WO2023054635A1 - 電動機械システム - Google Patents

電動機械システム Download PDF

Info

Publication number
WO2023054635A1
WO2023054635A1 PCT/JP2022/036569 JP2022036569W WO2023054635A1 WO 2023054635 A1 WO2023054635 A1 WO 2023054635A1 JP 2022036569 W JP2022036569 W JP 2022036569W WO 2023054635 A1 WO2023054635 A1 WO 2023054635A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
electric machine
power
value
electric
Prior art date
Application number
PCT/JP2022/036569
Other languages
English (en)
French (fr)
Inventor
浩二 山口
翔太 藤澤
徹 栗林
健志郎 桂
達郎 山田
芳明 高橋
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to EP22876498.1A priority Critical patent/EP4346085A1/en
Priority to CN202280044714.5A priority patent/CN117546401A/zh
Publication of WO2023054635A1 publication Critical patent/WO2023054635A1/ja
Priority to US18/414,299 priority patent/US20240154547A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/15Controlling commutation time
    • H02P6/153Controlling commutation time wherein the commutation is advanced from position signals phase in function of the speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/15Controlling commutation time
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/30Arrangements for controlling the direction of rotation

Definitions

  • the present disclosure relates to electric machine systems.
  • Patent Document 1 an electric machine including a stator and a rotor is known (see Patent Document 1, for example).
  • the position of the rotor is detected by determining the polarity of the rotor magnetic poles using the hysteresis characteristics of the motor.
  • An object of the present disclosure is to provide an electric machine system capable of improving performance.
  • An electric machine system includes an electric machine including a stator including a coil, a rotor including a magnet and rotatable with respect to the stator, and inputting and outputting electric power to and from the coil. and a control section for controlling the power converter, the control section including an output section for outputting a signal for operating the power converter to the power converter, and inputting/outputting power to/from the coil. and a correction unit for correcting the phase of the signal that determines the timing of the correction, wherein the correction unit corrects the phase so that the magnitude of the power tends to an extreme value.
  • the correction unit corrects the phase of the signal so that the magnitude of the power input/output to/from the coil approaches an extreme value.
  • the dynamoelectric machine has minimal losses, ie, the phase of the signal with respect to rotor position is optimal.
  • the phase of the signal By optimizing the phase of the signal, wasteful power consumption can be suppressed without detecting the position of the rotor with high accuracy. Therefore, according to this electric machine system, the performance can be improved.
  • the electric machine is an electric motor
  • the extreme value is the minimum value
  • the correcting unit corrects the phase again in the first direction when the electric power becomes smaller as a result of correcting the phase in the first direction.
  • the phase may be corrected in the second direction opposite to the first direction.
  • the direction of phase correction can be changed based on the change in power due to the phase correction. This allows the magnitude of the power to be driven towards a minimum value.
  • the correcting unit sets the maximum limit value to the phase after correction when the phase is larger than the maximum limit value as a result of correcting the phase, and when the phase is smaller than the minimum limit value as a result of correcting the phase,
  • the minimum limit value may be used as the corrected phase. According to this configuration, it is possible to prevent the phase of the signal from shifting to an unintended range.
  • the correction unit may include an execution mode for executing phase correction and a pause mode for pausing phase correction. According to this configuration, it is possible to switch to run mode only when it is necessary to correct the phase of the signal with respect to the position of the rotor.
  • the electric machine is a generator
  • the extreme value is the maximum value
  • the correction unit is configured to direct the phase in the first direction again when the electric power increases as a result of correcting the phase in the first direction. If the power is reduced as a result of correcting the phase in the first direction, the phase may be corrected in the second direction opposite to the first direction.
  • the direction of phase correction can be changed based on a change in power due to phase correction. This allows the magnitude of the power to be driven towards its maximum value.
  • An electric machine system includes an electric machine including a stator including a coil, a rotor including a magnet and rotatable with respect to the stator, and inputting and outputting electric power to and from the coil. and a control section for controlling the power converter, the control section including an output section for outputting a signal for operating the power converter to the power converter, and inputting/outputting power to/from the coil. and a correction unit for correcting the phase of the signal that determines the timing of the correction, wherein the correction unit corrects the phase so that the index value correlated with the current input/output to/from the coil tends to an extreme value.
  • the correction unit corrects the phase of the signal so that the index value correlated with the current input/output to/from the coil tends toward the extreme value. It is assumed that the dynamo-electric machine has minimal losses, i.e. that the phase of the signal with respect to the rotor position is optimal, when the index values correlating to the currents to and from the coils are at extreme values. be.
  • the phase of the signal By optimizing the phase of the signal, wasteful power consumption can be suppressed without detecting the position of the rotor with high accuracy. Therefore, according to this electric machine system, the performance can be improved.
  • the index value may be a division value obtained by dividing the current by the torque of the electric machine.
  • the index value may be current. As a result, the performance of the electric machine system can be improved by using the current as the index value.
  • the index value may be a multiplication value obtained by multiplying the alternating current input/output to/from the coil by the alternating voltage input/output to/from the coil. Accordingly, by using the multiplication value of the alternating current and the alternating voltage as the index value, it is possible to improve the performance of the electric machine system.
  • FIG. 1 is a configuration diagram of an electric machine system according to a first embodiment
  • FIG. FIG. 4 is a graph showing the phase of the signal versus the position of the rotor
  • FIG. 4 is a graph showing the relationship between the phase of the signal and the power of the dynamoelectric machine versus the position of the rotor
  • FIG. 2 is a flow chart showing processing executed in a control unit shown in FIG. 1
  • FIG. FIG. 11 is a configuration diagram of an electric machine system according to a second embodiment
  • FIG. 11 is a configuration diagram of an electric machine system according to a third embodiment
  • 4 is a graph showing the relationship between the phase of the signal and the power of the dynamoelectric machine versus the position of the rotor
  • FIG. 7 is a flow chart showing processing executed in the control unit shown in FIG. 6;
  • FIG. 3 is a flow chart showing a modification of the process executed by the control unit shown in FIG. 1;
  • FIG. 11 is a configuration diagram of an electric machine system according to a fourth embodiment;
  • FIG. 11 is a configuration diagram of an electric machine system according to a fifth embodiment;
  • 4 is a graph showing the relationship between the phase of the signal and the index value with respect to the position of the rotor;
  • the electric machine system 1A includes an electric machine 2, a power supply 3, and a drive device 4A.
  • the electric machine system 1A is applied to, for example, an electric compressor, an electric blower, a vehicle (moving body), or the like.
  • the electric machine 2 is an electric motor (motor).
  • the electric machine 2 has a stator (motor stator) and a rotor (motor rotor) rotatable with respect to the stator.
  • the rotor has a shaft and permanent magnets provided on the shaft.
  • the stator circumferentially surrounds the rotor.
  • a stator has a plurality of coils and an iron core.
  • the stator When power is supplied to the stator coils, the stator generates a magnetic field. This magnetic field exerts a force in the circumferential direction on the rotor, and as a result, torque is applied to the rotor. The rotor rotates under the action of the torque.
  • the electric machine 2 has characteristics capable of coping with high-speed rotation of the rotor (for example, 100,000 to 200,000 rpm).
  • the power supply 3 is a DC power supply.
  • the power source 3 is, for example, a storage battery.
  • the driving device 4A has a power converter 5 and a control device 6A.
  • a power converter 5 is connected to the electric machine 2 and the power supply 3 .
  • the power converter 5 inputs power output from the power supply 3 to the coil of the electric machine 2 . That is, the power output from the power source 3 is input to the electric machine 2 via the power converter 5 .
  • Power converter 5 functions as an inverter.
  • the power converter 5 converts the DC power output from the power supply 3 into AC power.
  • the power converter 5 inputs AC power to the electric machine 2 .
  • the power converter 5 has, for example, a switch circuit.
  • the switch circuit has semiconductor switches such as MOSFETs or IGBTs, for example.
  • the power converter 5 supplies AC power to the electric machine 2 by, for example, a PWM control method.
  • the control device 6A has a voltage detection section 61, a current detection section 62, and a control section 60.
  • Voltage detector 61 is connected between power converter 5 and power supply 3 .
  • Voltage detector 61 detects a DC voltage V output from power supply 3 .
  • the voltage detection unit 61 transmits a signal regarding the detected voltage V to the correction unit 64, which will be described later.
  • the current detector 62 is connected between the power converter 5 and the power supply 3 .
  • a current detector 62 detects a direct current I output from the power supply 3 .
  • the current detection unit 62 transmits a signal regarding the detected current I to the correction unit 64 .
  • the control unit 60 controls the power converter 5 .
  • the control unit 60 is, for example, a computer device including a processor (eg, CPU, etc.), memory (eg, ROM, RAM, etc.), and the like.
  • the control unit 60 has an output unit 63 and a correction unit 64 as functional configurations.
  • Output unit 63 outputs a signal for operating power converter 5 (hereinafter referred to as “control signal”) to power converter 5 .
  • the control signal is, for example, a PWM control signal.
  • the output unit 63 generates a signal (P) and a signal (N) regarding each of the multiple semiconductor switches of the power converter 5 .
  • each of the signal (P) and the signal (N) has an energization period of 120°, in which ON/OFF is repeated in the first half of the 60° period, and ON and OFF in the latter half of the 60° period. be done.
  • Output unit 63 outputs the control signal to power converter 5 .
  • the power converter 5 inputs the AC power to the coil of the electric machine 2 while converting the DC power into the AC power according to the control signal.
  • the timing of power input to the coils of the electric machine 2 coincides with the timing of output of the control signal to the power converter 5 .
  • the correction unit 64 corrects the phase of the control signal with respect to the position of the rotor.
  • Rotor position refers to the angle the rotor is rotated with respect to the stator. As an example, if the rotor is rotated 90° from its reference position (0°) relative to the stator, the rotor position is 90°.
  • the position of the rotor is detected, for example, by a resolver. For example, two cycles of the resolver signal are output while the rotor makes one rotation (360° rotation) with respect to the stator.
  • phase of the control signal with respect to the position of the rotor refers to the timing at which the control signal is output to the power converter 5 with respect to the position of the rotor.
  • phase ⁇ determines the timing of power input to the coils of the electric machine 2 .
  • the timing at which the rotor position is 90° coincides with the timing at which the control signal for one cycle rises (for example, the timing at which the first half of the 60° period of signal (P) starts).
  • the phase ⁇ is 90°.
  • the correction unit 64 outputs a signal regarding the corrected phase ⁇ to the output unit 63 .
  • the output unit 63 outputs the control signal to the power converter 5 at the timing when the rotor is positioned at the position corresponding to the corrected phase ⁇ .
  • the output unit 63 outputs the control signal to the power converter 5 at the timing when the rotor position is 90°.
  • the power converter 5 inputs the power output from the power supply 3 to the electric machine 2 according to the control signal. As an example, the power converter 5 starts inputting electric power to the electric machine 2 at the timing when the rotor position is 90°.
