WO2011078113A1 - 部分エステル化エポキシ樹脂及びその製造方法 - Google Patents

部分エステル化エポキシ樹脂及びその製造方法 Download PDF

Info

Publication number
WO2011078113A1
WO2011078113A1 PCT/JP2010/072881 JP2010072881W WO2011078113A1 WO 2011078113 A1 WO2011078113 A1 WO 2011078113A1 JP 2010072881 W JP2010072881 W JP 2010072881W WO 2011078113 A1 WO2011078113 A1 WO 2011078113A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
partially esterified
polymer
esterified epoxy
basic catalyst
Prior art date
Application number
PCT/JP2010/072881
Other languages
English (en)
French (fr)
Inventor
大晃 臼井
邦宏 福本
Original Assignee
協立化学産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協立化学産業株式会社 filed Critical 協立化学産業株式会社
Priority to KR1020127019148A priority Critical patent/KR101750127B1/ko
Priority to JP2011510204A priority patent/JP4728457B1/ja
Priority to CN201080059035.2A priority patent/CN102666635B/zh
Publication of WO2011078113A1 publication Critical patent/WO2011078113A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1438Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing oxygen
    • C08G59/1455Monocarboxylic acids, anhydrides, halides, or low-molecular-weight esters thereof
    • C08G59/1461Unsaturated monoacids
    • C08G59/1466Acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/688Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/10Epoxy resins modified by unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/71Purification
    • C08G2261/712Catalyst removal

