WO2011077829A1 - モータ制御装置及びその磁極位置検出方法 - Google Patents

モータ制御装置及びその磁極位置検出方法 Download PDF

Info

Publication number
WO2011077829A1
WO2011077829A1 PCT/JP2010/069041 JP2010069041W WO2011077829A1 WO 2011077829 A1 WO2011077829 A1 WO 2011077829A1 JP 2010069041 W JP2010069041 W JP 2010069041W WO 2011077829 A1 WO2011077829 A1 WO 2011077829A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
motor
polarity
magnetic pole
voltage
Prior art date
Application number
PCT/JP2010/069041
Other languages
English (en)
French (fr)
Inventor
井手 耕三
正希 久恒
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to JP2011547382A priority Critical patent/JP5488615B2/ja
Priority to CN201080058613.0A priority patent/CN102668361B/zh
Publication of WO2011077829A1 publication Critical patent/WO2011077829A1/ja
Priority to US13/487,263 priority patent/US8310183B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/183Circuit arrangements for detecting position without separate position detecting elements using an injected high frequency signal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • H02P21/26Rotor flux based control

Definitions

  • the present invention relates to a motor control device that drives a motor without using a position sensor and a speed sensor, and a magnetic pole position detection method thereof.
  • a control device using magnetic saturation of the motor is known.
  • the motor control device include the following.
  • the power corresponding to the AC current command id1 * is applied in the direction of the rotation coordinate d-axis of the synchronous motor being stopped, and the detected rotation coordinates generated by the AC current command id1 * are detected.
  • the convergence calculation of the magnetic pole position estimated value ⁇ ⁇ is executed, and the converged magnetic pole position estimated value ⁇ ⁇ is estimated as the true value of the magnetic pole position ⁇ of the synchronous motor.
  • the motor control device uses the magnetic saturation of the motor, that is, the difference in inductance Ld between the N pole and the S pole, and compares the difference between the positive and negative current passing times of the motor current generated by the minute voltage pulse to rotate the motor.
  • the polarity of the child magnetic pole was discriminated.
  • the magnetic saturation of a motor has different characteristics depending on the magnetic material used, and neodymium magnets used in industrial applications have a high magnet operating point. In other words, the magnetization characteristics of the magnetic circuit formed by the stator and the rotor when no motor current is flowing are close to the saturation state of the hysteresis represented by the BH curve. It was difficult to observe the effects of.
  • the present invention provides a motor control device and a control method thereof that perform magnetic pole position detection robustly without being affected by magnetic saturation of the motor rotor, using a magnetic pole detection technique that utilizes the hysteresis characteristics of the motor. Objective.
  • an AC voltage command based on a permanent magnet motor a d-axis voltage command that is a magnetic flux direction of the permanent magnet motor, and a q-axis voltage command that is orthogonal thereto is provided.
  • a power converter that is applied to the permanent magnet motor by PWM control, a current detector that detects a motor current flowing through the permanent magnet motor in synchronization with a period of the PWM control, and a current profile generator that generates a current profile And a search voltage calculator that calculates a search voltage pulse based on the current profile and adds the search voltage pulse to the d-axis voltage command, and detects a magnetic pole position of the permanent magnet motor based on the motor current and the search voltage pulse.
  • the magnetic pole position detector includes a code detector that detects the polarity of the exploration voltage pulse, and a first multiplication that multiplies the output value of the code detector by a predetermined gain.
  • the output of the first multiplier, the second and third multipliers for multiplying the two-phase current detection value of the motor current for each component, and the outputs of the second and third multipliers.
  • a filter for extracting the respective peak values Icos and Isin of the two-phase current detection value synchronized with the period of the exploration voltage pulse, and the inverse of calculating the magnetic pole position by the arctangent calculation of the peak values Icos and Isin.
  • a motor control device including a tangent calculator is applied.
  • the polarity detector generates a subtractor for calculating a deviation between the current profile and the polarity discrimination evaluation current, and a pulse train having a frequency twice that of the exploration voltage pulse.
  • a compensation amount selector that outputs 0 [rad] or ⁇ [rad] as the phase correction amount based on the output of the strain direction discriminator.
  • the polarity discrimination evaluation current calculator includes a bandpass filter in which the natural angular frequency is set to be the same as the frequency set in the current profile, and d of the motor current A motor control device that extracts the same frequency as the exploration pulse voltage from the axial current value is applied.
  • a voltage amplitude calculator that calculates an amplitude of a voltage command value input to the power converter, and a maximum amplitude that the amplitude of the voltage command value can be output by the power converter.
  • a motor control device including a current profile corrector that corrects the amplitude or frequency of the current profile is applied.
  • an AC voltage command based on a d-axis voltage command that is a magnetic flux direction of the permanent magnet motor and a q-axis voltage command that is orthogonal to the d-axis voltage command is obtained by PWM control.
  • a step of applying to the permanent magnet motor a step of detecting a motor current flowing through the permanent magnet motor in synchronization with the period of the PWM control, a step of calculating a search voltage pulse based on the generated current profile, and a search voltage
  • a magnetic pole position detection method including a step of newly setting the magnetic pole position.
  • the magnetic pole position is detected robustly against the influence of the magnetic saturation of the motor rotor and the fluctuation of the applied voltage to the motor, so that the magnetic pole position can be detected with high accuracy in a short time.
  • FIG. 1 is a block diagram of a motor control device according to a first embodiment of the present invention.
  • 3 is a detailed block diagram of a magnetic pole position detector 106 according to the same embodiment.
  • FIG. It is a detailed block diagram of a polarity detector 109 according to the embodiment. It is a figure explaining distortion of a current profile and generated current. It is a figure explaining the hysteresis characteristic and magnetization locus which the motor 101 has. It is a figure which shows the electric current waveform generate
  • FIG. 1 is a block diagram of a motor control device I according to the first embodiment of the present invention.
  • the motor control apparatus I includes a motor 101, a current detector 102, a power converter 103, a three-phase two-phase converter 104, a dq converter 105, a magnetic pole A position detector 106, a current controller 107, a polarity discrimination evaluation current calculator 108, a polarity detector 109, a search voltage calculator 110, a current profile generator 111, and adders 112 and 113 are provided.
  • the motor 101 is a permanent magnet motor to be controlled.
  • the following motor control is performed in a coordinate system having a magnetic flux direction (d axis) of the motor 101 and a direction (q axis) orthogonal thereto.
  • the current detector 102 detects a current flowing through the motor 101 in synchronization with a period in which PWM control described later is performed, and outputs it as a three-phase current (iu, iv, iw).
  • the power converter 103 performs PWM control on a DC bus voltage obtained by rectifying an input AC voltage for each PWM switching period, and later described d-axis and q-axis voltage commands (V * sd, V *). sq), and a voltage command is generated based on an added value of a magnetic pole position ⁇ and a phase correction amount ⁇ , which will be described later, and applied to the motor 101.