  • the power converter 5 controls the electric machine so that the timing at which the rotor position is 90° coincides with the timing at which the control signal for one cycle rises. Input power to 2. As a result, rotational torque is generated in the rotor at the timing when the position of the rotor is 90°.
  • the correction of the phase ⁇ by the correction unit 64 will be described in detail below.
  • the correction unit 64 determines the power input to the electric machine 2 (hereinafter simply referred to as “power”) based on the signal regarding the voltage V transmitted from the voltage detection unit 61 and the signal regarding the current I transmitted from the current detection unit 62. ) is calculated.
  • the correction unit 64 corrects the phase ⁇ so that the magnitude of the power tends toward the extreme value.
  • An extreme value means a maximum value or a minimum value. In this embodiment, the extreme value is the minimum value.
  • the magnitude of the power decreases as the phase ⁇ increases, and tends to increase after reaching the minimum value M1.
  • the phase ⁇ approaches the optimum value, the power factor of the electric machine 2 improves and the loss decreases, and as a result the power magnitude approaches the minimum value M1.
  • the phase ⁇ is the optimum value when the magnitude of the power is the minimum value M1.
  • the correction unit 64 corrects the phase ⁇ based on changes in power.
  • the correction unit 64 increases or decreases the phase ⁇ for each predetermined correction width (correction amount). That is, the phase ⁇ increases or decreases by the correction width each time the correction unit 64 corrects.
  • the correction unit 64 adjusts the phase correction amount (correction width) with respect to the control reference phase.
  • the correcting unit 64 corrects the reference phase for control so that the power becomes an extreme value.
  • the direction in which the phase ⁇ is increased is called the first direction
  • the direction in which the phase ⁇ is decreased is called the second direction.
  • switching the first direction to the second direction and switching the second direction to the first direction are referred to as reversal of the correction direction.
  • the correction unit 64 maintains the correction direction when the power decreases, and reverses the correction direction when the power increases. Specifically, when the power decreases as a result of correcting the phase ⁇ in the direction of increasing (first direction), the correction unit 64 corrects the phase ⁇ in the direction of increasing again. When the power increases as a result of correcting the phase ⁇ in the direction of increasing, the correction unit 64 corrects the phase ⁇ in the direction of decreasing (second direction opposite to the first direction). .
  • the correction unit 64 corrects the phase ⁇ in the direction of decreasing again.
  • the correction unit 64 corrects the phase ⁇ in the direction of increasing. In this manner, the correction unit 64 increases or decreases the phase ⁇ so that the magnitude of the electric power approaches the minimum value M1.
  • the correction unit 64 feedback-controls the phase ⁇ based on the change in electric power.
  • the correction unit 64 corrects the phase ⁇ , for example, every predetermined period. Specifically, the power value used for correcting the phase ⁇ is the average value for a predetermined period. The correction unit 64 calculates an average value of power for each predetermined period. The correction unit 64 corrects the phase ⁇ based on the average value of power in the first period and the average value of power in the second period after the first period. The first period and the second period may be continuous with each other or may be separated from each other.
  • the correction unit 64 corrects the phase ⁇ within a predetermined range. Specifically, when the corrected phase ⁇ is within a predetermined range, the correction unit 64 outputs a signal regarding the corrected phase ⁇ to the output unit 63 . When the corrected phase ⁇ is greater than the maximum limit value, the correction unit 64 recognizes the maximum limit value as the corrected phase ⁇ , and outputs a signal regarding the maximum limit value to the output unit 63 . When the corrected phase ⁇ is smaller than the minimum limit value, the correction unit 64 recognizes the minimum limit value as the corrected phase ⁇ , and outputs a signal regarding the minimum limit value to the output unit 63 .
  • the correction unit 64 includes an execution mode for correcting the phase ⁇ and a pause mode for pausing the correction of the phase ⁇ .
  • the correction unit 64 can switch between the execution mode and the rest mode based on the operating conditions of the electric machine 2 or the like.
  • the correction unit 64 determines whether or not it is in the execution mode (step S1). If YES in step S1, the correction unit 64 corrects the phase ⁇ (step S2).
  • the correction unit 64 calculates the corrected phase ⁇ by adding the correction width to the current phase ⁇ .
  • the correction unit 64 determines whether or not the corrected phase ⁇ is within a predetermined range.
  • the correction unit 64 outputs a signal regarding the corrected phase ⁇ to the output unit 63 when the corrected phase ⁇ is within a predetermined range.
  • the correction unit 64 outputs a signal regarding the maximum limit value to the output unit 63 when the corrected phase ⁇ is larger than the maximum limit value.
  • the correction unit 64 outputs a signal regarding the minimum limit value to the output unit 63 when the corrected phase ⁇ is smaller than the minimum limit value.
  • the voltage detection section 61 and the current detection section 62 respectively detect the voltage and current output from the power supply 3 (step S3).
  • the correction unit 64 calculates the electric power to be input to the electric machine 2 based on the signals transmitted from the voltage detection unit 61 and the current detection unit 62 (step S4).
  • step S5 determines whether or not the power is smaller than the reference value.
  • the reference value is the power value calculated in the previous process.
  • step S5 the correction unit 64 sets the current power calculated in step S4 as a new reference value.
  • step S1 is executed again.
  • step S1 the process ends. If NO in step S5, the correction unit 64 reverses the correction direction to the second direction (step S7). After step S7 is executed, step S6 is executed. By repeating such processing, the correction of the phase ⁇ is repeated so that the magnitude of the power input to the electric machine 2 approaches the minimum value M1. That is, the correction of the phase ⁇ is repeated so that the loss in the power converter 5 tends to the minimum value or the input power to the power converter 5 tends to the minimum value.
  • the control unit 60 stores in advance the initial value of the phase ⁇ , the initial value of the correction direction, and the initial value of the power.
  • the correction width is added to the initial value of the phase ⁇ in step S2, and the initial value of the correction direction is used as the correction direction.
  • the initial power value is used as the reference value.
  • the correction unit 64 corrects the phase ⁇ of the control signal so that the magnitude of the power input to the coils of the electric machine 2 approaches the minimum value M1.
  • the phase ⁇ is optimal.
  • the phase ⁇ wasteful power consumption can be suppressed. Therefore, according to the electric machine system 1A, the performance can be improved.
  • the current flow timing (phase ⁇ ) determined from the detected value of the magnetic pole position of the rotor is corrected, and the phase is constantly changed while maintaining the minimum power condition.
  • This prevents the drive current phase from the true magnetic pole position of the rotor from deviating from the optimum value or the target value due to an error in the detected value of the magnetic pole position of the rotor or an error in the current flow timing (phase ⁇ ). can be suppressed.
  • the electric machine system 1A by searching for the optimum value of the drive current phase with respect to the true magnetic pole position of the rotor, the error of the drive current phase with respect to the true magnetic pole position of the rotor is minimized. control becomes possible.
  • the electric machine 2 is an electric motor.
  • the extremum is the minimum value.
  • the correction unit 64 corrects the phase ⁇ in the first direction again, and corrects the phase ⁇ in the first direction.
  • the phase ⁇ is corrected in the second direction opposite to the first direction. According to this configuration, when the electric machine 2 is an electric motor, it is possible to change the correction direction of the phase ⁇ based on the change in electric power due to the correction of the phase ⁇ . This allows the magnitude of the power to be driven towards a minimum value.
  • the correction unit 64 sets the maximum limit value to the corrected phase ⁇ , and corrects the phase ⁇ so that the phase ⁇ becomes larger than the minimum limit value. If it becomes smaller, the minimum limit value is set as the corrected phase ⁇ . According to this configuration, it is possible to prevent the phase ⁇ from shifting to an unintended range.
  • the correction unit 64 includes an execution mode for correcting the phase ⁇ and a pause mode for pausing the correction of the phase ⁇ . According to this configuration, it is possible to switch to the run mode only when it is necessary to correct the phase ⁇ of the signal with respect to the position of the rotor, such as when vibration or output abnormality is detected.
  • the voltage detection section 61 detects the DC voltage V output from the power supply 3 .
  • a current detector 62 detects a direct current I output from the power supply 3 . This makes it possible to obtain more stable voltage and current detection values than, for example, the case of detecting the AC voltage and AC current supplied from the drive device 4A to the electric machine 2 . Therefore, the correction unit 64 can determine the power change with higher accuracy.
  • the electric machine system 1B according to the second embodiment mainly differs from the electric machine system 1A of the first embodiment in that it includes a drive device 4B instead of the drive device 4A.
  • the driving device 4B mainly differs from the driving device 4A of the first embodiment in that it has a control device 6B instead of the control device 6A.
  • Other configurations of the electric machine system 1B are the same as those of the electric machine system 1A. In the following, the points of the electric machine system 1B that are different from the electric machine system 1A will be described.
  • the control device 6B has a power detection section 65 and a control section 60.
  • the power detector 65 is connected between the power converter 5 and the electric machine 2 .
  • the power detection unit 65 detects AC voltage and AC current output from the power converter 5 and calculates power Pm output from the power converter 5 .
  • the power detection unit 65 transmits a signal regarding the calculated power Pm to the correction unit 64 .
  • the control unit 60 further has a calculation unit 66 as a functional configuration.
  • the power detection unit 65 transmits a signal regarding the detected current Im to the calculation unit 66 .
  • the calculator 66 calculates the power Pi consumed by the power converter 5 based on the signal transmitted from the power detector 65 .
  • the calculator 66 outputs a signal related to the calculated power Pi to the corrector 64 .
  • the correction unit 64 calculates the power input to the driving device 4B by adding the power Pm and the power Pi.
  • the correction unit 64 corrects the phase ⁇ based on the power input to the driving device 4B.
  • the performance can be improved by optimizing the phase ⁇ .
  • the electric machine system 1C includes an electric machine 7 instead of the electric machine 2 and a load 8 instead of the power supply 3. Mainly different from 1A.
  • Other configurations of the electric machine system 1C are the same as those of the electric machine system 1A. In the following, the points of the electric machine system 1C that are different from the electric machine system 1A will be described.
  • the electric machine 7 is a generator.
  • the electric machine 7, like the electric machine 2, has a stator and a rotor.
  • the rotor rotates, for example, by being driven by an engine or the like.
  • Currents flow in the stator coils under the action of the rotor magnetic field.
  • the electric machine 7 outputs AC power.
  • the load 8 is, for example, a storage battery.
  • the power converter 5 inputs the power output from the electric machine 7 to the load 8 . That is, the power output from the electric machine 7 is input to the load 8 via the power converter 5 .
  • Power converter 5 functions as a converter.
  • the power converter 5 converts AC power output from the electric machine 7 into DC power.
  • Power converter 5 inputs DC power to load 8 .
  • the power input to the load 8 is simply referred to as "power”.
  • the correction unit 64 corrects the phase ⁇ so that the magnitude of the electric power becomes an extreme value.
  • the extreme value is the maximum value.
  • the power magnitude tends to increase as the phase ⁇ increases, and then decreases after reaching the maximum value M2.
  • the phase ⁇ with respect to rotor position approaches the optimum value, the power factor improves and system losses decrease, resulting in a power magnitude approaching the maximum value M2.
  • the phase ⁇ is the optimum value when the magnitude of the electric power reaches the maximum value M2.
