WO2013156550A1 - Procede d'alcanation du co2 utilisant comme catalyseur un compose comprenant du nickel sur un support a base d'oxyde de cerium - Google Patents

Procede d'alcanation du co2 utilisant comme catalyseur un compose comprenant du nickel sur un support a base d'oxyde de cerium Download PDF

Info

Publication number
WO2013156550A1
WO2013156550A1 PCT/EP2013/058050 EP2013058050W WO2013156550A1 WO 2013156550 A1 WO2013156550 A1 WO 2013156550A1 EP 2013058050 W EP2013058050 W EP 2013058050W WO 2013156550 A1 WO2013156550 A1 WO 2013156550A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
oxide
nickel
cerium
cerium oxide
Prior art date
Application number
PCT/EP2013/058050
Other languages
English (en)
Inventor
Anne-Cécile ROGER
Alain Kiennemann
Gérard Mignani
Bertrand Pavageau
Julien Jolly
Original Assignee
Rhodia Operations
Le Centre National De La Recherche Scientifique
L'universite De Strasbourg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Operations, Le Centre National De La Recherche Scientifique, L'universite De Strasbourg filed Critical Rhodia Operations
Publication of WO2013156550A1 publication Critical patent/WO2013156550A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8871Rare earth metals or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/31Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of rare earths
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with rare earths or actinides