Definitions

  • the present invention relates to a partially esterified epoxy resin obtained by reacting a polyfunctional epoxy resin and (meth) acrylic acid in the presence of a polymer-supported basic catalyst and a method for producing the same.
  • the partially esterified epoxy resin can be polymerized by means of active energy rays such as ultraviolet rays, heat or both, and exhibits mechanical strength at room temperature even if it is not completely cured. Therefore, the partially esterified epoxy resin is effectively used as a raw material for a sealing material of a product that needs to be positioned in the processing step. Specifically, it is used as a raw material for a sealing material for liquid crystal panels and a paint for electrical parts.
  • partially esterified epoxy resins are effectively used as a raw material for sealing materials used in processing processes that require precision in micron units, such as liquid crystal panels.
  • a sealing material containing a partially esterified epoxy resin as a raw material can form a liquid crystal panel with the positional deviation during processing being limited to a minimum.
  • the partially esterified epoxy resin contains a large amount of impurities such as catalyst residues used during the production of the partially esterified epoxy resin, curing gradually proceeds due to the remaining catalyst, resulting in thickening or gelation. Occurs and the storage stability decreases.
  • Patent Document 1 In order to remove the remaining catalyst, a method of washing a partially esterified epoxy resin using an organic solvent such as methanol has been proposed (Patent Document 1). Moreover, in order to improve storage stability, the method which oxidizes and inactivates the catalyst which remains in a partially esterified epoxy resin is proposed (patent documents 2, 3). A method has been proposed in which a catalyst comprising a tertiary phosphine derivative remaining in a partially esterified epoxy resin is treated with a strongly acidic ion exchange resin. (Patent Document 4). In addition, a method for improving the storage stability of a partially esterified epoxy resin by using a tertiary amine as a catalyst and adding a polymerization inhibitor has been proposed (Patent Document 5).
  • Patent Document 1 in the method of removing the catalyst used in the production by washing, it is necessary to repeat the washing treatment using a solvent many times, and it is still sufficient from the viewpoint of the electrical characteristics described later. It is difficult to obtain a partially esterified epoxy resin with high purity.
  • Patent Documents 2 to 3 in the method of oxidizing and inactivating the catalyst, the deactivated catalyst remains in the partially esterified epoxy resin, which may cause coloring problems and electrical characteristics. The problem of lowering is not improved.
  • Patent Document 4 in the method of removing a catalyst using a strongly acidic ion exchange resin, it is necessary to use an auxiliary solvent such as dimethyldiglycol in order to efficiently remove the catalyst.
  • the present inventors have intensively studied focusing on the electrical characteristics of the partially esterified epoxy resin, which is the main component of the sealing material, and as a result, partially esterified. It is preferable that the electrical characteristics of the epoxy resin and the raw material epoxy resin do not change as much as possible. To that end, it is necessary to remove impurities derived from the basic catalyst remaining in the partially esterified epoxy resin. The invention has been reached.
  • UV curing and heat curing are performed while the sealing material is in an uncured state and is in contact with the liquid crystal. Therefore, if impurities such as catalyst residues and polymerization inhibitors remain in the partially esterified epoxy resin, impurities derived from the catalyst are eluted and diffused from the sealing material to the liquid crystal panel during the curing process, and the liquid crystal panel It becomes a factor which degrades an electrical property.
  • the driving frequency of the liquid crystal panel is currently 30 to 120 Hz, and recently, a liquid crystal panel using a driving frequency of 240 Hz has been developed.
  • the liquid crystal panel is an electric field drive type device, when the impurities eluted from the sealing material into the liquid crystal panel become an electric field responsive substance capable of responding in the range of 240 Hz from the direct current region, the characteristics of the liquid crystal panel are reduced. It has a big impact.
  • the changes in the characteristics of the liquid crystal panel can be broadly divided into changes in electrical characteristics and display characteristics.
  • the change in the electrical characteristics of the liquid crystal panel can be confirmed by the change in the voltage holding ratio related to the power consumption.
  • the voltage holding ratio is related to the leakage current of the liquid crystal panel and changes depending on the presence of charged particles such as ionic substances eluted in the liquid crystal panel.
  • the change in the display characteristics of the liquid crystal panel appears due to, for example, uneven brightness of the liquid crystal panel related to the response speed.
  • the brightness unevenness of the liquid crystal panel is caused by the characteristic characteristic of the liquid crystal having dielectric anisotropy and threshold voltage, and is caused by the presence of charged particles such as ionic substances eluted in the liquid crystal panel and the dielectric dipole. Affected.
  • the electrical characteristics and display characteristics of such a liquid crystal panel can be evaluated by measuring dielectric characteristics.
  • impurities in the partially esterified epoxy resin are present as electric field responsive substances (dielectric substances and charged particles)
  • the dielectric characteristics are changed when the frequency is changed from the DC range to 240 Hz. ⁇ ) is changed.
  • impedance indicates resistance to an AC signal, in other words, ease of current flow, and a decrease in impedance indicates a result of an increase in leakage current and a decrease in voltage holding ratio.
  • capacitance indicates electrostatic capacity, in other words, ease of accumulation of electricity.
  • the capacitance depends on the space charge polarization and the orientation polarization of the dielectric material sandwiched between the electrodes, and a change in the numerical value of the capacitance indicates a change in the storage capacity of the liquid crystal single cell and a variation in the characteristics of the liquid crystal panel.
  • the phase angle ⁇ represents the phase difference between voltage and current.
  • the phase angle deviates from ⁇ 90 ° to 0 °, it indicates that energy loss has occurred, and the change in the phase angle ⁇ appears as a decrease in voltage holding ratio or a delay in response speed.
  • Such a change in dielectric properties of the liquid crystal panel can be predicted by measuring the dielectric properties (impedance, capacitance, and phase angle ⁇ ) of the partially esterified epoxy resin used as a raw material for the sealing material.
  • the partially esterified epoxy resin has a structure having a vinyl group, an ester bond, a hydroxyl group and the like, the polarity increases, and when the measurement temperature is high, the impedance decreases, the capacitance increases, and the phase angle ⁇ shifts. Therefore, the dielectric properties (impedance, capacitance, and phase angle ⁇ ) of the partially esterified epoxy resin to be measured change by comparing the dielectric properties of the raw resin and pure partially esterified epoxy resin at various measurement temperatures. Can be confirmed.
  • the dielectric properties (impedance, capacitance, and phase angle ⁇ ) of the partially esterified epoxy resin to be compared are small compared to the dielectric properties of the reference raw material resin or pure partially esterified epoxy resin, It can be confirmed that it is a partially esterified epoxy resin having excellent characteristics.
  • the present inventors use a polymer-supported basic catalyst in a method for producing a partially esterified epoxy resin by reacting a polyfunctional epoxy resin and (meth) acrylic acid, Later, the polymer-supported basic catalyst is removed by filtration or centrifugation to obtain a high-purity partially esterified epoxy resin with excellent electrical characteristics, and it is stable even without the addition of a polymerization inhibitor. As a result, the present invention was completed.
  • the present invention is as follows. [1] It includes a step of reacting a polyfunctional epoxy resin and (meth) acrylic acid in the presence of a polymer-supported basic catalyst, and a step of removing the polymer-supported basic catalyst to obtain a partially esterified epoxy resin.
  • a process for producing a partially esterified epoxy resin characterized by [2] The method for producing a partially esterified epoxy resin according to the above [1], wherein the basic catalyst of the polymer-supported basic catalyst is a trivalent organic phosphorus compound and / or an amine compound.
  • the manufacturing method of an epoxy resin, a partially esterified epoxy resin, and a curable composition using the same can be provided.
  • the present invention includes a step of reacting a polyfunctional epoxy resin and (meth) acrylic acid in the presence of a polymer-supported basic catalyst, and then a step of removing the polymer-supported basic catalyst to obtain a partially esterified epoxy resin.
  • a method for producing a partially esterified epoxy resin is a method for producing a partially esterified epoxy resin.
  • the polyfunctional epoxy resin is not particularly limited as long as it is an epoxy resin having two or more epoxy groups in one molecule, and examples of the polyfunctional epoxy resin include the following compounds.
  • Polyfunctional epoxy resins include polyalkylene glycols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, and tripropylene glycol, and polyhydric alcohols such as dimethylolpropane, trimethylolpropane, spiroglycol, and glycerin. And an aliphatic polyvalent glycidyl ether compound obtained by reacting chlorohydrin with epichlorohydrin.
  • aromatic diols such as bisphenol A, bisphenol S, bisphenol F, bisphenol AD and the like, and aromatic diols obtained by reacting diols modified with ethylene glycol, propylene glycol, alkylene glycol and epichlorohydrin are used.
  • Valent glycidyl ether compounds are used as a polyfunctional epoxy resin.
  • polyfunctional epoxy resins aliphatic polycarboxylic glycidyl ester compounds obtained by reacting aromatic dicarboxylic acids such as adipic acid and itaconic acid with epichlorohydrin, aromatic dicarboxylic acids such as isophthalic acid, terephthalic acid and pyromellitic acid And an aromatic polyvalent glycidyl ester compound obtained by reacting chlorohydrin with epichlorohydrin.
  • Examples include aromatic polyvalent glycidylamine compounds obtained by reacting aromatic amines such as diaminodiphenylmethane, aniline, and metaxylylenediamine with epichlorohydrin.
  • polyfunctional epoxy resins include hindertoin type polyvalent glycidyl compounds obtained by reacting hydantoin and its derivatives with epichlorohydrin.
  • polyfunctional epoxy resins examples include phenol resins derived from phenol or cresol and formaldehyde, phenols obtained by reacting novolac resins and epichlorohydrin, and novolac polyvalent glycidyl ether compounds.
  • (Meth) acrylic acid is not particularly limited, and for example, commercially available acrylic acid or methacrylic acid can be used.
  • the (meth) acrylic acid reacted with respect to 1 equivalent of the epoxy group of the polyfunctional epoxy resin is preferably 10 to 90 equivalent%, more preferably. Is 20 to 80 equivalent%, more preferably 30 to 70 equivalent%, and particularly preferably 40 to 60 equivalent%.
  • (meth) acrylic acid is reacted within the above range with respect to 1 equivalent of the epoxy group of the polyfunctional epoxy resin, good resin characteristics can be obtained for temporary fixing in the primary polymerization in which only the unsaturated group is reacted.
  • a partially esterified epoxy resin capable of forming a homogeneous polymer without causing phase separation or the like during secondary polymerization can be obtained.
  • the polymer-supported basic catalyst refers to a polymer on which a basic catalyst used in the step of reacting the polyfunctional epoxy resin with (meth) acrylic acid is supported.
  • the basic catalyst is preferably a trivalent organic phosphorus compound and / or an amine compound.
  • the basic atom of the basic catalyst is phosphorus and / or nitrogen.
  • trivalent organic phosphorus compound examples include alkylphosphines such as triethylphosphine, tri-n-propylphosphine, tri-n-butylphosphine and salts thereof, triphenylphosphine, tri-m-tolylphosphine, tris- (2 Arylphosphines such as, 6-dimethoxyphenyl) phosphine and salts thereof, phosphorous acid triesters such as triphenyl phosphite, triethyl phosphite and tris (nonylphenyl) phosphite and salts thereof.
  • alkylphosphines such as triethylphosphine, tri-n-propylphosphine, tri-n-butylphosphine and salts thereof
  • triphenylphosphine tri-m-tolylphosphine
  • tris- (2 Arylphosphines such as, 6-dime
  • amine compound examples include secondary amines such as diethanolamine, tertiary amines such as triethanolamine, dimethylbenzylamine, trisdimethylaminomethylphenol and trisdiethylaminomethylphenol, 1,5,7-triazabicyclo [4.
  • dec-5-ene TBD
  • 7-methyl-1,5,7-triazabicyclo [4.4.0] dec-5-ene Me-TBD
  • 1,8-diazabicyclo DBU
  • 6-dibutylamino-1,8-diazabicyclo [5.4.0] undec-7-ene 1,5-diazabicyclo [4.3.0]
  • Examples include strongly basic amines such as non-5-ene (DBN) and 1,1,3,3-tetramethylguanidine and salts thereof. Of these, 1,5,7-triazabicyclo [4.4.0] dec-5-ene (TBD) is preferable.
  • the salt of the amine compound include benzyltrimethylammonium chloride and benzyltriethylammonium chloride.
  • the polymer for supporting the basic catalyst is not particularly limited, and a polymer obtained by crosslinking polystyrene with divinylbenzene, a polymer obtained by crosslinking acrylic resin with divinylbenzene, or the like is used. These polymers are insoluble in solvents (for example, methyl ethyl ketone, methyl isobutyl ketone, toluene, etc.), raw materials, and products used in the reaction of the polyfunctional epoxy resin and (meth) acrylic acid.
  • solvents for example, methyl ethyl ketone, methyl isobutyl ketone, toluene, etc.
  • a polymer-supported basic catalyst is obtained by chemically bonding a basic catalyst to an insoluble polymer or introducing a basic catalyst into a monomer, polymerizing the monomer, and then three-dimensionally crosslinking with a crosslinking monomer such as divinylbenzene.
  • a crosslinking monomer such as divinylbenzene.
  • polymer-supported basic catalyst examples include diphenylphosphinopolystyrene, 1,5,7-triazabicyclo [4.4.0] dec-5-enepolystyrene, N, N- (diisopropyl) aminomethylpolystyrene. N- (methylpolystyrene) -4- (methylamino) pyridine and the like. These polymer-supported basic catalysts may be used alone or in combination of two or more.
  • polymer-supported basic catalyst a commercially available one may be used.
  • examples of commercially available polymer-supported basic catalysts include PS-PPh 3 (diphenylphosphinopolystyrene, manufactured by Biotage), PS-TBD (1,5,7-triazabicyclo [4.4.0] deca-5 -Enpolystyrene, manufactured by Biotage Corporation).
