WO2011076540A1 - Scheibe mit elektrischem anschlusselement - Google Patents

Scheibe mit elektrischem anschlusselement Download PDF

Info

Publication number
WO2011076540A1
WO2011076540A1 PCT/EP2010/068804 EP2010068804W WO2011076540A1 WO 2011076540 A1 WO2011076540 A1 WO 2011076540A1 EP 2010068804 W EP2010068804 W EP 2010068804W WO 2011076540 A1 WO2011076540 A1 WO 2011076540A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrically conductive
intermediate layer
electrical connection
connection element
conductive structure
Prior art date
Application number
PCT/EP2010/068804
Other languages
English (en)
French (fr)
Inventor
Mitja Rateiczak
Andreas Schlarb
Bernhard Reul
Stefan Ziegler
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Priority to PL10788062T priority Critical patent/PL2517530T3/pl
Priority to EA201290548A priority patent/EA027939B1/ru
Priority to KR1020127011955A priority patent/KR101740083B1/ko
Priority to BR112012010298A priority patent/BR112012010298B8/pt
Priority to ES10788062.7T priority patent/ES2688657T3/es
Priority to US13/501,452 priority patent/US9370048B2/en
Priority to JP2012545199A priority patent/JP5767651B2/ja
Priority to MX2012005102A priority patent/MX2012005102A/es
Priority to EP10788062.7A priority patent/EP2517530B1/de
Priority to CN201080058857.9A priority patent/CN102656945B/zh
Publication of WO2011076540A1 publication Critical patent/WO2011076540A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/84Heating arrangements specially adapted for transparent or reflecting areas, e.g. for demisting or de-icing windows, mirrors or vehicle windshields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0016Apparatus or processes specially adapted for manufacturing conductors or cables for heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0033Apparatus or processes specially adapted for manufacturing conductors or cables by electrostatic coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/016Heaters using particular connecting means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing

Definitions

  • the present invention relates to a disc with electrical connection element, a process for their preparation and their use.
  • Electrical connection elements on disks with electrically conductive structures are known, for example, from WO 2007/1 16088 A1.
  • DE 10 2007 059 818 B3 discloses a flat conductor connection element with an electrically conductive layer which is fastened on an outer surface of a pane and between a section of the electrically conductive layer with an exposed soldering surface on the one hand and the glass pane surface on the other hand at least one electrically insulating buffer layer is provided ,
  • a body having a plurality of holes formed therein carries a solder mass with the solder mass disposed over the holes.
  • the present invention has for its object to provide an improved, mechanically and electrically permanently stable connection of electrical connection elements with discs.
  • a further object of the invention is to find a new method for producing disks with electrical connection elements and a new use of the same.
  • the invention comprises a pane, wherein an electrically conductive structure is applied to a glass pane, at least one intermediate layer is applied to the electrically conductive structure, at least one electrical connection element is applied to the intermediate layer, and wherein the intermediate layer, electrical connection element and electrically conductive structure at least one Form cavity and the cavity contains an electrically conductive material.
  • Advantages of the disc according to the invention include, inter alia, that critical mechanical stresses are minimized by the intermediate layer between the electrical connection element and the electrically conductive structure on the glass pane.
  • Critical mechanical stresses result from the magnitude and direction of point, line, and surface forces, shear forces, and torsional forces that can result in damage or breakage of the disks due to stresses in the manufacture or use of the disks.
  • Thermal stress induced mechanical stresses increase in particular with differences in the thermal expansion coefficients and the viscosity of the materials used.
  • the mechanical stresses are particularly critical when connecting glass panels with electrical connection elements at temperatures> 60 ° C, especially at> 120 ° C and especially> 158 ° C.
  • the cavity is completely enclosed by the intermediate layer.
  • the cavity then forms at least one recess within the intermediate layer.
  • the recess is bounded by the electrically conductive structure, the electrical connection element and the intermediate layer.
  • Cavities are advantageous according to the invention, since support cavities are provided for electrically conductive mass.
  • the shape of the electrically conductive mass is due to the shape of the cavities, the wetting of the electrically conductive mass within the cavities and the viscosity of the electrically conductive mass adjusted during manufacture and use. Critical mechanical stresses are prevented.
  • the shape and the volume of the cavities are determined in particular by the shape and the volume of the intermediate layer, as well as by the shape of the electrical connection element.
  • the electrically conductive mass is held in all three spatial directions in a defined geometry and achieves a permanent, electrical connection between the electrical connection element and the electrically conductive structure.
  • the electrically conductive mass is disposed within the cavity. Electrically conductive mass is not located in areas outside the cavities. The areas outside the cavities are formed by the outer edge of the cavities and / or projections of the outer edges. Electrically conductive mass is not visible when looking at the disc according to the invention in plan view. Due to their shape, wetting properties and viscosity, the electrically conductive mass preferably terminates flush with the outer edges of the cavities.
  • the intermediate layer according to the invention has a thickness of 0.5 ⁇ to 1 mm, preferably 1 ⁇ to 500 ⁇ and more preferably 10 ⁇ to 300 ⁇ .
  • the cavities have a diameter or area equivalent of 0.1 mm to 2 mm, and preferably from 0.2 mm to 1 mm.
  • the cavities have a diameter or area equivalent of 2 mm to 25 mm, and preferably from 3 mm to 10 mm and most preferably from 7.5 mm to 8.5 mm.
  • the cavities preferably have round, elliptical, rectangular or polygonal shapes which, according to the invention, form a shape of the electrically conductive mass form, which causes an improved, mechanically and electrically permanently stable connection of electrical connection elements to disks.
  • the area equivalents of the cavities are calculated from the diameter based on a round shape of the cavities and can be transferred to surfaces of elliptical, rectangular or polygonal or all forms that cause an improved, mechanically and electrically permanently stable connection of electrical connection elements to disks.
  • liners which, as a result of a multiplicity of cavities, bring about as many points of force application between electrically conductive mass and electrically conductive layer are particularly advantageous.
  • the cavities in the intermediate layer have a cross section which is formed from a region facing the electrical connection element, an intermediate region and an area facing away from the electrically conductive structure.
  • the shapes of the cavities in plan view can be configured differently over the depth of the cavities.
  • the areas preferably have round, elliptical or rectangular shapes.
  • the electrically conductive mass can form a particularly favorable shape in the cavities in order to reduce the mechanical loads on the electrically conductive structure and the glass pane. This is particularly favorable if the electrically conductive mass does not escape from the cavities.