Definitions

  • the present invention relates to a process for alkanating CO2 using as catalyst a compound comprising nickel on a carrier based on cerium oxide.
  • This process is carried out in the presence of catalysts which may in particular be based on nickel.
  • the object of the invention is to respond to this need for improving efficiency and / or selectivity.
  • the process according to the invention is a process for alkanation of CO2 by reacting CO2 with hydrogen and is characterized in that a compound comprising nickel on a support with a catalyst is used as a catalyst.
  • the catalysts used in the process according to the invention have the advantage of being effective at lower temperatures as well as having improved selectivity to ethane.
  • the term "specific surface” is understood to mean the BET specific surface area determined by nitrogen adsorption in accordance with ASTM D 3663-78 established from the BRUNAUER-EMMETT-TELLER method described in the journal "The Journal of the American Chemical Society, 60, 309 (1938). "The pore volume is also measured using the same method with the same standard.
  • calcinations for a given temperature and duration correspond, unless otherwise indicated, to calcinations under air at a temperature level over the time indicated.
  • Cerium oxide is expressed in the form of ceric oxide, lanthanum oxide in the form of La 2 O 3, praseodymium oxide in the form of Pr 6 O 5 .
  • the catalyst of the invention is a compound which comprises a support and a catalytically active phase.
  • support must be taken in a broad sense to designate, in the compound, the majority elements and / or either without catalytic activity, or having a catalytic activity not equivalent to that of the active phase and on which are deposited the other or the others elements.
  • support and active or supported phase we will speak in the following description of support and active or supported phase but it will be understood that it would be understood that it would not be outside the scope of the present invention in the case where an element described as belonging to the active phase or supported would be present in the support, for example having been introduced during the preparation of the support itself.
  • the active phase of the catalyst of the invention is based on nickel.
  • This active phase may optionally contain, in addition to nickel, at least one other element of the transition metal type such as rhodium, palladium, ruthenium, iridium, iron, molybdenum or tungsten.
  • the support is based on different oxides. It is indeed a mixture comprising cerium oxide, praseodymium oxide and at least one oxide of a member selected from zirconium and lanthanum.
  • the support will preferably be selected from those having a high specific surface and temperature stable, that is to say having at high temperatures, for example at least 400 ° C, a specific surface area large enough for the compound still has catalytic activity.
  • the cerium oxide / oxide mass ratio of the other aforementioned elements of the support is between 30:70 and 99.9: 0.1, more particularly between 80:20 and 99: 1 and even more particularly between 85:15 and 99: 1. According to a particular embodiment this ratio can be between 35:65 and 45:55.
  • the support may be preferentially in the form of a solid solution in the cerium oxide of elements other than cerium, for example praseodymium and the zirconium and / or lanthanum elements.
  • the X-ray diffraction diagrams of the supports indeed reveal, within them, the existence of a single homogeneous phase.
  • This phase corresponds in fact to that of a ceric oxide CeO2 crystallized and whose mesh parameters are more or less offset with respect to a pure ceric oxide, thus reflecting the incorporation of other elements such as praseodymium, zirconium and / or lanthanum in the crystal lattice of cerium oxide.
  • the nickel or nickel content in combination with the other element of the transition metal type (rhodium, palladium, ruthenium, iridium, iron, molybdenum, tungsten), in the catalyst of the invention may be in particular between 1% and 30%, this content being expressed as mass of nickel metal (or nickel and other aforementioned element) relative to the total mass of the catalyst (active phase and support).
  • This content may be more particularly between 1% and 15% and even more particularly between 1% and 10%.
  • the catalysts of the invention have the advantage of being effective with low levels of nickel (or nickel and other aforementioned element), that is to say between 1% and 10% and preferably between 4% and 10%. %.
  • mixed oxides of cerium, zirconium and at least one rare earth other than cerium prepared according to the process described in patent application EP 0906244.
  • Mixed oxides are prepared by a process in which a liquid mixture containing a cerium compound, a zirconium compound and a rare earth compound is prepared; this mixture is heated; the precipitate obtained is recovered and this precipitate is calcined.
  • the starting mixture uses a zirconium solution which is such that the amount of base necessary to reach the equivalent point during an acid-base determination of this solution satisfies the condition of a molar ratio OH7Zr at most equal to 1.65. .
  • the oxides obtained have a specific surface after calcination for 6 hours at 900 ° C. of at least 35 m 2 / g, more particularly at least 40 m 2 / g and even more particularly at least 45 m 2 / g.
  • These same oxides may have a specific surface after calcination for 6 hours at 1000 ° C. of at least 14 m 2 / g and more particularly at least 20 m 2 / g and even more particularly at least 30 m 2 / g.
  • EP 1603835 The products of EP 1603835 are obtained by a process which comprises the following steps:
  • the products thus obtained have the characteristic of having a variation in their specific surface area of at most 20% between a first calcination at 900 ° C. for 4 hours, then a second calcination at 1000 ° C. for 10 hours. This variation may be at most 15%, more particularly at most 10% and even more particularly at most 5%.
  • EP 1603657 discloses mixed oxides which are obtained by a process of the same type as that described in EP 1603835 but in which the surfactants can be chosen, in addition to those of the ethoxylates type of carboxymethylated fatty alcohols, also among the anionic surfactants, nonionic surfactants, polyethylene glycols, carboxylic acids and their salts.
  • the products thus obtained have, after calcination for 4 hours at 1100 ° C., a specific surface area of at least 19 m 2 / g and after calcination for 4 hours at 1200 ° C. a specific surface area of at least 3 m 2 / g, more particularly at least 6 m 2 / g.
  • EP 1660406 discloses mixed oxides which are obtained by a process which comprises the following steps:
  • either an additive is firstly added, selected from anionic surfactants, nonionic surfactants, polyethylene glycols, acids, carboxylic acids and their salts and the surfactants of the ethoxylate type of carboxymethylated fatty alcohols in the medium resulting from the preceding step and said precipitate is then optionally separated;
  • the precipitate thus obtained is calcined under inert gas or under vacuum initially at a temperature of at least 850 ° C. and then under an oxidizing atmosphere in a second stage at a temperature of at least 400 ° C.
  • the products thus obtained have in combination a high specific surface area and a high degree of reducibility, for example a degree of reducibility of at least 70% and an area of at least 15 m 2 / g.
  • praseodymium oxide and lanthanum oxide can be used those obtained by the method described in patent application EP 2160357. This process comprises the following steps:
  • the medium is heated to a temperature of at least 100 ° C .