  • the use ratio of the polymer-supported basic catalyst is preferably 0.5 to 5.0 milliequivalents of the basic catalyst of the polymer-supported basic catalyst with respect to 1 equivalent of the epoxy of the polyfunctional epoxy resin. More preferably, it is ⁇ 3.0 milliequivalents. It is preferable from the viewpoint of reaction rate, reaction time, and catalyst cost that the ratio of the polymer-supported basic catalyst is within the above range.
  • the temperature in the reaction step of the polyfunctional epoxy resin and (meth) acrylic acid is preferably 60 to 120 ° C., more preferably 80 to 120 ° C., and further preferably 90 to 110 ° C.
  • the reaction between the polyfunctional epoxy resin and (meth) acrylic acid can be carried out in a container that shields ultraviolet rays because the partially esterified epoxy resin obtained by this reaction is cured by active energy rays such as ultraviolet rays. desirable.
  • the reaction between the polyfunctional epoxy resin and (meth) acrylic acid may be performed in the presence of a reflux solvent that exhibits good solvent properties for the epoxy resin in order to prevent gas phase polymerization. Since it is necessary to remove the solvent after completion of the reaction, it is preferable to carry out without solvent.
  • the reflux solvent include acetone and methyl ethyl ketone.
  • the polymer-supported basic catalyst is removed.
  • a method for removing the polymer-supported basic catalyst it is preferable to use filtration or centrifugation.
  • Examples of the method of filtering the polymer-supported basic catalyst include a method of filtering the polymer-supported basic catalyst using a nylon mesh NY-10HC (manufactured by Sefar, Switzerland) having a mesh size of 10 ⁇ m.
  • Examples of the method of centrifuging the polymer-supported basic catalyst include a method of removing the polymer-supported basic catalyst by solid-liquid separation using a centrifuge.
  • the polymer-supported basic catalyst is removed by a relatively simple method such as filtration or centrifugal separation, so that the polymer-supported basic catalyst is hardly contained and high-purity partial esterification is achieved.
  • An epoxy resin can be obtained.
  • the polymer-supported basic catalyst is removed by a relatively simple physical method such as filtration or centrifugation, so that polymerization for inactivating the conventional washing solvent and catalyst is performed. Compared to a method using an inhibitor, the manufacturing cost can be reduced.
  • the partially esterified epoxy resin of the present invention is obtained by reacting a polyfunctional epoxy resin with (meth) acrylic acid in the presence of a polymer-supported basic catalyst to remove the polymer-supported basic catalyst.
  • the content of basic atoms derived from is 50 ppm or less.
  • the partially esterified epoxy resin of the present invention has a low content of basic atoms derived from the polymer-supported basic catalyst as low as 50 ppm or less, and is excellent in electrical characteristics as compared with partially esterified epoxy resins obtained by conventional methods. ing.
  • the partially esterified epoxy resin of the present invention has a basic atom content derived from the polymer-supported basic catalyst as low as 50 ppm or less, and there is no need to add a polymerization inhibitor in the reaction step. Even when compared with a partially esterified epoxy resin to which a polymerization inhibitor is added in order to inactivate the catalyst, the storage stability is excellent.
  • the partially esterified epoxy resin preferably has fewer impurities, and the content of basic atoms derived from the polymer-supported basic catalyst is preferably 40 ppm or less, more preferably 30 ppm or less, still more preferably 20 ppm or less, particularly preferably. 10 ppm or less.
  • the basic atom derived from the polymer-supported basic catalyst is specifically phosphorus or nitrogen. By measuring the content of these basic atoms contained in the partially esterified epoxy resin, the residual amount of the polymer-supported basic catalyst residue in the partially esterified epoxy resin can be estimated.
  • the basic atom of the polymer-supported basic catalyst can be measured by inductively coupled plasma optical emission spectrometry (ICP / AES).
  • the curable composition of the present invention is obtained by reacting (meth) acrylic acid with a polyfunctional epoxy resin in the presence of a polymer-supported basic catalyst to remove the polymer-supported basic catalyst, and is derived from the polymer-supported basic catalyst.
  • the cured composition can be polymerized by energy rays such as ultraviolet rays or heat to obtain a cured product.
  • the curable composition of the present invention contains a partially esterified epoxy resin in which the content of the basic atom of the polymer-supported basic catalyst is as low as 50 ppm or less, and hardly contains the polymer-supported basic catalyst residue and the polymerization inhibitor. As a result, oxidation products due to catalyst residues and polymerization inhibitors are not generated, and the electrical characteristics and storage stability are excellent. Therefore, the curable composition of the present invention can be suitably used as a drip sealing material for liquid crystal panels, a paint for electrical parts, and the like, where electrical characteristics and contamination are problems.
  • Example 1 A 500 ml glass four-necked flask equipped with a stirrer, a thermometer and a reflux condenser was prepared, and 340 g (2.0 equivalents / epoxy group) of bisphenol A type epoxy resin; Epicron EXA850CRP (manufactured by DIC), 90 methacrylic acid .4 g (1.0 equivalent), PS-PPh 3 (diphenylphosphinopolystyrene, 2.0 mmol / g) [manufactured by Biotage Corporation] 750 mg (1.5 meq / TPP (triphenylphosphine) catalyst amount (g) ), And the mixture was stirred and reacted at 100 ° C.
  • Epicron EXA850CRP manufactured by DIC
  • PS-PPh 3 diphenylphosphinopolystyrene, 2.0 mmol / g
  • Biotage Corporation 750 mg (1.5 meq / TPP (triphenylphosphine) catalyst amount (
  • the reaction solution was cooled to 60 ° C., and PS-PPh 3 as a catalyst was removed with a nylon mesh NY-10HC having a mesh size of 10 ⁇ m (manufactured by Sefar, Switzerland) to obtain a partially esterified epoxy resin (PR-1).
  • the epoxy equivalent of the obtained resin was 468 g / eq.
  • the content of phosphorus atom in the resin (PR-1) was 2 ppm or less as measured by inductively coupled plasma optical emission spectrometry (ICP / AES) after wet decomposition of the resin (PR-1).
  • Example 2 Partially esterified epoxy resin (PR-2) in the same manner as in Example 1 except that 326 g (2.0 equivalents / epoxy group) of EPOMIK R1710 (manufactured by Printec Co., Ltd.) was used. Got. The epoxy equivalent of the obtained resin (PR-2) was 450 g / eq. The phosphorus atom content in the resin (PR-2) measured in the same manner as in Example 1 was 2 ppm or less.
  • Example 3 A 500 ml glass four-necked flask equipped with a stirrer, thermometer and reflux condenser was prepared, and 340 g (2.0 equivalents / epoxy group) of bisphenol A type epoxy resin; Epicron EXA850CRP (manufactured by DIC), PS-PPh 3 (2.0 mmol / g) [manufactured by Biotage Corporation] 750 mg (1.5 meq / TPP [triphenylphosphine] catalyst amount (g)), PS-TBD (1,5,7-triazabicyclo [4 4.0] Deca-5-ene polystyrene, 1.40 mmol / g) [manufactured by Biotage Corporation] 1.07 g (1.5 meq / amine catalyst amount (g)) was mixed and stirred at 100 ° C.
  • the partially esterified epoxy resins of Examples 1 to 4 and Comparative Example 1 were subjected to a heating stability test and a reduced pressure heating acceleration test as follows.
  • the partially esterified epoxy resins of Examples 1 to 3 have almost no change in viscosity even after 500 hours at a temperature of 60 ° C., and are excellent in storage stability even under a heating test. It was confirmed that On the other hand, in the partially esterified epoxy resin of Comparative Example 1, the viscosity changed almost twice after 500 hours, and the heat stability was lowered. Further, as shown in Table 1, the partially esterified epoxy resins of Examples 1 to 3 hardly change in viscosity even after 500 hours have passed under a reduced pressure of 50 ° C. and 100 Pa, and can be stored even under a reduced pressure heating test. It was confirmed that the stability was excellent. On the other hand, the partially esterified epoxy resin of Comparative Example 1 gelled after 500 hours.
  • the dielectric properties of the partially esterified epoxy resins of Example 1 and Comparative Example 1 were measured by the following method.
  • a raw material bisphenol A type epoxy resin Epicron EXA850CRP (manufactured by DIC) was used.
  • the dielectric material measurement system 126096W [Solartron Co., Ltd.] and the liquid electrode SR-C1R (cell capacity: 2pF, distance between electrodes: 1mm) [Toyo Technica Co., Ltd.]
  • the raw material resin (standard) is implemented by the FRA method. Dielectric characteristics at 25 ° C., 50 ° C., and 80 ° C.
  • the dielectric properties (impedance, capacitance, and phase angle ⁇ ) of the partially esterified epoxy resin of Example 1 are almost equal to the dielectric properties of the reference raw material resin, It was confirmed that there was no influence by impurities in the partially esterified epoxy resin and it had excellent electrical characteristics.
  • the dielectric properties of the partially esterified epoxy resin of Comparative Example 1 changed with respect to the dielectric properties of the raw material resin. That is, as shown in FIG. 1, the impedance of Comparative Example 1 is reduced with respect to the impedance of the raw resin, and thus the partially esterified epoxy resin of Comparative Example 1 has a reduced voltage holding ratio. I was able to confirm. Moreover, as shown in FIG. 2, the capacitance of the comparative example 1 is changing with respect to the capacitance of the raw material resin. From this, the partially esterified epoxy resin of the comparative example 1 has a variation in holding capacity. It could be confirmed. Further, as shown in FIG.
  • the phase angle ⁇ of Comparative Example 1 is shifted in the direction of ⁇ 90 ° to 0 ° with respect to the phase angle ⁇ of the raw material resin. It was confirmed that the epoxy resin had an energy loss and caused a delay in response speed. Thus, the partially esterified epoxy resin of Comparative Example 1 has a reduced dielectric property, and this decrease in dielectric property is due to the influence of impurities contained in the partially esterified epoxy resin of Comparative Example 1.
  • the dielectric properties (impedance, capacitance, and phase angle ⁇ ) of the partially esterified epoxy resin of Example 1 are the same as those of the reference raw material resin.
  • the dielectric properties were slightly changed, but this was presumed to be due to the influence of intermolecular interactions due to vinyl groups, ester structures, hydroxyl groups and the like contained in the partially esterified epoxy resin due to temperature rise.
  • the dielectric properties of the partially esterified epoxy resin of Comparative Example 1 changed greatly from the dielectric properties of the raw material resin as the temperature increased, and the electrical properties decreased.
  • the dielectric properties (impedance, capacitance, and phase angle ⁇ ) of the partially esterified epoxy resin of Example 1 are almost the same as the dielectric properties of the raw material resin, and almost all impurities are contained. Therefore, it was confirmed that the partially esterified epoxy resin had excellent electrical characteristics and no change in dielectric characteristics due to the influence of impurities.
  • Example 4 As a catalyst, PS-PPh 3 (diphenylphosphinopolystyrene, 2.0 mmol / g) [manufactured by Biotage Corporation] 500 mg (1.33 meq / TPP (triphenylphosphine) catalyst amount (g)) and TPP (triphenylphosphine) Partially esterified epoxy resin in the same manner as in Example 1, except that 160 mg (phenylphosphine) (manufactured by Kanto Chemical Co., Inc.) (0.61 meq / TPP (triphenylphosphine) catalyst amount (g)) was used. (PR-4) was obtained. The epoxy equivalent of the obtained resin was 458 g / eq. The phosphorus atom content in the resin (PR-4) measured in the same manner as in Example 1 was 100 ppm.
  • Example 5 As a catalyst, 650 mg (1.73 meq / TPP (triphenylphosphine) catalyst amount (g)) of PS-PPh 3 (diphenylphosphinopolystyrene, 2.0 mmol / g) (manufactured by Biotage), TPP (triphenylphosphine) Partially esterified epoxy resin in the same manner as in Example 1 except that 80 mg of phenylphosphine) (manufactured by Kanto Chemical Co., Inc.) (0.31 meq / TPP (triphenylphosphine) catalyst amount (g)) was used. (PR-5) was obtained. The epoxy equivalent of the obtained resin was 466 g / eq. The phosphorus atom content in the resin (PR-5), measured in the same manner as in Example 1, was 48 ppm.
  • Example 6 As a catalyst, PS-PPh 3 (diphenylphosphinopolystyrene, 2.0 mmol / g) (manufactured by Biotage) 700 mg (1.87 meq / TPP (triphenylphosphine) catalyst amount (g)) and TPP (triphenylphosphine) Partially esterified epoxy resin in the same manner as in Example 1 except that 40 mg (phenylphosphine) (manufactured by Kanto Chemical Co., Inc.) (0.15 meq / TPP (triphenylphosphine) catalyst amount (g)) was used. (PR-6) was obtained. The epoxy equivalent of the obtained resin was 456 g / eq. The phosphorus atom content in the resin (PR-6), measured in the same manner as in Example 1, was 26 ppm.
  • the reaction solution was cooled to 60 ° C., and the ion exchange resin was removed with a nylon mesh NY-10HC (manufactured by Sefar, Switzerland) having an opening of 10 ⁇ m to obtain a partially esterified epoxy resin (KR-3).
  • the phosphorus atom contents in the resins (KR-2 and KR-3) measured in the same manner as in Example 1 were 300 ppm and 250 ppm, respectively. From this result, even when a strongly acidic ion exchange resin is used, the obtained partial ester epoxy resin contains a relatively large amount of impurities (phosphorus atoms) derived from the catalyst. It was confirmed that the effect of reducing impurities was small.
  • FIG. 10 shows the relationship between the content of phosphorus atoms contained in each resin at each frequency and the capacitance
  • FIG. 11 shows the relationship between the content of phosphorus atoms contained in each resin at each frequency and the phase angle ⁇ . .
  • the change in phase angle ⁇ deviating from ⁇ 90 ° to 0 ° is small, and the voltage holding ratio It can be confirmed that the decrease and the delay of the response speed are small and the dielectric properties are excellent.
  • the phosphorus atom content is 50 ppm or less when measured in a direct current region (0 Hz) to 240 Hz applied to recent liquid crystal panels.
  • the partially esterified epoxy resin having a phosphorus atom content of more than 50 ppm has a significantly smaller change in the phase angle ⁇ than the partially esterified epoxy resin, so that no energy loss occurs and has excellent dielectric properties. Can be confirmed.
  • the partially esterified epoxy resin obtained by the production method of the present invention can be stably stored for a long period of time, is excellent in stability under reduced pressure conditions and electrical characteristics, is active energy rays such as ultraviolet rays, heat Since it can be used as a raw material for a polymerizable composition, it is useful as a raw material for a sealing material for liquid crystal panels, a paint for electrical parts, and the like.