  • the correction unit 64 maintains the correction direction when the power increases, and reverses the correction direction when the power decreases. Specifically, when the electric power increases as a result of correcting the phase ⁇ in the increasing direction (first direction), the correcting unit 64 corrects the phase ⁇ in the increasing direction again. When the power decreases as a result of correcting the phase ⁇ in the direction of increasing, the correction unit 64 corrects the phase ⁇ in the direction of decreasing (second direction opposite to the first direction). .
  • the correction unit 64 corrects the phase ⁇ in the direction of decreasing again.
  • the correction unit 64 corrects the phase ⁇ in the direction of increasing. In this manner, the correction unit 64 increases or decreases the phase ⁇ so that the magnitude of the electric power approaches the maximum value M2.
  • the correction unit 64 feedback-controls the phase ⁇ based on the change in electric power.
  • step S51 the correction unit 64 determines whether or not the power is greater than the reference value.
  • the performance can be improved by optimizing the phase ⁇ .
  • step S2 is performed after step S1, but step S2 may be performed after step S6 as shown in FIG. Specifically, if YES in step S1, step S3 is executed. After step S6 is executed, step S2 is executed. After step S2 is executed, step S1 is executed again.
  • the rotor position is detected by a resolver, but the rotor position may be detected by a hall sensor, for example.
  • the position of the rotor may be estimated.
  • Various known methods may be used to detect and estimate the position of the rotor.
  • the power supply 3 is a DC power supply in the first embodiment, the power supply 3 may be an AC power supply. In this case, the AC power output from the power supply 3 is rectified into DC power and then input to the driving device 4A.
  • the power Pi is calculated based on the current Im, but the power Pi may be calculated based on table data or the like.
  • Pm may be calculated as an effective value from the detected value.
  • Pm may be calculated on dq coordinates if vector control is applied. Various known methods may be used to calculate Pm.
  • the correction section 64 corrects the phase ⁇ based on the signal regarding Pm transmitted from the power detection section 65 . That is, the correction unit 64 may correct the phase ⁇ based on the power output from the driving device 4B.
  • the correction unit 64 calculates the power based on the voltage and the current, and corrects the phase ⁇ so that the magnitude of the power approaches an extreme value.
  • the phase ⁇ may be corrected so that the magnitude of the current tends toward its extreme value.
  • the phase ⁇ at which the electric power is the minimum value M1 coincides with the phase ⁇ at which the current is the minimum value.
  • the phase ⁇ at which the electric power reaches the maximum value M2 coincides with the phase ⁇ at which the current reaches the maximum value. Therefore, as the magnitude of the current tends to an extreme value, the magnitude of the power also tends to an extreme value.
  • the current may be calculated as an effective value from the detected value (instantaneous value), for example. Current may be calculated on dq coordinates if vector control is applied.
  • the electric machine system 1D according to the fourth embodiment mainly differs from the electric machine system 1B of the second embodiment in that it includes a drive device 4D instead of the drive device 4B.
  • the drive device 4D mainly differs from the drive device 4B of the second embodiment in that it has a control device 6D instead of the control device 6B.
  • Other configurations of the electric machine system 1D are the same as those of the electric machine system 1B. The points of the electric machine system 1D that differ from the electric machine system 1B will be described below.
  • the control unit 60 of the control device 6D corrects the phase ⁇ based on the signal regarding the power Pm transmitted from the power detection unit 65.
  • the correction unit 64 of the control unit 60 corrects the phase ⁇ so that the power Pm output from the driving device 4D tends toward the extreme value.
  • the correction unit 64 may not consider the power consumed by the power converter 5 when correcting the phase ⁇ . According to the electric machine system 1D, similarly to the electric machine system 1B, the performance can be improved by optimizing the phase ⁇ .
  • the electric machine system 1E according to the fifth embodiment mainly differs from the electric machine system 1A of the first embodiment in that it includes a drive device 4E instead of the drive device 4A.
  • the driving device 4E mainly differs from the driving device 4A of the first embodiment in that it has a control device 6E instead of the control device 6A.
  • Other configurations of the electric machine system 1E are the same as those of the electric machine system 1A. The points of the electric machine system 1E that differ from the electric machine system 1A will be described below.
  • the electric machine 2 of the electric machine system 1E has a stator 21 and a rotor 22 rotatable with respect to the stator 21, like the electric machine 2 of the electric machine system 1A.
  • the stator 21 includes coils 23 .
  • Rotor 22 includes magnets 24 .
  • the control device 6E further includes a speed estimator 67 and a current detector 68.
  • the speed estimator 67 estimates the rotation speed ⁇ r of the electric machine 2 .
  • the rotational speed ⁇ r is detected, for example, by a magnetic pole position sensor (eg, resolver), a rotational speed sensor, or the like.
  • the rotational speed ⁇ r may be, for example, an estimated value applied to magnetic pole position sensorless control or the like.
  • the speed estimator 67 transmits a signal regarding the rotational speed ⁇ r to the corrector 64 .
  • the current detector 68 is connected between the power converter 5 and the electric machine 2 .
  • Current detector 68 detects AC current Ia output from power converter 5 .
  • the AC current Ia may be calculated as an effective value or an absolute average value from the detected value (instantaneous value), for example.
  • Current may be calculated on dq coordinates if vector control is applied.
  • the current detection unit 68 transmits a signal regarding the alternating current Ia to the correction unit 64 .
  • the correction unit 64 receives a signal related to the voltage V transmitted from the voltage detection unit 61, a signal related to the current I transmitted from the current detection unit 62, a signal related to the rotation speed ⁇ r transmitted from the speed estimation unit 67, and a current detection unit 68. An index value is calculated based on the signal related to the current Ia transmitted from the .
  • the index value correlates with the current input to the coil of the electric machine 2 .
  • the index value is a division value obtained by dividing the current Ia (the current input to the coil of the electric machine 2) by the torque of the electric machine 2.
  • T be the torque of the electric machine 2
  • V be the voltage input to the power converter 5 (DC voltage output from the power supply 3)
  • V the current input to the power converter 5 (DC current output from the power supply 3).
  • the correction unit 64 corrects the phase ⁇ so that the index value tends toward the extreme value. In this embodiment, the index value is the minimum value.
  • the correction unit 64 corrects the phase ⁇ of the signal so that the index value correlated with the current input to the coil tends toward the extreme value.
  • the index value correlated with the current input to the coil becomes an extreme value, it is assumed that the loss of the electric machine 2 is minimal, that is, the phase ⁇ of the signal with respect to the rotor position is optimal. be done.
  • the phase ⁇ of the signal wasteful power consumption can be suppressed even if the position of the rotor is not detected with high accuracy. Therefore, according to the electric machine system 1E, performance can be improved.
  • the index value is a division value obtained by dividing the current Ia input to the coil by the torque of the electric machine 2 .
  • the amount of change in the index value per amount of change in the phase .theta. becomes relatively large, so that the control of the phase .theta. can be performed with higher sensitivity.
  • the amount of change in index value per amount of change in phase ⁇ (see solid line G1) is large.
  • the minimum value (extreme value) M1 stands out more, so that the phase ⁇ can be corrected with higher sensitivity so that the index value tends toward the minimum value M1.
  • the torque of the electric machine 2 is calculated by the above-described formula, the configuration of the device is simpler than when the torque is detected by a sensor or the like, so that the cost can be reduced.
  • the index value may be the current input to the coil of the electric machine 2.
  • the index value may be a multiplication value obtained by multiplying the alternating current input to the coils of the electric machine 2 by the alternating voltage input to the coils of the electric machine 2 .
  • the index value may be the temperature of the coils of the electric machine 2 .
  • the temperature of the coil of the electric machine 2 is, for example, a measured value with a thermometer.
  • the temperature of the coils of the electric machine 2 is correlated to the current input to the coils of the electric machine 2 .
  • the greater the magnitude of the current input to the coil the greater the temperature of the coil.
  • the index value may be a division value obtained by dividing the temperature of the coil of the electric machine 2 by the torque of the electric machine 2 .
  • the index value may be the power input to the coils of the electric machine 2 .
  • the index value should be correlated with the current input to the coil of the electric machine 2 . In these cases, the performance of the electric machine system can be
  • the torque of the electric machine 2 may be calculated based on the output of the electric machine 2.
  • the torque of electric machine 2 may be detected by a sensor.
  • the electric machine systems 1D and 1E may include the electric machine 7 of the third embodiment instead of the electric machine 2.
  • the electric machine systems 1D and 1E may have the load 8 of the third embodiment instead of the power supply 3.
  • the power converter 5 inputs the power output from the electric machine 7 to the load 8 as in the third embodiment.
  • the index value correlates with the current output by the electric machine 7 .
  • the extremum is the maximum value.
  • the correction unit 64 corrects the phase ⁇ so that the index value tends toward the maximum value.
  • the electric machine system of the present disclosure includes [1] “an electric machine having a stator including a coil and a rotor including a magnet and rotatable with respect to the stator; a power converter for outputting; and a control section for controlling the power converter, wherein the control section outputs a signal for operating the power converter to the power converter; a correction unit that corrects the phase of the signal that determines timing of inputting and outputting the electric power to and from the coil, the correction unit correcting the phase so that the magnitude of the electric power approaches an extreme value. , electromechanical systems.”
  • the electric machine is an electric motor
  • the extreme value is a minimum value
  • the correcting unit corrects the phase in a first direction, resulting in the electric power is reduced, the phase is again corrected in the first direction, and when the power is increased as a result of correcting the phase in the first direction, the phase is corrected in the first direction
  • the electric machine system of the present disclosure includes [4] ⁇ the correction unit includes an execution mode in which the phase correction is performed and a pause mode in which the phase correction is suspended, and the above [1] to [ 3].
  • the electric machine is a generator
  • the extreme value is a maximum value
  • the correcting unit corrects the phase in the first direction, resulting in the
  • the phase is corrected again in the first direction, and when the power decreases as a result of correcting the phase in the first direction, the phase is changed in the first direction.
  • the electric machine system of the present disclosure includes [6] “an electric machine having a stator including a coil and a rotor including a magnet and rotatable relative to the stator; a power converter for outputting; and a control section for controlling the power converter, wherein the control section outputs a signal for operating the power converter to the power converter; and a correcting unit that corrects the phase of the signal that determines timing of inputting/outputting the power to/from the coil, wherein the correcting unit has an index value correlated with the current input/output to/from the coil that is an extreme value.
  • a dynamo-mechanical system that corrects the phase so that
  • the electric machine system of the present disclosure may be [7] ⁇ the electric machine system according to [6] above, wherein the index value is a division value obtained by dividing the current by the torque of the electric machine.'' .
  • the electric machine system of the present disclosure may be [8] "the electric machine system according to [6] above, wherein the index value is the current.”
  • the electric machine system of the present disclosure includes [9] ⁇ the index value is a multiplication value obtained by multiplying an alternating current input/output to/from the coil by an alternating voltage input/output to/from the coil, [ 6].