  • the electrically conductive mass is held within the cavities by the wetting properties and viscosity of the electrically conductive material.
  • the wetting properties or capillary forces are set by the interfacial energies of the materials of the electrically conductive mass, the intermediate layer, the connecting element, the electrically conductive structure, the glass pane and / or the surrounding atmosphere.
  • the electrically conductive mass forms a concave meniscus within the cavity.
  • the concave meniscus is adjusted by a very small wetting angle of the electrically conductive mass within the cavity.
  • the viscosity of the electrically conductive mass depends on the material and the temperature. It is advantageous according to the invention to cause the shaping in the temperature range between the liquidus and the solidus temperature, when a large change in the viscosity of the electrically conductive mass is observed.
  • the intermediate layer according to the invention is particularly advantageous if the region of the recesses facing the electrical connection element has a smaller diameter or a smaller area than the region which faces the electrically conductive structure.
  • the edge shapes at the recesses and the shape of the electrical connection element are adapted to the flow behavior, the viscosity and the wetting properties of the electrically conductive mass.
  • the edge areas are preferably rectangular, rounded or heavily rounded.
  • the electrically conductive structure, the intermediate layer and the electrical connection element form a hyperbolic funnel, which tapers from the electrically conductive structure to the electrical connection element.
  • the recesses are filled only in the edge region of the hyperbolic funnel with electrically conductive material.
  • the shape of the electrically conductive mass is predetermined by the wetting properties and the viscosity of the electrically conductive mass at the intermediate layer and the electrical connection element.
  • the mechanical forces are according to the invention between the electrically conductive mass and the electrically conductive structure or the glass in a flat attack angle.
  • electrically conductive masses are used which, due to their shape, viscosity and their state of aggregation, do not transmit any critical forces to the electrically conductive structure and / or glass pane.
  • the viscosity is in the context of the invention also an expression of ductility of the electrically conductive mass in the solid state.
  • the mechanical connection between the connection element and the glass pane takes place via the intermediate layer and the solidus temperature of the electrically conductive mass is less than 158 ° C., preferably less than 120 ° C. and very particularly preferably less than 65 ° C. ,
  • connection element takes place via the electrically conductive mass and the solidus temperature of the electrically conductive mass is 159 ° C. to 220 ° C.
  • the electrically conductive mass contains a conductive liquid, metal alloy, and / or composite materials, preferably metal alloys with silver, tin, zinc, indium, bismuth and / or gallium and more preferably metal alloys with 60 wt.% To about 98 wt% gallium, 15 wt% to 70 wt% indium, 50 wt% to 98 wt% tin, 10 wt% to 80 wt% zinc, 2 wt% to 10 wt% Silver and / or 30% to 70% by weight bismuth.
  • a conductive liquid, metal alloy, and / or composite materials preferably metal alloys with silver, tin, zinc, indium, bismuth and / or gallium and more preferably metal alloys with 60 wt.% To about 98 wt% gallium, 15 wt% to 70 wt% indium, 50 wt% to 98 wt% tin, 10 wt% to 80 wt% zinc, 2
  • the electrically conductive materials having a solidus temperature of ⁇ 65 ° C. preferably contain 60% by weight to about 98% by weight of gallium.
  • the electrically conductive materials having a solidus temperature of greater than or equal to 65 ° C. and less than 158 ° C. very particularly preferably contain 15% by weight to 70% by weight of indium and / or 30% by weight to 70% by weight of bismuth.
  • the electrically conductive materials having a solidus temperature of greater than or equal to 158 ° C. very particularly preferably contain 50% by weight to 98% by weight of tin.
  • the electrically conductive materials are preferably lead-free according to the invention.
  • conductive sponge-like, braid-like or inorganic or organic composites or mixtures to be present in the electrically conductive mass.
  • conductive sponge-like, braid-like or inorganic or organic composites or mixtures include wool-like shaped metals such as silver wool.
  • the electrically conductive mass may be temporarily or permanently liquid due to a low solidus at normal ambient temperatures. At low viscosity of the electrically conductive mass, flow through the mold and the wetting properties within the cavities are prevented. The electrical connection remains. The mechanical connection between the electrical connection element and the electrically conductive structure and / or the glass pane takes place temporarily or permanently, completely or partially via the intermediate layer.
  • a liquid or low-viscous or highly ductile electrically conductive mass is particularly advantageous because no critical mechanical loads between electrically conductive material and the electrically conductive structures and / or glass occur.
  • the glass sheets are prestressed, semi-tempered or non-prestressed monolithic glass sheets or laminated glass sheets of silicate glass and preferably non-tempered or partially tempered laminated glass sheets.
  • the glass sheets have a thickness of 1 mm to 6 mm, preferably from 1, 8 mm to 4 mm.
  • the glass panes can be completely or partially coated with a covering screen print, preferably in the edge region and particularly preferably in the region of the electrical connection elements.
  • the electrically conductive structures on slices are preferably printed conductors with heating conductors and / or antenna conductors.
  • the electrically conductive structures are preferably connected in the edge region of the glass with electrical connection elements.
  • Electrical connection elements provide a permanent mechanical coupling and electrical connection between electrical conductors of, for example, the on-board electrical system in vehicles and the electrical conductive structure on the disc.
  • the electrical connection elements are preferably designed as flat conductors or so-called rigid connectors. Rigid connectors have a high rigidity due to their material properties, material thickness and shape.
  • the corrosion protection is preferably liquid and / or electrically conductive.
  • the intermediate layer contains temperature-stable polymer layers, ceramic screen printing paste, solder resists and / or adhesive tapes, preferably polyacrylate, cyanoacrylate, methyl methacrylate, silane and siloxane-crosslinking polymers, epoxy resin, polyurethane, polychloroprene, polyamide, acetate, silicone adhesive, polyethylene, polypropylene , Polyvinyl chloride, polyamide, polycarbonate, polyethylene terephthalate, polyethylene naphthalate, polyimides, polyethylene terephthalate, polyetherimides, polybenzimidazoles, polytetrafluoroethylene, thermosetting adhesives, their copolymers and / or mixtures thereof, and more preferably polyimides or polytetrafluoroethylene.
  • the intermediate layer which are not wetted by the electrically conductive mass.
  • the materials preferably have a low interfacial energy.
  • Polyimides, polytetrafluoroethylene or solder resists, as well as composite materials with polyimides or solder resists are particularly suitable for this purpose.