  • the precipitate obtained at the end of the preceding stage is separated from the liquid medium, a rare earth compound (praseodymium or lanthanum) other than cerium is added thereto and another liquid medium is formed;
  • the medium thus obtained is heated to a temperature of at least 100 ° C .;
  • reaction medium obtained at the end of the preceding heating is brought to a basic pH
  • compositions of the patent application EP 2160357 have a specific surface area of at least 20 m 2 / g after calcination at 1000 ° C. for 5 hours and at least 10 m 2 / g after calcination at 1100 ° C. for 5 hours. . They can also have, after calcination at 1000 ° C. for 5 hours, a porosity of at least 0.15 cm 3 / g, more particularly at least 0.2 cm 2 Vg, provided by pores with a diameter of at most 200 nm. . In addition, these same compositions may have, after calcination at 1000 ° C. for 5 hours, a porosity of at least 0.10 cm 3 / g, more particularly at least 0.15 cm 3 / g, this porosity being provided by pores up to 50 nm in diameter.
  • cerium oxide and a rare earth oxide other than cerium, such as praseodymium and lanthanum
  • these compositions have a mass ratio. cerium oxide / rare earth oxide included between 85:15 and 99: 1.
  • the pore volume having a pore diameter of 200 nm or less after five hours of calcination at 900 ° C is at least 0.30 cm 3 / g.
  • This pore volume (provided by pores having a pore diameter of 200 nm or less) may especially be at least 0.40 cm 3 / g and more particularly at least 0.50 cm 3 / g and even more especially at least 0.60 cm 3 / g.
  • compositions may be prepared by a process which comprises the following steps:
  • the medium is heated to a temperature of at least 60 ° C;
  • the catalytic compounds of the invention generally have a pore volume of at least 0.10 cm 3 / g, more particularly at least 0.20 cm 3 / g, which may be between 0.2 and 0.3 cm. 3 / g.
  • the catalytic compound of the invention may be prepared by impregnation, in particular from the supports which have been described above.
  • a solution or a slurry of salts or compounds of the supported phase is firstly formed, that is to say here nickel, optionally with the other element of the transition metal type.
  • inorganic acid salts such as nitrates, sulphates or chlorides.
  • organic acid salts and in particular the saturated aliphatic carboxylic acid salts or the hydroxycarboxylic acid salts.
  • the support is then impregnated with the solution or slip.
  • the dry impregnation consists in adding to the product to be impregnated a volume of an aqueous solution of the supported element which is equal to the pore volume of the solid to be impregnated.
  • the support is optionally dried and then calcined under air.
  • the calcination temperature is generally understood between 400 ° C and 600 ° C with a calcination time generally between 2 and 8 hours.
  • the compound can undergo a reduction.
  • This reduction is generally by calcination of the compound in a reducing atmosphere, for example hydrogen diluted in nitrogen or argon.
  • the temperature of this calcination is generally between 300 ° C. and 500 ° C. with a calcination time generally of between 4 and 8 hours.
  • the implementation of the alkanation process with the catalyst of the invention is carried out in a known manner by sending to a reactor comprising the catalyst two gaseous flows of carbon dioxide and hydrogen.
  • the process is carried out at a temperature generally between 250 ° C and 450 ° C.
  • This example describes the preparation of catalysts or catalytic compositions according to the invention.
  • Support S1 this support is a mixed oxide of cerium, zirconium and praseodymium in the respective proportions by mass of cerium oxide, zirconium oxide and praseodymium oxide of 90/5/5.
  • the surface and particle size characteristics are as follows:
  • Support S2 this support is a mixed oxide of cerium, lanthanum and praseodymium in the respective proportions by mass of cerium oxide, lanthanum oxide and praseodymium oxide of 90/5/5.
  • the surface and particle size characteristics are as follows:
  • the supports S1 and S2 were impregnated with 5% by weight of nickel relative to the catalyst, according to the following method: for 3 g of Ni catalyst, 0.7432 g of nickel nitrate hexahydrate, equivalent to 0.15 g of Ni, were dissolved in a minimum of water in a pillbox. 2.85 g of support was then added.
  • the nickel-support nitrate mixture is homogenized by manual stirring and then put in an oven for 2 hours. It is then calcined in air at 500 ° C. for 6 hours, with a temperature ramp of 2 ° C./min.
  • the catalysts thus obtained by impregnation of the supports S1 and S2 are referenced C1 and C2 respectively.
  • a catalyst based on nickel and a mixed oxide of cerium and zirconium is used as a comparative catalyst in a cerium oxide / zirconium oxide mass ratio of 60/40.
  • the proportion by weight of nickel is 5% relative to the catalyst as a whole.
  • This catalyst was prepared by a sol-gel route.
  • This example relates to the catalytic tests carried out with the catalysts described in Example 1.
  • the tests are conducted in a fixed bed vertical tubular reactor arranged in an oven whose heating temperature is controlled by a thermocouple.
  • This reactor is equipped upstream of a mixer to homogenize the flow of gas and downstream of two traps to recover any liquid products (water in particular).
  • the gases produced and the unreacted gases are sent to two micro-chromatographs through a line heated to 100 ° C.
  • the reactor is fed via the mixer via three lines for hydrogen, carbon dioxide and nitrogen respectively.
  • Mass flow meters for regulating the flow of gas at the reactor inlet are mounted on each of these pipes.
  • the molar compositions of the reactive gas streams for the tests are 36 ml / min for H 2 and 9 ml / min for CO 2 .
  • a flow of 10 ml / min of nitrogen is added to that of the reagents to act as internal standard.
  • the catalysts are reduced to 400 ° C. for 6 hours under a dilute stream of hydrogen.
  • T50 CO 2 indicates the temperature at which 50% of the CO2 is converted. It is therefore seen that the catalysts of the invention make it possible to achieve this conversion rate at a lower temperature than in the case of the comparative catalyst.
  • T50 CH indicates the temperature at which 50% of the CH yield is reached. Again, it is seen that the catalysts of the invention achieve this rate of yield at a lower temperature than in the case of the comparative catalyst.
  • Table 2 shows the C2H6 selectivity of the various catalysts measured at 250 ° C and 300 ° C. The selectivities are much greater in the case of catalysts according to the invention. The conversion of CO2 measured at 300 ° C. is also improved in the case of a catalyst according to the invention.
  • the catalysts according to the invention have, compared with the comparative catalyst, a higher efficiency at a lower temperature and an improved selectivity for C2H6, especially at a lower temperature.
  • This example relates to a catalyst C3 comprising nickel on a support S3 which is a mixed oxide of cerium, zirconium and praseodymium in the respective proportions by mass of 40/55/5 oxide.
  • the nickel was deposited on the support by impregnation as described in Example 1.
  • the catalyst C3 thus obtained has the following characteristics: Specific surface area: 67 m 2 / g
  • Pore diameter 24.7 nm
  • the catalyst C3 was subjected to a long-term isothermal test at 330 ° C. during which the evolution of the CO 2 conversion was measured. This test measures the aging resistance of the catalyst.
  • the catalyst C3 according to the invention has a better aging resistance than the comparative catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

