonium nitrate Chemical compound [NH4+].[NH4+].[Ce+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O XMPZTFVPEKAKFH-UHFFFAOYSA-P 0.000 description 2
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 2
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000012065 filter cake Substances 0.000 description 2
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 2
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000010583 slow cooling Methods 0.000 description 2
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 2
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 2
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- GYSCBCSGKXNZRH-UHFFFAOYSA-N 1-benzothiophene-2-carboxamide Chemical compound C1=CC=C2SC(C(=O)N)=CC2=C1 GYSCBCSGKXNZRH-UHFFFAOYSA-N 0.000 description 1
- NGDQQLAVJWUYSF-UHFFFAOYSA-N 4-methyl-2-phenyl-1,3-thiazole-5-sulfonyl chloride Chemical compound S1C(S(Cl)(=O)=O)=C(C)N=C1C1=CC=CC=C1 NGDQQLAVJWUYSF-UHFFFAOYSA-N 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- GHVNFZFCNZKVNT-UHFFFAOYSA-N Decanoic acid Natural products CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 150000001785 cerium compounds Chemical class 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- CQDGTJPVBWZJAZ-UHFFFAOYSA-N monoethyl carbonate Chemical compound CCOC(O)=O CQDGTJPVBWZJAZ-UHFFFAOYSA-N 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- CFYGEIAZMVFFDE-UHFFFAOYSA-N neodymium(3+);trinitrate Chemical compound [Nd+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O CFYGEIAZMVFFDE-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 125000005625 siliconate group Chemical group 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/10—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F17/00—Compounds of rare earth metals
- C01F17/10—Preparation or treatment, e.g. separation or purification
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/63—Platinum group metals with rare earths or actinides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/63—Pore volume
- B01J35/633—Pore volume less than 0.5 ml/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/63—Pore volume
- B01J35/635—0.5-1.0 ml/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/651—50-500 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/66—Pore distribution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0018—Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
- B01J37/0205—Impregnation in several steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/03—Precipitation; Co-precipitation
- B01J37/031—Precipitation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/03—Precipitation; Co-precipitation
- B01J37/031—Precipitation
- B01J37/035—Precipitation on carriers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/082—Decomposition and pyrolysis
- B01J37/088—Decomposition of a metal salt
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F17/00—Compounds of rare earth metals
- C01F17/20—Compounds containing only rare earth metals as the metal element
- C01F17/206—Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F17/00—Compounds of rare earth metals
- C01F17/20—Compounds containing only rare earth metals as the metal element
- C01F17/206—Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
- C01F17/224—Oxides or hydroxides of lanthanides
- C01F17/229—Lanthanum oxides or hydroxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F17/00—Compounds of rare earth metals
- C01F17/20—Compounds containing only rare earth metals as the metal element
- C01F17/206—Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
- C01F17/224—Oxides or hydroxides of lanthanides
- C01F17/235—Cerium oxides or hydroxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F17/00—Compounds of rare earth metals
- C01F17/20—Compounds containing only rare earth metals as the metal element
- C01F17/206—Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
- C01F17/241—Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion containing two or more rare earth metals, e.g. NdPrO3 or LaNdPrO3
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F17/00—Compounds of rare earth metals
- C01F17/30—Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
- C01F17/32—Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 oxide or hydroxide being the only anion, e.g. NaCeO2 or MgxCayEuO
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F17/00—Compounds of rare earth metals
- C01F17/30—Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
- C01F17/32—Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 oxide or hydroxide being the only anion, e.g. NaCeO2 or MgxCayEuO
- C01F17/34—Aluminates, e.g. YAlO3 or Y3-xGdxAl5O12
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/206—Rare earth metals
- B01D2255/2061—Yttrium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/206—Rare earth metals
- B01D2255/2063—Lanthanum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/206—Rare earth metals
- B01D2255/2065—Cerium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/206—Rare earth metals
- B01D2255/2066—Praseodymium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/206—Rare earth metals
- B01D2255/2068—Neodymium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/209—Other metals
- B01D2255/2092—Aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/30—Silica
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/92—Dimensions
- B01D2255/9202—Linear dimensions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/40—Nitrogen compounds
- B01D2257/404—Nitrogen oxides other than dinitrogen oxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/502—Carbon monoxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/70—Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
- B01D2257/702—Hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/14—Pore volume
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/16—Pore diameter
Definitions
- the present invention can be used for catalysts, functional ceramics, solid electrolytes for fuel cells, abrasives, etc., and can be particularly suitably used as a promoter material in exhaust gas purification catalysts for automobiles, and exhibits excellent catalytic performance.
- the present invention relates to a composite oxide having a large pore volume, a method for producing the same, and a catalyst for exhaust gas purification using the composite oxide.
- An exhaust gas purifying catalyst for automobiles and the like is configured, for example, by supporting a catalyst metal such as alumina or cordierite with platinum, palladium, or rhodium as a catalytic metal and a co-catalyst for enhancing their catalytic action.
- the co-catalyst material has the property of absorbing oxygen under an oxidizing atmosphere and releasing the oxygen under a reducing atmosphere, and the exhaust gas-purifying catalyst contains hydrocarbons, carbon monoxide and carbon dioxide which are harmful components in the exhaust gas. In order to efficiently purify nitrogen oxides, the fuel / air ratio is optimally maintained.
- the efficiency of exhaust gas purification by the exhaust gas purification catalyst is generally proportional to the contact area between the active species of the catalytic metal and the exhaust gas. In addition, it is also important to maintain the ratio of the fuel and the amount of air optimally. For this purpose, it is necessary to increase the pore volume of the promoter and maintain high oxygen absorption / release capacity. . Furthermore, for example, cerium-based oxides used as cocatalysts cause sintering, etc. due to use at high temperatures such as exhaust gas purification, resulting in agglomeration of the catalyst metal due to a decrease in pore volume. There is a tendency that the contact area with the exhaust gas decreases and the efficiency of exhaust gas purification decreases.
- Patent Document 1 proposes a method for producing a cerium composite oxide containing cerium and other rare earth metal elements in order to improve the heat resistance of cerium oxide.
- the production method produces a liquid medium containing a cerium compound, heats the medium at at least 100 ° C., separates the precipitate obtained at the end of the heating step, and adds a rare earth compound solution other than cerium. To produce another liquid medium.
- the liquid medium thus obtained is heated at least at 100 ° C., the resulting reaction medium is used as a basic pH to obtain a precipitate, and this precipitate is separated and calcined. It is described that the composite oxide obtained by this method has a pore volume of 200 nm or less after calcination at 1000 ° C.
- the pore volume of 200 nm or less after firing at 1000 ° C. for 5 hours is 0.24 cm 3 / g.
- the pore volume of 200 nm or less after calcination at 900 ° C. for 5 hours of this composite oxide is 0.25 cm 3 / g, and further improvement is necessary.
- Patent Document 2 in order to improve the thermal stability of cerium oxide (ceria), the group consisting of ceria and 5 to 25 mol% lanthanum, neodymium, yttrium and mixtures thereof based on the number of moles of ceria.
- cerium oxide the group consisting of ceria and 5 to 25 mol% lanthanum, neodymium, yttrium and mixtures thereof based on the number of moles of ceria.
- Such a composition comprises mixing a ceria precursor with a ceria stabilizer selected from the group consisting of 5-25 mol% lanthanum, neodymium, yttrium and mixtures thereof, and evaporating the resulting mixture, Alternatively, it is described that it is produced by precipitating as a hydroxide or carbonate thereof to form a dense mixture of a ceria precursor and a ceria stabilizer, and calcining the produced dense mixture.
- Patent Document 2 does not describe the pore volume of 200 nm or less after calcination at 900 ° C. for 5 hours as the physical properties of the stabilized ceria that is the obtained composition. According to the above-mentioned method, those having a pore volume of 200 nm or less after baking at 900 ° C. for 5 hours described in Patent Document 1 cannot be obtained.