  • the three-phase to two-phase converter 104 converts a three-phase current (iu, iv, iw) into a two-phase alternating current (is ⁇ , is ⁇ ).
  • the dq converter 105 converts a two-phase alternating current (is ⁇ , is ⁇ ) into a d-axis and q-axis current (isd, isq).
  • the magnetic pole position detector 106 detects the magnetic pole position ⁇ based on a two-phase alternating current (is ⁇ , is ⁇ ) and a search voltage pulse Vposi described later.
  • the current controller 107 performs control so that the d-axis and q-axis current commands (i * sd, i * sq) and the d-axis and q-axis currents (isd, isq) match, and the d-axis and q-axis voltage commands ( V * sd, V * sq) is output.
  • the polarity discrimination evaluation current calculator 108 is composed of a band-pass filter, extracts the same frequency as the exploration pulse voltage from the d-axis current isd, and outputs it as the polarity discrimination evaluation current idh.
  • the natural angular frequency of the filter is set to be the same as the frequency set in the current profile Iposi described later.
  • the polarity detector 109 discriminates the polarity of the rotor magnetic pole based on the polarity discrimination evaluation current idh and the current profile Iposi, and outputs a phase correction amount ⁇ . The operation of the polarity detector 109 will be described later.
  • the search voltage calculator 110 receives a current profile Iposi described later, calculates a search voltage pulse Vposi by multiplying the time differential value of the current profile Iposi by the inductance setting value Ld *, and detects the magnetic pole position detector 106 and the adder 112. Output to. Since the current profile Iposi is a triangular wave signal, the search voltage pulse Vposi is a rectangular wave signal and has the same period. The search voltage pulse Vposi is a search voltage for detecting the magnetic pole position.
  • the inductance set value Ld * is determined by a motor design value, a trial run adjustment value, an auto-tuning method performed before starting, or the like.
  • the “current profile” here refers to a current change pattern that occurs when the movement of the magnet operating point built in the motor follows a minor loop of hysteresis characteristics when the exploration voltage pulse Vposi is applied to the motor.
  • the exploration voltage pulse Vposi which is set in advance, is created in consideration of the condition that the generated voltage is less than the maximum voltage that can be output by the power converter and the generated current is less than the motor rated current. This makes it unnecessary to take into account the effects of.
  • This current change pattern is a triangular wave-shaped current command signal having a constant cycle with the same amplitude positive and negative with zero as the center, and is set by the current peak value and the rate of change or frequency.
  • the current profile generator 111 generates a current profile Iposi that matches the motor 101 and outputs it to the polarity detector 109 and the search voltage calculator 110.
  • the output current profile Iposi has a constant rate of change, and the frequency thereof is the same as the exploration pulse voltage.
  • the cycle in which the current profile Iposi is generated is synchronized with the cycle of the PWM control, similarly to the detection of the three-phase current (iu, iv, iw) in the current detector 102. Further, at least four times of current detection is performed within the generation period of the current profile Iposi. It is not limited to this, for example, the current detection cycle is performed at the PWM control cycle, and the PWM switching cycle is set to a half cycle, and the current profile Iposi is generated at a cycle more than twice the PWM switching cycle. That's fine.
  • the adder 112 adds the exploration voltage pulse Vposi to the d-axis voltage command V * sd and outputs a new d-axis voltage command V * sd.
  • the adder 113 adds the magnetic pole position ⁇ and the phase correction amount ⁇ , and outputs a new magnetic pole position ⁇ to the power converter 103.
  • FIG. 2 is a detailed block diagram of the magnetic pole position detector 106 according to the present embodiment.
  • the magnetic pole position detector 106 includes a sign detector 201, multipliers 202 and 203, a gain amplifier 204, filter units 205 and 206, and an arctangent calculator 207.
  • the magnetic pole position ⁇ is calculated in synchronization with the period in which the exploration voltage pulse Vposi is added to the d-axis voltage command V * sd, that is, the generation period of the current profile Iposi.
  • the sign detector 201 outputs 1 when the polarity of the exploration voltage pulse Vposi is positive, and -1 when it is negative.
  • the gain amplifier 204 multiplies the output of the code detector 201 by a gain Gh.
  • Multipliers 202 and 203 multiply the output of the gain amplifier 204 for each of the ⁇ and ⁇ components of the two-phase alternating current (is ⁇ , is ⁇ ).
  • the filter units 205 and 206 receive the respective outputs of the multipliers 202 and 203 and extract the peak values (Icos and Isin) of the two-phase alternating currents (is ⁇ and is ⁇ ).
  • the denominators of the filter units 205 and 206 are configured as s + ⁇ cv, the numerator is an incomplete differentiator of s ⁇ ⁇ c (s is a differential operator), and the natural angular frequencies ⁇ cv and ⁇ c are predetermined values in consideration of detection delay prevention.
  • the filter units 205 and 206 extract the peak value of the current using the differential element in the numerator, and remove the switching noise using the low-pass filter element in the denominator.
  • the arc tangent calculator 207 calculates the magnetic pole position ⁇ by the arc tangent calculation of the peak values (Icos, Isin).
  • the magnetic pole position detector 106 detects the magnetic pole position ⁇ based on the two-phase alternating current (is ⁇ , is ⁇ ) and the search voltage pulse Vposi.
  • the magnetic pole position ⁇ cannot be determined as the rotor magnetic pole.
  • FIG. 4 is a diagram for explaining the distortion of the current profile Iposi and the generated current Ireal, and also shows the exploration voltage pulse Vposi that causes the generation of the current Ireal. It can be seen that the generated current Ireal is distorted by the influence of the hysteresis loop.
  • FIG. 4 shows a case where the current detection cycle is Ts, and current detection is performed four times within one cycle of the current profile Iposi, which is a triangular wave signal.
  • FIG. 5 is a diagram for explaining the hysteresis characteristic and the magnetization locus of the motor 101, FIG.
  • FIG. 5 (a) is a diagram for explaining the hysteresis characteristic (major loop) of the motor 101
  • FIG. FIG. 5C is a diagram for explaining a partial hysteresis characteristic (minor loop) of 101
  • FIG. 5C is a diagram illustrating magnetization by an applied voltage VdN when the N pole is a positive side of voltage application and the S pole is a negative side of voltage application
  • FIG. 5D is a diagram for explaining the locus
  • FIG. 5D is a diagram for explaining the magnetization locus by the applied voltage VdS when the S pole is the positive side for voltage application and the N pole is the negative side for voltage application.
  • FIG. 6 is a diagram for explaining the change of the magnetic resistance Rm in an approximate manner.
  • a motor having a permanent magnet as a rotor has a hysteresis characteristic (major loop) shown in FIG.
  • An arrow at the center of the hysteresis characteristic in FIG. 5A indicates an initial magnetization curve, and a magnetization locus is drawn counterclockwise from Path A to Path B.
  • the applied voltage VdN in FIG. 5C and the applied voltage VdS in FIG. This produces a partial hysteresis magnetization locus called a minor loop shown in the enlarged view of b).
  • the magnetization locus by the applied voltage VdN shown in FIG. 5C follows the order of vxyz shown in the right diagram of FIG. At this time, the generated current idN has a difference in distortion of the current waveform in each region because the magnetoresistance Rm in the vx region is larger than the magnetoresistance Rm in the yz region (shaded portion).