Abstract

 比較的簡易な手段により、触媒残渣を一定値以下に除去することができ、貯蔵安定性及び電気的特性に優れる部分エステル化エポキシ樹脂の製造方法、部分エステル化エポキシ樹脂及びその使用を提供する。 ポリマー担持塩基性触媒の存在下、多官能エポキシ樹脂と(メタ)アクリル酸とを反応させる工程と、ポリマー担持塩基性触媒を除去し、部分エステル化エポキシ樹脂を得る工程とを含む部分エステル化エポキシ樹脂の製造方法である。また、ポリマー担持塩基性触媒の存在下、(メタ)アクリル酸と多官能エポキシ樹脂と反応させて、ポリマー担持塩基性触媒を除去することにより得られ、ポリマー担持塩基性触媒に由来する塩基性原子の含有量が50ppm以下である部分エステル化エポキシ樹脂である。

Description

部分エステル化エポキシ樹脂及びその製造方法
 本発明は、ポリマー担持塩基性触媒の存在下で多官能エポキシ樹脂と(メタ)アクリル酸を反応させて得られる部分エステル化エポキシ樹脂及びその製造方法に関する。
 部分エステル化エポキシ樹脂は、紫外線等の活性エネルギー線、熱又はその両方の手段によって重合が可能であり、完全に硬化していなくても、常温で機械的強度が発揮される。そのため、部分エステル化エポキシ樹脂は、加工工程において位置決めを必要とする製品のシール材等の原料として有効に用いられる。具体的には、液晶パネルのシール材や電気部品の塗料等の原料として用いられる。
 特に、液晶パネルように、ミクロン単位の精度が要求される加工工程に用いられるシール材の原料として、部分エステル化エポキシ樹脂は有効に用いられる。部分エステル化エポキシ樹脂を原料として含むシール材は、加工時の位置ずれを最小に制限して、液晶パネルを形成することができる。
 しかし、部分エステル化エポキシ樹脂中に、部分エステル化エポキシ樹脂の製造時に使用した触媒残渣等の不純物が多量に含まれていると、残存する触媒によって徐々に硬化が進行し、増粘やゲル化が生じて、貯蔵安定性が低下する。
 残存する触媒を除去するために、メタノール等の有機溶剤を用いて、部分エステル化エポキシ樹脂を洗浄処理する方法が提案されている(特許文献1)。
 また、貯蔵安定性を向上させるために、部分エステル化エポキシ樹脂中に残存する触媒を酸化して不活性化させる方法が提案されている(特許文献2、3)。
 部分エステル化エポキシ樹脂中に残存する第3級ホスフィン誘導体からなる触媒を強酸性イオン交換樹脂を用いて処理する方法が提案されている。(特許文献4)。
 その他、触媒として3級アミンを用い、重合禁止剤を添加することによって、部分エステル化エポキシ樹脂の貯蔵安定性を向上させる方法が提案されている(特許文献5)。
特開平5-295087号公報 特開平5-320312号公報 特開2002-145984号公報 特開平11-12345号公報 特開2004-244543号公報
 しかし、特許文献1のように、製造時に使用した触媒を洗浄によって除去する方法では、溶剤を使用した洗浄処理を何度も繰り返して行う必要があり、それでも後述する電気的特性の観点から十分に高純度である部分エステル化エポキシ樹脂を得ることは困難である。
 また、特許文献2~3のように、触媒を酸化して不活性化する方法では、部分エステル化エポキシ樹脂中に不活性化した触媒が残存したままであり、着色の問題や、電気的特性が低下する問題については改善されていない。
 特許文献4のように、強酸性イオン交換樹脂を用いて触媒を除去する方法では、効率的に触媒を除去するために、ジメチルジグリコール等の補助溶剤を使用する必要があり、溶剤除去のために製造コストが高騰するという問題があるうえに、やはり電気的特性の観点から十分な高純度の部分エステル化エポキシ樹脂を得ることは困難である。
 さらに、特許文献5のように、重合禁止剤を添加する方法では、部分エステル化エポキシ樹脂中には不活性化した触媒及び重合禁止剤が残存したままなので、電気的特性が低下する問題については、改善されていない。
 これらの従来技術において、貯蔵安定性に関しては相当程度成功しており、製品化もされているが、液晶パネル用滴下シール材の分野では、近年の液晶ディスプレイの高画質化、高性能化に伴い、上記シール材に要求される特性も益々厳しくなりつつある。
 本発明者らは、液晶パネル用滴下シール材に要求される特性を向上させるために、シール材の主成分である部分エステル化エポキシ樹脂の電気的特性に着目し鋭意検討した結果、部分エステル化エポキシ樹脂と原料エポキシ樹脂の電気的特性ができる限り変化しないことが好ましく、そのためには部分エステル化エポキシ樹脂に残存する塩基性触媒由来の不純物を除去することが必要であることを知見し、本発明に到達したものである。
 滴下工法による液晶パネルの製造方法において、シール材は未硬化状態で液晶に接触したままUV硬化、加熱硬化が行われる。そのため、部分エステル化エポキシ樹脂中に触媒残渣や重合禁止剤等の不純物が残存していると、硬化の過程において、触媒由来の不純物等がシール材から液晶パネルへ溶出及び拡散し、液晶パネルの電気的特性を劣化させる要因となる。
 液晶パネルの駆動周波数は、現在30~120Hzであり、最近では240Hzの駆動周波数を用いる液晶パネルが開発されている。このように液晶パネルは、電場駆動型のデバイスであるため、シール材から液晶パネルに溶出した不純物が、直流領域から240Hzの範囲で応答できる電場応答物質となる場合には、液晶パネルの特性に大きな影響を与える。
 液晶パネルの特性の変化は、大きく分けて電気特性及び表示特性の変化として現れる。液晶パネルの電気特性の変化は、消費電力が関係する電圧保持率の変化によって確認することができる。電圧保持率は、液晶パネルのリーク電流に関係し、液晶パネルに溶出したイオン物質等の荷電粒子の存在によって変化する。
 液晶パネルの表示特性の変化は、例えば応答速度が関係する液晶パネルの輝度ムラ等によって現れる。液晶パネルの輝度ムラ等は、誘電異方性や閾値電圧を有する液晶特有の特性に関連して生じるものであり、液晶パネルに溶出したイオン物質等の荷電粒子と誘電体双極子等の存在によって影響される。
 このような液晶パネルの電気特性及び表示特性は、誘電特性を測定することによって評価することができる。部分エステル化エポキシ樹脂中の不純物が電場応答物質(誘電体物質及び荷電粒子)となって存在すると、直流領域から240Hzの範囲で周波数を変化させた際に、誘電特性(インピーダンス、キャパシタンス及び位相角θ)を変化させる。
 誘電特性においてインピーダンスは、交流信号に対する抵抗、言い換えれば、電流の流れ易さを示し、インピーダンスの低下は、リーク電流が増加した結果であり、電圧保持率の低下を示す。
 誘電特性においてキャパシタンスは、静電容量、言い換えれば、電気の溜り易さを示す。キャパシタンスは、電極に挟まれた誘電物質の空間電荷分極と配向分極に依存しており、キャパシタンスの数値の変化は、液晶単セルの保持容量の変化を示し、液晶パネルの特性のばらつきを示す。
 誘電特性において位相角θは、電圧と電流の位相差を示す。位相角が-90°から0°方向にずれた場合は、エネルギーロスが生じていることを示し、位相角θの変化は、電圧保持率の低下や応答速度の遅れとなって現れる。
 このような液晶パネルの誘電特性の変化は、シール材の原料として使用される部分エステル化エポキシ樹脂の誘電特性(インピーダンス、キャパシタンス及び位相角θ)を測定することによって予測できる。
 部分エステル化エポキシ樹脂は、ビニル基、エステル結合、水酸基等を有する構造であるため、極性が上昇し、測定温度が高い場合にはインピーダンスの低下、キャパシタンスの上昇、位相角θのズレを生じる。従って、測定対象となる部分エステル化エポキシ樹脂の誘電特性(インピーダンス、キャパシタンス及び位相角θ)は、原料樹脂や純粋な部分エステル化エポキシ樹脂の誘電特性と種々の測定温度で比較することによってその変化を確認することができる。基準となる原料樹脂や純粋な部分エステル化エポキシ樹脂の誘電特性に対して、比較対象となる部分エステル化エポキシ樹脂の誘電特性(インピーダンス、キャパシタンス及び位相角θ)の変化が少ない場合は、電気的特性に優れた部分エステル化エポキシ樹脂であることが確認できる。
 電気的特性に優れた部分エステル化エポキシ樹脂を得るためには、従来の方法により得られるものよりもはるかに高純度の部分エステル化エポキシ樹脂を製造することが要求される。これを実現するために、本発明者らは、多官能エポキシ樹脂と(メタ)アクリル酸とを反応させて部分エステル化エポキシ樹脂を製造する方法において、ポリマー担持塩基性触媒を使用すること、反応後にポリマー担持塩基性触媒を濾過や遠心分離して除去することによって、電気的特性に優れた高純度の部分エステル化エポキシ樹脂が得られ、また、特に重合禁止剤を添加しなくても貯蔵安定性にも優れていることを見出し、本発明を完成した。
 すなわち、本発明は、以下のとおりである。
[1]ポリマー担持塩基性触媒の存在下、多官能エポキシ樹脂と(メタ)アクリル酸とを反応させる工程と、ポリマー担持塩基性触媒を除去し、部分エステル化エポキシ樹脂を得る工程とを含むことを特徴とする部分エステル化エポキシ樹脂の製造方法。
[2]ポリマー担持塩基性触媒の塩基性触媒が、3価の有機リン化合物及び/又はアミン化合物である、上記[1]に記載の部分エステル化エポキシ樹脂の製造方法。
[3]多官能エポキシ樹脂と(メタ)アクリル酸とを反応させる工程において、多官能エポキシ樹脂のエポキシ基1当量に対して、10~90当量%の(メタ)アクリル酸を反応させる、上記[1]又は[2]に記載の部分エステル化エポキシ樹脂の製造方法。