  • the intermediate layer according to the invention is composed of several layers, wherein the intermediate layer and the surfaces of the electrical connection element and the electrically conductive structure via adhesive layers are brought into positive contact.
  • the intermediate layers particularly preferably contain additional connecting cavities which connect the cavities to one another or to the edge of the intermediate layer. This is particularly advantageous for diverting gaseous products during the mechanical and electrical connection of the electrical connection element to the electrically conductive structure.
  • the connecting cavities are not or hardly filled or wetted with electrically conductive compound according to the invention.
  • an electrically conductive structure is applied to a glass pane, an intermediate layer applied to the electrically conductive structure and / or glass pane or an electrical connection element, electrically conductive mass applied to the electrical connection element or to the electrically conductive structure electrical connection element via the intermediate layer mechanically connected to the electrically conductive structure and / or glass, wherein at least one cavity is formed and the electrically conductive material is electrically connected within at least one cavity with the electrical connection element and the electrically conductive structure.
  • the intermediate layer is applied to the electrically conductive structure and the electrically conductive mass is applied to the electrical connection element.
  • the intermediate layer is produced by at least one of screen printing, spraying, curtain coating or roller coating, adhesion to the electrically conductive structure, electrical connection element and / or or applied glass.
  • the mechanical connection via mechanical clamping, soldering and / or gluing of the electrical connection element to the electrically conductive structure and / or glass, preferably on the glass pane.
  • the temperatures at According to the invention, bonding is preferably below 158 ° C., more preferably below 120 ° C., and most preferably below 60 ° C.
  • the electrical connection element is simultaneously mechanically connected to the electrically conductive structure and / or glass pane during the electrical connection, preferably via thermal activation of the adhesive effect of the intermediate layer.
  • the activation of the adhesive effect of the intermediate layer can be done, for example, with the soldering of the electrically conductive mass.
  • FIGS. 1 to 10 Exemplary embodiments of the invention are shown schematically in FIGS. 1 to 10 and will be described in more detail below.
  • FIG. 1 shows an exploded perspective view of a pane (I) according to the invention
  • FIG. 2 shows a cross section through a perspective view of a pane according to the invention according to FIG. 1,
  • FIG. 3 shows a detail cross section through a pane (I) according to the invention according to FIG. 2,
  • FIG. 4 shows a detail cross section through a preferred embodiment of the pane (I) according to the invention
  • FIG. 5 shows a detail cross section through a further preferred embodiment of the pane (I) according to the invention
  • FIG. 6 shows a detail cross section through a further preferred embodiment of the pane (I) according to the invention
  • FIG. 7 shows a detail cross section through a further preferred embodiment of the pane (I) according to the invention
  • FIG. 8 shows a detail cross section through a further alternative embodiment of the pane (I) according to the invention
  • Figure 9 is an exploded perspective view of an alternative embodiment of the disc (I) and
  • FIG. 10 shows a flow chart of an embodiment of the method according to the invention.
  • FIGS. 1 to 3 show the connection region of a pane (I) according to the invention with an electrical connection element (4) in different representations.
  • An electrically conductive structure (2) was printed on a non-prestressed silicate glass pane (1) as a heating conductor with a silver-containing screen printing paste.
  • On a portion of the electrically conductive structure (2) at the edge of the glass sheet (1) was a 130 ⁇ thick intermediate layer (3) made of an adhesive tape with acrylic and polyimide. In the tape, a plurality of round recesses (5) with a diameter of 1 mm was introduced. The diameter was constantly 1 mm from the region (5a) facing the electrical connection element (4) to the region (5c) facing the electrically conductive structure.
  • the intermediate layer (3) was an electrical connection element (4), designed as Flachleier, which was connected via a not shown conductor with the on-board electrical system also not shown the vehicle.
  • the recesses (5), portions of the electrically conductive structure (2) and the electrical connection element (4) formed cavities (5) for electrically conductive mass (7).
  • the electrically conductive mass (7) was a low-viscosity and highly ductile lead-free solder containing 67% by weight of bismuth and 33% by weight of indium with a solidus temperature of 110 ° C.
  • the shape of the electrically conductive mass (7) was dictated by the shape of the cavities (5) and the wetting properties as well as the properties of the electrically conductive mass (7).
  • the electrically conductive structure (2) was permanently electrically connected to the electrical connection element (4) via the electrically conductive mass (7).
  • the electrically conductive structure (2) was permanently mechanically connected via the adhesive intermediate layer (3) to the electrical connection element (4).
  • the pane (I) according to the invention has an improved mechanical connection between the electrical connection element (4) and the glass pane (1). It formed between the electrically conductive structure (2), the electrically conductive mass (7), the intermediate layer (3) and the electrical connection element (4) uncritical force application points. The amount and direction of the mechanical forces that could damage the electrically conductive structures (2) or the glass sheet (1) have been minimized. As a result, the disc (I) was permanently spared.
  • the disc (I) contained an electrical connection element (4) with a 0.8 mm thick and 14 x 24 mm 2 copper plate with silver coating.
  • the 14 x 24 mm 2 large liner (3) had a thickness of 250 ⁇ and contained two square 6 x 6 mm 2 large recesses (5) with rounded corners.
  • the intermediate layer (3) towered over the electrically conductive structure (2) frame-shaped with a width of 8 mm.
  • the cavities (5) formed with the electrical connection element (4) and the electrically conductive structure (2) a cavity (5), which were partially filled with electrically conductive mass (7) with 68 wt.% Gallium and 22 wt.% Indium ,
  • the electrically conductive mass (7) was liquid above -19 ° C and was prevented by the recess from bleeding.
  • the electrical connection element (4) was permanently electrically connected via the electrically conductive mass (7) to the contact region of the electrically conductive structure (2).
  • the electrical connection element (4) was mechanically glued to the glass pane (1) above the part of the intermediate layer (3) projecting beyond the electrically conductive structures (2) and permanently mechanically connected. Due to the liquid state of the electrically conductive mass (7), the mechanical stresses were conducted completely over the intermediate layer (3) and critical forces between the electrical connection element (4) and the glass pane (1) were not observed.
  • Figure 4 shows a preferred embodiment in continuation of the embodiment of Figures 1 to 3.
  • the intermediate layer (3) was designed as a soldering temperature resistant polyimide film with a thickness of 100 ⁇ .
  • the intermediate layer (3) was glued between the flat conductor (4) and the electrically conductive structure (2).
  • the cavities (5) were circular.