  • the magnetization locus by the applied voltage VdS shown in FIG. 5D follows the order of yzvx shown in the right diagram of FIG. At this time, the generated current idS is in reverse order to the current idN.
  • the inductance Ld decreases as the magnetic resistance Rm increases, the current response generated at that time becomes steeper. Conversely, when the magnetic resistance Rm is small, the current response is slow. Thus, the current generated by the influence of the hysteresis loop is distorted, and the current idS has a waveform like the current idN.
  • FIG. 6 is a diagram showing a current waveform generated based on the current profile Iposi.
  • FIG. 6 shows the current generated based on the current profile Iposi observed as a two-phase alternating current (is ⁇ , is ⁇ ). This is because in an embedded magnet motor, the inductance Ld is small in the direction in which the pole of the permanent magnet in the rotor exists (N pole or S pole) because the magnetic resistance Rm is large, and the inductance Ld in the direction in which no pole exists. Therefore, the peak value of the current changes based on the inductance distribution.
  • the magnetic path of the magnetic flux is locally narrowed at the bridge portion of the stator slot by the current generated based on the current profile Iposi.
  • the magnetic resistance is large and the inductance Ld is small, and the inductance Ld is large at the center of the stator core, so that the peak value of the two-phase alternating current (is ⁇ , is ⁇ ) changes. This phenomenon appears when the motor 101 to be controlled incorporates a stator core.
  • the magnetic pole position detector 106 detects the magnetic pole position ⁇ .
  • the first half cycle in one cycle of the applied voltage VdN, the first half cycle reaches the point where the magnetic resistance Rm is minimized via the operating point P of the hysteresis loop on the magnetic circuit. It also has a process of returning to the vicinity of the operating point via x, and in the latter half period, it reaches from the vicinity of the operating point via y to the point where the magnetic resistance Rm is maximum, and then passes through z to the vicinity of the operating point. The process of returning to
  • the magnetic resistance Rm is as shown in FIG. It can be approximated as follows. That is, the magnetoresistance Rm exists as a change of two cycles in one cycle of the applied voltage VdN, and the magnitude of the magnetoresistance Rm is larger between vx near the N pole side and yz near the S pole side. In contrast, the value in the z region is smaller than the x region, and the value in the y region is smaller than the v region.
  • the current Ireal generated by the exploration voltage pulse Vposi appears as a frequency twice that of the exploration voltage pulse Vposi.
  • This frequency component changes in amplitude when applied to the N pole and when applied to the S pole due to the inductance change described above. That is, when applied to the N side, the negative amplitude of the frequency component twice as large as the exploration voltage pulse Vposi increases, and when applied to the S side, the positive amplitude increases.
  • the polarity of the rotor magnetic pole is based on the above-described principle, and the polarity detector 109 described below utilizes whether the fluctuation amplitude as described above is large on the positive side or large on the negative side. It has become.
  • the method uses the hysteresis characteristic of the motor, the magnetic pole can be detected without being affected by the magnetic saturation of the motor rotor.
  • FIG. 3 is a detailed block diagram of the polarity detector 109 according to this embodiment.
  • the polarity detector 109 includes a subtractor 301, a multiplier 302, a pulse generator 303, a distortion direction discriminator 304, and a compensation amount selector 305.
  • the subtractor 301 calculates a deviation between the current profile Iposi and the polarity discrimination evaluation current idh.
  • the multiplier 302 multiplies the output of the subtracter 301 and the output of the pulse generator 303 that generates a pulse train having a frequency twice the exploration pulse voltage Vposi.
  • the direct current component of the multiplication result includes information indicating whether the above-described fluctuating amplitude is large on the positive side or large on the negative side, that is, in which direction the distortion is distorted.
  • the distortion direction discriminator 304 is a low-pass filter or an integrator, and receives the output of the multiplier 302 to remove noise. In this way, the strain direction discriminator 304 discriminates the polarity of the magnetic pole based on the polarity of the extracted DC component, that is, the strain information of the varying amplitude.
  • the compensation amount selector 305 outputs 0 [rad] as the phase correction amount ⁇ if the output of the strain direction discriminator 304 is positive, and ⁇ [rad] if the output is negative.
  • ⁇ [rad] is output as the phase correction amount ⁇ if the output of the strain direction discriminator 304 is positive, and 0 [rad] is output if the output is negative.
  • the polarity detector 109 determines the polarity of the rotor magnetic pole based on the polarity determination evaluation current idh and the current profile Iposi, and outputs 0 [rad] or ⁇ [rad] as the phase correction amount ⁇ .
  • the motor control device determines the polarity of the rotor magnetic poles using the hysteresis characteristics of the motor, so regardless of the magnitude of the magnetic saturation of the motor rotor, Also, by taking into account the current profile Iposi that surely enters the hysteresis loop, the magnetic pole position detection can be realized in a short time and with high accuracy.
  • FIG. 7 is a block diagram of a motor control device according to the second embodiment of the present invention.
  • the motor control device J according to the second embodiment includes a current profile generator 111a instead of the current profile generator 111, and a new subtractor 401, current profile modifier 402, and voltage amplitude calculator 403. Unlike the motor control device I according to the first embodiment, the rest is configured similarly. Therefore, in the following, for convenience of explanation, overlapping explanation will be omitted as appropriate, and differences from the first embodiment will be mainly described.
  • the current profile generator 111a has a function of lowering a frequency or peak value set therein by an instruction signal from a current profile corrector 402 described later.
  • the subtractor 401 calculates the difference between the amplitude value of the command voltage calculated by the voltage amplitude calculator 403 and the maximum voltage amplitude value that can be output by the power converter 103.
  • the current profile corrector 402 Based on the difference calculated by the subtractor 401, the current profile corrector 402 sends an instruction signal to the current profile generator 111a when the command voltage exceeds the maximum voltage, that is, when the calculation result of the subtractor 401 is positive. Is output.
  • the current profile generator 111a gradually increases the period so as to decrease the frequency of the triangular current change pattern generated as the current profile Iposi, and executes until the calculation result of the subtractor 401 becomes negative.
  • the upper limit of the period increase is set in advance, and for example, when it exceeds 5 Ts, the peak value of the current amplitude is decreased.
  • the rate of decrease is, for example, every 10% of the initial set value. In this way
  • the search voltage pulse Vposi output from the search voltage calculator 110 is adjusted to be small.
  • the motor control device J includes the current profile corrector 402 that corrects the current profile Iposi in consideration of the maximum voltage amplitude value that the power converter 103 can output.
  • the magnetic pole position can be detected robustly against fluctuations in the DC bus voltage due to a decrease in the input power supply voltage. This is particularly effective when the power converter 103 is composed of a voltage-type inverter because the current profile Iposi is similarly corrected for fluctuations in the input power supply voltage to the power converter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