[4]ポリマー担持塩基性触媒を除去する工程において、濾過又は遠心分離を用いる、上記[1]~[3]のいずれかに記載の部分エステル化エポキシ樹脂の製造方法。
[5]ポリマー担持塩基性触媒の存在下、(メタ)アクリル酸と多官能エポキシ樹脂と反応させて、ポリマー担持塩基性触媒を除去することにより得られ、ポリマー担持塩基性触媒に由来する塩基性原子の含有量が50ppm以下であることを特徴とする部分エステル化エポキシ樹脂。
[6]上記[5]に記載の部分エステル化エポキシ樹脂を含む、硬化性組成物。
 本発明によれば、比較的簡易な物理的手段によって、ポリマー担持塩基性触媒を除去することにより、電気的特性に優れ、また重合禁止剤を添加しなくとも貯蔵安定性に優れた部分エステル化エポキシ樹脂の製造方法、部分エステル化エポキシ樹脂、並びにそれを用いた硬化性組成物を提供することができる。
原料樹脂及び部分エステル化エポキシ樹脂(実施例1、比較例1)の25℃における測定周波数とインピーダンスとの関係を示すグラフである。 原料樹脂及び部分エステル化エポキシ樹脂(実施例1、比較例1)の25℃における測定周波数とキャパシタンスとの関係を示すグラフである。 原料樹脂及び部分エステル化エポキシ樹脂(実施例1、比較例1)の25℃における測定周波数と位相角θとの関係を示すグラフである。 原料樹脂及び部分エステル化エポキシ樹脂(実施例1、比較例1)の50℃における測定周波数とインピーダンスとの関係を示すグラフである。 原料樹脂及び部分エステル化エポキシ樹脂(実施例1、比較例1)の50℃における測定周波数とキャパシタンスとの関係を示すグラフである。 原料樹脂及び部分エステル化エポキシ樹脂(実施例1、比較例1)の50℃における測定周波数と位相角θとの関係を示すグラフである。 原料樹脂及び部分エステル化エポキシ樹脂(実施例1、比較例1)の80℃における測定周波数とインピーダンスとの関係を示すグラフである。 原料樹脂及び部分エステル化エポキシ樹脂(実施例1、比較例1)の80℃における測定周波数とキャパシタンスとの関係を示すグラフである。 原料樹脂及び部分エステル化エポキシ樹脂(実施例1、比較例1)の80℃における測定周波数と位相角θとの関係を示すグラフである。 各周波数における各樹脂中に含まれるリン原子の含有量とキャパシタンスの関係を示すグラフである。 各周波数における各樹脂中に含まれるリン原子の含有量と位相角θの関係を示すグラフである。
 以下、本発明の好適な実施形態について説明する。
 本発明は、ポリマー担持塩基性触媒の存在下、多官能エポキシ樹脂と(メタ)アクリル酸とを反応させる工程と、次に、ポリマー担持塩基性触媒を除去し、部分エステル化エポキシ樹脂を得る工程とを含む、部分エステル化エポキシ樹脂の製造方法である。
 多官能エポキシ樹脂は、1分子中に2個以上のエポキシ基を有するエポキシ樹脂であれば特に限定されないが、多官能エポキシ樹脂として以下の化合物が挙げられる。
 多官能エポキシ樹脂として、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール等のポリアルキレングリコール類、ジメチロールプロパン、トリメチルロールプロパン、スピログリコール、グリセリン等の多価アルコール類とエピクロルヒドリンとを反応させて得られる脂肪族多価グリシジルエーテル化合物が挙げられる。
 多官能エポキシ樹脂として、ビスフェノールA、ビスフェノールS、ビスフェノールF、ビスフェノールAD等の芳香族ジオール類及びそれらをエチレングリコール、プロピレングリコール、アルキレングリコール変性したジオール類とエピクロルヒドリンとを反応させて得られる芳香族多価グリシジルエーテル化合物が挙げられる。
 多官能エポキシ樹脂として、アジピン酸、イタコン酸等の芳香族ジカルボン酸とエピクロルヒドリンとを反応させて得られた脂肪族多価グリシジルエステル化合物、イソフタル酸、テレフタル酸、ピロメリット酸等の芳香族ジカルボン酸とエピクロルヒドリンとを反応させて得られた芳香族多価グリシジルエステル化合物が挙げられる。
 ジアミノジフェニルメタン、アニリン、メタキシリレンジアミン等の芳香族アミンとエピクロルヒドリンとを反応させて得られる芳香族多価グリシジルアミン化合物が挙げられる。
 多官能エポキシ樹脂として、ヒダントイン及びその誘導体とエピクロルヒドリンとを反応させて得られるヒンダトイン型多価グリシジル化合物が挙げられる。
 多官能エポキシ樹脂として、フェノール又はクレゾールとホルムアルデヒドから誘導されたフェノール樹脂、ノボラック樹脂とエピクロルヒドリンとを反応させて得られたフェノール、ノボラック型多価グリシジルエーテル化合物が挙げられる。
 (メタ)アクリル酸としては、特に限定されず、例えば市販のアクリル酸又はメタクリル酸を使用することができる。
 多官能エポキシ樹脂と(メタ)アクリル酸とを反応させる工程において、多官能エポキシ樹脂のエポキシ基1当量に対して反応させる(メタ)アクリル酸は、好ましくは10~90当量%であり、より好ましくは20~80当量%であり、さらに好ましくは30~70当量%であり、特に好ましくは40~60当量%である。
 多官能エポキシ樹脂のエポキシ基1当量に対して、(メタ)アクリル酸を上記範囲内で反応させると、不飽和基のみを反応させる一次重合の際に、仮固定に良好な樹脂特性が得られ、二次重合の際に相分離等を生じることなく均質な重合物を形成することが可能な部分エステル化エポキシ樹脂を得ることができる。
 ポリマー担持塩基性触媒とは、多官能エポキシ樹脂と(メタ)アクリル酸と反応させる工程において用いられる塩基性触媒をポリマーに担持させたものいう。
 塩基性触媒としては、3価の有機リン化合物及び/又はアミン化合物であることが好ましい。塩基性触媒の塩基性原子は、リン及び/又は窒素である。
 3価の有機リン化合物としては、トリエチルホスフィン、トリ-n-プロピルホスフィン、トリ-n-ブチルホスフィンのようなアルキルホスフィン類及びその塩、トリフェニルホスフィン、トリ-m-トリルホスフィン、トリス-(2,6-ジメトキシフェニル)ホスフィン等のアリールホスフィン類及びその塩、トリフェニルホスファイト、トリエチルホスファイト、トリス(ノニルフェニル)ホスファイト等の亜リン酸トリエステル類及びその塩等が挙げられる。3価の有機リン化合物の塩としては、トリフェニルホスフィン・エチルブロミド、トリフェニルホスフィン・ブチルブロミド、トリフェニルホスフィン・オクチルブロミド、トリフェニルホスフィン・デシルブロミド、トリフェニルホスフィン・イソブチルブロミド、トリフェニルホスフィン・プロピルクロリド、トリフェニルホスフィン・ペンチルクロリド、トリフェニルホスフィン・ヘキシルブロミド等が挙げられる。中でも、トリフェニルホスフィンが好ましい。
 アミン化合物としては、ジエタノールアミン等の第2級アミン、トリエタノールアミン、ジメチルベンジルアミン、トリスジメチルアミノメチルフェノール、トリスジエチルアミノメチルフェノール等の第3級アミン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(TBD)、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(Me-TBD)、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU)、6-ジブチルアミノ-1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン(DBN)、1,1,3,3-テトラメチルグアニジン等の強塩基性アミン及びその塩が挙げられる。中でも、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(TBD)が好ましい。アミン化合物の塩としては、塩化ベンジルトリメチルアンモニウム、塩化ベンジルトリエチルアンモニウムが挙げられる。
 塩基性触媒を担持させるポリマーとしては、特に限定されず、ポリスチレンをジビニルベンゼンで架橋させたポリマーやアクリル樹脂をジビニルベンゼンで架橋させたポリマー等が用いられる。これらのポリマーは、多官能エポキシ樹脂と(メタ)アクリル酸との反応に用いられる溶媒(例えばメチルエチルケトン、メチルイソブチルケトン、トルエン等)及び原料、生成物に不溶である。
 ポリマー担持塩基性触媒は、塩基性触媒を不溶性ポリマーに化学結合させるか、塩基性触媒をモノマーに導入した後、モノマーを重合し、その後、ジビニルベンゼン等の架橋モノマーで3次元的に架橋することによって、メチルエチルケトン、メチルイソブチルケトン、トルエン等の溶媒に不溶なポリマー担持塩基性触媒を製造することができる。
 ポリマー担持塩基性触媒として、具体的には、ジフェニルホスフィノポリスチレン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エンポリスチレン、N,N-(ジイソプロピル)アミノメチルポリスチレン、N-(メチルポリスチレン)-4-(メチルアミノ)ピリジン等が挙げられる。これらのポリマー担持塩基性触媒は、単独でも、2種以上を併用してもよい。
 ポリマー担持塩基性触媒は、市販のものを用いてもよい。市販のポリマー担持塩基性触媒としては、例えばPS-PPh(ジフェニルホスフィノポリスチレン、バイオタージ社製)、PS-TBD(1,5,7-トリアザビシクロ[4.4.0]デカ-5-エンポリスチレン、バイオタージ社製)が挙げられる。
 ポリマー担持塩基性触媒の使用割合は、多官能エポキシ樹脂のエポキシ1当量に対して、ポリマー担持塩基性触媒の塩基性触媒が0.5~5.0ミリ当量であることが好ましく、1.0~3.0ミリ当量であることがより好ましい。ポリマー担持塩基性触媒の使用割合が、上記範囲内であると反応率、反応時間及び触媒コストの観点から好ましい。