  • the recesses in the electrical connection element (4) facing region (5a) had a cross section of 0.8 mm, the cavities (5) in the electrically conductive structure (2) and the disc (1) facing region (5c) had a Cross section of 1, 2 mm.
  • the electrically conductive mass (7) formed in the recess (5) a hyperbolic inverse Funnel shape. The amount and direction of the mechanical forces that could damage the electrically conductive structures or the disk have been minimized.
  • Figure 5 shows an alternative embodiment in continuation of the embodiment of Figures 1 to 3.
  • the intermediate layer (3) was designed as a soldering temperature resistant polyimide film with a thickness of 100 ⁇ .
  • the cavities (5) were also made circular with a diameter of 5 mm.
  • the cross-section of the intermediate layer (3) in the region of the cavities (5) was rounded at the upper edge (5a) to the electrical connection element (4) and at the lower edge (5c) to the contact region of the electrically conductive structure (2).
  • the intermediate layer (3) was glued between the electrical connection element (4) and the electrically conductive structure (2). It was thus formed a cavity (5), which enabled an improved mechanical and electrical connection between the electrical connection element (4) and the electrically conductive structure (2).
  • the mechanical forces between the electrically conductive mass (7) and the electrically conductive structure (2) on the glass pane (1) had a flat angle of attack. Damage to the disc (I) according to the invention could be prevented.
  • FIG. 6 shows, in the further development of the exemplary embodiment according to FIG. 5, a chimney-like configuration of the cavity (5) through an adapted shaping of the electrical connection element (4).
  • the cavity (2) was approximately in the form of a hyperbolic funnel adapted.
  • the area and the diameter of the area (5a) to the electrical connection element (4) were smaller than the area and the diameter of the area (5c) facing the electrically conductive structure (2).
  • an intermediate layer (3) with cavities (5) was found, which made possible in a simple manner an improved mechanical and electrical connection between the electrical connection element (4) and the contact region of the electrically conductive structure (2).
  • FIG. 7 shows in the further development of the exemplary embodiment according to FIG. 5 an intermediate layer (3) which has been designed as a layer composite.
  • a layer of temperature-resistant polyimide was removed from an upper and lower cyanoacrylate Edged adhesive layer. Due to the layer structure with adhesive layers, a particularly advantageous form-fitting contact between the electrical connection element (4), the intermediate layer (3) and the electrically conductive structure (2) was formed.
  • the mechanical forces between the electrically conductive mass (7) and the electrically conductive structure (2) on the glass pane (1) had a flat angle of attack. Damage to the electrically conductive structure (2) or the glass pane (1) was prevented.
  • FIG. 8 shows an alternative embodiment of the pane (I) according to the invention.
  • a 14 x 12 mm 2 intermediate layer (3) with cyanoacrylate had a thickness of 250 ⁇ .
  • the electrical connection element (4) was a 0.8 mm thick copper plate with an area of 14 ⁇ 20 mm 2 .
  • the electrical connection element (4) towered over the intermediate layer (3) on two side surfaces of 4 mm each and was slightly curved towards the glass pane (1).
  • the intermediate layer (3), the curved electrical connection element (4) and the electrically conductive structure (2) formed on the two side surfaces cavities (5).
  • the cavities (5) were partially filled with electrically conductive material (7).
  • the electrically conductive mass (7) was a solder with 67 wt.% Bismuth and 33 wt.% Indium with a solidus temperature of 1 10 ° C.
  • the electrically conductive mass (7) formed a concave meniscus within the cavity (5).
  • the intermediate layer (3) with the electrically conductive structure (2) rounded edge was completely wetted by the electrically conductive mass (7).
  • the electrically conductive mass (7) formed with the curved electrical connection element (4) and the electrically conductive structure (2) very small wetting angle.
  • the electrically conductive mass (7) was completely disposed within the cavities (5). In plan view of the disc (I) no electrically conductive mass (7) was visible.
  • the electrical connection element (4) was permanently electrically connected to the electrically conductive structure (2) via the electrically conductive mass (7).
  • the electrical connection element (4) was glued mechanically via the intermediate layer (3) to the glass pane (1) and permanently mechanically connected. Due to the shape and viscosity of the electrically conductive mass (7), the mechanical stresses were completely passed over the intermediate layer (3). Critical forces between the electrical connection element (4) and the glass pane (1) were not observed during manufacture and use.
  • Figure 9 shows a continuation of the embodiment of Figure 1.
  • the cavities (5) were connected by kauvitaten (8) with a diameter of about 100 ⁇ with each other and with the outer edge of the intermediate layer (3). Electrically conductive mass (7) was not present in the connecting cavities (8).
  • the electrically conductive mass (7) which is liquid in the soldering process wets within the cavities (5). Expanding air or gaseous soldering aids during the soldering process could escape via the connecting cavities (8) from the cavities (5). As a result, an improved distribution of the electrically conductive mass (7) within the cavities (5) has been achieved.
  • FIG. 10 shows in detail a flow chart of an exemplary embodiment according to the invention for producing a pane (I) according to the invention.
  • the discs (I) according to the invention are longer lasting compared to the prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Laminated Bodies (AREA)
  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Surface Treatment Of Glass (AREA)
  • Securing Of Glass Panes Or The Like (AREA)
  • Surface Heating Bodies (AREA)

Abstract

Die Erfindung betrifft eine Scheibe (I) wobei, eine elektrisch leitfähige Struktur (2) auf einer Glasscheibe (1) aufgebracht ist, mindestens eine Zwischenlage (3) auf der elektrisch leitfähigen Struktur (2) aufgebracht ist, mindestens ein elektrisches Anschlusselement (4) auf der Zwischenlage (3) aufgebracht ist und wobei die Zwischenlage (3), elektrisches Anschlusselement (4) und elektrisch leitfähige Struktur (2) mindestens einen Hohlraum (5) bilden und der Hohlraum (5) eine elektrisch leitfähige Masse (7) enthält. Die Erfindung betrifft weiter ein Verfahren zu deren Herstellung und deren Verwendung.

Description

Scheibe mit elektrischem Anschlusselement
Die vorliegende Erfindung betrifft eine Scheibe mit elektrischem Anschlusselement, ein Verfahren zu deren Herstellung und deren Verwendung.
Elektrische Anschlusselemente an Scheiben mit elektrisch leitfähigen Strukturen sind beispielsweise aus WO 2007/1 16088 A1 bekannt.