- cerium and at least one element selected from a rare earth metal containing yttrium and not containing cerium, aluminum, and silicon are in a range of 85:15 to 99: 1 in terms of mass ratio in terms of oxide.
- a composite oxide having a physical property in which the pore volume with a pore diameter of 200 nm or less after firing at 900 ° C. for 5 hours is 0.30 cm 3 / g or more is provided.
- the composite oxide of the present invention contains at least one element selected from a rare earth metal containing yttrium and not containing cerium (hereinafter sometimes referred to as a specific rare earth metal), aluminum, and silicon in a specific ratio, and a high temperature environment. Even when used underneath, it exhibits physical properties capable of maintaining a large pore volume. Therefore, particularly when used as a co-catalyst for an exhaust gas purification catalyst, exhaust gas can be efficiently purified.
- the surfactant is added in steps (a) to (g), particularly in step (f), after step (e). Can be easily obtained.
- the composite oxide of the present invention has a pore volume with a pore diameter of 200 nm or less after firing at 900 ° C. for 5 hours of 0.30 cm 3 / g or more, preferably 0.40 cm 3 / g or more, particularly preferably 0.50 cm 3. / G or more.
- the composite oxide of the present invention which will be described later, contains at least one silicon selected from a rare earth metal not containing cerium and containing cerium, aluminum and silicon, and after firing at 900 ° C. for 5 hours.
- the pore volume having a pore diameter of 200 nm or less preferably has a physical property of 0.60 cm 3 / g or more.
- the composite oxide of the present invention has a pore volume of 200 nm or less after firing at 800 ° C. for 5 hours, usually 0.32 cm 3 / g or more, preferably 0.42 cm 3 / g or more, particularly preferably 0.52 cm. It has the physical property of showing 3 / g or more.
- the upper limit of the physical property value of the pore volume having a pore diameter of 200 nm or less after baking at 900 ° C. or 800 ° C. for 5 hours is not particularly limited, but is about 0.80 cm 3 / g.
- the pore volume is a value obtained by measuring a pore volume having a pore diameter of 200 nm or less by a mercury intrusion method.
- the composite oxide of the present invention exhibits the physical properties described above, and furthermore, cerium and at least one element selected from a specific rare earth metal, aluminum, and silicon in an oxide-converted mass ratio of 85:15 to 99: 1, preferably in the range of 85:15 to 95: 5.
- cerium in terms of CeO 2 in the oxide of cerium and at least one element selected from a specific rare earth metal, aluminum and silicon is less than 85% by mass, and more than 99% by mass, it is excellent.
- the catalytic function may not be exhibited.
- Examples of the specific rare earth metal include yttrium, lanthanum, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, or a mixture of two or more thereof. It is preferable to use yttrium, lanthanum, praseodymium, neodymium, or a mixture of two or more thereof.
- the production method of the present invention is a method by which the composite oxide of the present invention can be obtained easily and with good reproducibility.
- a step of preparing a cerium solution in which 90 mol% or more of cerium ions are tetravalent Includes a.
- the cerium solution used in the step (a) include ceric nitrate solution and ceric ammonium nitrate, and the use of ceric nitrate solution is particularly preferable.
- the initial concentration of the cerium solution in which 90 mol% or more of cerium ions are tetravalent is usually 5 to 100 g / L, preferably 5 to 80 g / L, particularly preferably 10 in terms of CeO 2. It can be adjusted to 70 g / L.
- the concentration of the cerium solution usually water is used, and the use of deionized water is particularly preferred. If the initial concentration is too high, the crystallinity of the precipitate described later does not increase, and it is sufficient to contain an oxide precursor of at least one element selected from the specific rare earth metal, aluminum and silicon described later. There is a possibility that pores having a volume cannot be formed, and the pore volume of the finally obtained composite oxide cannot be set to a size showing desired physical properties. On the other hand, if the concentration is too low, the productivity is low, which is not industrially advantageous.
- the cerium solution is then reacted by performing step (b) of heating and holding the cerium solution prepared in step (a) at 60 ° C. or higher.
- a cerium suspension is formed by producing cerium oxide hydrate from the cerium solution by heating and holding in step (b).
- the reactor used in step (b) may be either a closed type container or an open type container.
- an autoclave reactor can be used.
- the heating and holding temperature is 60 ° C. or higher, preferably 60 to 200 ° C., particularly preferably 80 to 180 ° C., more preferably 90 to 160 ° C.
- the heating and holding time is usually 10 minutes to 48 hours, preferably 30 minutes to 36 hours, more preferably 1 hour to 24 hours.
- the heating and holding are not sufficient, the crystallinity of the precipitate described later does not increase, and the volume sufficient to contain an oxide precursor of at least one element selected from the specific rare earth metal, aluminum and silicon described later In other words, the pore volume of the finally obtained composite oxide cannot be made to have a desired physical property. Further, if the heating and holding time is too long, it is not industrially advantageous.
- the cerium suspension obtained by heating and holding in step (b) contains an oxide of at least one element selected from rare earth metals, aluminum and silicon containing yttrium and not containing cerium.
- a precursor (c) may be a compound that can be an oxide of at least one element selected from a specific rare earth metal, aluminum, and silicon by an oxidation treatment such as firing.
- the amount of the precursor added is usually a mass ratio in terms of oxide of cerium in the cerium suspension and at least one element selected from the specific rare earth metal, aluminum and silicon in the precursor. It can be adjusted to be in the range of 85:15 to 99: 1, preferably 85:15 to 95: 5. It is obtained when the CeO 2 content in terms of CeO 2 in the oxide of cerium and at least one element selected from the specific rare earth metals, aluminum and silicon is less than 85% by mass and more than 99% by mass. There is a possibility that the pore volume of the composite oxide cannot be set to a size showing desired physical properties.
- Step (c) may be performed after cooling the cerium suspension obtained by heating and holding in step (b).
- the cooling can usually be performed with stirring, and a generally known method can be used. Natural slow cooling or forced cooling using a cooling pipe may be used.
- the cooling temperature is usually about 40 ° C. or less, preferably about 20 to 30 ° C.
- the salt concentration of the cerium suspension may be adjusted by removing the mother liquor from the cerium suspension or adding water before adding the precursor.
- the mother liquor can be removed by, for example, decantation, Nutsche method, centrifugal separation, or filter press method. At this time, a small amount of cerium is removed together with the mother liquor. Then, the amount of the next precursor and water added can be adjusted.
- the production method of the present invention includes a step (d) of heating and holding the cerium suspension containing the precursor at 100 ° C. or higher, preferably 100 to 200 ° C., particularly preferably 100 to 150 ° C.
- the heating and holding time is usually 10 minutes to 6 hours, preferably 20 minutes to 5 hours, more preferably 30 minutes to 4 hours.
- the crystallinity of the precipitate described later does not increase, and there is a possibility that the pore volume of the finally obtained composite oxide cannot be made to have a desired physical property. . Further, if the heating and holding time is too long, it is not industrially advantageous.
- the production method of the present invention includes a step (e) of neutralizing the suspension obtained in the step (d).
- the neutralization in step (d) produces cerium oxide hydrate containing the precursor in suspension.
- the neutralization in the step (e) can be performed, for example, by adding a base of sodium hydroxide, potassium hydroxide, ammonia water, ammonia gas or a mixture thereof, particularly ammonia water.
- the neutralization can be performed, for example, by a method of adding the suspension obtained in step (d) with stirring, or in the case of ammonia gas, a method of blowing into the reactor with stirring.
- Neutralization can usually be carried out so that the pH of the suspension is about 7 to 9, and preferably 7 to 8.5.
- Step (e) may be performed after cooling the heated and maintained cerium suspension in step (d).