 本発明の製造方法において、多官能エポキシ樹脂と(メタ)アクリル酸の反応工程における温度は、好ましくは60~120℃、より好ましくは80~120℃、さらに好ましくは90~110℃である。
 触媒存在下で、多官能エポキシ樹脂と(メタ)アクリル酸とを反応させる場合、ゲル化を防止するために反応系内及び反応系上の気相の酸素濃度を適正に保つ必要がある。例えば、積極的に反応系内に空気を吹き込む場合は、触媒の酸化を引き起こし、活性の低下を招く場合があるので注意が必要である。
 多官能エポキシ樹脂と(メタ)アクリル酸との反応は、この反応によって得られる部分エステル化エポキシ樹脂が紫外線等の活性エネルギー線によって硬化することから、紫外線を遮光する容器内で反応を行うことが望ましい。また、多官能エポキシ樹脂と(メタ)アクリル酸との反応は、気相重合を防止するために、エポキシ樹脂に対して良溶媒性を示す還流溶剤存在下で行なってもよいが、この場合は、反応終了後に溶媒を除去する必要があるため、無溶剤で行うことが好ましい。還流溶剤としては、アセトン、メチルエチルケトン等が挙げられる。
 本発明の製造方法において、多官能エポキシ樹脂と(メタ)アクリル酸とを反応させた後、ポリマー担持塩基性触媒を除去する。ポリマー担持塩基性触媒を除去する方法としては、濾過又は遠心分離を用いることが好ましい。
 ポリマー担持塩基性触媒を濾過する方法としては、例えば目開き10μmのナイロンメッシュNY-10HC(スイスSefar社製)を用いてポリマー担持塩基性触媒を濾取する方法が挙げられる。
 ポリマー担持塩基性触媒を遠心分離する方法としては、遠心分離機を用いて固液分離することにより、ポリマー担持塩基性触媒を除去する方法が挙げられる。
 本発明の製造方法によれば、ポリマー担持塩基性触媒を、濾過又は遠心分離のように比較的簡易な方法によって除去することにより、殆どポリマー担持塩基性触媒を含まず、高純度の部分エステル化エポキシ樹脂を得ることができる。
 本発明の製造方法によれば、ポリマー担持塩基性触媒を濾過や遠心分離等の比較的簡易な物理的方法によって除去しているので、従来の洗浄用溶剤や触媒を不活性化させるための重合禁止剤を用いる方法等に比べて、製造コストを低減することができる。
 本発明の部分エステル化エポキシ樹脂は、ポリマー担持塩基性触媒の存在下、多官能エポキシ樹脂と(メタ)アクリル酸を反応させて、ポリマー担持塩基性触媒を除去してなり、ポリマー担持塩基性触媒に由来する塩基性原子の含有量が50ppm以下である。
 本発明の部分エステル化エポキシ樹脂は、ポリマー担持塩基性触媒に由来する塩基性原子の含有量が50ppm以下と低く、従来の方法で得られる部分エステル化エポキシ樹脂と比較して電気的特性に優れている。また、本発明の部分エステル化エポキシ樹脂は、ポリマー担持塩基性触媒に由来する塩基性原子の含有量が50ppm以下と低く、反応工程で重合禁止剤を添加する必要がないにもかかわらず、残存する触媒を不活性化させるために重合禁止剤を添加した部分エステル化エポキシ樹脂と比較しても貯蔵安定性に優れている。
 部分エステル化エポキシ樹脂は、不純物が少ない方が好ましく、ポリマー担持塩基性触媒に由来する塩基性原子の含有量は、好ましくは40ppm以下、より好ましくは30ppm以下、さらに好ましくは20ppm以下、特に好ましくは10ppm以下である。
 ポリマー担持塩基性触媒由来する塩基性原子は、具体的には、リン又は窒素等である。部分エステル化エポキシ樹脂に含まれるこれらの塩基性原子の含有量を測定することによって、部分エステル化エポキシ樹脂中のポリマー担持塩基性触媒残渣の残存量を推測することができる。ポリマー担持塩基性触媒の塩基性原子は、誘導結合プラズマ発光分析法(ICP/AES)により測定することができる。
 本発明の硬化性組成物は、ポリマー担持塩基性触媒の存在下、(メタ)アクリル酸と多官能エポキシ樹脂と反応させて、ポリマー担持塩基性触媒を除去してなり、ポリマー担持塩基性触媒由来する塩基性原子の含有量が50ppm以下である部分エステル化エポキシ樹脂を含む。
 上記硬化組成物は、紫外線等のエネルギー線又は熱により重合させて硬化物を得ることができる。
 本発明の硬化性組成物は、ポリマー担持塩基性触媒の塩基性原子の含有量が50ppm以下と低く、殆どポリマー担持塩基性触媒残渣及び重合禁止剤が含まれていない部分エステル化エポキシ樹脂を含むものであるので、触媒残渣及び重合禁止剤による酸化生成物を生じることがなく、電気的特性及び貯蔵安定性に優れている。そのため、本発明の硬化性組成物は、電気的特性や汚染が問題となる液晶パネル用滴下シール材や電気部品の塗料等として好適に用いることができる。
 次に実施例により本発明の具体的態様を更に詳細に説明するが、本発明はこれらの例によって限定されるものではない。
[実施例1]
 攪拌機、温度計、還流冷却管を備えた500mlガラス製4ツ口フラスコを用意し、ビスフェノールA型エポキシ樹脂;エピクロンEXA850CRP〔DIC社製〕を340g(2.0当量/エポキシ基)、メタクリル酸90.4g(1.0当量)、PS-PPh(ジフェニルホスフィノポリスチレン、2.0mmol/g)〔バイオタージ社製〕750mg(1.5ミリ当量/TPP(トリフェニルホスフィン)触媒量(g))、を混合し、100℃で酸価が1.0KOHmg/g以下になるまで攪拌して反応させた。反応液を60℃まで冷却し、目開き10μmのナイロンメッシュNY-10HC(スイスSefar社製)で触媒のPS-PPhを除去し、部分エステル化エポキシ樹脂(PR-1)を得た。得られた樹脂のエポキシ当量は、468g/eqであった。また、樹脂(PR-1)を湿式分解後、誘導結合プラズマ発光分析法(ICP/AES)により測定した、樹脂(PR-1)中のリン原子の含有量は2ppm以下であった。
[実施例2]
 ビスフェノールAD型エポキシ樹脂;EPOMIK R1710〔プリンテック社製〕を326g(2.0当量/エポキシ基)を用いたこと以外は、実施例1と同様にして、部分エステル化エポキシ樹脂(PR-2)を得た。得られた樹脂(PR-2)のエポキシ当量は、450g/eqであった。実施例1と同様にして測定した、樹脂(PR-2)中のリン原子の含有量は2ppm以下であった。
[実施例3]
 攪拌機、温度計、還流冷却管を備えた500mlガラス製4ツ口フラスコを用意し、ビスフェノールA型エポキシ樹脂;エピクロンEXA850CRP〔DIC社製〕を340g(2.0当量/エポキシ基)、PS-PPh(2.0mmol/g)〔バイオタージ社製〕750mg(1.5ミリ当量/TPP〔トリフェニルホスフィン〕触媒量(g))、PS-TBD(1,5,7-トリアザビシクロ[4.4.0]デカ-5-エンポリスチレン、1.40mmol/g)〔バイオタージ社製〕1.07g(1.5ミリ当量/アミン触媒量(g))を混合し、100℃で攪拌しつつ、アクリル酸76.0g(1.0当量)を6時間かけてゆっくりと添加しながら反応させた。アクリル酸の添加を完了してさらに100℃で酸価が1.0KOHmg/g以下になるまで攪拌して反応させた。反応液を60℃まで冷却し、目開き10μmのナイロンメッシュNY-10HC(スイスSefar社製)で触媒のPS-PPh及びPS-TBDを除去し、部分エステル化エポキシ樹脂(PR-3)を得た。得られた樹脂(PR-3)のエポキシ当量は、461g/eqであった。実施例1と同様にして測定した、樹脂(PR-3)中のリン原子の含有量は2ppm以下であった。
[比較例1]
 攪拌機、エアー導入管、温度計、還流冷却管を備えた500mlガラス製4ツ口フラスコを用意し、ビスフェノールA型エポキシ樹脂;エピクロンEXA850CRP〔DIC社製〕を340g(2.0当量/エポキシ基)、メタクリル酸90.4g(1.0当量)、TPP(トリフェニルホスフィン)〔東京化成社製〕0.5g(1.9ミリ当量)、重合禁止剤としてハイドロキノン25mg及びp-メトキシフェノール100mgを混合し、100℃で酸価が1.0KOHmg/g以下になるまで攪拌して反応させた。反応終了後、エアーを液中に吹き込みながら80℃で2時間酸化処理を行い、部分エステル化エポキシ樹脂(KR-1)を得た。得られた樹脂(KR-1)のエポキシ当量は、465g/eqであった。実施例1と同様にして測定した、樹脂(KR-1)中のリン原子の含有量は290ppmであった。
[比較例2]
 ハイドロキノン25mg、p-メトキシフェノール100mgを添加しないこと以外は、比較例1と同様にして反応を行ったが、反応の途中でゲル化した。
 実施例1~4及び比較例1の部分エステル化エポキシ樹脂について、次のように加熱安定性試験及び減圧加熱促進試験を行った。
[加熱安定性試験]
 100mlの褐色ポリエチレン容器中に各部分エステル化エポキシ樹脂の50gを入れ、密栓し、容器ごと60℃のオーブン中に放置し、20時間、200時間、500時間経過後に取り出して、内容物を、E型粘度計(東機産業社製 RE105U)を用いて、コーンロータの回転速度2.5rpmで粘度を測定した。製造直後の粘度を100とした時の変化率を下記式(1)にしたがって求めた。結果を表1に示す。
 粘度変化率=(一定期間経過後の測定粘度/製造直後の粘度)・・・(1)
[減圧加熱促進試験]
 100mlの褐色ポリエチレン容器中に各部分エステル化エポキシ樹脂の50gを入れ、密栓せず、容器ごと、50℃、100Paに減圧した真空オーブン中に保存して20時間、200時間、500時間経過後に取り出して、E型粘度計(東機産業社製 RE105U)を用いて、コーンロータの回転速度2.5rpmで粘度を測定した。製造直後の粘度を100とした時の変化率を上記式(1)にしたがって求めた。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すとおり、実施例1~3の部分エステル化エポキシ樹脂は、60℃の温度下で500時間経過しても粘度がほとんど変化せず、加熱試験下においても、貯蔵安定性に優れていることが確認できた。