DE 10 2007 059 818 B3 offenbart ein Flachleiter-Anschlusselement mit einer elektrisch leitfähigen Schicht, das auf einer Außenfläche einer Scheibe befestigt ist und zwischen einem Abschnitt der elektrisch leitfähigen Schicht mit einer frei liegenden Lötfläche einerseits und der Glasscheibenoberfläche andererseits wenigstens eine elektrisch isolierende Pufferschicht vorgesehen ist.
Aus DE 103 92 500 T5 sind Verfahren und Artikel zum Aufbringen und Zurückhalten von Lotmassen für die mechanische und elektrische Verbindung von elektrischen Anschlusselementen bekannt. Ein Körper mit einer Vielzahl von darin ausgebildeten Löchern trägt eine Lötmasse, wobei die Lötmasse über den Löchern angeordnet ist.
Die bekannten Lösungen haben den Nachteil, dass zwischen elektrischem Anschlusselement und der Glasscheibe mechanische Spannungen auftreten, die zu Schäden bis zum Bruch der Glasscheiben führen können.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine verbesserte, mechanische und elektrisch dauerhaft stabile Verbindung von elektrischen Anschlusselementen mit Scheiben bereitzustellen.
Eine weitere Aufgabe der Erfindung ist, ein neues Verfahren zur Herstellung von Scheiben mit elektrischen Anschlusselementen sowie eine neue Verwendung derselben zu finden.
Die Aufgaben werden durch die in den unabhängigen Patentansprüchen 1 , 1 1 und 15 aufgeführten Merkmale gelöst. Bevorzugte Ausgestaltungen der Erfindung sind durch die Merkmale der abhängigen Patentansprüche gegeben. Die Erfindung umfasst eine Scheibe wobei, eine elektrisch leitfähige Struktur auf einer Glasscheibe aufgebracht ist, mindestens eine Zwischenlage auf der elektrisch leitfähigen Struktur aufgebracht ist, mindestens ein elektrisches Anschlusselement auf der Zwischenlage aufgebracht ist und wobei die Zwischenlage, elektrisches Anschlusselement und elektrisch leitfähige Struktur mindestens einen Hohlraum bilden und der Hohlraum eine elektrisch leitfähige Masse enthält.
Vorteile der erfindungsgemäßen Scheibe liegen unter anderem darin, dass kritische mechanische Spannungen durch die Zwischenlage zwischen dem elektrischen Anschlusselement und der elektrisch leitfähigen Struktur auf der Glasscheibe minimiert sind.
Kritische mechanische Spannungen resultieren aus Betrag und Richtung von Punkt-, Linien- und Flächenkräften, Scherkräften sowie Torsionskräften, die aufgrund von Belastungen bei der Herstellung oder Verwendung der Scheiben zu Schäden oder Bruch an den Scheiben führen können.
Durch Temperaturwechsel induzierte mechanische Spannungen erhöhen sich insbesondere mit Differenzen der thermischen Ausdehnungskoeffizienten und der Viskosität der verwendeten Materialien.
Die mechanischen Spannungen sind besonders kritisch, wenn das Verbinden von Glasscheiben mit elektrischen Anschlusselementen bei Temperaturen > 60 °C, besonders bei > 120 °C und ganz besonders > 158 °C erfolgt.
Gemäß der Erfindung ist es vorteilhaft, wenn der Hohlraum vollständig von der Zwischenlage umschlossen ist. Der Hohlraum bildet dann mindestens eine Aussparung innerhalb der Zwischenlage. Die Aussparung wird von der elektrisch leitfähigen Struktur, dem elektrischen Anschlusselement und der Zwischenlage begrenzt.
Hohlräume sind gemäß der Erfindung vorteilhaft, da Stützkavitäten für elektrisch leitfähige Masse bereitgestellt werden. Die Formgebung der elektrisch leitfähigen Masse wird durch die Form der Hohlräume, die Benetzung der elektrisch leitfähigen Masse innerhalb der Hohlräume und die Viskosität der elektrisch leitfähigen Masse bei der Herstellung und bei der Verwendung eingestellt. Kritische mechanische Spannungen werden verhindert.
Die Form und das Volumen der Hohlräume werden insbesondere durch die Form und das Volumen der Zwischenlage, sowie durch die Form des elektrischen Anschlusselementes bestimmt.
Innerhalb der Hohlräume wird die elektrisch leitfähige Masse in allen drei Raumrichtungen in einer definierten Geometrie gehalten und eine dauerhafte, elektrische Verbindung zwischen elektrischem Anschlusselement und elektrisch leitfähiger Struktur erzielt.
In einer besonders bevorzugten Ausführungsform der Erfindung ist die elektrisch leitfähige Masse innerhalb des Hohlraums angeordnet. Elektrisch leitfähige Masse befindet sich nicht in Bereichen außerhalb der Hohlräume. Die Bereiche außerhalb der Hohlräume werden durch die Außenkante der Hohlräume und / oder Projektionen der Außenkanten gebildet. Elektrisch leitfähige Masse ist bei Betrachtung der erfindungsgemäßen Scheibe in Draufsicht nicht zu erkennen. Die elektrisch leitfähige Masse schließt aufgrund ihrer Form, Benetzungseigenschaften und Viskosität bevorzugt bündig mit den Außenkanten der Hohlräume ab.
In einer bevorzugten Ausführungsform weist die erfindungsgemäße Zwischenlage eine Dicke von 0,5 μηη bis 1 mm, bevorzugt 1 μηη bis 500 μηη und besonders bevorzugt 10 μηη bis 300 μηη auf.
In einer weiteren bevorzugten Ausführungsform der Erfindung weisen die Hohlräume einen Durchmesser oder Flächenäquivalent von 0,1 mm bis 2 mm und bevorzugt von 0,2 mm bis 1 mm auf.
In einer alternativen Ausgestaltung weisen die Hohlräume einen Durchmesser oder Flächenäquivalent von 2 mm bis 25 mm und bevorzugt von 3 mm bis 10 mm und ganz besonders bevorzugt von 7,5 mm bis 8,5 mm auf.
Die Hohlräume weisen bevorzugt runde, ellipsenförmige, rechteckige oder polygonale Formen auf, die gemäß der Erfindung eine Form der elektrisch leitfähigen Masse ausbilden, die eine verbesserte, mechanische und elektrisch dauerhaft stabile Verbindung von elektrischen Anschlusselementen an Scheiben bewirkt.