- the cooling can usually be performed with stirring, and a generally known method can be used. Natural slow cooling or forced cooling using a cooling pipe may be used.
- the cooling temperature is usually about 40 ° C. or less, preferably about 20 to 30 ° C.
- the production method of the present invention includes a step (f) of adding a surfactant to the suspension neutralized in the step (e) to obtain a precipitate.
- the surfactant used in step (f) include anionic surfactants such as ethoxycarboxylate, nonionic surfactants such as alcohol ethoxylate, polyethylene glycol, and carboxylic acids and mixtures thereof.
- carboxylic acids is preferred.
- Preferred examples of the carboxylic acid include saturated carboxylic acids such as decanoic acid, lauric acid, myristic acid, and palmitic acid, and lauric acid is particularly preferable.
- the addition amount of the surfactant used in the step (f) is usually per 100 parts by mass of the total amount in terms of oxides of cerium, specific rare earth metal, aluminum and silicon in the suspension neutralized in the step (e). 5 to 50 parts by mass, preferably 7 to 40 parts by mass, particularly preferably 10 to 30 parts by mass. If the addition amount is smaller than the above range, the pore volume of the finally obtained composite oxide may not be made to have a desired physical property. The effect on the volume is negligible and is not industrially advantageous.
- the surfactant used in step (f) is a solid, it may be dissolved in water or an aqueous ammonia solution and used as a surfactant solution.
- the concentration of the surfactant is not particularly limited as long as it is stable as a solution, but is usually about 10 g / L to 500 g / L, preferably about 50 to 300 g / L from the viewpoint of workability and efficiency.
- step (f) the surfactant is uniformly adsorbed on the surface of the cerium oxide hydrate particles containing the precursor present in the suspension neutralized in step (e).
- a holding time is usually 10 minutes to 6 hours, preferably 20 minutes to 5 hours, more preferably 30 minutes to 4 hours.
- the holding is preferably performed while stirring the precipitate.
- the addition of the surfactant in step (f) is performed, for example, after step (c) and before step (d), and after step (d) and before step (e). The effect of the addition cannot be obtained, and the pore volume of the finally obtained composite oxide cannot be made to have a desired physical property. Therefore, step (f) needs to be performed after step (e).
- a slurry containing a precipitate of cerium oxide hydrate containing the precursor having high crystallinity and having the surfactant uniformly adsorbed on the particle surface can be obtained.
- the precipitate can be separated by, for example, Nutsche method, centrifugal separation method, or filter press method. Moreover, the precipitate can be washed with water as much as necessary. Furthermore, in order to efficiently perform the next step (g), a step of appropriately drying the obtained precipitate may be added. Drying can be carried out at about 60 to 200 ° C.
- the production method of the present invention includes a step (g) of firing the obtained precipitate.
- the firing temperature is usually 250 to 700 ° C., preferably 300 to 600 ° C.
- the firing time can be appropriately set in consideration of the firing temperature, and can usually be determined in the range of 1 to 10 hours.
- the powder particle diameter of the composite oxide obtained by the production method of the present invention can be adjusted to a desired particle diameter by pulverization.
- the average particle diameter is 1 to 50 ⁇ m. It is preferable that
- the exhaust gas purifying catalyst of the present invention is not particularly limited as long as it includes the co-catalyst containing the composite oxide of the present invention, and for example, known materials can be used for its production and other materials.
- Example 1 This example relates to a composite oxide of cerium oxide and lanthanum oxide having a mass ratio of 90:10. After 50 g of a cerium nitrate solution containing 90 mol% or more of tetravalent cerium ions was collected in terms of CeO 2 , the total amount was adjusted to 1 L with pure water. Next, after heating up the obtained solution to 100 degreeC and hold
- lanthanum nitrate solution containing 5.2 g in terms of La 2 O 3
- the cerium suspension containing the lanthanum oxide precursor was kept at 120 ° C. for 2 hours, then naturally cooled, and neutralized to pH 8.5 by adding aqueous ammonia.
- an ammonium laurate solution obtained by dissolving 10.4 g of lauric acid in 100 ml of 1.2% aqueous ammonia was added and stirred for 30 minutes, and then the slurry was solid-liquid separated by Nutsche filtration. A filter cake was obtained.
- the cake was baked in the atmosphere at 300 ° C. for 10 hours to obtain a cerium oxide-based composite oxide powder containing 10% by mass of lanthanum oxide.
- the pore volume with a pore diameter of 200 nm or less after firing at 800 ° C. for 5 hours and after firing at 900 ° C. for 5 hours was measured by a mercury intrusion method. .
- the results are shown in Table 1.
- Example 2 This example relates to a composite oxide of cerium oxide and lanthanum oxide having a mass ratio of 85:15.
- a powder was obtained.
- the physical properties of the obtained composite oxide powder were evaluated in the same manner as in Example 1. The results are shown in Table 1.
- Example 3 This example relates to a composite oxide of cerium oxide and praseodymium oxide having a mass ratio of 90:10.
- a cerium oxide-based material containing 10% praseodymium oxide by mass ratio.
- a composite oxide powder was obtained.
- the physical properties of the obtained composite oxide powder were evaluated in the same manner as in Example 1. The results are shown in Table 1.
- Example 4 This example relates to a composite oxide of cerium oxide, lanthanum oxide and praseodymium oxide having a mass ratio of 90: 5: 5.
- the addition amount of the lanthanum nitrate solution was 10.4 ml (containing 2.6 g in terms of La 2 O 3 ), and 10.3 ml of praseodymium nitrate solution (containing 2.6 g in terms of Pr 6 O 11 ) was added at the same timing.
- the physical properties of the obtained composite oxide powder were evaluated in the same manner as in Example 1. The results are shown in Table 1.
- Example 5 This example relates to a composite oxide of cerium oxide and neodymium oxide having a mass ratio of 90:10.
- a composite oxide powder was obtained.
- the pore volume having a pore diameter of 200 nm or less after firing at 900 ° C. for 5 hours was evaluated in the same manner as in Example 1. The results are shown in Table 1.
- Example 6 This example relates to a composite oxide of cerium oxide and yttrium oxide having a mass ratio of 90:10.
- a composite oxide powder was obtained.
- the pore volume having a pore diameter of 200 nm or less after firing at 900 ° C. for 5 hours was evaluated in the same manner as in Example 1. The results are shown in Table 1.
- Example 7 This example relates to a composite oxide of cerium oxide and aluminum oxide having a mass ratio of 90:10. Oxidation containing 10% by weight of aluminum oxide in the same manner as in Example 1 except that 38.2 g of aluminum nitrate nonahydrate (containing 5.2 g in terms of Al 2 O 3 ) was added instead of the lanthanum nitrate solution. A cerium-based composite oxide powder was obtained. In order to measure the physical properties of the obtained composite oxide powder, the pore volume having a pore diameter of 200 nm or less after firing at 900 ° C. for 5 hours was evaluated in the same manner as in Example 1. The results are shown in Table 1.
- Example 8 This example relates to a composite oxide of cerium oxide, lanthanum oxide, praseodymium oxide and aluminum oxide having a mass ratio of 85: 5: 5: 5.
- the addition amount of the lanthanum nitrate solution was 11.2 ml (containing 2.8 g in terms of La 2 O 3 ), and further 11.1 ml of praseodymium nitrate solution (containing 2.8 g in terms of Pr 6 O 11 ) and aluminum nitrate nonahydrate.
- a composite oxide powder was obtained.
- the pore volume having a pore diameter of 200 nm or less after firing at 900 ° C. for 5 hours was evaluated in the same manner as in Example 1. The results are shown in Table 1.
- Example 9 This example relates to a composite oxide of cerium oxide and silicon oxide having a mass ratio of 90:10.