Le procédé selon l'invention est un procédé d'alcanation du CO2 par réaction du CO2 avec de l'hydrogène et il est caractérisé en ce qu'on utilise à titre de catalyseur un composé comprenant du nickel sur un support à base d'oxyde de cérium, d'oxyde de praséodyme et d'au moins un oxyde d'un élément choisi parmi le zirconium et le lanthane.

Description

PROCEDE D'ALCANATION DU CO2 UTILISANT COMME CATALYSEUR UN COMPOSE COMPRENANT DU NICKEL SUR UN SUPPORT A BASE
D'OXYDE DE CERIUM
La présente invention concerne un procédé d'alcanation du CO2 utilisant comme catalyseur un composé comprenant du nickel sur un support à base d'oxyde de cérium.
Par procédé d'alcanation du CO2 au sens de la présente description, on entend le procédé connu que l'on peut représenter par l'équation suivante : CO2 + 4H2→ CH4 + 2H2O.
Il faut noter que lors de cette réaction des produits secondaires peuvent se former et qui sont majoritairement l'éthane (C2H6) et le monoxyde de carbone (CO).
Ce procédé est mis en œuvre en présence de catalyseurs qui peuvent être notamment à base de nickel.
Bien que ces catalyseurs soient efficaces, on cherche toujours à améliorer le rendement de la réaction d'alcanation notamment à plus basse température. Par ailleurs on cherche aussi à augmenter la sélectivité en éthane.
L'objet de l'invention est de répondre à ce besoin d'amélioration de rendement et/ou de sélectivité.
Dans ce but, le procédé selon l'invention est un procédé d'alcanation du CO2 par réaction du CO2 avec de l'hydrogène et il est caractérisé en ce qu'on utilise à titre de catalyseur un composé comprenant du nickel sur un support à base d'oxyde de cérium, d'oxyde de praséodyme et d'au moins un oxyde d'un élément choisi parmi le zirconium et le lanthane.
Comme on le verra plus loin, les catalyseurs utilisés dans le procédé selon l'invention ont l'avantage d'être efficaces à plus basses températures ainsi que de présenter une sélectivité améliorée en éthane.
D'autres caractéristiques, détails et avantages de l'invention apparaîtront encore plus complètement à la lecture de la description qui va suivre ainsi que des divers exemples concrets mais non limitatifs destinés à l'illustrer.
Pour la suite de la description on entend par surface spécifique, la surface spécifique B.E.T. déterminée par adsorption d'azote conformément à la norme ASTM D 3663-78 établie à partir de la méthode BRUNAUER - EMMETT- TELLER décrite dans le périodique "The Journal of the American Chemical Society, 60, 309 (1938)". Le volume poreux est aussi mesuré en utilsant la même méthode avec la même norme.
En outre, les calcinations pour une température et une durée données correspondent, sauf indication contraire, à des calcinations sous air à un palier de température sur la durée indiquée.
On précise aussi pour la suite de la description que, sauf indication contraire, dans toutes les gammes ou limites de valeurs qui sont données, les valeurs aux bornes sont incluses, les gammes ou limites de valeurs ainsi définies couvrant donc toute valeur au moins égale et supérieure à la borne inférieure et/ou au plus égale ou inférieure à la borne supérieure.
Les teneurs sont données en oxydes sauf indication contraire. L'oxyde de cérium est exprimé sous forme d'oxyde cérique, l'oxyde de lanthane sous forme La2O3, l'oxyde de praséodyme sous la forme Pr6On.
Le catalyseur de l'invention est un composé qui comprend un support et une phase catalytiquement active. Le terme support doit être pris dans un sens large pour désigner, dans le composé, les éléments majoritaires et/ou soit sans activité catalytique, soit présentant une activité catalytique non équivalente à celle de la phase active et sur lesquels sont déposés le ou les autres éléments. Pour simplifier, on parlera dans la suite de la description de support et de phase active ou supportée mais on comprendra que l'on ne sortirait pas du cadre de la présente invention dans le cas où un élément décrit comme appartenant à la phase active ou supportée serait présent dans le support, par exemple en y ayant été introduit lors de la préparation même du support.
La phase active du catalyseur de l'invention est à base de nickel.
Cette phase active peut contenir éventuellement en plus du nickel au moins un autre élément du type métal de transition comme le rhodium, le palladium, le ruthénium, l'iridium, le fer, le molybdène ou le tungstène.
Le support est à base de différents oxydes. Il s'agit en effet d'un mélange comprenant de l'oxyde de cérium, de l'oxyde de praséodyme et au moins un oxyde d'un élément choisi parmi le zirconium et le lanthane.
Le support sera de préférence choisi parmi ceux présentant une surface spécifique élevée et stable en température, c'est-à-dire présentant à des températures élevées, par exemple d'au moins 400°C, une surface spécifique suffisamment importante pour que le composé possède encore une activité catalytique.
Plus particulièrement, le rapport massique oxyde de cérium/oxyde des autres éléments précités du support (c'est-à-dire les éléments autres que le cérium) est compris entre 30:70 et 99,9:0,1 , plus particulièrement entre 80:20 et 99:1 et encore plus particulièrement entre 85:15 et 99:1 . Selon un mode de réalisation particulier ce rapport peut être compris entre 35:65 et 45:55.
On peut noter que le support peut se présenter préférentiellement sous la forme d'une solution solide dans l'oxyde de cérium des éléments autres que le cérium, par exemple le praséodyme et les éléments zirconium et/ou lanthane. Dans ce cas, les diagrammes en diffraction X des supports révèlent en effet, au sein de ceux-ci, l'existence d'une seule phase homogène. Cette phase correspond en fait à celle d'un oxyde cérique CeO2 cristallisé et dont les paramètres de mailles sont plus ou moins décalés par rapport à un oxyde cérique pur, traduisant ainsi l'incorporation des autres éléments comme le praséodyme, le zirconium et/ou le lanthane dans le réseau cristallin de l'oxyde de cérium.
La teneur en nickel, ou en nickel en combinaison avec l'autre élément du type métal de transition (rhodium, palladium, ruthénium, iridium, fer, molybdène, tungstène), dans le catalyseur de l'invention peut être comprise notamment entre 1 % et 30%, cette teneur étant exprimée en masse de nickel métal (ou nickel et autre élément précité) par rapport à la masse totale du catalyseur (phase active et support).
Cette teneur peut être plus particulièrement comprise entre 1 % et 15% et encore plus particulièrement entre 1 % et 10%. Les catalyseurs de l'invention ont l'avantage d'être efficaces avec de faibles teneurs en nickel (ou nickel et autre élément précité), c'est-à-dire comprises entre 1 % et 10% et préférentiellement entre 4% et 10%.
A titre de supports utilisables dans le cadre de la présente invention, on peut mentionner les oxydes mixtes de cérium, de zirconium et d'au moins une terre rare autre que le cérium préparé selon le procédé décrit dans la demande de brevet EP 0906244. Ces oxydes mixtes sont préparés par un procédé dans lequel on prépare un mélange en milieu liquide contenant un composé du cérium, un composé du zirconium et un composé de la terre rare; on chauffe ce mélange; on récupère le précipité obtenu et on calcine ce précipité. Le mélange de départ utilise une solution de zirconium qui est telle que la quantité de base nécessaire pour atteindre le point équivalent lors d'un dosage acide-base de cette solution vérifie la condition d'un rapport molaire OH7Zr au plus égale à 1 ,65. Les oxydes obtenus présentent une surface spécifique après calcination 6 heures à 900°C d'au moins 35 m2/g, plus particulièrement d'au moins 40 m^/g et encore plus particulièrement d'au moins 45 m^/g. Ces mêmes oxydes peuvent présenter une surface spécifique après calcination 6 heures à 1000°C d'au moins 14 m^/g et plus particulièrement d'au moins 20 m^/g et encore plus particulièrement d'au moins 30 m^/g.