 モータのヒステリシス特性を利用して、モータ回転子の磁気飽和の影響を受けずにロバストに磁極位置検出を行うモータ制御装置及びその制御方法を提供することを目的とする。 電流プロファイルを生成する電流プロファイル発生器111と、電流プロファイルに基づき探査電圧パルスを演算して、d軸電圧指令に加算する探査電圧演算器110と、探査電圧パルスに基づき永久磁石モータの磁極位置を検出する磁極位置検出器106と、PWM制御の周期に同期して検出したモータ電流のd軸電流値から永久磁石モータの磁極極性を判別するための極性判別評価電流を演算する極性判別評価電流演算器108と、極性判別評価電流と電流指令との偏差から位相補正量を出力する極性検出器109と、を備える。

Description

モータ制御装置及びその磁極位置検出方法
 本発明は、位置センサ及び速度センサを用いずにモータを駆動するモータ制御装置及びその磁極位置検出方法に関する。
 モータの回転子磁極を検出するために、モータの磁気飽和を利用する制御装置が知られている。そのモータ制御装置の例としては、下記が挙げられる。
 特許文献1のモータ制御装置では、交流電流指令id1*に対応した電力を、停止している同期モータの回転座標d軸方向に印加し、帰還検出した「 交流電流指令id1*によって発生する回転座標q軸方向の電流iq'の振幅値」を用いて、 磁極位置推定値θ^の収斂演算を実行し、 収斂した磁極位置推定値θ^を同期モータの磁極位置θの真値として推定する。
 さらに、特許文献2のモータ制御装置では、モータの推定磁極軸であるdc軸上の電圧指令に対して、微小変化を与え、その結果、電流脈動成分が正となる期間、負となる期間の差、あるいは、正側、負側における電流変化率の差を利用して、磁極軸の極性を判別し、上記電圧指令に対する微小変化を、dc軸とそれに直交するqc軸の両方に加え、各軸上における電流脈動成分から、モータの磁極位置を直接推定する。
特開平10-229699号公報 特開2002-78392号公報
 しかしながら、上記モータ制御装置は、モータの磁気飽和、すなわちN極、S極でのインダクタンスLdの差異を利用し、微小電圧パルスによって発生するモータ電流の正負の通流時間の差を比較し、回転子磁極の極性を判別するものであった。
 モータの磁気飽和は、使用する磁性材料によってその特性が異なり、さらに、産業用途で用いられるネオジウム磁石は磁石動作点が高い。すなわち、モータ電流が流れていない状態での固定子と回転子で形成される磁気回路の磁化特性は、B-H曲線で表されるヒステリシスの飽和状態の近傍にあるので、微小な電圧では飽和の影響を観測することは難しかった。
 そこで、本発明は、モータのヒステリシス特性を利用した磁極検出手法を用い、モータ回転子の磁気飽和の影響を受けずにロバストに磁極位置検出を行うモータ制御装置及びその制御方法を提供することを目的とする。
 上記問題を解決するため、本発明の一の観点によれば、永久磁石モータと、該永久磁石モータの磁束方向であるd軸電圧指令とこれに直交するq軸電圧指令に基づく交流電圧指令を、PWM制御によって前記永久磁石モータに印加する電力変換器と、前記永久磁石モータに流れるモータ電流を前記PWM制御の周期に同期して検出する電流検出器と、電流プロファイルを生成する電流プロファイル発生器と、前記電流プロファイルに基づき探査電圧パルスを演算して、前記d軸電圧指令に加算する探査電圧演算器と、前記モータ電流と、前記探査電圧パルスに基づき前記永久磁石モータの磁極位置を検出する磁極位置検出器と、前記モータ電流のd軸電流値から前記永久磁石モータの磁極極性を判別するための極性判別評価電流を演算する極性判別評価電流演算器と、前記極性判別評価電流と前記電流指令との偏差から前記磁極極性を判別して位相補正量を出力する極性検出器と、を備えるモータ制御装置が適用される。
 また、上記のモータ制御装置であって、前記磁極位置検出器は、前記探査電圧パルスの極性を検出する符号検出器と、該符号検出器の出力値に所定のゲインを乗算する第1の乗算器と、前記第1の乗算器の出力に、前記モータ電流の2相電流検出値を成分毎に乗算する第2、第3の乗算器と、該第2及び第3の乗算器の出力を用いて、前記探査電圧パルスの周期に同期した前記2相電流検出値のそれぞれのピーク値Icos、Isinを抽出するフィルタ器と、前記ピーク値Icos、Isinの逆正接演算により磁極位置を算出する逆正接演算器と、を備えるモータ制御装置が適用される。
 また、上記のモータ制御装置であって、前記極性検出器は、前記電流プロファイルと前記極性判別評価電流との偏差を演算する減算器と、前記探査電圧パルスの2倍の周波数のパルス列を生成するパルス発生器と、前記減算器の出力と前記パルス列を乗算する第4の乗算器と、該乗算器の出力をローパスフィルタ又は積分器を介して重畳した直流成分の極性を判別する歪方向判別器と、該歪方向判別器の出力に基づいて0[rad]又はπ[rad]を前記位相補正量として出力する補償量選定器と、を備えるモータ制御装置が適用される。
 また、上記のモータ制御装置であって、前記極性判別評価電流演算器は、固有角周波数を前記電流プロファイルに設定された周波数と同一に設定されたバンドパスフィルタで構成され、前記モータ電流のd軸電流値から探査パルス電圧と同じ周波数を抽出することを特徴とするモータ制御装置が適用される。
 また、上記のモータ制御装置であって、前記電力変換器に入力される電圧指令値の振幅を演算する電圧振幅演算器と、前記電圧指令値の振幅が、前記電力変換器で出力可能な最大電圧値以上になる場合には、前記電流プロファイルの振幅あるいは周波数を修正する電流プロファイル修正器と、を備えるモータ制御装置が適用される。
 上記問題を解決するため、本発明の他の観点によれば、該永久磁石モータの磁束方向であるd軸電圧指令とこれに直交するq軸電圧指令に基づく交流電圧指令を、PWM制御によって前記永久磁石モータに印加する工程と、該永久磁石モータに流れるモータ電流を前記PWM制御の周期に同期して検出する工程と、生成された電流プロファイルに基づき探査電圧パルスを演算する工程と、探査電圧パルスと前記d軸電圧指令の加算値を、新たにd軸電圧指令とする工程と、前記モータ電流と、前記探査電圧パルスに基づき前記永久磁石モータの磁極位置を検出する工程と、前記モータ電流のd軸電流値から前記永久磁石モータの磁極極性を判別するための極性判別評価電流を演算する工程と、前記極性判別評価電流と前記電流プロファイルとの偏差から前記磁極極性を判別する工程と、前記磁極極性の判別結果により、0[rad]又はπ[rad]を前記位相補正量として出力する工程と、前記磁極位置と前記位相補正量を加算し、新たに磁極位置とする工程と、を備える磁極位置検出方法が適用される。
 本発明によれば、モータ回転子の磁気飽和の影響やモータへの印加電圧の変動に対してロバストに磁極位置検出を行うので、短時間でかつ高精度に磁極位置を検出できる。
本発明の第1実施形態に係るモータ制御装置のブロック図である。 同実施形態に係る磁極位置検出器106の詳細ブロック図である。 同実施形態に係る極性検出器109の詳細ブロック図である。 電流プロファイルと発生電流の歪みを説明する図である。 モータ101が有するヒステリシス特性と磁化軌跡を説明する図である。 電流プロファイルに基づき発生した電流波形を示す図である。 本発明の第2実施形態に係るモータ制御装置のブロック図である。
 以下、本発明の実施の形態について図を参照して説明する。なお、同一の構成については同一の符号を付することにより、重複説明を適宜省略する。
<第1実施形態>
 まず、図1を参照しつつ、本発明の第1実施形態に係るモータ制御装置Iの構成について説明する。図1は、本発明の第1実施形態に係るモータ制御装置Iのブロック図である。
 図1に示すように、本実施形態に係るモータ制御装置Iは、モータ101と、電流検出器102と、電力変換器103と、3相2相変換器104と、dq変換器105と、磁極位置検出器106と、電流制御器107と、極性判別評価電流演算器108と、極性検出器109と、探査電圧演算器110と、電流プロファイル発生器111と、加算器112、113を備える。
 モータ101は、制御対象である永久磁石モータである。モータ101の磁束方向(d軸)と、これに直交する方向(q軸)とする座標系で以下のモータ制御は行われている。
電流検出器102は、後述のPWM制御が行われる周期に同期してモータ101に流れる電流を検出し、3相電流(iu,iv,iw)として出力する。