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

電動機械システムは、電動機械と、電力変換器と、制御部と、を備えている。電動機械は、コイルを含む固定子と、磁石を含むと共に固定子に対して回転可能な回転子と、を有している。電力変換器は、電動機械のコイルに対して電力を入力する。制御部は、電力変換器を制御する。制御部は、出力部と、補正部と、を有している。出力部は、電力変換器を動作させるための制御信号を電力変換器へ出力する。補正部は、電動機械のコイルに対する電力の入力のタイミングを定める制御信号の位相を補正する。補正部は、電力の大きさが極値に向かうように、位相を補正する。

Description

電動機械システム
 本開示は、電動機械システムに関する。
 従来、固定子及び回転子を備える電動機械が知られている(例えば、特許文献1参照)。特許文献1に記載の電動機械では、モータのヒステリシス特性を利用して回転子磁極の極性を判別することで、回転子の位置を検出している。
国際公開第2011/077829号
 ところで、上述したような電動機械では、例えば効率等の性能を向上させるために、回転子が所定の位置に位置しているタイミングに合わせて電力を入力することが求められている。しかしながら、回転子の位置を高精度に検出すること、又は、電力の入力のタイミングを高精度に制御することは困難である。回転子が所定の位置に位置しているタイミングと電力の入力のタイミングとがずれていると、無駄な電力の消費が生じる結果、電動機械の性能が低下してしまうおそれがある。
 本開示は、性能を向上させることができる電動機械システムを提供することを目的とする。
 本開示の一側面に係る電動機械システムは、コイルを含む固定子と、磁石を含むと共に固定子に対して回転可能な回転子と、を有する電動機械と、コイルに対して電力を入出力するための電力変換器と、電力変換器を制御する制御部と、を備え、制御部は、電力変換器を動作させるための信号を電力変換器へ出力する出力部と、コイルに対する電力の入出力のタイミングを定める信号の位相を補正する補正部と、を有し、補正部は、電力の大きさが極値に向かうように、位相を補正する。
 この電動機械システムでは、補正部は、コイルに対して入出力される電力の大きさが極値に向かうように、信号の位相を補正する。電力の大きさが極値となった場合には、電動機械の損失が最小であり、つまり、回転子の位置に対する信号の位相が最適であると想定される。これにより、回転子の位置を高精度に検出しなくても、信号の位相を最適化することで、無駄な電力の消費を抑制することができる。よって、この電動機械システムによれば、性能を向上させることができる。
 電動機械は、電動機であり、極値は、最小値であり、補正部は、位相を第1方向に向けて補正した結果電力が小さくなった場合に、位相を再び第1方向に向けて補正し、位相を第1方向に向けて補正した結果電力が大きくなった場合に、位相を第1方向とは反対の第2方向に向けて補正してもよい。この構成によれば、電動機械が電動機である場合に、位相の補正による電力の変化に基づいて、位相の補正方向を変化させることができる。これにより、電力の大きさを最小値に向かわせることができる。
 補正部は、位相を補正した結果位相が最大限度値よりも大きくなった場合に、最大限度値を補正後の位相とし、位相を補正した結果位相が最小限度値よりも小さくなった場合に、最小限度値を補正後の位相としてもよい。この構成によれば、信号の位相が意図しない範囲までずれることを抑制することができる。
 補正部は、位相の補正を実行する実行モードと、位相の補正を休止する休止モードと、を含んでいてもよい。この構成によれば、回転子の位置に対する信号の位相を補正する必用がある場合にのみ、実行モードに切替えることができる。
 電動機械は、発電機であり、極値は、最大値であり、補正部は、位相を第1方向に向けて補正した結果電力が大きくなった場合に、位相を再び第1方向に向けて補正し、位相を第1方向に向けて補正した結果電力が小さくなった場合に、位相を第1方向とは反対の第2方向に向けて補正してもよい。この構成によれば、電動機械が発電機である場合に、位相の補正による電力の変化に基づいて、位相の補正方向を変化させることができる。これにより、電力の大きさを最大値に向かわせることができる。
 本開示の一側面に係る電動機械システムは、コイルを含む固定子と、磁石を含むと共に固定子に対して回転可能な回転子と、を有する電動機械と、コイルに対して電力を入出力するための電力変換器と、電力変換器を制御する制御部と、を備え、制御部は、電力変換器を動作させるための信号を電力変換器へ出力する出力部と、コイルに対する電力の入出力のタイミングを定める信号の位相を補正する補正部と、を有し、補正部は、コイルに対して入出力される電流に相関する指標値が極値に向かうように、位相を補正する。
 この電動機械システムでは、補正部は、コイルに対して入出力される電流に相関する指標値が極値に向かうように、信号の位相を補正する。コイルに対して入出力される電流に相関する指標値が極値となった場合には、電動機械の損失が最小であり、つまり、回転子の位置に対する信号の位相が最適であると想定される。これにより、回転子の位置を高精度に検出しなくても、信号の位相を最適化することで、無駄な電力の消費を抑制することができる。よって、この電動機械システムによれば、性能を向上させることができる。
 指標値は、電流を電動機械のトルクで除算した除算値であってもよい。これにより、位相の変化量当たりの指標値の変化量が比較的大きくなるため、位相の制御をより高感度に行うことができる。
 指標値は、電流であってもよい。これにより、電流を指標値として用いることで、電動機械システムの性能を向上させることができる。
 指標値は、コイルに対して入出力される交流電流にコイルに対して入出力される交流電圧を乗算した乗算値であってもよい。これにより、交流電流と交流電圧との乗算値を指標値として用いることで、電動機械システムの性能を向上させることができる。
 本開示によれば、性能を向上させることができる電動機械システムを提供することが可能となる。
第1実施形態に係る電動機械システムの構成図である。 回転子の位置に対する信号の位相を示すグラフである。 回転子の位置に対する信号の位相と電動機械の電力との関係を示すグラフである。 図1に示される制御部において実行される処理を示すフローチャートである。 第2実施形態に係る電動機械システムの構成図である。 第3実施形態に係る電動機械システムの構成図である。 回転子の位置に対する信号の位相と電動機械の電力との関係を示すグラフである。 図6に示される制御部において実行される処理を示すフローチャートである。 図1に示される制御部において実行される処理の変形例を示すフローチャートである。 第4実施形態に係る電動機械システムの構成図である。 第5実施形態に係る電動機械システムの構成図である。 回転子の位置に対する信号の位相と指標値との関係を示すグラフである。
 以下、本開示の実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。
[第1実施形態]
 図1に示されるように、電動機械システム1Aは、電動機械2と、電源3と、駆動装置4Aと、を備えている。電動機械システム1Aは、例えば、電動コンプレッサ、電動ブロア又は車両(移動体)等に適用される。電動機械2は、電動機(モータ)である。電動機械2は、固定子(モータステータ)と、固定子に対して回転可能な回転子(モータロータ)と、を有している。回転子は、シャフト、及びシャフトに設けられた永久磁石を有している。固定子は、回転子を周方向に囲んでいる。固定子は、複数のコイル及び鉄心を有している。
 固定子のコイルに電力が供給されると、固定子が磁場を生じさせる。この磁場によって回転子に周方向の力が作用する結果、回転子にトルクが付与される。回転子は、当該トルクの作用によって回転する。電動機械2は、回転子の高速回転(例えば10万~20万rpm)に対応可能な特性を有している。電源3は、直流電源である。電源3は、例えば蓄電池である。
 駆動装置4Aは、電力変換器5と、制御装置6Aと、を有している。電力変換器5は、電動機械2及び電源3に接続されている。電力変換器5は、電源3から出力される電力を電動機械2のコイルに対して入力する。つまり、電源3から出力された電力は、電力変換器5を介して電動機械2へ入力される。電力変換器5は、インバータとして機能する。電力変換器5は、電源3から出力される直流電力を交流電力に変換する。電力変換器5は、交流電力を電動機械2へ入力する。電力変換器5は、例えばスイッチ回路を有している。スイッチ回路は、例えば、MOSFET又はIGBT等の半導体スイッチを有している。電力変換器5は、例えばPWM制御方式によって電動機械2へ交流電力を供給する。
 制御装置6Aは、電圧検出部61と、電流検出部62と、制御部60と、を有している。電圧検出部61は、電力変換器5と電源3との間に接続されている。電圧検出部61は、電源3から出力される直流電圧Vを検出する。電圧検出部61は、検出された電圧Vに関する信号を後述する補正部64へ送信する。
 電流検出部62は、電力変換器5と電源3との間に接続されている。電流検出部62は、電源3から出力される直流電流Iを検出する。電流検出部62は、検出された電流Iに関する信号を補正部64へ送信する。
 制御部60は、電力変換器5を制御する。制御部60は、例えば、プロセッサ(例えば、CPU等)、及びメモリ(例えば、ROM、RAM等)等を備えるコンピュータ装置である。制御部60は、機能的構成として出力部63と補正部64とを有している。出力部63は、電力変換器5を動作させるための信号(以下、「制御信号」という)を電力変換器5へ出力する。