Die Flächenäquivalente der Hohlräume berechnen sich aus dem Durchmesser bezogen auf eine runde Form der Hohlräume und können auf Flächen von ellipsenförmigen, rechteckigen oder polygonalen oder sämtliche Formen übertragen werden, die eine verbesserte, mechanische und elektrisch dauerhaft stabile Verbindung von elektrischen Anschlusselementen an Scheiben bewirken.
Besonders vorteilhaft sind gemäß der Erfindung Zwischenlagen, die durch eine Vielzahl von Hohlräumen möglichst viele Kraftangriffspunkte zwischen elektrisch leitfähiger Masse und elektrisch leitfähiger Schicht bewirken.
In einer weiteren bevorzugten Ausführungsform weisen die Hohlräume in der Zwischenlage einen Querschnitt auf, der aus einem, dem elektrischen Anschlusselement zugewandten Bereich, einem Zwischenbereich und einem, der elektrisch leitfähigen Struktur abgewandten Bereich gebildet wird. Die Formen der Hohlräume in Draufsicht können über die Tiefe der Hohlräume unterschiedlich ausgestaltet sein. Die Bereiche weisen bevorzugt runde, ellipsenförmige oder rechteckige Formen auf. Die elektrisch leitfähige Masse kann in den Hohlräumen eine besonders günstige Form ausbilden, um die mechanischen Belastungen zur elektrisch leitfähigen Struktur und zur Glasscheibe zu verringern. Dies ist besonders günstig, wenn die elektrisch leitfähige Masse nicht aus den Hohlräumen austritt.
In einer weiteren bevorzugten Ausführungsform wird die elektrisch leitfähige Masse durch die Benetzungseigenschaften und Viskosität der elektrisch leitenden Masse innerhalb der Hohlräumen gehalten. Die Benetzungseigenschaften oder Kapillarkräfte werden durch die Grenzflächenenergien der Materialien der elektrisch leitfähigen Masse, der Zwischenlage, des Anschlusselementes, der elektrisch leitfähigen Struktur, der Glasscheibe und/oder der umgebenden Atmosphäre eingestellt.
Besonders bevorzugt ist es gemäß der Erfindung wenn die elektrisch leitfähige Masse einen konkaven Meniskus innerhalb des Hohlraumes ausbildet. Ganz besonders bevorzugt wird der konkave Meniskus durch einen sehr kleinen Benetzungswinkel der elektrisch leitfähigen Masse innerhalb des Hohlraumes eingestellt.
Die Viskosität der elektrisch leitfähigen Masse hängen von dem Material und der Temperatur ab. Es ist gemäß der Erfindung vorteilhaft, die Formgebung im Temperaturbereich zwischen der Liquidus- und der Solidus-Temperatur zu bewirken, wenn eine starke Änderung der Viskosität der elektrisch leitfähigen Masse beobachtet wird.
Die erfindungsgemäße Zwischenlage ist besonders vorteilhaft, wenn der dem elektrischen Anschlusselement zugewandte Bereich der Aussparungen einen kleineren Durchmesser oder eine kleinere Fläche aufweist als der Bereich, der der elektrisch leitfähigen Struktur zugewandt ist.
In einer weiteren Ausgestaltung der erfindungsgemäßen Zwischenlagen sind die Kantenformen an den Aussparungen und die Form des elektrischen Anschlusselementes dem Fliessverhalten, der Viskosität und den Benetzungseigenschaften der elektrisch leitfähigen Masse angepasst. Bevorzugt sind die Kantenbereiche rechtwinklig, verrundet oder stark verrundet ausgeführt.
Besonders bevorzugt bilden die elektrisch leitfähige Struktur, die Zwischenlage und das elektrische Anschlusselement einen hyperbolischen Trichter, der sich von der elektrisch leitfähigen Struktur zum elektrischen Anschlusselement verjüngt. Ganz besonders bevorzugt sind die Aussparungen nur im Randbereich des hyperbolischen Trichters mit elektrisch leitfähiger Masse gefüllt. Die Form der elektrisch leitfähigen Masse wird durch die Benetzungseigenschaften und die Viskosität der elektrisch leitfähigen Masse an der Zwischenlage und dem elektrischen Anschlusselement vorgegeben.
Dies ist besonders vorteilhaft, um expandierende Gase während der Herstellung gezielt aus den Hohlräumen abzuleiten. Die mechanischen Kräfte verlaufen gemäß der Erfindung zwischen der elektrisch leitfähigen Masse und der elektrisch leitfähigen Struktur oder der Glasscheibe in einem flachen Angriffswinkel.
Erfindungsgemäß werden elektrisch leitfähige Massen eingesetzt, die aufgrund ihrer Form, Viskosität und ihres Aggregatzustandes keine kritischen Kräfte zur elektrisch leitfähigen Struktur und / oder Glasscheibe weiterleiten.
Die Viskosität ist im Rahmen der Erfindung auch ein Ausdruck für Duktilität der elektrisch leitfähigen Masse im festen Aggregatzustand.
Besonders vorteilhaft ist gemäß der Erfindung, wenn die mechanische Verbindung zwischen dem Anschlusselement und der Glasscheibe über die Zwischenlage erfolgt und die Solidustemperatur der elektrisch leitfähigen Masse kleiner als 158 °C, bevorzugt kleiner als 120 °C und ganz besonders bevorzugt kleiner als 65 °C ist.
Eine alternative Ausgestaltung der Erfindung ist ebenfalls besonders vorteilhaft, wenn die mechanische Verbindung zwischen dem Anschlusselement und der Glasscheibe über die elektrisch leitfähige Masse erfolgt und die Solidustemperatur der elektrisch leitfähigen Masse 159 °C bis 220 °C beträgt.
In einer weiteren bevorzugten Ausgestaltung der Erfindung enthält die elektrisch leitfähige Masse eine leitfähige Flüssigkeit, Metalllegierung, und / oder Verbundmaterialien, bevorzugt Metalllegierungen mit Silber, Zinn, Zink, Indium, Bismut und / oder Gallium und besonders bevorzugt Metalllegierungen mit 60 Gew.% bis etwa 98 Gew.% Gallium, 15% Gew.% bis 70% Gew.% Indium, 50 Gew.% bis 98 Gew.% Zinn, 10 Gew.% bis 80 Gew.% Zink, 2 Gew.% bis 10 Gew.% Silber und / oder 30 Gew.% bis 70 Gew.% Bismut.