 電力変換器103は、図示していないが、入力される交流電圧を整流した直流母線電圧をPWMスイッチング周期ごとにPWM制御して、後述のd軸及びq軸電圧指令(V*sd,V*sq)と、後述の磁極位置θと位相補正量Δθの加算値に基づいて電圧指令を生成し、モータ101に印加する。
 3相2相変換器104は、3相電流(iu,iv,iw)を2相の交流電流(isα,isβ)に変換する。
 dq変換器105は、2相の交流電流(isα,isβ)をd軸及びq軸電流(isd,isq)に変換する。
 磁極位置検出器106は、2相の交流電流(isα,isβ)と後述の探査電圧パルスVposiに基づき磁極位置θを検出する。
 電流制御器107は、d軸及びq軸電流指令(i*sd,i*sq)、d軸及びq軸電流(isd,isq)が一致するように制御し、d軸及びq軸電圧指令(V*sd,V*sq)を出力する。
 極性判別評価電流演算器108は、バンドパスフィルタで構成され、d軸電流isdから探査パルス電圧と同じ周波数を抽出し、それを極性判別評価電流idhとして出力する。フィルタの固有角周波数は、後述の電流プロファイルIposiで設定した周波数と同一に設定している。
 極性検出器109は、極性判別評価電流idhと電流プロファイルIposiに基づき回転子磁極の極性を判別し、位相補正量Δθを出力する。極性検出器109の動作については後述する。
 探査電圧演算器110は、後述する電流プロファイルIposiが入力され、電流プロファイルIposiの時間微分値にインダクタンス設定値Ld*を乗算して探査電圧パルスVposiを演算し、磁極位置検出器106と加算器112に出力する。電流プロファイルIposiが三角波状の信号であるので、探査電圧パルスVposiは矩形波状の信号となり、その周期は同じである。なお、探査電圧パルスVposiは、磁極位置検出のための探査電圧である。
 インダクタンス設定値Ld*は、モータ設計値、試運転調整値又は起動前に行われるオートチューニング手法等で決定される。
 また、ここで言う“電流プロファイル”とは、探査電圧パルスVposiをモータに印加した際に,モータに内蔵された磁石動作点の移動がヒステリシス特性のマイナーループを辿る際に発生する電流変化パターンを予め設定したものであって、探査電圧パルスVposiは、電力変換器が出力可能な最大電圧以下、発生する電流はモータ定格電流以下となる条件を考慮して作成されているが、モータの磁気飽和の影響の考慮を一切不要としたものとなっている。
 この電流変化パターンは、ゼロを中心にして正負に同じ振幅をもつ一定周期の三角波状の電流指令信号であり、その電流ピーク値と、変化率もしくは周波数によって設定されている。
 電流プロファイル発生器111は、モータ101に見合う電流プロファイルIposiを発生し、極性検出器109及び探査電圧演算器110に出力する。なお、出力される電流プロファイルIposiは、その変化率は一定であり、その周波数は探査パルス電圧と同じ周波数である。
 電流プロファイルIposiが発生される周期は、電流検出器102における3相電流(iu,iv,iw)の検出と同様に、PWM制御の周期と同期している。また、少なくとも電流プロファイルIposiの発生周期内に4回以上の電流検出が行われる。これに限定するものではないか、例えば、電流検出の周期をPWM制御の周期で行い、かつ、PWMスイッチング周期の半周期とし、さらにPWMスイッチング周期の2倍以上の周期で電流プロファイルIposiを発生すればよい。
 加算器112は、d軸電圧指令V*sdに探査電圧パルスVposiを加算し、新たにd軸電圧指令V*sdとして出力する。
 加算器113は、磁極位置θと位相補正量Δθを加算し、新たに磁極位置θとして電力変換器103に出力する。
 次に、図2を参照しつつ、本実施形態に係る磁極位置検出器106について説明する。図2は、本実施形態に係る磁極位置検出器106の詳細ブロック図である。
 図2に示すように、本実施形態に係る磁極位置検出器106は、符号検出器201と、乗算器202、203と、ゲイン増幅器204と、フィルタ器205、206と、逆正接演算器207を備える。また、磁極位置θは、探査電圧パルスVposiがd軸電圧指令V*sdに加算される周期、つまり、電流プロファイルIposiの発生周期に同期して算出される。
 符号検出器201は、探査電圧パルスVposiの極性を正の場合は1、負の場合は-1として出力する。
 ゲイン増幅器204は、符号検出器201の出力にゲインGhを乗算する。
乗算器202、203は、2相の交流電流(isα,isβ)のα、βの成分毎にゲイン増幅器204の出力を乗算する。
 フィルタ器205、206は、乗算器202、203のそれぞれの出力を入力とし、2相の交流電流(isα,isβ)の各々のピーク値(Icos、Isin)を抽出する。フィルタ器205、206の分母はs+ωcv、分子はs・ωc(sは微分演算子)の不完全微分器として構成され、固有角周波数ωcv,ωcは検出遅れ防止を考慮した所定値である。このように、フィルタ器205、206は、電流のピーク値を分子にある微分要素で抽出し、スイッチングノイズを分母にある低域フィルタ要素で除去している。
 逆正接演算器207は、ピーク値(Icos,Isin)の逆正接演算により、磁極位置θを算出する。
 このようにして、磁極位置検出器106は、2相の交流電流(isα,isβ)と探査電圧パルスVposiに基づき磁極位置θを検出する。なお、この磁極位置θは、回転子磁極の判別はできていない。
 次に、本実施形態で利用する磁極位置θ及び回転子磁極の極性の検出原理について説明し、その後、極性検出器109の具体的動作を説明する。
 まず、図4、図5を用いて、電流プロファイルIposiと発生電流Irealの歪みについて説明する。
 図4は、電流プロファイルIposiと発生電流Irealの歪みを説明する図であり、電流Irealの発生を引き起こす探査電圧パルスVposiも合わせて図示している。発生電流Irealは、ヒステリシスループの影響により歪んでいる様子がわかる。
 なお、図4では、電流検出の周期をTsとし、三角波状の信号である電流プロファイルIposiの1周期内に4回の電流検出が行われる場合を図示している。
 図5は、モータ101が有するヒステリシス特性と磁化軌跡を説明する図であり、図5(a)は、モータ101が有するヒステリシス特性(メジャーループ)を説明する図、図5(b)は、モータ101が有する部分的なヒステリシス特性(マイナーループ)を説明する図、図5(c)は、N極を電圧印加の正側、S極を電圧印加の負側としたときの印加電圧VdNによる磁化軌跡を説明する図、図5(d)は、S極を電圧印加の正側、N極を電圧印加の負側としたときの印加電圧VdSによる磁化軌跡を説明する図、図5(e)は磁気抵抗Rmの変化を近似して説明する図である。
 一般に、永久磁石を回転子に有するモータは、図5(a)に示すヒステリシス特性(メジャーループ)を有している。図5(a)中のヒステリシス特性の中心の矢印は初期磁化曲線を示し、Path AからPath Bへ左回りで磁化軌跡を描く。ここで、磁石動作点が図5(b)の左図の点Pで示す位置にある状態で、図5(c)の印加電圧VdN、図5(d)の印加電圧VdSにより、図5(b)の拡大図で示したマイナーループと呼ばれる部分的なヒステリシス磁化軌跡を生じる。
 図5(c)に示す印加電圧VdNによる磁化軌跡は、図5(b)の右図中に示すv-x-y-zの順をたどる。このとき、発生する電流idNは、v-x領域の磁気抵抗Rmがy-z領域(斜線部)の磁気抵抗Rmより大きいので、それぞれの領域で電流波形の歪みに違いが生じる。
 図5(d)に示す印加電圧VdSによる磁化軌跡は、図5(b)の右図中に示すy-z-v-xの順をたどる。このとき、発生する電流idSは、電流idNとは逆順となっている。
 磁気抵抗Rmが大きい程、インダクタンスLdが小さくなるので、そのとき発生する電流応答は急峻になる。逆に、磁気抵抗Rmが小さいと電流応答は遅くなる。
 このようにして、ヒステリシスループの影響により発生する電流は歪み、上記電流idSは、電流idNのような波形になるのである。
 図6は、電流プロファイルIposiに基づき発生した電流波形を示す図である。図6には電流プロファイルIposiに基づき発生した電流を2相の交流電流(isα,isβ)として観測したものを示している。