 図2に示されるように、制御信号は、例えばPWM制御信号である。出力部63は、電力変換器5の複数の半導体スイッチのそれぞれに関する信号(P)及び信号(N)を生成する。一例として、信号(P)及び信号(N)のそれぞれは、120°の通電期間を有し、前半の60°の期間は、ON/OFFが繰り返され、後半の60°の期間は、ONとされる。出力部63は、制御信号を電力変換器5へ出力する。電力変換器5は、制御信号に応じて、直流電力を交流電力に変換しつつ、当該交流電力を電動機械2のコイルへ入力する。なお、電動機械2のコイルに対する電力の入力のタイミングは、制御信号が電力変換器5へ出力されるタイミングと一致する。
 補正部64は、回転子の位置に対する制御信号の位相を補正する。回転子の位置とは、固定子に対して回転子が回転した角度のことをいう。一例として、回転子が、固定子に対する回転子の基準位置(0°)から90°回転した場合、回転子の位置は、90°である。回転子の位置は、例えばレゾルバによって検出される。回転子が固定子に対して1回転(360°回転)する間に、例えば2周期のレゾルバ信号が出力される。
 回転子の位置に対する制御信号の位相(以下、単に「位相」という)とは、回転子の位置に対して、制御信号が電力変換器5へ出力されるタイミングのことをいう。一例として、回転子の位置が90°であるタイミングに制御信号が電力変換器5へ出力された場合、位相θは、90°である。つまり、位相θは、電動機械2のコイルに対する電力の入力のタイミングを定める。
 換言すると、回転子の位置が90°であるタイミングと一周期分の制御信号の立ち上がりのタイミング(例えば信号(P)の前半60°期間の開始のタイミング)とが一致している場合には、位相θは、90°である。
 補正部64は、補正後の位相θに関する信号を出力部63へ出力する。出力部63は、回転子が補正後の位相θに対応する位置に位置しているタイミングに、制御信号を電力変換器5へ出力する。一例として、出力部63は、位相θが90°である場合には、回転子の位置が90°であるタイミングに、制御信号を電力変換器5へ出力する。電力変換器5は、制御信号に応じて、電源3から出力される電力を電動機械2へ入力する。一例として、電力変換器5は、回転子の位置が90°であるタイミングに、電動機械2への電力の入力を開始する。換言すると、電力変換器5は、位相θが90°である場合には、回転子の位置が90°であるタイミングと一周期分の制御信号の立ち上がりのタイミングとが一致するように、電動機械2へ電力を入力する。これにより、回転子の位置が90°であるタイミングに、回転子に回転トルクが発生する。
 以下、補正部64による位相θの補正について詳細に説明する。補正部64は、電圧検出部61から送信された電圧Vに関する信号及び電流検出部62から送信された電流Iに関する信号に基づいて、電動機械2へ入力される電力(以下、単に「電力」という)を算出する。
 補正部64は、電力の大きさが極値に向かうように、位相θを補正する。極値とは、最大値又は最小値のことをいう。本実施形態では、極値は、最小値である。図3に示されるように、電力の大きさは、位相θの増加に従って、減少し、最小値M1に到達した後、増加する傾向にある。位相θが最適値に近付くと、電動機械2の力率が向上すると共に損失が減少し、その結果、電力の大きさが最小値M1に近付く。換言すると、電力の大きさが最小値M1となった場合には、位相θが最適値となっていると想定される。
 補正部64は、電力の変化に基づいて、位相θを補正する。補正部64は、所定の補正幅(補正量)ごとに位相θを増減させる。つまり、位相θは、補正部64による補正ごとに補正幅ずつ増減する。本実施形態では、補正部64は、制御上の基準位相に対して、位相補正量(補正幅)を加減させる。換言すると、補正部64は、制御上の基準位相に対して、電力の極値化を図るように補正する。本実施形態では、位相θを増加させる方向を第1方向といい、位相θを減少させる方向を第2方向という。本実施形態では、第1方向を第2方向へ切り替えること、及び、第2方向を第1方向へ切り替えることを補正方向の逆転という。
 補正部64は、電力が小さくなった場合には、補正方向を維持し、電力が大きくなった場合には、補正方向を逆転させる。具体的には、補正部64は、位相θを増加する方向(第1方向)に向けて補正した結果、電力が小さくなった場合には、位相θを再び増加する方向に向けて補正する。補正部64は、位相θを増加する方向に向けて補正した結果、電力が大きくなった場合には、位相θを減少する方向(第1方向とは反対の第2方向)に向けて補正する。
 補正部64は、位相θを減少する方向に向けて補正した結果、電力が小さくなった場合には、位相θを再び減少する方向に向けて補正する。補正部64は、位相θを減少する方向に向けて補正した結果、電力が大きくなった場合には、位相θを増加する方向に向けて補正する。このように、補正部64は、電力の大きさが最小値M1に向かうように、位相θを増減させる。補正部64は、電力の変化に基づいて、位相θをフィードバック制御する。
 補正部64は、例えば、所定期間ごとに位相θを補正する。具体的には、位相θの補正に用いられる電力の値は、所定期間の平均値である。補正部64は、所定期間ごとの電力の平均値を算出する。補正部64は、第1期間の電力の平均値、及び、第1期間の後の第2期間の電力の平均値に基づいて、位相θを補正する。第1期間と第2期間とは、互いに連続していてもよく、互いに離れていてもよい。
 補正部64は、所定の範囲内において位相θを補正する。具体的には、補正部64は、補正後の位相θが所定の範囲内にある場合には、当該補正後の位相θに関する信号を出力部63へ出力する。補正部64は、補正後の位相θが最大限度値よりも大きい場合には、最大限度値を補正後の位相θとして認識し、最大限度値に関する信号を出力部63へ出力する。補正部64は、補正後の位相θが最小限度値よりも小さい場合には、最小限度値を補正後の位相θとして認識し、最小限度値に関する信号を出力部63へ出力する。
 補正部64は、位相θの補正を実行する実行モードと、位相θの補正を休止する休止モードと、を含んでいる。補正部64は、電動機械2の運転状況等に基づいて、実行モードと休止モードとの間で切り替わることが可能である。
 次に、制御装置6Aにおいて実行される処理について説明する。図4に示されるように、補正部64は、実行モードにあるか否かを判定する(ステップS1)。ステップS1でYESの場合、補正部64は、位相θを補正する(ステップS2)。
 具体的には、補正部64は、現在の位相θに補正幅を加算することで、補正後の位相θを算出する。補正部64は、補正後の位相θが所定の範囲内にあるか否かを判定する。補正部64は、補正後の位相θが所定の範囲内にある場合には、補正後の位相θに関する信号を出力部63へ出力する。補正部64は、補正後の位相θが最大限度値よりも大きい場合には、最大限度値に関する信号を出力部63へ出力する。補正部64は、補正後の位相θが最小限度値よりも小さい場合には、最小限度値に関する信号を出力部63へ出力する。
 続いて、電圧検出部61及び電流検出部62のそれぞれは、電源3から出力される電圧及び電流のそれぞれを検出する(ステップS3)。続いて、補正部64は、電圧検出部61及び電流検出部62から送信された信号に基づいて、電動機械2へ入力される電力を算出する(ステップS4)。
 続いて、補正部64は、電力が基準値よりも小さいか否かを判定する(ステップS5)。基準値は、前回の処理で算出された電力の値である。ステップS5でYESの場合、補正部64は、ステップS4で算出された現在の電力を新たな基準値として設定する。続いて、再びステップS1が実行される。
 ステップS1でNOの場合、処理は終了する。ステップS5でNOの場合、補正部64は、補正方向を第2方向へ逆転させる(ステップS7)。ステップS7が実行された後、ステップS6が実行される。このような処理が繰り返されることで、電動機械2へ入力される電力の大きさが最小値M1に向かうように、位相θの補正が繰り返される。つまり、電力変換器5での損失が最小値に向かうように、又は、電力変換器5への入力電力が最小値に向かうように、位相θの補正が繰り返される。
 なお、制御部60には、位相θの初期値、補正方向の初期値及び電力の初期値が予め保存されている。上記の処理が実行されるのが初回である場合には、ステップS2において、位相θの初期値に補正幅が加算され、補正方向として補正方向の初期値が用いられる。また、ステップS5において、基準値として電力の初期値が用いられる。
 以上説明したように、電動機械システム1Aでは、補正部64が、電動機械2のコイルに対して入力される電力の大きさが最小値M1に向かうように、制御信号の位相θを補正する。電力の大きさが最小値M1となった場合には、電動機械2の損失が最小であり、つまり、位相θが最適であると想定される。これにより、位相θを最適化することで、無駄な電力の消費を抑制することができる。よって、電動機械システム1Aによれば、性能を向上させることができる。
 従来、電動機械を駆動する際には、回転子の磁極位置を検出し、回転トルクを発生する最適なタイミングに、固定子のコイルに電流を流して回転磁界を発生させることが期待されていた。しかしながら、回転子の磁極位置の検出誤差、又は電流通流タイミングの誤差によって、真の回転子の磁極位置から駆動電流位相の最適値又は目標値がずれてしまう問題があった。このような問題は、回転子の回転域が高ければ高いほど悪化する傾向にあった。また、このような問題は、電動機械の出力の低下、力率の低下、又は、駆動電流の増大による損失の増大等の性能の低下の原因となっていた。さらに、このような問題は、固定子の磁界と回転子の磁界との意図せぬ強め合い(強め界磁)又は弱め合い(弱め界磁)、電圧不足又は磁石減磁の原因となっていた。