On peut aussi mentionner les oxydes mixtes à base d'oxydes de cérium, de zirconium et d'une terre rare autre que le cérium obtenus par les procédés décrits dans les demandes de brevet EP 1603835, EP 1603657 et EP 1660406.
Les produits de EP 1603835 sont obtenus par un procédé qui comprend les étapes suivantes:
- (a) on forme un mélange comprenant des composés de cérium, de zirconium et de la terre rare;
- (b) on met en présence ledit mélange avec un composé basique ce par quoi on obtient un précipité;
- (c) on chauffe en milieu aqueux ledit précipité;
- (d) on ajoute au précipité obtenu à l'étape précédente un tensio-actif choisi parmi ceux du type éthoxylats d'alcools gras carboxyméthylés;
- (e) on calcine le précipité ainsi obtenu.
Les produits ainsi obtenus ont pour caractéristique de présenter une variation de leur surface spécifique d'au plus 20% entre une première calcination à 900°C pendant 4 heures, puis une seconde calcination à 1000°C pendant 10 heures. Cette variation peut être d'au plus 15%, plus particulièrement d'au plus 10% et encore plus particulièrement d'au plus 5%.
EP 1603657 décrit des oxydes mixtes qui sont obtenus par un procédé du même type que celui décrit dans EP 1603835 mais dans lequel les tensio- actifs peuvent être choisis, outre parmi ceux du type éthoxylats d'alcools gras carboxyméthylés, parmi aussi les tensioactifs anioniques, les tensioactifs non ioniques, les polyéthylène-glycols, les acides carboxyliques et leurs sels.
Les produits ainsi obtenus présentent après calcination 4 heures à 1 100°C une surface spécifique d'au moins 19 m2/g et après calcination 4 heures à 1200°C une surface spécifique d'au moins 3 m2/g, plus particulièrement d'au moins 6 m2/g.
EP 1660406 décrit des oxydes mixtes qui sont obtenus par un procédé qui comprend les étapes suivantes :
- (a) on forme un mélange comprenant des composés de cérium, de zirconium et d'une autre terre rare;
- (b) on chauffe le mélange ce par quoi on obtient un précipité;
- (c) soit on ajoute d'abord un additif, choisi parmi les tensioactifs anioniques, les tensioactifs non ioniques, les polyéthylène-glycols, les acides carboxyliques et leurs sels et les tensioactifs du type éthoxylats d'alcools gras carboxyméthylés au milieu issu de l'étape précédente et on sépare ensuite éventuellement ledit précipité;
- (c') soit on sépare d'abord ledit précipité et on ajoute ensuite ledit additif au précipité;
- (d) on soumet à un broyage le précipité obtenu à l'étape précédente;
- (e) on calcine le précipité ainsi obtenu sous gaz inerte ou sous vide dans un premier temps à une température d'au moins 850°C puis sous atmosphère oxydante dans un second temps à une température d'au moins 400°C.
Les produits ainsi obtenus présentent en combinaison une surface spécifique élevée et une réductibilité importante, par exemple un taux de réductibilité d'au moins 70% et une surface d'au moins 15 m2/g.
Comme supports à base d'oxyde de cérium, d'oxyde de praséodyme et d'oxyde de lanthane on peut utiliser ceux obtenus par le procédé décrit dans la demande de brevet EP 2160357. Ce procédé comprend les étapes suivantes :
- on forme un milieu liquide comprenant un composé du cérium;
- on chauffe le milieu à une température d'au moins 100°C;
- on sépare le précipité obtenu à l'issue de l'étape précédente du milieu liquide, on y ajoute un composé de la terre rare (praséodyme ou lanthane) autre que le cérium et on forme un autre milieu liquide;
- on chauffe le milieu ainsi obtenu à une température d'au moins 100°C;
- on amène le milieu réactionnel obtenu à l'issue du chauffage précédent à un pH basique;
- on sépare le précipité issu de l'étape précédente et on le calcine.
Les compositions de la demande de brevet EP 2160357présentent une surface spécifique d'au moins 20 m2/g après calcination à 1000°C pendant 5 heures et d'au moins 10 m2/g après calcination à 1 100°C pendant 5 heures. Elles peuvent aussi présenter après calcination à 1000°C pendant 5 heures, une porosité d'au moins 0,15 cm3/g, plus particulièrement d'au moins 0,2 cnrrVg apportée par des pores de diamètre d'au plus 200 nm. En outre, ces mêmes compositions peuvent présenter après calcination à 1000°C pendant 5 heures, une porosité d'au moins 0,10 cm3/g, plus particulièrement d'au moins 0,15 cm3/g cette porosité étant apportée par des pores de diamètre d'au plus 50 nm.
Comme support à base d'oxyde de cérium et d'un oxyde d'une terre rare, autre que le cérium, comme le praséodyme et le lanthane, on peut aussi utiliser les compositions décrites dans WO 201 1078315. Ces compositions présentent un rapport massique oxyde de cérium/oxyde de terre rare compris entre 85:15 et 99:1 . Pour ces compositions, le volume des pores ayant un diamètre de pores de 200 nm ou moins, après cinq heures de calcination à 900°C est d'au moins 0,30 cm3/g. Ce volume poreux (apporté par des pores ayant un diamètre de pores de 200 nm ou moins) peut être notamment d'au moins 0,40 cm3/g et plus particulièrement d'au moins 0,50 cm3/g et encore plus particulièrement d'au moins 0,60 cm3/g.
Ces compositions peuvent être préparées par un procédé qui comprend les étapes suivantes :
- (a) on forme un milieu liquide comprenant un composé du cérium contenant du cérium (IV) dans une quantité en mole d'au moins 90%;
- (b) on chauffe ce milieu à une température d'au moins 60°C;
- (c) on introduit dans le milieu réactionnel obtenu à la fin de l'étape précédente un précurseur de la terre rare autre que le cérium;
- (d) on chauffe le milieu obtenu à une température d'au moins 100°C; - (e) on amène par addition d'un agent précipitant à un pH basique le milieu obtenu à la fin de l'étape précédente et on introduit un tensioactif lors de la précipitation;
- (f) on calcine le précipité.
Les composés catalytiques de l'invention présentent généralement un volume poreux d'au moins 0,10 cm3/g plus particulièrement d'au moins 0,20 cm3/g et qui peut être compris entre 0,2 et 0,3 cm3/g.
Le composé catalytique de l'invention peut être préparé par imprégnation à partir notamment des supports qui ont été décrits ci-dessus.
Dans ce cas, on forme ainsi tout d'abord une solution ou une barbotine de sels ou de composés de la phase supportée, c'est-à-dire ici le nickel, éventuellement avec l'autre élément du type métal de transition.
A titre de sels, on peut choisir les sels d'acides inorganiques comme les nitrates, les sulfates ou les chlorures.
On peut aussi utiliser les sels d'acides organiques et notamment les sels d'acides carboxyliques aliphatiques saturés ou les sels d'acides hydroxycarboxyliques. A titre d'exemples, on peut citer les formiates, acétates, propionates, oxalates ou les citrates.
On imprègne ensuite le support avec la solution ou la barbotine.
On utilise plus particulièrement l'imprégnation à sec. L'imprégnation à sec consiste à ajouter au produit à imprégner un volume d'une solution aqueuse de l'élément supporté qui est égal au volume poreux du solide à imprégner.