 一方、比較例1の部分エステル化エポキシ樹脂は、500時間経過後には、粘度がほぼ2倍近く変化し、加熱安定性が低下した。
 また、表1に示すとおり、実施例1~3の部分エステル化エポキシ樹脂は、50℃、100Paの減圧下で500時間経過しても粘度がほとんど変化せず、減圧加熱試験下においても、貯蔵安定性に優れていることが確認できた。
 一方、比較例1の部分エステル化エポキシ樹脂は、500時間経過後には、ゲル化した。
 次に、実施例1及び比較例1の部分エステル化エポキシ樹脂の誘電特性を下記方法によって測定した。
[誘電特性の測定]
 基準として、原料であるビスフェノールA型エポキシ樹脂;エピクロンEXA850CRP〔DIC社製〕を用いた。誘電体測定システム126096W型[ソーラトロン社製]と液体電極SR-C1R(セル容量:2pF,電極間距離:1mm)[東陽テクニカ社製]を用いて、FRA法により、原料樹脂(基準)、実施例1及び比較例1の部分エステル化エポキシ樹脂の周波数1.0×10-2Hz~1.0×10Hzを変化させた場合の25℃、50℃、80℃における誘電特性(インピーダンス、キャパシタンス、位相角θ)を測定した。未硬化状態の樹脂の誘電特性を評価することで、樹脂中の不純物による影響を半定量化することができる。結果を図1~9に示す。なお、図中、例えば「1.0E-02」等の表記は、1.0×10-2の意味を示す。
 図1~3に示すように、25℃において、実施例1の部分エステル化エポキシ樹脂の誘電特性(インピーダンス、キャパシタンス及び位相角θ)は、基準となる原料樹脂の誘電特性とほぼ同等であり、部分エステル化エポキシ樹脂中の不純物による影響がなく、優れた電気的特性を有することが確認できた。
 一方、図1~3に示すように、比較例1の部分エステル化エポキシ樹脂の誘電特性は、原料樹脂の誘電特性に対して変化していた。すなわち、図1に示すように、原料樹脂のインピーダンスに対して、比較例1のインピーダンスは低下しており、このことから比較例1の部分エステル化エポキシ樹脂は、電圧保持率が低下していることが確認できた。また、図2に示すように、原料樹脂のキャパシタンスに対して、比較例1のキャパシタンスが変化しており、このことから比較例1の部分エステル化エポキシ樹脂は、保持容量がばらついていることが確認できた。また、図3に示すように、原料樹脂の位相角θに対して、比較例1の位相角θは-90°から0°の方向にずれており、このことから比較例1の部分エステル化エポキシ樹脂は、エネルギーロスが生じており、応答速度等の遅れ等を生じることが確認できた。このように、比較例1の部分エステル化エポキシ樹脂は誘電特性が低下しており、この誘電特性の低下は、比較例1の部分エステル化エポキシ樹脂中に含まれる不純物の影響によるものである。
 図4~9に示すように、測定温度が50℃、80℃と上昇すると、実施例1の部分エステル化エポキシ樹脂の誘電特性(インピーダンス、キャパシタンス及び位相角θ)は、基準となる原料樹脂の誘電特性に対して、若干変化していたが、これは温度上昇により部分エステル化エポキシ樹脂中に含まれるビニル基、エステル構造及び水酸基等による分子間相互作用の影響によるためと推測された。一方、図4~9に示すように、比較例1の部分エステル化エポキシ樹脂の誘電特性は、温度が上昇するほど、原料樹脂の誘電特性から大きく変化し、電気的特性が低下していた。
 図1~9に示す結果から、実施例1の部分エステル化エポキシ樹脂の誘電特性(インピーダンス、キャパシタンス及び位相角θ)は、原料樹脂の誘電特性とほぼ同程度であり、不純物が殆ど含まれていないため、不純物の影響による誘電特性の変化がなく、優れた電気的特性を有する部分エステル化エポキシ樹脂であることが確認できた。
[実施例4]
 触媒として、PS-PPh(ジフェニルホスフィノポリスチレン、2.0mmol/g)〔バイオタージ社製〕500mg(1.33ミリ当量/TPP(トリフェニルホスフィン)触媒量(g))と、TPP(トリフェニルホスフィン)160mg〔関東化学社製〕(0.61ミリ当量/TPP(トリフェニルホスフィン)触媒量(g))とを用いたこと以外は、実施例1と同様にして、部分エステル化エポキシ樹脂(PR-4)を得た。得られた樹脂のエポキシ当量は、458g/eqであった。実施例1と同様にして測定した、樹脂(PR-4)中のリン原子の含有量は100ppmであった。
[実施例5]
 触媒として、PS-PPh(ジフェニルホスフィノポリスチレン、2.0mmol/g)〔バイオタージ社製〕650mg(1.73ミリ当量/TPP(トリフェニルホスフィン)触媒量(g))と、TPP(トリフェニルホスフィン)80mg〔関東化学社製〕(0.31ミリ当量/TPP(トリフェニルホスフィン)触媒量(g))とを用いたこと以外は、実施例1と同様にして、部分エステル化エポキシ樹脂(PR-5)を得た。得られた樹脂のエポキシ当量は、466g/eqであった。実施例1と同様にして測定した、樹脂(PR-5)中のリン原子の含有量は48ppmであった。
[実施例6]
 触媒として、PS-PPh(ジフェニルホスフィノポリスチレン、2.0mmol/g)〔バイオタージ社製〕700mg(1.87ミリ当量/TPP(トリフェニルホスフィン)触媒量(g))と、TPP(トリフェニルホスフィン)40mg〔関東化学社製〕(0.15ミリ当量/TPP(トリフェニルホスフィン)触媒量(g))とを用いたこと以外は、実施例1と同様にして、部分エステル化エポキシ樹脂(PR-6)を得た。得られた樹脂のエポキシ当量は、456g/eqであった。実施例1と同様にして測定した、樹脂(PR-6)中のリン原子の含有量は26ppmであった。
[比較例3]
 反応終了後、80℃で2時間酸化処理を行わないこと以外は、比較例1と同様にして、部分エステル化エポキシ樹脂(KR-2)を得た。得られた樹脂(KR-2)のエポキシ当量は、465g/eqであった。この樹脂300部に、イオン交換樹脂(アンバーリスト15DRY(主鎖にベンゼンスルホン酸が付いたイオン交換樹脂)、オルガノ社製)を15部添加して、80℃で3時間、攪拌処理した。反応液を60℃まで冷却し、目開き10μmのナイロンメッシュNY-10HC(スイスSefar社製)で、イオン交換樹脂を除去し、部分エステル化エポキシ樹脂(KR-3)を得た。実施例1と同様にして測定した、樹脂(KR-2及びKR-3)中のリン原子の含有量は、それぞれ300ppm、250ppmであった。この結果から、強酸性のイオン交換樹脂を用いた場合であっても、得られた部分エステルエポキシ樹脂には、触媒由来の不純物(リン原子)が比較的と多く含まれており、触媒由来の不純物を低減する効果が小さいことが確認できた。
 実施例1の部分エステル化エポキシ樹脂(PR-1:リン原子の含有量:2ppm以下)、実施例4の部分エステル化エポキシ樹脂(PR-4:リン原子の含有量:100ppm)、実施例5の部分エステル化エポキシ樹脂(PR-5:リン原子の含有量:48ppm)、実施例6の部分エステル化エポキシ樹脂(PR-6:リン原子の含有量:26ppm)及び比較例3の部分エステル化エポキシ樹脂(KR-2:リン原子の含有量:300ppm)のそれぞれについて、上記の誘電特性の測定により、測定温度50℃で、周波数10mHz~100Hzのキャパシタンス、周波数50Hz~10KHzの位相角を測定した。図10に各周波数における各樹脂中に含まれるリン原子の含有量とキャパシタンスの関係を示し、図11に各周波数における各樹脂中に含まれるリン原子の含有量と位相角θの関係を示した。
 図10に示すように、部分エステル化エポキシ樹脂中に含まれる不純物、すなわちリン原子の含有量が変曲点である50ppm以下であると、キャパシタンス(保持容量)の変化が顕著に小さくなることが確認できる。特に周波数200mHz以下の低周波数で測定すると、高周波数で測定した場合よりも低周波数の方が電圧変化が遅いので、キャパシタンス(保持容量)の変化が顕著に現れる。そのため、図10に示すように、周波数200mHz以下の低周波数で測定すると、リン原子の含有量が50ppm以下である部分エステル化エポキシ樹脂は、リン原子の含有量が50ppmを超える部分エステル化エポキシ樹脂よりもキャパシタンス(保持容量)の変化が顕著に小さく、誘電特性がばらついていないことが確認できる。
 図11に示すように、リン原子の含有量が変曲点である50ppm以下の部分エステル化エポキシ樹脂中は、-90°から0°方向にずれる位相角θの変化が小さく、電圧保持率の低下や応答速度の遅れが小さく、優れた誘電特性を有することが確認できる。特に、近年の液晶パネルに適用されている直流領域(0Hz)から240Hzの低周波数の領域(例えば図11に示すように、50Hzから200Hzの領域)で測定すると、リン原子の含有量が50ppm以下である部分エステル化エポキシ樹脂は、リン原子の含有量が50ppmを超える部分エステル化エポキシ樹脂よりも顕著に位相角θの変化が小さいことから、エネルギーロスが生じておらず、優れた誘電特性を有することが確認できる。
 本発明の製造方法によって得られた部分エステル化エポキシ樹脂は、安定して長期間保存が可能であり、減圧条件下における安定性及び電気的特性にも優れ、紫外線等の活性エネルギー線、熱のいずれによって重合可能な組成物の原料として用いることできるので、液晶パネルのシール材や電気部品の塗料等の原料として有用である。