 電動機械システム1Aでは、回転子の磁極位置の検出値から判断した電流通流タイミング(位相θ)を補正し、当該位相を常に変化させながら電力が最小となる条件を維持している。これにより、回転子の磁極位置の検出値の誤差、又は電流通流タイミング(位相θ)の誤差による、回転子の真の磁極位置に対する駆動電流位相が最適値又は目標値からずれてしまうことを抑制することが可能となる。また、運転条件によらず、位相ずれを最小に維持することが可能となる。これにより、電動機械2の出力特性の低下、電圧不足又は磁石減磁のリスクを抑制することが可能となる。電動機械システム1Aによれば、回転子の真の磁極位置に対する駆動電流位相の最適値を探索することで、回転子の真の磁極位置に対する駆動電流位相の誤差が最小値となるように、追従制御することが可能となる。
 電動機械2は、電動機である。極値は、最小値である。補正部64は、位相θを第1方向に向けて補正した結果電力が小さくなった場合に、位相θを再び第1方向に向けて補正し、位相θを第1方向に向けて補正した結果電力が大きくなった場合に、位相θを第1方向とは反対の第2方向に向けて補正している。この構成によれば、電動機械2が電動機である場合に、位相θの補正による電力の変化に基づいて、位相θの補正方向を変化させることができる。これにより、電力の大きさを最小値に向かわせることができる。
 補正部64は、位相θを補正した結果位相θが最大限度値よりも大きくなった場合に、最大限度値を補正後の位相θとし、位相θを補正した結果位相θが最小限度値よりも小さくなった場合に、最小限度値を補正後の位相θとする。この構成によれば、位相θが意図しない範囲までずれることを抑制することができる。
 補正部64は、位相θの補正を実行する実行モードと、位相θの補正を休止する休止モードと、を含んでいる。この構成によれば、振動又は出力の異常が検出された場合等のような、回転子の位置に対する信号の位相θを補正する必用がある場合にのみ、実行モードに切替えることができる。
 電圧検出部61は、電源3から出力される直流電圧Vを検出する。電流検出部62は、電源3から出力される直流電流Iを検出している。これにより、例えば、駆動装置4Aから電動機械2へ供給される交流電圧及び交流電流を検出する場合に比べ、より安定した電圧及び電流の検出値を得ることができる。したがって、補正部64は、電力の変化をより高精度に判定することができる。
[第2実施形態]
 図5に示されるように、第2実施形態に係る電動機械システム1Bは、駆動装置4Aに代えて駆動装置4Bを備える点で、第1実施形態の電動機械システム1Aと主に相違している。駆動装置4Bは、制御装置6Aに代えて制御装置6Bを有している点で、第1実施形態の駆動装置4Aと主に相違している。電動機械システム1Bのその他の構成は、電動機械システム1Aと同じである。以下、電動機械システム1Bのうち、電動機械システム1Aと異なる点について、説明する。
 制御装置6Bは、電力検出部65と、制御部60と、を有している。電力検出部65は、電力変換器5と電動機械2との間に接続されている。電力検出部65は、電力変換器5から出力される交流電圧及び交流電流を検出し、電力変換器5から出力される電力Pmを算出する。電力検出部65は、算出された電力Pmに関する信号を補正部64へ送信する。
 制御部60は、機能的構成として演算部66を更に有している。電力検出部65は、検出された電流Imに関する信号を演算部66へ送信する。演算部66は、電力検出部65から送信された信号に基づいて、電力変換器5によって消費された電力Piを算出する。演算部66は、算出された電力Piに関する信号を補正部64へ出力する。補正部64は、電力Pmと電力Piとを加算することで、駆動装置4Bへ入力される電力を算出する。補正部64は、駆動装置4Bへ入力される電力に基づいて、位相θを補正する。
 電動機械システム1Bによれば、電動機械システム1Aと同様に、位相θを最適化することで、性能を向上させることができる。
[第3実施形態]
 図6に示されるように、第3実施形態に係る電動機械システム1Cは、電動機械2に代えて電動機械7を備える点、及び、電源3に代えて負荷8を備える点で、電動機械システム1Aと主に相違している。電動機械システム1Cのその他の構成は、電動機械システム1Aと同じである。以下、電動機械システム1Cのうち、電動機械システム1Aと異なる点について、説明する。
 電動機械7は、発電機(ジェネレータ)である。電動機械7は、電動機械2と同様に、固定子と、回転子と、を有している。回転子は、例えば、エンジン等の駆動によって回転する。固定子のコイルには、回転子の磁場の作用によって電流が流れる。電動機械7は、交流電力を出力する。負荷8は、例えば蓄電池である。
 電力変換器5は、電動機械7から出力される電力を負荷8に対して入力する。つまり、電動機械7から出力された電力は、電力変換器5を介して負荷8へ入力される。電力変換器5は、コンバータとして機能する。電力変換器5は、電動機械7から出力される交流電力を直流電力に変換する。電力変換器5は、直流電力を負荷8へ入力する。以下、負荷8へ入力される電力を単に「電力」という。
 補正部64は、電力の大きさが極値となるように、位相θを補正する。本実施形態では、極値は、最大値である。図7に示されるように、電力の大きさは、位相θの増加に従って、増加し、最大値M2に到達した後、減少する傾向にある。回転子の位置に対する位相θが最適値に近付くと、力率が向上すると共にシステムの損失が減少し、その結果、電力の大きさが最大値M2に近付く。換言すると、電力の大きさが最大値M2となった場合には、位相θが最適値となっていると想定される。
 補正部64は、電力が大きくなった場合には、補正方向を維持し、電力が小さくなった場合には、補正方向を逆転させる。具体的には、補正部64は、位相θを増加する方向(第1方向)に向けて補正した結果、電力が大きくなった場合には、位相θを再び増加する方向に向けて補正する。補正部64は、位相θを増加する方向に向けて補正した結果、電力が小さくなった場合には、位相θを減少する方向(第1方向とは反対の第2方向)に向けて補正する。
 補正部64は、位相θを減少する方向に向けて補正した結果、電力が大きくなった場合には、位相θを再び減少する方向に向けて補正する。補正部64は、位相θを減少する方向に向けて補正した結果、電力が小さくなった場合には、位相θを増加する方向に向けて補正する。このように、補正部64は、電力の大きさが最大値M2に向かうように、位相θを増減させる。補正部64は、電力の変化に基づいて、位相θをフィードバック制御する。
 次に、制御装置6Aにおいて実行される処理について説明する。図8に示されるように、電動機械システム1Cの制御装置6Cで実行される処理は、ステップS5に代えてステップS51を有している点で、相違している。電動機械システム1Cの処理のその他の構成は、電動機械システム1Aの処理と同じである。ステップS51において、補正部64は、電力が基準値よりも大きいか否かを判定する。
 電動機械システム1Cによれば、電動機械システム1Aと同様に、位相θを最適化することで、性能を向上させることができる。
[変形例]
 以上、実施形態について説明したが、本開示は、上述した実施形態に限定されない。
 第1実施形態において、ステップS2がステップS1の後に実行される例を示したが、図9に示されるように、ステップS2は、ステップS6の後に実行されてもよい。具体的には、ステップS1でYESの場合、ステップS3が実行される。ステップS6が実行された後、ステップS2が実行される。ステップS2が実行された後、再びステップS1が実行される。
 第1実施形態において、回転子の位置が、レゾルバによって検出される例を示したが、回転子の位置は、例えばホールセンサによって検出されてもよい。回転子の位置は、推定されてもよい。回転子の位置の検出及び推定は、種々の公知の方法が用いられてもよい。
 第1実施形態において、電源3が直流電源である例を示したが、電源3は、交流電源であってもよい。この場合、電源3から出力される交流電力は、直流電力に整流された後、駆動装置4Aへ入力される。
 第2実施形態において、電力Piが電流Imに基づいて算出される例を示したが、電力Piは、テーブルデータ等に基づいて算出されてもよい。また、Pmは、検出値から実効値として算出されてもよい。Pmは、ベクトル制御が適用されている場合には、dq座標上で算出されてもよい。Pmの算出は、種々の公知の方法が用いられてもよい。
 第2実施形態において、制御部60が演算部66を有している例を示したが、制御部60は、演算部66を有していなくてもよい。この場合、補正部64は、電力検出部65から送信されるPmに関する信号に基づいて、位相θを補正する。つまり、補正部64は、駆動装置4Bから出力される電力に基づいて、位相θを補正してもよい。
 各実施形態において、補正部64が、電圧及び電流に基づいて電力を算出し、当該電力の大きさが極値に向かうように、位相θを補正する例を示したが、補正部64は、電流の大きさが極値に向かうように、位相θを補正してもよい。電動機械システム1A,1Bにおいて、電力が最小値M1(図3参照)となる位相θと、電流が最小値となる位相θとは、一致する。電動機械システム1Cにおいて、電力が最大値M2(図7参照)となる位相θと、電流が最大値となる位相θとは、一致する。したがって、電流の大きさが極値に向かうと、電力の大きさも極値に向かう。電流は、例えば、検出値(瞬時値)から実効値として算出されてもよい。電流は、ベクトル制御が適用されている場合には、dq座標上で算出されてもよい。
[第4実施形態]
 電動機械システム1Dに備わっている電力検出部65からの信号に基づいた制御例について説明する。図10に示されるように、第4実施形態に係る電動機械システム1Dは、駆動装置4Bに代えて駆動装置4Dを備える点で、第2実施形態の電動機械システム1Bと主に相違している。駆動装置4Dは、制御装置6Bに代えて制御装置6Dを有している点で、第2実施形態の駆動装置4Bと主に相違している。電動機械システム1Dのその他の構成は、電動機械システム1Bと同じである。以下、電動機械システム1Dのうち、電動機械システム1Bと異なる点について、説明する。