- a powder was obtained.
- the pore volume having a pore diameter of 200 nm or less after firing at 900 ° C. for 5 hours was evaluated in the same manner as in Example 1. The results are shown in Table 1.
- Example 10 This example relates to a composite oxide of cerium oxide, lanthanum oxide, praseodymium oxide and silicon oxide having a mass ratio of 85: 5: 5: 5.
- the addition amount of the lanthanum nitrate solution was 11.2 ml (containing 2.8 g in terms of La 2 O 3 ), and further 11.1 ml of praseodymium nitrate solution (containing 2.8 g in terms of Pr 6 O 11 ) and 13.7 g of colloidal silica ( A cerium oxide-based composite oxide powder containing 5% by mass of lanthanum oxide, praseodymium oxide and silicon oxide in the same manner as in Example 1 except that 2.8 g in terms of SiO 2 was added at the same timing. Obtained.
- the pore volume having a pore diameter of 200 nm or less after firing at 900 ° C. for 5 hours was evaluated in the same manner as in Example 1. The results are shown in Table 1.
- Comparative Example 5 A cerium oxide-based composite oxide powder containing 10% by weight of lanthanum oxide was obtained in the same manner as in Example 1 except that the ammonium laurate solution was added immediately after the addition of the lanthanum nitrate solution. In order to measure the physical properties of the obtained composite oxide powder, the pore volume having a pore diameter of 200 nm or less after firing at 900 ° C. for 5 hours was evaluated in the same manner as in Example 1. The results are shown in Table 1.
- Comparative Example 6 A cerium oxide-based composite oxide powder containing 10% by weight of lanthanum oxide was obtained in the same manner as in Example 1 except that the ammonium laurate solution was added immediately before neutralization with aqueous ammonia. In order to measure the physical properties of the obtained composite oxide powder, the pore volume having a pore diameter of 200 nm or less after firing at 900 ° C. for 5 hours was evaluated in the same manner as in Example 1. The results are shown in Table 1.
- the composite oxides of the examples obtained by the production method of the present invention are:
- the pore volume after firing under the same conditions showed a large value.
- Comparative Examples 1 to 4 in the process of obtaining the composite oxide by baking the filter cake, the evaporation of moisture present at the particle interface in the precipitate induces aggregation of the particles, and a sufficient pore volume is obtained. I can guess that there wasn't.
- the surface of the particles is hydrophobized by uniformly adsorbing the surfactant on the surface of the particles in the precipitate, which is caused by evaporation of moisture during firing. It is thought that the aggregation of particles was prevented. As a result, it seems that the composite oxides of the examples were able to maintain a large pore volume that could not be realized by the one described in Patent Document 1, even after high-temperature firing.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Nanotechnology (AREA)
Abstract
Description
排ガス浄化用触媒による排ガス浄化の効率は、一般に触媒金属の活性種と排ガスとの接触面積に比例する。また、上記燃料と空気量との比を最適に維持することも重要な問題であって、そのためには、助触媒の細孔容積を大きくし、酸素吸収・放出能を高く維持する必要がある。更に、助触媒として用いられる、例えば、セリウム系酸化物は、排ガス浄化等の高温下における使用によりシンタリング等が生じ、細孔容積が低下することで触媒金属の凝集を引き起こし、排ガスと触媒金属との接触面積が減少し、排ガス浄化の効率が低下する傾向にある。
この方法で得られる複合酸化物は、1000℃で5時間焼成後の200nm以下の細孔容積が少なくとも0.2cm3/gを示すことが記載されている。
しかし、特許文献1に記載された具体的な実施例においては、最も大きな細孔容積の複合酸化物でも、1000℃で5時間焼成後の200nm以下の細孔容積が0.24cm3/gであり、この複合酸化物の900℃で5時間焼成後の200nm以下の細孔容積は0.25cm3/gであって、さらなる改善が必要である。
しかし、特許文献2には、得られた組成物である安定化されたセリアの物性として、900℃で5時間焼成後の200nm以下の細孔容積については記載が無く、また、この文献に記載された上記方法では、特許文献1に記載された900℃で5時間焼成後の200nm以下の細孔容積以上のものは得られない。
本発明の別の課題は、高温環境下で使用される場合でも高い細孔容積を維持しうる物性を示す上記本発明の複合酸化物を容易に得ることができる複合酸化物の製造法を提供することにある。
また本発明によれば、セリウムイオンの90モル%以上が4価であるセリウム溶液を準備する工程(a)と、工程(a)で準備したセリウム溶液を60℃以上に加熱保持する工程(b)と、加熱保持して得たセリウム懸濁液に、イットリウムを含み、セリウムを含まない希土類金属、アルミニウムおよびケイ素から選ばれる少なくとも1種の元素の酸化物の前駆体を加える工程(c)と、該前駆体を含むセリウム懸濁液を100℃以上に加熱保持する工程(d)と、工程(d)で得た懸濁液を中和する工程(e)と、工程(e)で中和した懸濁液に、界面活性剤を添加して沈殿物を得る工程(f)と、得られた沈殿物を焼成する工程(g)とを含む複合酸化物の製造法が提供される。
更に本発明によれば、上記本発明の複合酸化物を備えた排ガス浄化用触媒が提供される。
本発明の複合酸化物の製造法は、工程(a)~(g)、特に、工程(f)における界面活性剤の添加を、工程(e)の後に行うので、上記本発明の複合酸化物を容易に得ることができる。
本発明の複合酸化物は、900℃で5時間焼成後の細孔径200nm以下の細孔容積が0.30cm3/g以上、好ましくは0.40cm3/g以上、特に好ましくは0.50cm3/g以上を示すという物性を有する。また、本発明の複合酸化物は、後述する、イットリウムを含み、セリウムを含まない希土類金属、アルミニウム及びケイ素から選ばれる少なくとも1種の元素として、少なくともケイ素を含む場合、900℃で5時間焼成後の細孔径200nm以下の細孔容積が、好ましくは0.60cm3/g以上を示すという物性を有する。