Die elektrisch leitfähigen Massen mit einer Solidustemperatur von < 65 °C enthalten bevorzugt 60 Gew.% bis etwa 98 Gew.% Gallium.
Die elektrisch leitfähigen Massen mit einer Solidustemperatur von größer / gleich 65 °C und kleiner 158 °C enthalten ganz besonders bevorzugt 15% Gew.% bis 70% Gew.% Indium und / oder 30 Gew.% bis 70 Gew.% Bismut. Die elektrisch leitfähigen Massen mit einer Solidustemperatur von größer / gleich 158 °C enthalten ganz besonders bevorzugt 50 Gew.% bis 98 Gew.% Zinn.
Die elektrisch leitfähigen Massen sind gemäß der Erfindung bevorzugt bleifrei.
Es können gemäß der Erfindung auch leitfähige schwammartige, geflechtartige oder anorganische oder organische Verbünde oder Gemische in der elektrisch leitfähigen Masse enthalten sein. Beispiele hierfür sind wollartig geformte Metalle wie Silberwolle.
Die elektrisch leitfähige Masse kann aufgrund einer geringen Solidustemperatur bei üblichen Umgebungstemperaturen zeitweise oder dauerhaft flüssig sein. Bei niedriger Viskosität der elektrisch leitfähigen Masse wird ein Zerfließen durch die Form und die Benetzungseigenschaften innerhalb der Hohlräume verhindert. Die elektrische Verbindung bleibt bestehen. Die mechanische Verbindung zwischen dem elektrischen Anschlusselement und der elektrisch leitfähigen Struktur und / oder der Glasscheibe erfolgt zeitweise oder dauerhaft, ganz oder teilweise über die Zwischenlage.
Eine flüssige oder niedrig viskose oder hoch duktile elektrisch leitfähige Masse ist besonders vorteilhaft, da keine kritischen mechanischen Belastungen zwischen elektrisch leitfähiger Masse und der elektrisch leitfähigen Strukturen und / oder Glasscheibe auftreten.
Die Glasscheiben sind vorgespannte, teilvorgespannte oder nicht vorgespannte monolithische Glasscheiben oder Verbundglasscheiben aus Silikatglas und bevorzugt nicht vorgespannte oder teilvorgespannte Verbundglasscheiben. Die Glasscheiben haben eine Dicke von 1 mm bis 6 mm, bevorzugt von 1 ,8 mm bis 4 mm.
Die Glasscheiben können ganz oder teilweise mit einem Abdecksiebdruck beschichtet sein, bevorzugt im Randbereich und besonders bevorzugt im Bereich der elektrischen Anschlusselemente.
Die elektrisch leitfähigen Strukturen auf Scheiben sind bevorzugt Leiterbahnen mit Heizleitern und / oder Antennenleitern. Die elektrisch leitfähigen Strukturen sind bevorzugt im Randbereich der Glasscheibe mit elektrischen Anschlusselementen verbunden.
Elektrische Anschlusselemente stellen eine dauerhafte mechanische Kopplung und elektrische Verbindung zwischen elektrischen Leitern von beispielsweise der Bordelektrik in Fahrzeugen und der elektrischen leitfähigen Struktur auf der Scheibe her. Die elektrischen Anschlusselemente sind bevorzugt als Flachleiter oder sogenannte rigid connectors ausgebildet. Rigid connectors weisen aufgrund ihrer Materialeigenschaften, Materialdicke und Form eine hohe Steifigkeit auf.
In einer weiteren Ausgestaltung der Erfindung sind dauerhaft nicht stabile und alternde elektrisch leitfähige Massen von einem Korrosionsschutz vor Umwelteinflüssen geschützt. Der Korrosionsschutz ist bevorzugt flüssig und/oder elektrisch leitfähig.
In einer weiteren Ausgestaltung der Erfindung enthält die Zwischenlage temperaturstabile Polymerschichten, keramische Siebdruckpaste, Lötstopplacke und / oder Klebebänder, bevorzugt Polyacrylat, Cyanacrylat, Methylmethacrylat, Silan und Siloxan-vernetzende Polymere, Epoxidharz, Polyurethan, Polychloropren, Polyamid, Acetat, Silikonkleber, Polyethylen, Polypropylen, Polyvinylchlorid, Polyamid, Polycarbonat, Polyethylenterephthalat, Polyethylennaphthalat, Polyimide, Polyethylen Terephtalat, Polyetherimide, Polybenzimidazole, Polytetrafluorethylen, thermisch aushärtende Kleber, deren Copolymere und / oder Gemische davon und besonders bevorzugt Polyimide oder Polytetraflourethylen.
Es werden gemäß der Erfindung bevorzugt Materialien in der Zwischenlage eingesetzt, die nicht von der elektrisch leitfähigen Masse benetzt werden. Die Materialien weisen bevorzugt eine niedrige Grenzflächenenergie auf. Dafür eignen sich insbesondere Polyimide, Polytetraflourethylen oder Lötstopplacke, sowie Verbundmaterialien mit Polyimiden oder Lötstopplacken.
In einer weiteren Ausgestaltung der Erfindung ist die erfindungsgemäße Zwischenlage aus mehreren Schichten aufgebaut, wobei die Zwischenlage und die Oberflächen vom elektrischen Anschlusselement und der elektrisch leitfähigen Struktur über Klebeschichten in formschlüssigen Kontakt gebracht werden. Besonders bevorzugt enthalten gemäß der Erfindung die Zwischenlagen zusätzliche Verbindungskavitäten, die die Hohlräume untereinander oder mit dem Rand der Zwischenlage verbinden. Dies ist besonders zum Ableiten von gasförmigen Produkten während des mechanischen und elektrischen Verbindens des elektrischen Anschlusselementes mit der elektrisch leitfähigen Struktur vorteilhaft. Die Verbindungskavitäten sind gemäß der Erfindung nicht oder kaum mit elektrisch leitfähiger Masse gefüllt oder benetzt.
Im erfindungsgemäßen Verfahren zur Herstellung einer Scheibe wird eine elektrisch leitfähige Struktur auf eine Glasscheibe aufgebracht, eine Zwischenlage auf die elektrisch leitfähige Struktur und/oder Glasscheibe oder ein elektrisches Anschlusselement aufgebracht, elektrisch leitfähige Masse auf das elektrische Anschlusselement oder auf die elektrische leitfähige Struktur aufgebracht, das elektrische Anschlusselement über die Zwischenlage mit der elektrisch leitfähigen Struktur und / oder Glasscheibe mechanisch verbunden, wobei mindestens ein Hohlraum gebildet wird und die elektrisch leitfähige Masse innerhalb mindestens einem Hohlraum mit dem elektrischen Anschlusselement und der elektrisch leitfähigen Struktur elektrisch verbunden wird.