 本実施形態では、制御装置6Dの制御部60は、電力検出部65から送信された電力Pmに関する信号に基づいて、位相θを補正する。制御部60の補正部64は、駆動装置4Dから出力される電力Pmが極値に向かうように、位相θを補正する。補正部64は、位相θの補正に際して、電力変換器5によって消費された電力を考慮しなくてもよい。電動機械システム1Dによれば、電動機械システム1Bと同様に、位相θを最適化することで、性能を向上させることができる。
[第5実施形態]
 図11に示されるように、第5実施形態に係る電動機械システム1Eは、駆動装置4Aに代えて駆動装置4Eを備える点で、第1実施形態の電動機械システム1Aと主に相違している。駆動装置4Eは、制御装置6Aに代えて制御装置6Eを有している点で、第1実施形態の駆動装置4Aと主に相違している。電動機械システム1Eのその他の構成は、電動機械システム1Aと同じである。以下、電動機械システム1Eのうち、電動機械システム1Aと異なる点について、説明する。
 電動機械システム1Eの電動機械2は、電動機械システム1Aの電動機械2と同様に、固定子21と、固定子21に対して回転可能な回転子22と、を有している。固定子21は、コイル23を含んでいる。回転子22は、磁石24を含んでいる。
 制御装置6Eは、速度推定部67と、電流検出部68と、を更に有している。速度推定部67は、電動機械2の回転速度ωrを推定する。回転速度ωrは、例えば磁極位置センサ(例えばレゾルバ)又は回転数センサ又は等によって検出される。回転速度ωrは、例えば、磁極位置センサレス制御等に適用される推定値であってもよい。速度推定部67は、回転速度ωrに関する信号を補正部64へ送信する。
 電流検出部68は、電力変換器5と電動機械2との間に接続されている。電流検出部68は、電力変換器5から出力される交流電流Iaを検出する。交流電流Iaは、例えば、検出値(瞬時値)から実効値又は絶対平均値として算出されてもよい。電流は、ベクトル制御が適用されている場合には、dq座標上で算出されてもよい。電流検出部68は、交流電流Iaに関する信号を補正部64へ送信する。
 補正部64は、電圧検出部61から送信された電圧Vに関する信号、電流検出部62から送信された電流Iに関する信号、速度推定部67から送信された回転速度ωrに関する信号、及び電流検出部68から送信された電流Iaに関する信号に基づいて、指標値を算出する。
 指標値は、電動機械2のコイルに対して入力される電流に相関している。電動機械2のコイルに対して入力される電流の大きさが大きいほど指標値が大きい。本実施形態では、指標値は、電流Ia(電動機械2のコイルに対して入力される電流)を電動機械2のトルクで除した除算値である。電動機械2のトルクをTとし、電力変換器5へ入力される電圧(電源3から出力される直流電圧)をVとし、電力変換器5へ入力される電流(電源3から出力される直流電流)をIとし、電動機械2に対して入力される交流電流をIaとし、電動機械2の回転速度をωrとした場合、電動機械2のトルクは、式T=(V×I-K×Ia)/ωrによって算出される。ただし、Kは、電力変換器5及び電動機械2の緒元に基づいて算出された損失係数である。補正部64は、指標値が極値に向かうように、位相θを補正する。本実施形態では、指標値は、最小値である。
 以上説明したように、電動機械システム1Eでは、補正部64は、コイルに対して入力される電流に相関する指標値が極値に向かうように、信号の位相θを補正する。コイルに対して入力される電流に相関する指標値が極値となった場合には、電動機械2の損失が最小であり、つまり、回転子の位置に対する信号の位相θが最適であると想定される。これにより、回転子の位置を高精度に検出しなくても、信号の位相θを最適化することで、無駄な電力の消費を抑制することができる。よって、電動機械システム1Eによれば、性能を向上させることができる。
 指標値は、コイルに対して入力される電流Iaを電動機械2のトルクで除算した除算値である。これにより、位相θの変化量当たりの指標値の変化量が比較的大きくなるため、位相θの制御をより高感度に行うことができる。具体的には、図12に示されるように、位相θの変化量当たりの電力の変化量(図12の点線G2参照)に比べ、位相θの変化量当たりの指標値の変化量(図12の実線G1参照)が大きい。これにより、最小値(極値)M1がより際立つため、指標値が最小値M1に向かうように、位相θをより高感度に補正することができる。また、電動機械2のトルクは、上述した式によって算出されているため、例えばセンサ等によって検出される場合に比べ、装置の構成が簡単になるため、コストの削減を図ることができる。
 指標値は、電動機械2のコイルに対して入力される電流であってもよい。指標値は、電動機械2のコイルに対して入力される交流電流に電動機械2のコイルに対して入力される交流電圧を乗算した乗算値であってもよい。指標値は、電動機械2のコイルの温度であってもよい。電動機械2のコイルの温度は、例えば温度計による計測値である。電動機械2のコイルの温度は、電動機械2のコイルに対して入力される電流に相関している。コイルに対して入力される電流の大きさが大きいほどコイルの温度が大きい。指標値は、電動機械2のコイルの温度を電動機械2のトルクで除算した除算値であってもよい。指標値は、電動機械2のコイルに対して入力される電力であってもよい。指標 値は、電動機械2のコイルに対して入力される電流に相関していればよい。これらの場合、様々な値を指標値として用いることで、電動機械システムの性能を向上させることができる。
 電動機械2のトルクは、電動機械2の出力に基づいて算出されてもよい。電動機械2のトルクは、センサによって検出されてもよい。
 電動機械システム1D,1Eは、電動機械2に代えて、第3実施形態の電動機械7を備えていてもよい。電動機械システム1D,1Eは、電源3に代えて、第3実施形態の負荷8を備えていてもよい。この場合、電力変換器5は、第3実施形態と同様に、電動機械7から出力される電力を負荷8に対して入力する。この場合、指標値は、電動機械7から出力される電流に相関している。極値は、最大値である。補正部64は、指標値が最大値に向かうように、位相θを補正する。
 本開示の電動機械システムは、[1]「コイルを含む固定子と、磁石を含むと共に前記固定子に対して回転可能な回転子と、を有する電動機械と、前記コイルに対して電力を入出力するための電力変換器と、前記電力変換器を制御する制御部と、を備え、前記制御部は、前記電力変換器を動作させるための信号を前記電力変換器へ出力する出力部と、前記コイルに対する前記電力の入出力のタイミングを定める前記信号の位相を補正する補正部と、を有し、前記補正部は、前記電力の大きさが極値に向かうように、前記位相を補正する、電動機械システム。」である。
 本開示の電動機械システムは、[2]「前記電動機械は、電動機であり、前記極値は、最小値であり、前記補正部は、前記位相を第1方向に向けて補正した結果前記電力が小さくなった場合に、前記位相を再び前記第1方向に向けて補正し、前記位相を前記第1方向に向けて補正した結果前記電力が大きくなった場合に、前記位相を前記第1方向とは反対の第2方向に向けて補正する、上記[1]に記載の電動機械システム。」であってもよい。
 本開示の電動機械システムは、[3]「前記補正部は、前記位相を補正した結果前記位相が最大限度値よりも大きくなった場合に、前記最大限度値を補正後の前記位相とし、前記位相を補正した結果前記位相が最小限度値よりも小さくなった場合に、前記最小限度値を補正後の前記位相とする、上記[1]又は[2]に記載の電動機械システム。」であってもよい。
 本開示の電動機械システムは、[4]「前記補正部は、前記位相の補正を実行する実行モードと、前記位相の補正を休止する休止モードと、を含んでいる、上記[1]~[3]のいずれか一つに記載の電動機械システム。」であってもよい。
 本開示の電動機械システムは、[5]「前記電動機械は、発電機であり、前記極値は、最大値であり、前記補正部は、前記位相を第1方向に向けて補正した結果前記電力が大きくなった場合に、前記位相を再び前記第1方向に向けて補正し、前記位相を前記第1方向に向けて補正した結果前記電力が小さくなった場合に、前記位相を前記第1方向とは反対の第2方向に向けて補正する、上記[1]に記載の電動機械システム。」であってもよい。
 本開示の電動機械システムは、[6]「コイルを含む固定子と、磁石を含むと共に前記固定子に対して回転可能な回転子と、を有する電動機械と、前記コイルに対して電力を入出力するための電力変換器と、前記電力変換器を制御する制御部と、を備え、前記制御部は、前記電力変換器を動作させるための信号を前記電力変換器へ出力する出力部と、前記コイルに対する前記電力の入出力のタイミングを定める前記信号の位相を補正する補正部と、を有し、前記補正部は、前記コイルに対して入出力される電流に相関する指標値が極値に向かうように、前記位相を補正する、電動機械システム。」である。
 本開示の電動機械システムは、[7]「前記指標値は、前記電流を前記電動機械のトルクで除算した除算値である、上記[6]に記載の電動機械システム。」であってもよい。
 本開示の電動機械システムは、[8]「前記指標値は、前記電流である、上記[6]に記載の電動機械システム。」であってもよい。
 本開示の電動機械システムは、[9]「前記指標値は、前記コイルに対して入出力される交流電流に前記コイルに対して入出力される交流電圧を乗算した乗算値である、上記[6]に記載の電動機械システム。」であってもよい。
1A,1B,1C,1D,1E 電動機械システム
2,7 電動機械
5 電力変換器
60 制御部
63 出力部
64 補正部
θ 位相