 これは、埋め込み磁石モータにおいては、回転子中の永久磁石の極が存在する(N極あるいはS極)方向では、磁気抵抗Rmが大きいためインダクタンスLdは小さくなり、極が存在しない方向ではインダクタンスLdが大きくなるため、インダクタンス分布に基づき電流のピーク値が変化することを示している。
 同様に、表面磁石モータの場合であっても、電流プロファイルIposiに基づき発生した電流で磁束の磁路が、固定子スロットのブリッジ部で局所的に狭くなる。そこでは磁気抵抗が大きくインダクタンスLdは小さくなり、固定子コアの中心部ではインダクタンスLdが大きくなるので、2相の交流電流(isα,isβ)のピーク値が変化する。この現象は制御対象とするモータ101が固定子コアを内蔵する場合に表れる。
 したがって、電流プロファイルIposiにより発生した2相の交流電流(isα,isβ)のピーク値を抽出すれば、その変動周期は、磁極位置のそれと同一となるのである。この原理に基づき、磁極位置検出器106では、磁極位置θを検出しているのである。
 次に、図5(a)乃至(d)を用いて説明したヒステリシスループの影響を利用して回転子磁極の極性を検出する手法を説明する。
 このヒステリシスループの影響で、図4のように発生電流Irealに歪みが生じているのは上述のとおりである。このときの歪み成分は印加した探査電圧パルスVposiの周波数の2倍の周波数を多く含んでいる。この理由は下記のように説明できる。
 例えば、図5(b)に示すように印加電圧VdNの1周期において、前半周期は磁気回路上ではヒステリシスループの動作点Pからvを経由し、磁気抵抗Rmが最小となる点に到達し、またxを経由し、動作点近傍へ戻るという過程を有し、後半周期は、動作点近傍からyを経由し、磁気抵抗Rmが最大となる点に到達し、zを経由して動作点近傍へ戻る過程を有する。
 ここで、v-x-y-zそれぞれの領域では磁気抵抗Rmの値は一定とすると、図5(c)の印加電圧VdN、発生する電流idNから、磁気抵抗Rmは図5(e)のように近似できる。つまり、印加電圧VdNの1周期に磁気抵抗Rmは2周期の変化として存在し、さらに、N極側に近いv-xとS極側に近いy-zとでは、磁気抵抗Rmの大きさが異なり、x領域に対しz領域での値は小さく、v領域に対しy領域での値は小さくなる。
 このようにして、探査電圧パルスVposiによる発生電流Irealは、探査電圧パルスVposiの2倍の周波数として表れる。この周波数成分は、先に説明したインダクタンスの変化で、N極に印加した場合とS極に印加した場合で、振幅が変動する。つまり、N側に印加した場合は、探査電圧パルスVposiの2倍の周波数成分の負側の振幅が大きくなり、S側に印加した場合は、正側の振幅が大きくなる。
 回転子磁極の極性は、上述した原理に基づくものであり、以下説明する極性検出器109は、上記のように変動する振幅が、正側に大きいのか負側に大きいのかということを利用したものとなっている。
 このように、モータのヒステリシス特性を利用した手法であるので、モータ回転子の磁気飽和の影響を受けることなしに磁極検出を行うことができる。
 次に、図3を参照しつつ、本実施形態に係る極性検出器109について説明する。図3は、本実施形態に係る極性検出器109の詳細ブロック図である。
 図3に示すように、本実施形態に係る極性検出器109は、減算器301と、乗算器302と、パルス発生器303と、歪方向判別器304と、補償量選定器305を備える。
 減算器301は、電流プロファイルIposiと極性判別評価電流idhとの偏差を演算する。
 乗算器302は、減算器301の出力と、探査パルス電圧Vposiの2倍の周波数のパルス列を発生するパルス発生器303の出力を乗算する。
 この乗算結果の直流成分は、上述した変動する振幅が、正側に大きいのか負側に大きいのか、つまりどちらに歪んでいるかの情報を含んでいる。
 歪方向判別器304は、ローパスフィルタもしくは積分器であって、乗算器302の出力を入力しノイズ除去を行う。このようにして、歪方向判別器304は、抽出された直流成分の極性、つまり、変動する振幅の歪み情報により磁極の極性を判別する。
 補償量選定器305は、モータ101が埋め込み磁石モータの場合は、歪方向判別器304の出力が正であれば0[rad]、負であればπ[rad]を位相補正量Δθとして出力し、また、表面磁石モータの場合は、歪方向判別器304の出力が正であればπ[rad]、負であれば0[rad]を位相補正量Δθとして出力する。
 このようにして、極性検出器109は、極性判別評価電流idhと電流プロファイルIposiに基づき回転子磁極の極性を判別し、0[rad]又はπ[rad]を位相補正量Δθとして出力する。
 以上説明したように、本実施形態に係るモータ制御装置は、モータのヒステリシス特性を利用して回転子磁極の極性を判別しているので、モータ回転子の磁気飽和の影響の大小によらず、また、確実にヒステリシスループへ入り込む電流プロファイルIposiを考慮することによって、磁極位置検出を短時間でかつ高精度に実現することができる。
<第2実施形態>
 以上、本発明の第1実施形態に係るモータ制御装置Iについて説明した。次に、図7を参照しつつ、本発明の第2実施形態に係るモータ制御装置Jについて説明する。図7は、本発明の第2実施形態に係るモータ制御装置のブロック図である。
 この第2実施形態に係るモータ制御装置Jは、電流プロファイル発生器111の代わりに電流プロファイル発生器111aを有する点と、新たに減算器401、電流プロファイル修正器402、電圧振幅演算器403を追加で有する点で、第1実施形態に係るモータ制御装置Iと異なり、他は同様に構成される。従って、以下では、説明の便宜上、重複説明を適宜省略し、第1実施形態と異なる点を中心に説明することにする。
 電流プロファイル発生器111aは、後述の電流プロファイル修正器402からの指示信号により、内部に設定されている周波数、あるいは、ピーク値を下げる機能が追加されている。
 減算器401は、電圧振幅演算器403によって演算される指令電圧の振幅値と、電力変換器103が出力可能な最大電圧振幅値と差を算出する。
 電流プロファイル修正器402は、減算器401が算出した差に基づき、指令電圧が最大電圧以上になる場合に、すなわち、減算器401の演算結果が正の場合に、電流プロファイル発生器111aに指示信号を出力する。
 電流プロファイル発生器111aは、この指示信号により、電流プロファイルIposiとして発生する三角状の電流変化パターンの周波数を下げるように、周期を徐々に増加させ、減算器401の演算結果が負になるまで実行する。また、周期増加の上限を予め設定し、例えば、5Tsを超えた場合は、電流振幅のピーク値を減少させるようにしている。その減少率は例えば、初期設定値の10%毎といったようにしている。このようにして、
探査電圧演算器110が出力する探査電圧パルスVposiが小さくなるように調整する。
 以上説明したように、本実施形態に係るモータ制御装置Jは、電力変換器103が出力可能な最大電圧振幅値を考慮して、電流プロファイルIposiを修正する電流プロファイル修正器402を有することにより、第1実施形態に係るモータ制御装置Iが奏する作用・効果に加えて更に、入力電源電圧の低下などにより直流母線電圧の変動に対してもロバストに磁極位置検出を行うことができる。このことは、電力変換器への入力電源電圧の変動に対しても同様に電流プロファイルIposiが修正されるので、電力変換器103が、電圧型インバータで構成される場合に特に効果を有する。
 以上、本発明の実施形態について説明した。ただし、いわゆる当業者であれば、本発明の趣旨を逸脱しない範囲内で、上記実施形態から適宜変更が可能であり、また、上記実施形態と変更例による手法を適宜組み合わせて利用することも可能である。すなわち、このような変更等が施された技術であっても、本発明の技術的範囲に含まれることは言うまでもない。
101 永久磁石モータ
102 電流検出器
103 電力変換器
104 3相2相変換器
105 dq変換器
106 磁極位置検出器
107 電流制御器
108 極性判別評価電流演算器
109 極性検出器
110 探査電圧演算器
111、111a 電流プロファイル発生器
112、113 加算器
201 符号検出器
202、203、302 乗算器
204 ゲイン増幅器
205、206 フィルタ器
207 逆正接演算器
301、401 減算器
303 パルス発生器
304 歪方向判別器
305 補償量選定器
402 電流プロファイル修正器
403 電圧振幅演算器