Après imprégnation, le support est éventuellement séché puis il est calciné sous air. La température de calcination est généralement comprise entre 400°C et 600°C avec une durée de calcination généralement comprise entre 2 et 8 heures.
Dans une éventuelle dernière étape le composé peut subir une réduction. Cette réduction se fait généralement par calcination du composé dans une atmosphère réductrice, par exemple de l'hydrogène dilué dans l'azote ou l'argon. La température de cette calcination est généralement comprise entre 300°C et 500°C avec une durée de calcination généralement comprise entre 4 et 8 heures.
En pratique cette étape de réduction sera faite juste avant l'utilisation du composé. Avant de démarrer la réaction d'alcanation proprement dite on se placera dans des conditions de réduction en faisant circuler sur le composé seulement un flux de gaz réducteur, par exemple d'hydrogène dilué dans l'azote ou l'argon.
La mise en œuvre du procédé d'alcanation avec le catalyseur de l'invention se fait d'une manière connue en envoyant dans un réacteur comprenant le catalyseur deux flux gazeux de dioxide de carbone et d'hydrogène.
On précise ici que le procédé est mis en œuvre à une température généralement comprise entre 250°C et 450°C.
Des exemples vont maintenant être donnés.
EXEMPLE 1
Cet exemple décrit la préparation de catalyseurs ou compositions catalytiques selon l'invention.
Supports
Les supports suivants ont été utilisés :
Support S1 : ce support est un oxyde mixte de cérium, de zirconium et de praséodyme dans les proportions respectives suivantes en masse d'oxyde de cérium, d'oxyde de zirconium et d'oxyde de praséodyme de 90/5/5. Les caractéristiques de surface et de granulométrie sont les suivantes :
Surface spécifique = 154 m2/g, d50 = 6 μιτι
Support S2 : ce support est un oxyde mixte de cérium, de lanthane et de praséodyme dans les proportions respectives suivantes en masse d'oxyde de cérium, d'oxyde de lanthane et d'oxyde de praséodyme de 90/5/5. Les caractéristiques de surface et de granulométrie sont les suivantes :
Surface spécifique = 162 m2/g, d50 = 3,9 μιτι Préparation des catalyseurs selon l'invention
Les supports S1 et S2 ont été imprégnés avec 5% en masse de nickel par rapport au catalyseur, selon la méthode suivante : pour 3g de catalyseur au Ni, 0,7432 g de nitrate de nickel hexahydraté, soit l'équivalent de 0,15g de Ni, ont été dissous dans un minimum d'eau dans un pilulier. 2,85 g de support ont ensuite été ajoutés. Le mélange nitrate de nickel-support est homogénéisé par agitation manuelle puis mis à l'étuve pendant 2h. On calcine ensuite sous air à 500°C pendant 6h, avec une rampe de température de 2°C/min.
Les catalyseurs ainsi obtenus par imprégnation des supports S1 et S2 sont référencés C1 et C2 respectivement.
Catalyseur comparatif (CC)
On utilise à titre de catalyseur comparatif un catalyseur à base de nickel et d'un oxyde mixte de cérium et de zirconium dans une proportion massique oxyde de cérium/oxyde de zirconium de 60/40. La proportion en masse de nickel est de 5% par rapport à l'ensemble du catalyseur. Ce catalyseur a été préparé par une voie sol-gel.
On donne dans le tableau 1 ci-dessous, les caractéristiques de surface spécifique, de porosité et de densité pour les supports S1 et S2 seuls après calcination à 500°C dans les mêmes conditions que celles données ci-dessus et pour les catalyseurs C1 , C2 et CC.
Tableau 1
Figure imgf000009_0001
EXEMPLE 2
Cet exemple concerne les tests catalytiques réalisés avec les catalyseurs décrits dans l'exemple 1 . Les tests sont conduits dans un réacteur tubulaire vertical à lit fixe disposé dans un four dont la température de chauffage est contrôlée par un thermocouple. Ce réacteur est équipé en amont d'un mélangeur pour homogénéiser le flux de gaz et en aval de deux pièges pour récupérer d'éventuel produits liquides (l'eau notamment). Les gaz produits et ceux qui n'ont pas réagi sont envoyés vers deux micro-chromatographes à travers une ligne chauffée à 100°C.
Le réacteur est alimenté via le mélangeur par trois canalisations pour l'hydrogène, le dioxyde de carbone et l'azote respectivement. Des débitmètres massiques pour la régulation des débits de gaz en entrée de réacteur sont montés sur chacune de ces canalisations.
Les compositions molaires des flux de gaz réactifs pour les tests sont de 36 ml/min pour H2, et de 9 ml/min pour CO2. Un flux de 10 ml/min d'azote est ajouté à celui des réactifs pour jouer le rôle d'étalon interne.
Avant le test, les catalyseurs sont réduits à 400 °C pendant 6h sous flux dilué d'hydrogène.
Les résultats obtenus sont donnés dans le tableau 2 ci-dessous.
Tableau 2
Figure imgf000010_0001
T50 CO2 indique la température à laquelle 50% du CO2 est converti. On voit donc que les catalyseurs de l'invention permettent d'atteindre ce taux de conversion à une température plus faible que dans le cas du catalyseur comparatif.
T50 CH indique la température à laquelle 50% du rendement en CH est atteint. Là encore, on voit que les catalyseurs de l'invention permettent d'atteindre ce taux de rendement à une température plus faible que dans le cas du catalyseur comparatif.
Le tableau 2 indique la sélectivité en C2H6 des différents catalyseurs mesurée à 250°C et à 300°C. Les sélectivités sont beaucoup plus importantes dans le cas des catalyseurs selon l'invention. La conversion du CO2 mesurée à 300°C est aussi améliorée dans le cas d'un catalyseur selon l'invention.
En conclusion, les catalyseurs selon l'invention présentent par rapport au catalyseur comparatif une efficacité plus élevée à plus faible température et une sélectivité améliorée en C2H6 tout particulièrement à plus basse température.
On notera enfin que le procédé de l'invention ne conduit pas à la formation de CO qui est toxique et nécessite des installations spécifiques. EXEMPLE 3
Cet exemple concerne un catalyseur C3 comprenant du nickel sur un support S3 qui est un oxyde mixte de cérium, de zirconium et de praséodyme dans les proportions respectives en masse d'oxyde de 40/55/5.
Le nickel a été déposé sur le support par imprégnation de la manière décrite dans l'exemple 1 .
Le catalyseur C3 ainsi obtenu présente les caractéristiques suivantes : Surface spécifique : 67 m2/g
Volume poreux total : 0,35 cm3/g
Diamètre des pores : 24,7 nm
Densité apparente : 0,95
Un test catalytique a été réalisé avec le catalyseur C3 dans les mêmes conditions que celles décrites dans l'exemple 2. On donne, ci-dessous, les résultats de ce test.
T50 CO2 : 274°C
T50 CH4 : 272°C
Sélectivité C2H6 à 250°C : 1 ,7%
Conversion CO2 à 300°C : 72%
Par ailleurs, le catalyseur C3 a été soumis à un test de longue durée en isotherme à 330°C pendant lequel on a mesuré l'évolution de la conversion du CO2. Ce test permet de mesurer la résistance au vieillissement du catalyseur.
Ce test a été conduit dans les conditions suivantes :
Température : 330°C
Pression : pression atmosphérique, Flux H2/N2/CO2 36/10/9 ml. min"1
GHSV (Gas Hourly Space Velocity) 43000h"1
Avant le test le catalyseur est soumis à un traitement de réduction à 400°C. Durée du test : 150 heures On mesure la conversion en CO2 du catalyseur ayant subi le test. On donne dans le tableau ci-dessous la perte relative de conversion (perte par rapport à la conversion pour un catalyseur avant le test) pour les catalyseurs CC et C3.
Tableau 3
Figure imgf000012_0001
Le catalyseur C3 selon l'invention présente une meilleure résistance au vieillissement que le catalyseur comparatif.