本発明の複合酸化物は、800℃で5時間焼成後の細孔径200nm以下の細孔容積が通常0.32cm3/g以上、好ましくは0.42cm3/g以上、特に好ましくは0.52cm3/g以上を示すという物性を有する。900℃もしくは800℃で5時間焼成後の細孔径200nm以下の細孔容積の物性値の上限は特に限定されないが、0.80cm3/g程度である。該細孔容積の物性値が0.30cm3/g未満の場合には、特に、排ガス浄化用触媒とした際に、優れた触媒機能が発揮されない恐れがある。
ここで、細孔容積とは、細孔径200nm以下の細孔容積を水銀圧入法により測定した値である。
本発明においてイットリウムはY2O3、ランタンはLa2O3、セリウムはCeO2、プラセオジムはPr6O11、ネオジムはNd2O3、サマリウムはSm2O3、ユウロピウムはEu2O3、ガドリニウムはGd2O3、テルビウムはTb4O7、ジスプロシウムDy2O3、ホルミウムはHo2O3、エルビウムはEr2O3、ツリウムはTm2O3、イッテルビウムはYb2O3、ルテチウムはLu2O3、アルミニウムはAl2O3、ケイ素はSiO2として、それぞれ酸化物に換算される。
工程(a)に用いるセリウム溶液としては、例えば、硝酸第二セリウム溶液、硝酸第二セリウムアンモニウムを挙げることができ、特に、硝酸第二セリウム溶液の使用が好ましい。
工程(a)において、セリウムイオンの90モル%以上が4価であるセリウム溶液の初期濃度は、セリウムをCeO2換算で通常5~100g/L、好ましくは5~80g/L、特に好ましくは10~70g/Lに調整することができる。セリウム溶液の濃度調整には、通常水を用い、脱イオン水の使用が特に好ましい。該初期濃度は、高すぎると後述する沈澱物の結晶性が上がらず、後述する特定の希土類金属、アルミニウム及びケイ素から選ばれる少なくとも1種の元素の酸化物の前駆体を含有させるのに十分な容積を有する細孔を形成できず、最終的に得られる複合酸化物の細孔容積を所望の物性を示す大きさにできない恐れがある。また、濃度が低すぎると生産性が低いため工業的に有利でない。
工程(b)において加熱保持温度は、60℃以上、好ましくは60~200℃、特に好ましくは80~180℃、更に好ましくは90~160℃である。加熱保持時間は、通常10分~48時間、好ましくは30分~36時間、より好ましくは1時間~24時間である。加熱保持が十分でないと、後述する沈澱物の結晶性が上がらず、後述する特定の希土類金属、アルミニウム及びケイ素から選ばれる少なくとも1種の元素の酸化物の前駆体を含有させるのに十分な容積を有する細孔を形成できず、最終的に得られる複合酸化物の細孔容積を所望の物性を示す大きさにできない恐れがある。また、加熱保持時間が長すぎると工業的に有利でない。
前記前駆体は、焼成等の酸化処理により特定の希土類金属、アルミニウム及びケイ素から選ばれる少なくとも1種の元素の酸化物となりうる化合物であれば良く、例えば、特定の希土類金属含有硝酸溶液、硝酸アルミニウム、コロイダルシリカ、シリコネート、第4アンモニウムケイ酸塩のゾルが挙げられる。
前記前駆体の添加量は、上記セリウム懸濁液中のセリウムと、前記前駆体中の特定の希土類金属、アルミニウム及びケイ素から選ばれる少なくとも1種の元素とを酸化物換算の質量比で、通常85:15~99:1、好ましくは85:15~95:5の範囲となるように調整することができる。セリウムと、特定の希土類金属、アルミニウム及びケイ素から選ばれる少なくとも1種の元素との酸化物におけるセリウムのCeO2換算の含有割合が85質量%未満、また99質量%を超える場合には、得られる複合酸化物の細孔容積を所望の物性を示す大きさにできない恐れがある。
冷却は、通常、攪拌下に行うことができ、一般的に知られている方法を用いることができる。自然徐冷又は冷却管を用いる強制冷却でも良い。冷却温度は、通常40℃以下、好ましくは20~30℃の室温程度である。
工程(d)において、加熱保持時間は、通常10分~6時間、好ましくは20分~5時間、より好ましくは30分~4時間である。
この工程(d)の加熱保持において、100℃未満では後述する沈澱物の結晶性が上がらず、最終的に得られる複合酸化物の細孔容積を所望の物性を示す大きさにできない恐れがある。また、加熱保持時間が長すぎると工業的に有利でない。
工程(e)における中和は、例えば、水酸化ナトリウム、水酸化カリウム、アンモニア水、アンモニアガス又はこれらの混合物の塩基、特に、アンモニア水を添加することにより行うことができる。
前記中和は、例えば、工程(d)で得られた懸濁液に撹拌しながら加える方法、また、アンモニアガスの場合は撹拌しながら反応器内に吹き込む方法により実施できる。中和は、通常、懸濁液のpHが7~9程度の沈澱が生じる量、好ましくはpH7~8.5とするように行うことができる。
冷却は、通常、攪拌下に行うことができ、一般的に知られている方法を用いることができる。自然徐冷又は冷却管を用いる強制冷却でも良い。冷却温度は、通常40℃以下、好ましくは20~30℃の室温程度である。
工程(f)に用いる界面活性剤は、例えば、エトキシカルボキシレート等の陰イオン界面活性剤、アルコールエトキシレート等の非イオン界面活性剤、ポリエチレングリコール、並びにカルボン酸及びそれらの混合物が挙げられ、特にカルボン酸の使用が好ましい。
前記カルボン酸としては、例えば、デカン酸、ラウリン酸、ミリスチン酸、パルミチン酸等の飽和カルボン酸が好ましく挙げられ、特にラウリン酸が好ましい。
工程(f)に用いる界面活性剤の添加量は、工程(e)で中和した懸濁液中のセリウム、特定の希土類金属、アルミニウム、ケイ素の酸化物換算の合計量100質量部あたり、通常5~50質量部、好ましくは7~40質量部、特に好ましくは10~30質量部である。該添加量が、上記範囲より小さいと、最終的に得られる複合酸化物の細孔容積を所望の物性を示す大きさにできない恐れがあり、また添加量が上記範囲を超えても、細孔容積への影響は微々たるものであり、工業的に有利でない。
工程(f)に用いる界面活性剤が固体の場合は、水あるいはアンモニア水溶液に溶解して界面活性剤溶液として使用しても良い。その際、界面活性剤の濃度は、溶液として安定していれば特に限定されないが、通常10g/L~500g/L、好ましくは50~300g/L程度が作業性及び効率性の点で好ましい。
工程(f)の界面活性剤の添加は、例えば、工程(c)の後で、工程(d)の前に行うと、また、工程(d)の後で、工程(e)の前に行うとその添加の効果が得られず、最終に得られる複合酸化物の細孔容積を所望の物性を示す大きさにすることができない。従って、工程(f)は、工程(e)の後に行う必要がある。
工程(g)において焼成時間は、焼成温度との兼ね合いで適宜設定でき、通常1~10時間の範囲で決定することができる。
実施例1
この例は、質量割合が90:10の酸化セリウム及び酸化ランタンの複合酸化物に関する。
4価のセリウムイオンを90モル%以上含有する硝酸第二セリウム溶液を、CeO2換算で50g分取した後、純水にて総量を1Lに調整した。次に、得られた溶液を100℃まで昇温し、30分保持した後、室温まで自然冷却し、セリウム懸濁液を得た。
得られたセリウム懸濁液から母液を除去した後、硝酸ランタン溶液20.8ml(La2O3換算で5.2g含有)を添加し、純水にて総量を1Lに調整した。
次いで、酸化ランタンの前駆体を含むセリウム懸濁液を120℃にて2時間保持した後、自然冷却し、アンモニア水を加えてpH8.5まで中和した。
得られたスラリーに、ラウリン酸10.4gを100mlの1.2%アンモニア水に溶解して得られたラウリン酸アンモニウム溶液を添加し30分間撹拌した後、スラリーをヌッチェろ過にて固液分離し、ろ過ケーキを得た。該ケーキを大気中、300℃で10時間焼成して、酸化ランタンを質量比で10%含む酸化セリウム主体の複合酸化物粉末を得た。
得られた複合酸化物粉末の物性を測定するために、大気中、800℃で5時間焼成後、並びに900℃で5時間焼成後の細孔径200nm以下の細孔容積を水銀圧入法により測定した。結果を表1に示す。
この例は、質量割合が85:15の酸化セリウム及び酸化ランタンの複合酸化物に関する。
硝酸ランタン溶液の添加量を33.2ml(La2O3換算で8.3g含有)とした以外は実施例1と同様にして、酸化ランタンを質量比で15%含む酸化セリウム主体の複合酸化物粉末を得た。得られた複合酸化物粉末の物性を実施例1と同様の方法で評価した。結果を表1に示す。
この例は、質量割合が90:10の酸化セリウム及び酸化プラセオジムの複合酸化物に関する。
硝酸ランタン溶液の代わりに硝酸プラセオジム溶液20.5ml(Pr6O11換算で5.2g含有)を添加した以外は実施例1と同様にして、酸化プラセオジムを質量比で10%含む酸化セリウム主体の複合酸化物粉末を得た。得られた複合酸化物粉末の物性を実施例1と同様の方法で評価した。結果を表1に示す。
この例は、質量割合が90:5:5の酸化セリウム、酸化ランタン及び酸化プラセオジムの複合酸化物に関する。
硝酸ランタン溶液の添加量を10.4ml(La2O3換算で2.6g含有)とし、さらに硝酸プラセオジム溶液10.3ml(Pr6O11換算で2.6g含有)を同じタイミングで添加した以外は実施例1と同様にして、酸化ランタンと酸化プラセオジムとをそれぞれ質量比で5%含む酸化セリウム主体の複合酸化物粉末を得た。得られた複合酸化物粉末の物性を実施例1と同様の方法で評価した。結果を表1に示す。
この例は、質量割合が90:10の酸化セリウム及び酸化ネオジムの複合酸化物に関する。
硝酸ランタン溶液の代わりに硝酸ネオジム溶液23.5ml(Nd2O3換算で5.2g含有)を添加した以外は実施例1と同様にして、酸化ネオジムを質量比で10%含む酸化セリウム主体の複合酸化物粉末を得た。得られた複合酸化物粉末の物性を測定するために、900℃で5時間焼成後の細孔径200nm以下の細孔容積を実施例1と同様の方法で評価した。結果を表1に示す。
この例は、質量割合が90:10の酸化セリウム及び酸化イットリウムの複合酸化物に関する。
硝酸ランタン溶液の代わりに硝酸イットリウム溶液22.9ml(Y2O3換算で5.2g含有)を添加した以外は実施例1と同様にして、酸化イットリウムを質量比で10%含む酸化セリウム主体の複合酸化物粉末を得た。得られた複合酸化物粉末の物性を測定するために、900℃で5時間焼成後の細孔径200nm以下の細孔容積を実施例1と同様の方法で評価した。結果を表1に示す。
この例は、質量割合が90:10の酸化セリウム及び酸化アルミニウムの複合酸化物に関する。