Claims (6)

  1.  永久磁石モータと、
     該永久磁石モータの磁束方向であるd軸電圧指令とこれに直交するq軸電圧指令に基づく交流電圧指令を、PWM制御によって前記永久磁石モータに印加する電力変換器と、
     前記永久磁石モータに流れるモータ電流を前記PWM制御の周期に同期して検出する電流検出器と、
     電流プロファイルを生成する電流プロファイル発生器と、
     前記電流プロファイルに基づき探査電圧パルスを演算して、前記d軸電圧指令に加算する探査電圧演算器と、
     前記モータ電流と、前記探査電圧パルスに基づき前記永久磁石モータの磁極位置を検出する磁極位置検出器と、
     前記モータ電流のd軸電流値から前記永久磁石モータの磁極極性を判別するための極性判別評価電流を演算する極性判別評価電流演算器と、
     前記極性判別評価電流と前記電流指令との偏差から前記磁極極性を判別して位相補正量を出力する極性検出器と、を備えることを特徴とするモータ制御装置。
  2.  請求項1に記載のモータ制御装置であって、
     前記磁極位置検出器は、前記探査電圧パルスの極性を検出する符号検出器と、
     該符号検出器の出力値に所定のゲインを乗算する第1の乗算器と、
     前記第1の乗算器の出力に、前記モータ電流の2相電流検出値を成分毎に乗算する第2、第3の乗算器と、
     該第2及び第3の乗算器の出力を用いて、前記探査電圧パルスの周期に同期した前記2相電流検出値のそれぞれのピーク値Icos、Isinを抽出するフィルタ器と、
     前記ピーク値Icos、Isinの逆正接演算により磁極位置を算出する逆正接演算器と、を備えることを特徴とするモータ制御装置。
  3.  請求項1に記載のモータ制御装置であって、
     前記極性検出器は、前記電流プロファイルと前記極性判別評価電流との偏差を演算する減算器と、
     前記探査電圧パルスの2倍の周波数のパルス列を生成するパルス発生器と、
     前記減算器の出力と前記パルス列を乗算する第4の乗算器と、
     該乗算器の出力をローパスフィルタ又は積分器を介して重畳した直流成分の極性を判別する歪方向判別器と、
     該歪方向判別器の出力に基づいて0[rad]又はπ[rad]を前記位相補正量として出力する補償量選定器と、を備えることを特徴とするモータ制御装置。
  4.  請求項1に記載のモータ制御装置であって、
     前記極性判別評価電流演算器は、固有角周波数を前記電流プロファイルに設定された周波数と同一に設定されたバンドパスフィルタで構成され、前記モータ電流のd軸電流値から探査パルス電圧と同じ周波数を抽出することを特徴とするモータ制御装置。
  5.  請求項1乃至4に記載のいずれかのモータ制御装置であって、
     前記電力変換器に入力される電圧指令値の振幅を演算する電圧振幅演算器と、
     前記電圧指令値の振幅が、前記電力変換器で出力可能な最大電圧値以上になる場合には、前記電流プロファイルの振幅あるいは周波数を修正する電流プロファイル修正器と、を備えることを特徴とするモータ制御装置。
  6.  永久磁石モータの磁束方向であるd軸電圧指令とこれに直交するq軸電圧指令に基づく交流電圧指令を、PWM制御によって前記永久磁石モータに印加する工程と、
     該永久磁石モータに流れるモータ電流を前記PWM制御の周期に同期して検出する工程と、
     生成された電流プロファイルに基づき探査電圧パルスを演算する工程と、
     探査電圧パルスと前記d軸電圧指令の加算値を、新たにd軸電圧指令とする工程と、
     前記モータ電流と、前記探査電圧パルスに基づき前記永久磁石モータの磁極位置を検出する工程と、
     前記モータ電流のd軸電流値から前記永久磁石モータの磁極極性を判別するための極性判別評価電流を演算する工程と、
     前記極性判別評価電流と前記電流プロファイルとの偏差から前記磁極極性を判別する工程と、
     前記磁極極性の判別結果により、0[rad]又はπ[rad]を前記位相補正量として出力する工程と、
     前記磁極位置と前記位相補正量を加算し、新たに磁極位置とする工程と、を備えることを特徴とするモータ制御装置の磁極位置検出方法。
PCT/JP2010/069041 2009-12-24 2010-10-27 モータ制御装置及びその磁極位置検出方法 WO2011077829A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011547382A JP5488615B2 (ja) 2009-12-24 2010-10-27 モータ制御装置及びその磁極位置検出方法
CN201080058613.0A CN102668361B (zh) 2009-12-24 2010-10-27 电动机控制装置及其磁极位置检测方法
US13/487,263 US8310183B2 (en) 2009-12-24 2012-06-04 Motor control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-292324 2009-12-24
JP2009292324 2009-12-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/487,263 Continuation US8310183B2 (en) 2009-12-24 2012-06-04 Motor control device