 

Claims (9)

  1.  コイルを含む固定子と、磁石を含むと共に前記固定子に対して回転可能な回転子と、を有する電動機械と、
     前記コイルに対して電力を入出力するための電力変換器と、
     前記電力変換器を制御する制御部と、を備え、
     前記制御部は、
     前記電力変換器を動作させるための信号を前記電力変換器へ出力する出力部と、
     前記コイルに対する前記電力の入出力のタイミングを定める前記信号の位相を補正する補正部と、を有し、
     前記補正部は、前記電力の大きさが極値に向かうように、前記位相を補正する、電動機械システム。
  2.  前記電動機械は、電動機であり、
     前記極値は、最小値であり、
     前記補正部は、前記位相を第1方向に向けて補正した結果前記電力が小さくなった場合に、前記位相を再び前記第1方向に向けて補正し、前記位相を前記第1方向に向けて補正した結果前記電力が大きくなった場合に、前記位相を前記第1方向とは反対の第2方向に向けて補正する、請求項1に記載の電動機械システム。
  3.  前記補正部は、前記位相を補正した結果前記位相が最大限度値よりも大きくなった場合に、前記最大限度値を補正後の前記位相とし、前記位相を補正した結果前記位相が最小限度値よりも小さくなった場合に、前記最小限度値を補正後の前記位相とする、請求項1に記載の電動機械システム。
  4.  前記補正部は、前記位相の補正を実行する実行モードと、前記位相の補正を休止する休止モードと、を含んでいる、請求項1に記載の電動機械システム。
  5.  前記電動機械は、発電機であり、
     前記極値は、最大値であり、
     前記補正部は、前記位相を第1方向に向けて補正した結果前記電力が大きくなった場合に、前記位相を再び前記第1方向に向けて補正し、前記位相を前記第1方向に向けて補正した結果前記電力が小さくなった場合に、前記位相を前記第1方向とは反対の第2方向に向けて補正する、請求項1に記載の電動機械システム。
  6.  コイルを含む固定子と、磁石を含むと共に前記固定子に対して回転可能な回転子と、を有する電動機械と、
     前記コイルに対して電力を入出力するための電力変換器と、
     前記電力変換器を制御する制御部と、を備え、
     前記制御部は、
     前記電力変換器を動作させるための信号を前記電力変換器へ出力する出力部と、
     前記コイルに対する前記電力の入出力のタイミングを定める前記信号の位相を補正する補正部と、を有し、
     前記補正部は、前記コイルに対して入出力される電流に相関する指標値が極値に向かうように、前記位相を補正する、電動機械システム。
  7.  前記指標値は、前記電流を前記電動機械のトルクで除算した除算値である、請求項6に記載の電動機械システム。
  8.  前記指標値は、前記電流である、請求項6に記載の電動機械システム。
  9.  前記指標値は、前記コイルに対して入出力される交流電流に前記コイルに対して入出力される交流電圧を乗算した乗算値である、請求項6に記載の電動機械システム。

     
PCT/JP2022/036569 2021-10-01 2022-09-29 電動機械システム WO2023054635A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22876498.1A EP4346085A1 (en) 2021-10-01 2022-09-29 Electric-powered machine system
CN202280044714.5A CN117546401A (zh) 2021-10-01 2022-09-29 电动机械系统
US18/414,299 US20240154547A1 (en) 2021-10-01 2024-01-16 Electric machine system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021162730 2021-10-01
JP2021-162730 2021-10-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/414,299 Continuation US20240154547A1 (en) 2021-10-01 2024-01-16 Electric machine system

Publications (1)

Publication Number Publication Date
WO2023054635A1 true WO2023054635A1 (ja) 2023-04-06

Family

ID=85782911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036569 WO2023054635A1 (ja) 2021-10-01 2022-09-29 電動機械システム

Country Status (4)

Country Link
US (1) US20240154547A1 (ja)
EP (1) EP4346085A1 (ja)
CN (1) CN117546401A (ja)
WO (1) WO2023054635A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008099485A (ja) * 2006-10-13 2008-04-24 Matsushita Electric Ind Co Ltd モータ駆動装置
JP2008104315A (ja) * 2006-10-20 2008-05-01 Matsushita Electric Ind Co Ltd モータ駆動装置
WO2011077829A1 (ja) 2009-12-24 2011-06-30 株式会社安川電機 モータ制御装置及びその磁極位置検出方法
JP2015089318A (ja) * 2013-11-01 2015-05-07 株式会社安川電機 モータ制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008099485A (ja) * 2006-10-13 2008-04-24 Matsushita Electric Ind Co Ltd モータ駆動装置
JP2008104315A (ja) * 2006-10-20 2008-05-01 Matsushita Electric Ind Co Ltd モータ駆動装置
WO2011077829A1 (ja) 2009-12-24 2011-06-30 株式会社安川電機 モータ制御装置及びその磁極位置検出方法
JP2015089318A (ja) * 2013-11-01 2015-05-07 株式会社安川電機 モータ制御装置

Also Published As

Publication number Publication date
EP4346085A1 (en) 2024-04-03
US20240154547A1 (en) 2024-05-09
CN117546401A (zh) 2024-02-09

Similar Documents

Publication Publication Date Title
CN108702115B (zh) 电动机控制装置和电动机控制方法
JP6026812B2 (ja) モータ部およびインバータ部を備えたモータ制御装置
JP3684203B2 (ja) モータ制御装置
JP5127800B2 (ja) モータ制御装置
KR20130031089A (ko) 스위치드 릴럭턴스 모터의 속도 제어 장치
JP4110865B2 (ja) 永久磁石型電動機の制御システム
JP6998511B2 (ja) ブラシレスモータ制御装置およびブラシレスモータ制御方法
JP5305933B2 (ja) モータドライブシステム
JP4652176B2 (ja) 永久磁石型回転電機の制御装置
JP5172418B2 (ja) 電動機システムの制御装置
JP2014064400A (ja) モーター制御装置
JP2020120513A (ja) 同期電動機の制御装置
JP4352860B2 (ja) 電動機の制御装置
JP2008072858A (ja) 車両用回転電機の制御装置
KR20120086255A (ko) 모터 시스템 및 모터 제어 회로
WO2023054635A1 (ja) 電動機械システム
KR101709195B1 (ko) 모터 구동 시스템의 pwm 신호 위상 제어 장치
JP2010226842A (ja) ブラシレスdcモータの制御方法およびブラシレスdcモータの制御装置
JP2008148437A (ja) 永久磁石型同期モータの制御装置
JP6183194B2 (ja) モータ制御装置
JP3691269B2 (ja) モータ制御装置
JP4642512B2 (ja) モータ制御装置
JP7108834B2 (ja) 動力発生装置
JP2004120814A (ja) 電動機の制御装置、電動機装置、電動機の制御方法
JP3576509B2 (ja) モータ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876498

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022876498

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022876498

Country of ref document: EP

Effective date: 20231227

WWE Wipo information: entry into national phase

Ref document number: 2023551874

Country of ref document: JP