硝酸ランタン溶液の代わりに硝酸アルミニウム9水和物38.2g(Al2O3換算で5.2g含有)を添加した以外は実施例1と同様にして、酸化アルミニウムを質量比で10%含む酸化セリウム主体の複合酸化物粉末を得た。得られた複合酸化物粉末の物性を測定するために、900℃で5時間焼成後の細孔径200nm以下の細孔容積を実施例1と同様の方法で評価した。結果を表1に示す。
この例は、質量割合が85:5:5:5の酸化セリウム、酸化ランタン、酸化プラセオジム及び酸化アルミニウムの複合酸化物に関する。
硝酸ランタン溶液の添加量を11.2ml(La2O3換算で2.8g含有)とし、さらに硝酸プラセオジム溶液11.1ml(Pr6O11換算で2.8g含有)と硝酸アルミニウム9水和物20.6g(Al2O3換算で2.8g含有)を同じタイミングで添加した以外は実施例1と同様にして、酸化ランタン、酸化プラセオジム及び酸化アルミニウムをそれぞれ質量比で5%含む酸化セリウム主体の複合酸化物粉末を得た。得られた複合酸化物粉末の物性を測定するために、900℃で5時間焼成後の細孔径200nm以下の細孔容積を実施例1と同様の方法で評価した。結果を表1に示す。
この例は、質量割合が90:10の酸化セリウム及び酸化ケイ素の複合酸化物に関する。
硝酸ランタン溶液の代わりにコロイダルシリカ25.4g(SiO2換算で5.2g含有)を添加した以外は実施例1と同様にして、酸化ケイ素を質量比で10%含む酸化セリウム主体の複合酸化物粉末を得た。得られた複合酸化物粉末の物性を測定するために、900℃で5時間焼成後の細孔径200nm以下の細孔容積を実施例1と同様の方法で評価した。結果を表1に示す。
この例は、質量割合が85:5:5:5の酸化セリウム、酸化ランタン、酸化プラセオジム及び酸化ケイ素の複合酸化物に関する。
硝酸ランタン溶液の添加量を11.2ml(La2O3換算で2.8g含有)とし、さらに硝酸プラセオジム溶液11.1ml(Pr6O11換算で2.8g含有)とコロイダルシリカ13.7g(SiO2換算で2.8g含有)を同じタイミングで添加した以外は実施例1と同様にして、酸化ランタン、酸化プラセオジム及び酸化ケイ素をそれぞれ質量比で5%含む酸化セリウム主体の複合酸化物粉末を得た。得られた複合酸化物粉末の物性を測定するために、900℃で5時間焼成後の細孔径200nm以下の細孔容積を実施例1と同様の方法で評価した。結果を表1に示す。
ラウリン酸アンモニウム塩処理を施さなかった以外は実施例1~4と同様にして各複合酸化物粉末を調製した。すなわちこれは、特許文献1に記載の製造法により得られた複合酸化物である。得られた複合酸化物粉末の物性を実施例1と同様の方法で評価した。結果を表1に示す。
ラウリン酸アンモニウム溶液を硝酸ランタン溶液添加の直後に投入した以外は実施例1と同様にして、酸化ランタンを質量比で10%含む酸化セリウム主体の複合酸化物粉末を得た。得られた複合酸化物粉末の物性を測定するために、900℃で5時間焼成後の細孔径200nm以下の細孔容積を実施例1と同様の方法で評価した。結果を表1に示す。
ラウリン酸アンモニウム溶液を、アンモニア水にて中和する直前に投入した以外は実施例1と同様にして、酸化ランタンを質量比で10%含む酸化セリウム主体の複合酸化物粉末を得た。得られた複合酸化物粉末の物性を測定するために、900℃で5時間焼成後の細孔径200nm以下の細孔容積を実施例1と同様の方法で評価した。結果を表1に示す。
Claims (9)
- セリウムと、イットリウムを含み、セリウムを含まない希土類金属、アルミニウム及びケイ素から選ばれる少なくとも1種の元素とを酸化物換算の質量比で、85:15~99:1の範囲で含み、且つ900℃で5時間焼成後の細孔径200nm以下の細孔容積が0.30cm3/g以上を示す物性を有する複合酸化物。
- 900℃で5時間焼成後の細孔径200nm以下の細孔容積が0.40cm3/g以上を示す物性を有する請求項1記載の複合酸化物。
- 900℃で5時間焼成後の細孔径200nm以下の細孔容積が0.50cm3/g以上を示す物性を有する請求項1または2記載の複合酸化物。
- 800℃で5時間焼成後の細孔径200nm以下の細孔容積が0.32cm3/g以上を示す物性を有する請求項1~3のいずれかに記載の複合酸化物。
- イットリウムを含み、セリウムを含まない希土類金属、アルミニウム及びケイ素から選ばれる少なくとも1種の元素として、少なくともケイ素を含み、且つ900℃で5時間焼成後の細孔径200nm以下の細孔容積が0.60cm3/g以上を示す物性を有する請求項1記載の複合酸化物。
- イットリウムを含み、セリウムを含まない希土類金属が、イットリウム、ランタン、プラセオジム及びネオジムからなる群より選択される少なくとも1種を含む請求項1~5のいずれかに記載の複合酸化物。
- セリウムイオンの90モル%以上が4価であるセリウム溶液を準備する工程(a)と、
工程(a)で準備したセリウム溶液を60℃以上に加熱保持する工程(b)と、
加熱保持して得たセリウム懸濁液に、イットリウムを含み、セリウムを含まない希土類金属、アルミニウム及びケイ素から選ばれる少なくとも1種の元素の酸化物の前駆体を加える工程(c)と、
イットリウムを含み、セリウムを含まない希土類金属、アルミニウム及びケイ素から選ばれる少なくとも1種の元素の酸化物の前駆体を含むセリウム懸濁液を100℃以上に加熱保持する工程(d)と、
工程(d)で得た懸濁液を中和する工程(e)と、
工程(e)で中和した懸濁液に、界面活性剤を添加して沈殿物を得る工程(f)と、
得られた沈殿物を焼成する工程(g)とを含む複合酸化物の製造法。 - 工程(a)のセリウム溶液中のセリウム濃度が、CeO2換算で5~100g/Lである請求項7記載の製造法。
- 請求項1~6のいずれかに記載の複合酸化物を備えた排ガス浄化用触媒。
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10839545.0A EP2518018B1 (en) | 2009-12-25 | 2010-12-24 | Complex oxide, method for producing same, and exhaust gas purifying catalyst |
CA2785411A CA2785411C (en) | 2009-12-25 | 2010-12-24 | Complex oxide, method for producing same, and exhaust gas purifying catalyst |
JP2011547644A JP5706339B2 (ja) | 2009-12-25 | 2010-12-24 | 複合酸化物、その製造法及び排ガス浄化用触媒 |
PL10839545T PL2518018T3 (pl) | 2009-12-25 | 2010-12-24 | Tlenek złożony, sposób jego wytwarzania, oraz katalizator do oczyszczania spalin |
RU2012131748/05A RU2560376C2 (ru) | 2009-12-25 | 2010-12-24 | Сложный оксид, способ его получения и катализатор для очистки выхлопных газов |
KR1020127019534A KR101822925B1 (ko) | 2009-12-25 | 2010-12-24 | 복합 산화물, 그 제조법 및 배기가스 정화용 촉매 |
US13/518,735 US20120309614A1 (en) | 2009-12-25 | 2010-12-24 | Complex oxide, method for producing same, and exhaust gas purifying catalyst |
CN201080064766.6A CN102770373B (zh) | 2009-12-25 | 2010-12-24 | 复合氧化物、其制备方法及排气净化用催化剂 |
ZA2012/05522A ZA201205522B (en) | 2009-12-25 | 2012-07-23 | Complex oxide, method producing same, and exhaust gas purifying catalyst |
US14/790,057 US9757711B2 (en) | 2009-12-25 | 2015-07-02 | Complex oxide, method for producing same, and exhaust gas purifying catalyst |
US15/680,415 US20180001303A1 (en) | 2009-12-25 | 2017-08-18 | Complex oxide, method for producing same, and exhaust gas purifying catalyst |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009294338 | 2009-12-25 | ||
JP2009-294338 | 2009-12-25 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/518,735 A-371-Of-International US20120309614A1 (en) | 2009-12-25 | 2010-12-24 | Complex oxide, method for producing same, and exhaust gas purifying catalyst |
US14/790,057 Continuation US9757711B2 (en) | 2009-12-25 | 2015-07-02 | Complex oxide, method for producing same, and exhaust gas purifying catalyst |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011078315A1 true WO2011078315A1 (ja) | 2011-06-30 |
Family
ID=44195840