Claims

REVENDICATIONS
1 - Procédé d'alcanation du CO2 par réaction du CO2 avec de l'hydrogène, caractérisé en ce qu'on utilise à titre de catalyseur un composé comprenant du nickel sur un support à base d'oxyde de cérium, d'oxyde de praséodyme et d'au moins un oxyde d'un élément choisi parmi le zirconium et le lanthane. 2- Procédé selon la revendication 1 , caractérisé en ce qu'on utilise un catalyseur dans lequel le r a été soumis à un test de apport massique oxyde de cérium/oxyde des autres éléments précités du support est compris entre 30:70 et 99,9:0,1 . 3- Procédé selon la revendication 1 , caractérisé en ce qu'on utilise un catalyseur dans lequel le rapport massique oxyde de cérium/oxyde des autres éléments précités du support est compris entre 80:20 et 99:1 et plus particulièrement entre 85:15 et 99:1 . 4- Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on utilise un catalyseur qui comprend, en plus du nickel, un autre élément du type métal de transition comme le rhodium, le palladium, le ruthénium, l'iridium, le fer, le molybdène ou le tungstène. 5- Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on utilise un catalyseur dans lequel la teneur en nickel ou en nickel en combinaison avec l'autre élément précité du type métal de transition est comprise entre 1 et 30% en masse, plus particulièrement entre 1 % et 15% et encore plus particulièrement entre 1 % et 10%.
6- Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on utilise un catalyseur qui présente un volume poreux d'au moins 0,10 cm3/g plus particulièrement d'au moins 0,20 cm3/g.
PCT/EP2013/058050 2012-04-20 2013-04-18 Procede d'alcanation du co2 utilisant comme catalyseur un compose comprenant du nickel sur un support a base d'oxyde de cerium WO2013156550A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1201176A FR2989682B1 (fr) 2012-04-20 2012-04-20 Procede d'alcanation du co2 utilisant comme catalyseur un compose comprenant du nickel sur un support a base d'oxyde de cerium
FR1201176 2012-04-20

Publications (1)

Publication Number Publication Date
WO2013156550A1 true WO2013156550A1 (fr) 2013-10-24

Family

ID=48227192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/058050 WO2013156550A1 (fr) 2012-04-20 2013-04-18 Procede d'alcanation du co2 utilisant comme catalyseur un compose comprenant du nickel sur un support a base d'oxyde de cerium

Country Status (2)

Country Link
FR (1) FR2989682B1 (fr)
WO (1) WO2013156550A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110026175A (zh) * 2019-04-17 2019-07-19 山东国瓷功能材料股份有限公司 一种铈锆复合氧化物及其在催化co氧化反应中的应用
CN110026178A (zh) * 2019-04-30 2019-07-19 山东国瓷功能材料股份有限公司 一种铈锆复合氧化物及其制备方法和应用
WO2022090671A1 (fr) * 2020-10-29 2022-05-05 Paris Sciences Et Lettres Système catalytique mixte pour la conversion du co2 et/ou du co dans un procédé hybride plasma froid-catalyse

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0906244A1 (fr) 1996-05-15 1999-04-07 Rhodia Chimie Composition a base d'oxyde de cerium et d'oxyde de zirconium, procede de preparation et utilisation en catalyse
JP2000254508A (ja) * 1999-03-10 2000-09-19 Mitsui Eng & Shipbuild Co Ltd 二酸化炭素メタン化用触媒及びその製造方法
EP1603657A1 (fr) 2003-03-18 2005-12-14 Rhodia Electronics and Catalysis Compositions a base d'un oxyde de cerium, d'un oxyde de zirconium et, eventuellement d'un oxyde d'une autre terre rare, a surface specifique elevee a 1100° c, leur procede de preparation et leur utilisation comme catalyseur
EP1603835A2 (fr) 2003-03-18 2005-12-14 Rhodia Electronics and Catalysis Composition a base d oxydes de cerium et de zirconium a surface specifique stable entre 900°c et 1000°c, son procede de preparation et son utilisation comme catalyseur
EP1660406A2 (fr) 2003-09-04 2006-05-31 Rhodia Electronics and Catalysis Composition a base d oxyde de cerium et d oxyde de zirconium a conductibilite et surface elevees, procedes de preparation et utilisation comme catalyseur
JP2009034654A (ja) * 2007-08-03 2009-02-19 Daiki Ataka Engineering Co Ltd 水素化触媒、その製造方法およびそれを使用したメタンガスの製造方法
EP2033943A1 (fr) * 2007-08-03 2009-03-11 Daiki Ataka Engineering Co., Ltd. Catalyseur pour la méthanation de monoxyde de carbone, procédé de préparation du catalyseur et procédé de méthanation
EP2160357A1 (fr) 2007-06-20 2010-03-10 Anan Kasei CO., LTD. Oxyde mixte à surface spécifique élevée à base de cérium et d'une autre terre rare, son procédé de préparation et son utilisation dans la catalyse
CN101716513A (zh) * 2009-09-28 2010-06-02 中国科学院大连化学物理研究所 一种煤气化经合成气完全甲烷化的催化剂、其制备及应用
CN101757928A (zh) * 2010-01-14 2010-06-30 大唐国际化工技术研究院有限公司 二氧化碳甲烷化催化剂及其制备方法和应用
WO2011078315A1 (fr) 2009-12-25 2011-06-30 阿南化成株式会社 Oxyde complexe, procédé de fabrication de celui-ci, et catalyseur de purification de gaz d'échappement