Publications (1)

Publication Number Publication Date
WO2011077829A1 true WO2011077829A1 (ja) 2011-06-30

Family

ID=44195374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069041 WO2011077829A1 (ja) 2009-12-24 2010-10-27 モータ制御装置及びその磁極位置検出方法

Country Status (4)

Country Link
US (1) US8310183B2 (ja)
JP (1) JP5488615B2 (ja)
CN (1) CN102668361B (ja)
WO (1) WO2011077829A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140009147A1 (en) * 2012-06-27 2014-01-09 Kabushiki Kaisha Toshiba Magnetic polarity determination device, permanent magnet synchronous motor control device, and magnetic polarity determination method
WO2023054635A1 (ja) 2021-10-01 2023-04-06 株式会社Ihi 電動機械システム

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103840725B (zh) * 2012-11-26 2016-05-18 台达电子工业股份有限公司 永磁同步电机转子位置偏差测量装置及方法
DE102013204194A1 (de) * 2013-03-12 2014-09-18 Robert Bosch Gmbh Regelungssystem für eine Synchronmaschine und Verfahren zum Betreiben einer Synchronmaschine
US9829348B2 (en) 2013-09-20 2017-11-28 Marvell World Trade Ltd. Identifying a position of a brushless DC motor
TWI668953B (zh) 2016-08-22 2019-08-11 日商東芝股份有限公司 Inverter control device and drive system
CH712828A1 (de) * 2016-08-22 2018-02-28 Lakeview Innvovation Ltd Verfahren zur sensorlosen Bestimmung der Orientierung des Rotors eines eisenlosen PMSM-Motors.
JP6666326B2 (ja) * 2017-12-27 2020-03-13 ファナック株式会社 モータ制御装置およびモータ制御方法
CN109450297B (zh) * 2018-12-19 2020-07-03 四川虹美智能科技有限公司 一种控制电机的方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10229699A (ja) * 1997-02-14 1998-08-25 Hitachi Ltd 同期電動機の磁極位置推定方法および電動機制御装置および電気車
WO2001022567A1 (fr) * 1999-09-20 2001-03-29 Mitsubishi Denki Kabushiki Kaisha Detecteur de position du pole pour moteur synchrone

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3735836B2 (ja) * 2000-01-02 2006-01-18 有限会社シー・アンド・エス国際研究所 永久磁石同期電動機のベクトル制御方法
JP3979561B2 (ja) 2000-08-30 2007-09-19 株式会社日立製作所 交流電動機の駆動システム
JP4687846B2 (ja) * 2001-03-26 2011-05-25 株式会社安川電機 同期電動機の磁極位置推定方法および制御装置
JP4665360B2 (ja) * 2001-08-06 2011-04-06 株式会社安川電機 電動機制御装置
JP4241218B2 (ja) * 2003-06-27 2009-03-18 株式会社日立産機システム 交流電動機の制御装置及び交流電動機システム
JP3805336B2 (ja) * 2003-10-22 2006-08-02 ファナック株式会社 磁極位置検出装置及び方法
JP4956123B2 (ja) * 2006-09-28 2012-06-20 三洋電機株式会社 モータ制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10229699A (ja) * 1997-02-14 1998-08-25 Hitachi Ltd 同期電動機の磁極位置推定方法および電動機制御装置および電気車
WO2001022567A1 (fr) * 1999-09-20 2001-03-29 Mitsubishi Denki Kabushiki Kaisha Detecteur de position du pole pour moteur synchrone

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140009147A1 (en) * 2012-06-27 2014-01-09 Kabushiki Kaisha Toshiba Magnetic polarity determination device, permanent magnet synchronous motor control device, and magnetic polarity determination method
JP2014011822A (ja) * 2012-06-27 2014-01-20 Toshiba Corp 磁極極性判定装置、永久磁石同期電動機制御装置及び磁極極性判定方法
KR20140121863A (ko) * 2012-06-27 2014-10-16 가부시끼가이샤 도시바 제어 시스템
CN104145417A (zh) * 2012-06-27 2014-11-12 株式会社东芝 控制系统
KR101643488B1 (ko) 2012-06-27 2016-07-27 가부시끼가이샤 도시바 제어 시스템
US9423470B2 (en) * 2012-06-27 2016-08-23 Kabushiki Kaisha Toshiba Magnetic polarity determination device, permanent magnet synchronous motor control device, and magnetic polarity determination method
CN104145417B (zh) * 2012-06-27 2016-10-26 株式会社东芝 控制系统
WO2023054635A1 (ja) 2021-10-01 2023-04-06 株式会社Ihi 電動機械システム

Also Published As

Publication number Publication date
US8310183B2 (en) 2012-11-13
JP5488615B2 (ja) 2014-05-14
JPWO2011077829A1 (ja) 2013-05-02
CN102668361B (zh) 2014-11-05
US20120235609A1 (en) 2012-09-20
CN102668361A (zh) 2012-09-12

Similar Documents

Publication Publication Date Title
JP5488615B2 (ja) モータ制御装置及びその磁極位置検出方法
US7443130B2 (en) Motor driving control device
Zhang et al. Saliency-based position sensorless control methods for PMSM drives-A review
Yoon et al. High-bandwidth sensorless algorithm for AC machines based on square-wave-type voltage injection
JP5761243B2 (ja) モータ制御装置および磁極位置推定方法
US9742333B2 (en) Motor control device
JP5351859B2 (ja) ベクトル制御装置、及び電動機制御システム
JP6132948B1 (ja) モータ制御装置およびモータ制御方法
JP4928855B2 (ja) 同期機のセンサレス制御装置
JP5633551B2 (ja) 交流電動機の制御装置
JP5281339B2 (ja) 同期電動機の駆動システム、及びこれに用いる制御装置
JP2011176975A (ja) 交流電動機の駆動装置及び電動機車両
JP2009195106A (ja) 速度センサレスベクトル制御装置
JP5425173B2 (ja) 制御装置
JP5472222B2 (ja) 永久磁石形同期電動機の制御装置
JP2018148778A (ja) 電動機の回転子の初期位置推定装置
JP2009171680A (ja) 永久磁石形同期電動機の制御装置
JP5396741B2 (ja) 永久磁石形同期電動機の制御装置
JP2013150498A (ja) 同期電動機の制御装置及び制御方法
WO2020115859A1 (ja) 回転機の制御装置および電動車両の制御装置
JP2014117069A (ja) 交流回転機の制御装置および交流回転機の制御方法
JP2003189673A (ja) モータ制御装置
JP5055835B2 (ja) 同期モータの駆動装置
JP6848406B2 (ja) インバータ制御装置
JP6089608B2 (ja) 同期電動機の制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080058613.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839066

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011547382

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10839066

Country of ref document: EP

Kind code of ref document: A1