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/073306 WO2011078315A1 (ja) | 2009-12-25 | 2010-12-24 | 複合酸化物、その製造法及び排ガス浄化用触媒 |
Country Status (10)
Country | Link |
---|---|
US (3) | US20120309614A1 (ja) |
EP (1) | EP2518018B1 (ja) |
JP (1) | JP5706339B2 (ja) |
KR (1) | KR101822925B1 (ja) |
CN (1) | CN102770373B (ja) |
CA (1) | CA2785411C (ja) |
PL (1) | PL2518018T3 (ja) |
RU (1) | RU2560376C2 (ja) |
WO (1) | WO2011078315A1 (ja) |
ZA (1) | ZA201205522B (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013156550A1 (fr) | 2012-04-20 | 2013-10-24 | Rhodia Operations | Procede d'alcanation du co2 utilisant comme catalyseur un compose comprenant du nickel sur un support a base d'oxyde de cerium |
WO2014034297A1 (ja) * | 2012-08-31 | 2014-03-06 | 三井金属鉱業株式会社 | 触媒担体及び排ガス浄化用触媒 |
KR20170083075A (ko) * | 2014-11-12 | 2017-07-17 | 로디아 오퍼레이션스 | 산화세륨 입자 및 이의 제조방법 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2749674B1 (en) | 2011-09-28 | 2016-07-20 | Hitachi Metals, Ltd. | Method for removing rare earth impurities in electrolytic nickel plating solution |
WO2013073381A1 (ja) * | 2011-11-16 | 2013-05-23 | 株式会社三徳 | 複合酸化物 |
CN105051263B (zh) * | 2013-03-25 | 2018-05-29 | 日立金属株式会社 | 镍电镀液中的稀土类杂质的除去方法 |
JP6319297B2 (ja) | 2013-03-25 | 2018-05-09 | 日立金属株式会社 | 電気ニッケルめっき液中の希土類不純物の除去方法 |
US11253839B2 (en) | 2014-04-29 | 2022-02-22 | Archer-Daniels-Midland Company | Shaped porous carbon products |
JP7266603B2 (ja) * | 2018-08-02 | 2023-04-28 | 日本碍子株式会社 | 多孔質複合体 |
CN110270321A (zh) * | 2019-07-04 | 2019-09-24 | 南京大学 | 一种铈硅复合氧化物的制备方法及其产物和应用 |
RU2741920C1 (ru) * | 2020-06-29 | 2021-01-29 | Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт химии силикатов им. И.В. Гребенщикова Российской академии наук (ИХС РАН) | Способ жидкофазного синтеза наноструктурированного керамического материала в системе CeO2 - Sm2O3 для создания электролита твердооксидного топливного элемента |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6256322A (ja) * | 1985-07-03 | 1987-03-12 | ロ−ヌ−プ−ラン・スペシアリテ・シミ−ク | 酸化第二セリウムを主体とする組成物及びそれらの製造方法 |
JPH05270824A (ja) * | 1991-12-09 | 1993-10-19 | Rhone Poulenc Chim | 酸化第二セリウムを基とする組成物、その製法及び使用法 |
JP2004002148A (ja) * | 2002-03-29 | 2004-01-08 | Toyota Central Res & Dev Lab Inc | 金属酸化物及びその製造方法と触媒 |
JP2008150237A (ja) * | 2006-12-15 | 2008-07-03 | Toyota Motor Corp | 金属酸化物の製造方法 |
WO2008156219A1 (en) * | 2007-06-20 | 2008-12-24 | Anan Kasei Co., Ltd | High specific surface area mixed oxide of cerium and of another rare earth, preparation method and use in catalysis |
JP2009530091A (ja) * | 2006-03-21 | 2009-08-27 | ロデイア・オペラシヨン | 高い還元性および安定な比表面積を有する、酸化ジルコニウムおよび酸化セリウムに基づく組成物、調製方法、ならびに排気ガスの処理における使用 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ZA909211B (en) | 1990-02-23 | 1991-09-25 | Grace W R & Co | High surface area ceria |
JP4094689B2 (ja) * | 1996-04-05 | 2008-06-04 | 阿南化成株式会社 | 酸素吸収放出能を有する複合酸化物の製造法 |
JP4053623B2 (ja) | 1996-12-27 | 2008-02-27 | 阿南化成株式会社 | ジルコニウム−セリウム系複合酸化物及びその製造方法 |
JP4006976B2 (ja) * | 2000-11-15 | 2007-11-14 | 株式会社豊田中央研究所 | 複合酸化物粉末とその製造方法及び触媒 |
KR100890773B1 (ko) | 2001-09-07 | 2009-03-31 | 아난 가세이 가부시키가이샤 | 산화 제2세륨 및 그 제조법 및 배기가스 정화용 촉매 |
RU2199389C1 (ru) * | 2001-09-17 | 2003-02-27 | Институт катализа им. Г.К. Борескова СО РАН | Катализатор, носитель катализатора, способ их приготовления (варианты) и способ очистки отходящих газов от оксидов азота |
US7214643B2 (en) | 2002-03-22 | 2007-05-08 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Metal oxide and method for producing the same, and catalyst |
JP2004176589A (ja) * | 2002-11-26 | 2004-06-24 | Toyota Motor Corp | 排ガス浄化装置 |
FR2852592B1 (fr) | 2003-03-18 | 2007-02-23 | Rhodia Elect & Catalysis | Compositions a base d'un oxyde de cerium, d'un oxyde de zirconium et, eventuellement d'un oxyde d'une autre terre rare, a surface specifique elevee a 1100 c, leur procede de preparation et leur utilisation comme catalyseur |
FR2875149B1 (fr) | 2004-09-15 | 2006-12-15 | Rhodia Chimie Sa | Procede de fabrication d'un filtre a particules catalyse et filtre ainsi obtenu |
JP2006110485A (ja) * | 2004-10-15 | 2006-04-27 | Johnson Matthey Japan Inc | 排気ガス触媒およびそれを用いた排気ガス処理装置 |
CN100563821C (zh) * | 2006-01-05 | 2009-12-02 | 四川大学 | 低铈型储氧材料及其制备方法 |
PL2024084T3 (pl) * | 2006-05-15 | 2020-01-31 | RHODIA OPéRATIONS | Kompozycja na bazie tlenków cyrkonu, ceru, lantanu i itru, gadolinu lub samaru, o dużej powierzchni właściwej i zdolności do redukcji, i zastosowanie jako katalizator |
US8061120B2 (en) * | 2007-07-30 | 2011-11-22 | Herng Shinn Hwang | Catalytic EGR oxidizer for IC engines and gas turbines |
US20090108238A1 (en) * | 2007-10-31 | 2009-04-30 | Sud-Chemie Inc. | Catalyst for reforming hydrocarbons |