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0906244A1 (fr) 1996-05-15 1999-04-07 Rhodia Chimie Composition a base d'oxyde de cerium et d'oxyde de zirconium, procede de preparation et utilisation en catalyse
JP2000254508A (ja) * 1999-03-10 2000-09-19 Mitsui Eng & Shipbuild Co Ltd 二酸化炭素メタン化用触媒及びその製造方法
EP1603657A1 (fr) 2003-03-18 2005-12-14 Rhodia Electronics and Catalysis Compositions a base d'un oxyde de cerium, d'un oxyde de zirconium et, eventuellement d'un oxyde d'une autre terre rare, a surface specifique elevee a 1100° c, leur procede de preparation et leur utilisation comme catalyseur
EP1603835A2 (fr) 2003-03-18 2005-12-14 Rhodia Electronics and Catalysis Composition a base d oxydes de cerium et de zirconium a surface specifique stable entre 900°c et 1000°c, son procede de preparation et son utilisation comme catalyseur
EP1660406A2 (fr) 2003-09-04 2006-05-31 Rhodia Electronics and Catalysis Composition a base d oxyde de cerium et d oxyde de zirconium a conductibilite et surface elevees, procedes de preparation et utilisation comme catalyseur
EP2160357A1 (fr) 2007-06-20 2010-03-10 Anan Kasei CO., LTD. Oxyde mixte à surface spécifique élevée à base de cérium et d'une autre terre rare, son procédé de préparation et son utilisation dans la catalyse
JP2009034654A (ja) * 2007-08-03 2009-02-19 Daiki Ataka Engineering Co Ltd 水素化触媒、その製造方法およびそれを使用したメタンガスの製造方法
EP2033943A1 (fr) * 2007-08-03 2009-03-11 Daiki Ataka Engineering Co., Ltd. Catalyseur pour la méthanation de monoxyde de carbone, procédé de préparation du catalyseur et procédé de méthanation
CN101716513A (zh) * 2009-09-28 2010-06-02 中国科学院大连化学物理研究所 一种煤气化经合成气完全甲烷化的催化剂、其制备及应用
WO2011078315A1 (fr) 2009-12-25 2011-06-30 阿南化成株式会社 Oxyde complexe, procédé de fabrication de celui-ci, et catalyseur de purification de gaz d'échappement
CN101757928A (zh) * 2010-01-14 2010-06-30 大唐国际化工技术研究院有限公司 二氧化碳甲烷化催化剂及其制备方法和应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BRUNAUER - EMMETT- TELLER, ASTM D 3663-78
NOR AZIAH BUANG ET AL: "CO2 / H2 METHANATION ON NICKEL OXIDE BASED CATALYST DOPED WITH VARIOUS ELEMENTS FOR THE PURIFICATION OF NATURAL GAS", THE MALAYSIAN JOURNAL OF ANALYTICAL SCIENCES, vol. 12, no. 1, January 2008 (2008-01-01), pages 217 - 223, XP055043549 *
OCAMPO F ET AL: "Methanation of carbon dioxide over nickel-based Ce0.72Zr0.28O2 mixed oxide catalysts prepared by sol-gel method", APPLIED CATALYSIS A: GENERAL, ELSEVIER SCIENCE, AMSTERDAM, NL, vol. 369, no. 1-2, 15 November 2009 (2009-11-15), pages 90 - 96, XP026693468, ISSN: 0926-860X, [retrieved on 20090909], DOI: 10.1016/J.APCATA.2009.09.005 *
THE JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 60, 1938, pages 309
WEI WANG ET AL: "Recent advances in catalytic hydrogenation of carbon dioxide", CHEMICAL SOCIETY REVIEWS, vol. 40, no. 7, January 2011 (2011-01-01), pages 3703, XP055043312, ISSN: 0306-0012, DOI: 10.1039/c1cs15008a *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110026175A (zh) * 2019-04-17 2019-07-19 山东国瓷功能材料股份有限公司 一种铈锆复合氧化物及其在催化co氧化反应中的应用
CN110026175B (zh) * 2019-04-17 2020-10-23 山东国瓷功能材料股份有限公司 一种铈锆复合氧化物及其在催化co氧化反应中的应用
CN110026178A (zh) * 2019-04-30 2019-07-19 山东国瓷功能材料股份有限公司 一种铈锆复合氧化物及其制备方法和应用
CN110026178B (zh) * 2019-04-30 2020-10-23 山东国瓷功能材料股份有限公司 一种铈锆复合氧化物及其制备方法和应用
WO2022090671A1 (fr) * 2020-10-29 2022-05-05 Paris Sciences Et Lettres Système catalytique mixte pour la conversion du co2 et/ou du co dans un procédé hybride plasma froid-catalyse
FR3115711A1 (fr) * 2020-10-29 2022-05-06 Paris Sciences Et Lettres - Quartier Latin Système catalytique mixte pour la conversion du CO2 et/ou du CO dans un procédé hybride plasma froid-catalyse

Also Published As

Publication number Publication date
FR2989682A1 (fr) 2013-10-25
FR2989682B1 (fr) 2016-01-15

Similar Documents

Publication Publication Date Title
EP1603667B1 (fr) Composition a base d oxyde de zirconium et d oxyde de c erium a temperature maximale de reductibilite reduite, son procede de preparation et son utilisation comme catalyseur
EP0689870B1 (fr) Catalyseur d'oxydation résistant à des températures élevées, son procédé de préparation et procédé de combustion utilisant un tel catalyseur
CA2553824C (fr) Composition a base d'oxydes de zirconium, de praseodyme, de lanthane ou de neodyme, procede de preparation et utilisation dans un systeme catalytique
JP5391059B2 (ja) 高い還元性および安定な比表面積を有する、酸化ジルコニウムおよび酸化セリウムに基づく組成物、調製方法、ならびに排気ガスの処理における使用
CN108025287A (zh) 使用La-Ce催化剂的甲烷氧化偶联
JP5666777B2 (ja) 一酸化炭素転換用触媒およびそれを用いた一酸化炭素変成方法
EP2994226A2 (fr) Catalyseurs supportés sur oxyde de métal/métal alcalino-terreux
Liu et al. Enhanced hydrothermal stability of high performance lean fuel combustion alumina-supported palladium catalyst modified by nickel
CA2519197A1 (fr) Composition a base d'oxydes de cerium et de zirconium a surface specifique stable entre 900·c et 1000·c, son procede de preparation et son utilisation comme catalyseur
EP1735243A1 (fr) Composition a base d'oxydes de zirconium, de cerium et d'etain, preparation et utilisation comme catalyseur
FR3050450A1 (fr) Oxyde mixte a base de cerium et de zirconium
WO2013021506A1 (fr) Matériau redox pour la décomposition thermochimique d'eau et procédé pour produire de l'hydrogène
JP2016165712A (ja) 水蒸気改質触媒、それを用いた水蒸気改質方法、及び水蒸気改質反応装置
US20180036714A1 (en) Method for producing composite oxide and composite oxide catalyst
WO2013156550A1 (fr) Procede d'alcanation du co2 utilisant comme catalyseur un compose comprenant du nickel sur un support a base d'oxyde de cerium
RU2623227C2 (ru) Катализатор окисления аммиака для производства азотной кислоты на основе легированного металлом ортокобальтата иттрия
WO2010037696A1 (fr) Procede de decomposition du n2o utilisant un catalyseur a base d'un oxyde de cerium et de lanthane
Tang et al. Perovskite evolution on La modified Mn1. 5Co1. 5O4 spinel through thermal ageing with enhanced oxidation activity: Is sintering always an issue?
JP2017029970A (ja) 炭化水素の改質用触媒の製造方法及び軽質炭化水素の改質方法
JP2013017913A (ja) 水蒸気改質触媒及び該触媒を用いた水素製造方法
JP2009241036A (ja) 一酸化炭素転換触媒用組成物からなる一酸化炭素転換用触媒、それを用いた一酸化炭素除去方法
JP6089894B2 (ja) 合成ガス製造用触媒及び合成ガスの製造方法
WO2011012510A2 (fr) Procédé d'oxydo-réduction en boucle utilisant comme masse oxydo-réductrice une composition à base d'oxyde supporté de cérium ou de cérium, de zirconium et/ou de terre rare
JP2007313487A (ja) 水性ガス転化反応用触媒及びそれを用いた水性ガス転化反応方法。
RU2433950C1 (ru) Способ получения синтез-газа

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13719442

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13719442

Country of ref document: EP

Kind code of ref document: A1