Claims (6)

  1.  ポリマー担持塩基性触媒の存在下、多官能エポキシ樹脂と(メタ)アクリル酸とを反応させる工程と、
     ポリマー担持塩基性触媒を除去し、部分エステル化エポキシ樹脂を得る工程と
    を含むことを特徴とする部分エステル化エポキシ樹脂の製造方法。
  2.  ポリマー担持塩基性触媒の塩基性触媒が、3価の有機リン化合物及び/又はアミン化合物である、請求項1記載の部分エステル化エポキシ樹脂の製造方法。
  3.  多官能エポキシ樹脂と(メタ)アクリル酸とを反応させる工程において、多官能エポキシ樹脂のエポキシ基1当量に対して、10~90当量%の(メタ)アクリル酸を反応させる、請求項1又は2記載の部分エステル化エポキシ樹脂の製造方法。
  4.  ポリマー担持塩基性触媒を除去する工程において、濾過又は遠心分離を用いる、請求項1~3のいずれか1項記載の部分エステル化エポキシ樹脂の製造方法。
  5.  ポリマー担持塩基性触媒の存在下、(メタ)アクリル酸と多官能エポキシ樹脂と反応させて、ポリマー担持塩基性触媒を除去することにより得られ、ポリマー担持塩基性触媒に由来する塩基性原子の含有量が50ppm以下であることを特徴とする部分エステル化エポキシ樹脂。
  6.  請求項5記載の部分エステル化エポキシ樹脂を含む、硬化性組成物。
PCT/JP2010/072881 2009-12-25 2010-12-20 部分エステル化エポキシ樹脂及びその製造方法 WO2011078113A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020127019148A KR101750127B1 (ko) 2009-12-25 2010-12-20 부분 에스테르화 에폭시 수지 및 그 제조 방법
JP2011510204A JP4728457B1 (ja) 2009-12-25 2010-12-20 部分エステル化エポキシ樹脂及びその製造方法
CN201080059035.2A CN102666635B (zh) 2009-12-25 2010-12-20 部分酯化环氧树脂及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009293765 2009-12-25
JP2009-293765 2009-12-25

Publications (1)

Publication Number Publication Date
WO2011078113A1 true WO2011078113A1 (ja) 2011-06-30

Family

ID=44195639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072881 WO2011078113A1 (ja) 2009-12-25 2010-12-20 部分エステル化エポキシ樹脂及びその製造方法

Country Status (5)

Country Link
JP (1) JP4728457B1 (ja)
KR (1) KR101750127B1 (ja)
CN (2) CN102666635B (ja)
TW (1) TWI482792B (ja)
WO (1) WO2011078113A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4159784A1 (en) 2021-09-30 2023-04-05 Henkel AG & Co. KGaA Two component (2k) composition based on epoxy (meth)acrylate resin
EP4183807A1 (en) 2021-11-18 2023-05-24 Henkel AG & Co. KGaA Copolymer and hot melt compositions comprising said copolymer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03296568A (ja) * 1990-04-16 1991-12-27 Dainippon Ink & Chem Inc 水性樹脂分散体の製造方法
JPH05320312A (ja) * 1990-11-20 1993-12-03 W R Grace & Co 不飽和エポキシエステル樹脂及びカルボキシル化不飽和エポキシエステル樹脂の製造方法及びそれを含む感光性樹脂組成物
JPH1112345A (ja) * 1997-06-26 1999-01-19 Kyoeisha Chem Co Ltd 貯蔵安定性に優れた感光性を有する部分(メタ)アクリル化樹脂の製造方法
JP2003502461A (ja) * 1999-06-12 2003-01-21 バンティコ アクチエンゲゼルシャフト 脂環式エポキシドと多官能性ヒドロキシ化合物との反応生成物の製造方法
JP2004244543A (ja) * 2003-02-14 2004-09-02 Mitsui Chemicals Inc エポキシ部分エステル化物の製造方法
JP2005041958A (ja) * 2003-07-25 2005-02-17 Showa Highpolymer Co Ltd 感光性樹脂の製造方法
JP2010185002A (ja) * 2009-02-12 2010-08-26 Hitachi Chem Co Ltd エポキシ樹脂のα,β−不飽和カルボン酸エステルの製造法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03296568A (ja) * 1990-04-16 1991-12-27 Dainippon Ink & Chem Inc 水性樹脂分散体の製造方法
JPH05320312A (ja) * 1990-11-20 1993-12-03 W R Grace & Co 不飽和エポキシエステル樹脂及びカルボキシル化不飽和エポキシエステル樹脂の製造方法及びそれを含む感光性樹脂組成物
JPH1112345A (ja) * 1997-06-26 1999-01-19 Kyoeisha Chem Co Ltd 貯蔵安定性に優れた感光性を有する部分(メタ)アクリル化樹脂の製造方法
JP2003502461A (ja) * 1999-06-12 2003-01-21 バンティコ アクチエンゲゼルシャフト 脂環式エポキシドと多官能性ヒドロキシ化合物との反応生成物の製造方法
JP2004244543A (ja) * 2003-02-14 2004-09-02 Mitsui Chemicals Inc エポキシ部分エステル化物の製造方法
JP2005041958A (ja) * 2003-07-25 2005-02-17 Showa Highpolymer Co Ltd 感光性樹脂の製造方法
JP2010185002A (ja) * 2009-02-12 2010-08-26 Hitachi Chem Co Ltd エポキシ樹脂のα,β−不飽和カルボン酸エステルの製造法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4159784A1 (en) 2021-09-30 2023-04-05 Henkel AG & Co. KGaA Two component (2k) composition based on epoxy (meth)acrylate resin
WO2023052002A1 (en) 2021-09-30 2023-04-06 Henkel Ag & Co. Kgaa Two component (2k) composition based on epoxy (meth)acrylate resin
EP4183807A1 (en) 2021-11-18 2023-05-24 Henkel AG & Co. KGaA Copolymer and hot melt compositions comprising said copolymer
WO2023088652A1 (en) 2021-11-18 2023-05-25 Henkel Ag & Co. Kgaa Copolymer and hot melt compositions comprising said copolymer

Also Published As

Publication number Publication date
CN105085869B (zh) 2017-08-29
TW201139489A (en) 2011-11-16
KR101750127B1 (ko) 2017-06-22
JP4728457B1 (ja) 2011-07-20
CN102666635A (zh) 2012-09-12
CN105085869A (zh) 2015-11-25
TWI482792B (zh) 2015-05-01
JPWO2011078113A1 (ja) 2013-05-09
KR20120106987A (ko) 2012-09-27
CN102666635B (zh) 2015-08-19

Similar Documents

Publication Publication Date Title
JP6248221B2 (ja) 硬化後柔軟性に優れる硬化性樹脂、(メタ)アクリル化硬化性樹脂、及び液晶シール剤組成物
KR101981364B1 (ko) 에스테르화 에폭시 수지, 그의 제조 방법 및 그를 포함하는 경화성 조성물
JP5571436B2 (ja) 液晶シール剤、それを用いた液晶表示パネルの製造方法、及び液晶表示パネル
JP4728457B1 (ja) 部分エステル化エポキシ樹脂及びその製造方法
WO2012043222A1 (ja) 低溶出性エポキシ樹脂及びその部分エステル化エポキシ樹脂、その製造方法、並びにそれを含む硬化性樹脂組成物
JPWO2014057871A1 (ja) グリシジルエーテル系化合物、液晶シール剤及びグリシジルエーテル系化合物の製造方法
JP4117838B2 (ja) エポキシ部分エステル化物の製造方法
JP6461721B2 (ja) エポキシ化合物及びその部分エステル化エポキシ化合物、その製造方法、並びにそれを含む硬化性組成物
JP7484459B2 (ja) エポキシ(メタ)アクリレート樹脂、硬化性樹脂組成物、硬化物及び物品
JP3655718B2 (ja) 活性エネルギー線硬化型樹脂の製造方法
JP7251449B2 (ja) エポキシ(メタ)アクリレート樹脂組成物、硬化性樹脂組成物、硬化物及び物品
JP7228104B2 (ja) エポキシ(メタ)アクリレート樹脂組成物、硬化性樹脂組成物、硬化物及び物品
JP7484460B2 (ja) 酸基含有エポキシ(メタ)アクリレート樹脂、硬化性樹脂組成物、ソルダーレジスト用樹脂材料、硬化物、絶縁材料及びレジスト部材
JP7228102B2 (ja) エポキシ(メタ)アクリレート樹脂組成物、硬化性樹脂組成物、硬化物及び物品
JP2015028184A (ja) 低溶出性エポキシ樹脂及びその部分エステル化エポキシ樹脂、その製造方法、並びにそれを含む硬化性樹脂組成物
JP2021195421A (ja) エポキシ(メタ)アクリレート樹脂、硬化性樹脂組成物、硬化物及び物品
TW202244091A (zh) 硬化性樹脂組成物、活性能量線硬化性樹脂組成物、硬化物及物品
JP2023183615A (ja) メタクリレート樹脂、硬化性樹脂組成物、硬化物及び物品
JP2022067271A (ja) (メタ)アクリレート樹脂、硬化性樹脂組成物、硬化物及び物品
WO2023248488A1 (ja) (メタ)アクリレート樹脂の製造方法
JP2023156042A (ja) 重合性不飽和基を有する樹脂、硬化性樹脂組成物、硬化物及び物品
JP2023037522A (ja) 重合性不飽和基を有する樹脂組成物、硬化性樹脂組成物、硬化物、及び物品
JP2022067270A (ja) 酸基を有する(メタ)アクリレート樹脂、硬化性樹脂組成物、硬化物、絶縁材料及びレジスト部材
JP2018012803A (ja) 樹脂組成物および電子部品用接着剤

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080059035.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011510204

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127019148

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10839343

Country of ref document: EP

Kind code of ref document: A1