WO2011065416A1 (ja) * | 2009-11-25 | 2011-06-03 | 阿南化成株式会社 | 複合酸化物、その製造法及び排ガス浄化用触媒 |
PL2505263T3 (pl) | 2009-11-25 | 2020-06-29 | Solvay Special Chem Japan, Ltd. | Tlenek złożony, sposób jego wytwarzania i katalizator do oczyszczania spalin |
-
2010
- 2010-12-24 PL PL10839545T patent/PL2518018T3/pl unknown
- 2010-12-24 CN CN201080064766.6A patent/CN102770373B/zh active Active
- 2010-12-24 WO PCT/JP2010/073306 patent/WO2011078315A1/ja active Application Filing
- 2010-12-24 KR KR1020127019534A patent/KR101822925B1/ko active IP Right Grant
- 2010-12-24 JP JP2011547644A patent/JP5706339B2/ja active Active
- 2010-12-24 EP EP10839545.0A patent/EP2518018B1/en active Active
- 2010-12-24 US US13/518,735 patent/US20120309614A1/en not_active Abandoned
- 2010-12-24 CA CA2785411A patent/CA2785411C/en active Active
- 2010-12-24 RU RU2012131748/05A patent/RU2560376C2/ru active
-
2012
- 2012-07-23 ZA ZA2012/05522A patent/ZA201205522B/en unknown
-
2015
- 2015-07-02 US US14/790,057 patent/US9757711B2/en active Active
-
2017
- 2017-08-18 US US15/680,415 patent/US20180001303A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6256322A (ja) * | 1985-07-03 | 1987-03-12 | ロ−ヌ−プ−ラン・スペシアリテ・シミ−ク | 酸化第二セリウムを主体とする組成物及びそれらの製造方法 |
JPH05270824A (ja) * | 1991-12-09 | 1993-10-19 | Rhone Poulenc Chim | 酸化第二セリウムを基とする組成物、その製法及び使用法 |
JP2004002148A (ja) * | 2002-03-29 | 2004-01-08 | Toyota Central Res & Dev Lab Inc | 金属酸化物及びその製造方法と触媒 |
JP2009530091A (ja) * | 2006-03-21 | 2009-08-27 | ロデイア・オペラシヨン | 高い還元性および安定な比表面積を有する、酸化ジルコニウムおよび酸化セリウムに基づく組成物、調製方法、ならびに排気ガスの処理における使用 |
JP2008150237A (ja) * | 2006-12-15 | 2008-07-03 | Toyota Motor Corp | 金属酸化物の製造方法 |
WO2008156219A1 (en) * | 2007-06-20 | 2008-12-24 | Anan Kasei Co., Ltd | High specific surface area mixed oxide of cerium and of another rare earth, preparation method and use in catalysis |
Non-Patent Citations (2)
Title |
---|
A.CORMA ET AL.: "Synthesis and catalytic properties of thermally and hydrothermally stable, high-surface-area Si02-Ce02 mesostructured composite materials and their application for the removal of sulfur compounds from gasoline", JOURNAL OF CATALYSIS, vol. 224, 2004, pages 441 - 448, XP004506504 * |
See also references of EP2518018A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013156550A1 (fr) | 2012-04-20 | 2013-10-24 | Rhodia Operations | Procede d'alcanation du co2 utilisant comme catalyseur un compose comprenant du nickel sur un support a base d'oxyde de cerium |
WO2014034297A1 (ja) * | 2012-08-31 | 2014-03-06 | 三井金属鉱業株式会社 | 触媒担体及び排ガス浄化用触媒 |
KR20170083075A (ko) * | 2014-11-12 | 2017-07-17 | 로디아 오퍼레이션스 | 산화세륨 입자 및 이의 제조방법 |
JP2017533879A (ja) * | 2014-11-12 | 2017-11-16 | ローディア オペレーションズ | 酸化セリウム粒子およびそれらの製造方法 |
KR102482605B1 (ko) * | 2014-11-12 | 2022-12-30 | 로디아 오퍼레이션스 | 산화세륨 입자 및 이의 제조방법 |
Also Published As
Publication number | Publication date |
---|---|
PL2518018T3 (pl) | 2021-07-19 |
EP2518018A1 (en) | 2012-10-31 |
CA2785411A1 (en) | 2011-06-30 |
JPWO2011078315A1 (ja) | 2013-05-09 |
KR20120123372A (ko) | 2012-11-08 |
US20120309614A1 (en) | 2012-12-06 |
CN102770373B (zh) | 2015-04-15 |
ZA201205522B (en) | 2013-05-29 |
CA2785411C (en) | 2018-06-19 |
RU2560376C2 (ru) | 2015-08-20 |
JP5706339B2 (ja) | 2015-04-22 |
EP2518018A4 (en) | 2016-02-24 |
US20180001303A1 (en) | 2018-01-04 |
CN102770373A (zh) | 2012-11-07 |
US9757711B2 (en) | 2017-09-12 |
RU2012131748A (ru) | 2014-01-27 |
KR101822925B1 (ko) | 2018-01-30 |
EP2518018B1 (en) | 2020-11-25 |
US20150321175A1 (en) | 2015-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5706339B2 (ja) | 複合酸化物、その製造法及び排ガス浄化用触媒 | |
JP5718823B2 (ja) | 複合酸化物、その製造法及び排ガス浄化用触媒 | |
JP5722790B2 (ja) | 複合酸化物、その製造法及び排ガス浄化用触媒 | |
JP6242807B2 (ja) | 複合酸化物、その製造方法、および排ガス精製用の触媒 | |
JP5911858B2 (ja) | 複合酸化物、その製造法及び排ガス浄化用触媒 | |
JP6223354B2 (ja) | 複合酸化物、それの製造方法、および排ガス精製用の触媒 | |
JP2023025987A (ja) | ジルコニア系多孔質体、及び、ジルコニア系多孔質体の製造方法 | |
JP5911483B2 (ja) | 複合酸化物、その製造法及び排ガス浄化用触媒 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080064766.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10839545 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011547644 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 2785411 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010839545 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20127019534 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 6510/DELNP/2012 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012131748 Country of ref document: RU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13518735 Country of ref document: US |