In einer bevorzugten Ausführungsform wird die Zwischenlage auf die elektrisch leitfähige Struktur aufgebracht und die elektrisch leitfähige Masse auf das elektrische Anschlusselement aufgebracht.
In einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird die Zwischenlage durch mindestens eines der Verfahren Siebdruck (screen printing), Sprühen (spraying), Vorhanggießen (curtain coating) oder Walzenauftrag (Roller coating), Klebung auf die elektrisch leitfähige Struktur, elektrisches Anschlusselement und / oder Glasscheibe aufgebracht. Mit diesen Verfahren können auf einfache Art und Weise und mit der erforderlichen Genauigkeit die erfindungsgemäßen Zwischenlagen mit den Aussparungen realisiert werden.
In einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens erfolgt die mechanische Verbindung über mechanische Klemmung, Lötung und / oder Klebung des elektrischen Anschlusselementes an die elektrisch leitfähige Struktur und / oder Glasscheibe, bevorzugt an der Glasscheibe. Die Temperaturen beim Verbinden liegen gemäß der Erfindung bevorzugt bei unter 158 °C, besonders bevorzugt bei unter 120 °C und ganz besonders bevorzugt bei unter 60 °C.
Ganz besonders bevorzugt wird das elektrische Anschlusselement mit der elektrisch leitfähigen Struktur und / oder Glasscheibe während der elektrischen Verbindung gleichzeitig mechanisch verbunden, bevorzugt über thermische Aktivierung der Klebewirkung der Zwischenlage. Die Aktivierung der Klebewirkung der Zwischenlage kann beispielsweise mit dem Löten der elektrisch leitfähigen Masse erfolgen.
Ausführungsbeispiele der Erfindung sind in den Figuren 1 bis 10 schematisch Zeichnung dargestellt und werden im Folgenden näher beschrieben.
Es zeigen
Figur 1 eine explodierte perspektivische Darstellung einer erfindungsgemäßen Scheibe (I),
Figur 2 einen Querschnitt durch eine perspektivische Darstellung einer erfindungsgemäßen Scheibe gemäß Figur 1 ,
Figur 3 einen Detail-Querschnitt durch eine erfindungsgemäße Scheibe (I) gemäß der Figur 2,
Figur 4 einen Detail-Querschnitt durch eine bevorzugte Ausgestaltung der erfindungsgemäßen Scheibe (I),
Figur 5 einen Detail-Querschnitt durch eine weitere bevorzugte Ausgestaltung der erfindungsgemäßen Scheibe (I),
Figur 6 einen Detail-Querschnitt durch eine weitere bevorzugte Ausgestaltung der erfindungsgemäßen Scheibe (I),
Figur 7 einen Detail-Querschnitt durch eine weitere bevorzugte Ausgestaltung der erfindungsgemäßen Scheibe (I), Figur 8 einen Detail-Querschnitt durch eine weitere alternative Ausgestaltung der erfindungsgemäßen Scheibe (I),
Figur 9 eine explodierte perspektivische Darstellung einer alternativen Ausgestaltung der erfindungsgemäßen Scheibe (I) und
Figur 10 ein Flussdiagramm eines Ausführungsbeispiel des erfindungsgemäßen Verfahrens.
In den Figuren 1 bis 3 ist der Anschlussbereich einer erfindungsgemäßen Scheibe (I) mit elektrischem Anschlusselement (4) in unterschiedlichen Darstellungen gezeigt. Auf eine nicht vorgespannte Silikat-Glasscheibe (1 ) wurde eine elektrisch leitfähige Struktur (2) als Heizleiter mit einer silberhaltigen Siebdruckpaste aufgedruckt. Auf einem Teilbereich der elektrisch leitfähigen Struktur (2) am Rand der Glasscheibe (1 ) befand sich eine 130 μηη dicke Zwischenlage (3) aus einem Klebeband mit Acryl und Polyimid. In das Klebeband war eine Vielzahl von runden Aussparungen (5) mit einem Durchmesser von 1 mm eingebracht. Der Durchmesser war von dem, dem elektrischem Anschlusselement (4) zugewandten Bereich (5a) bis zu dem der elektrisch leitfähigen Struktur zugewandten Bereichs (5c) konstant 1 mm. Auf der Zwischenlage (3) befand sich ein elektrisches Anschlusselement (4), ausgestaltet als Flachleier, das über einen nicht dargestellten Leiter mit der ebenfalls nicht dargestellten Bordelektrik des Fahrzeugs verbunden war. Die Aussparungen (5), Teilbereiche der elektrisch leitfähigen Struktur (2) und des elektrischen Anschlusselementes (4) bildeten Hohlräume (5) für elektrisch leitfähige Masse (7). Die elektrisch leitfähige Masse (7) war ein niedrig viskoses und hoch duktiles bleifreies Lot enthaltend 67 Gew.% Bismut und 33 Gew.% Indium mit einer Solidustemperatur von 1 10 °C. Die Form der elektrisch leitfähigen Masse (7) wurde von der Form der Hohlräume (5) und den Benetzungseigenschaften sowie der Eigenschaften der elektrisch leitfähigen Masse (7) vorgegeben. Die elektrisch leitfähige Struktur (2) war über die elektrisch leitfähige Masse (7) mit dem elektrischen Anschlusselement (4) dauerhaft elektrisch verbunden. Die elektrisch leitfähige Struktur (2) war über die klebende Zwischenlage (3) mit dem elektrischen Anschlusselement (4) dauerhaft mechanisch verbunden. Die erfindungsgemäße Scheibe (I) zeigte im Vergleich zum Stand der Technik eine verbesserte mechanische Verbindung zwischen dem elektrischen Anschlusselement (4) und der Glasscheibe (1 ). Es bildeten sich zwischen der elektrisch leitfähigen Struktur (2), der elektrisch leitfähigen Masse (7), der Zwischenlage (3) und dem elektrischen Anschlusselement (4) unkritische Kraftangriffspunkte. Der Betrag und die Richtung der mechanischen Kräfte, die zur Beschädigung der elektrisch leitfähigen Strukturen (2) oder der Glasscheibe (1 ) führen könnten, wurden minimiert. Dadurch wurde die Scheibe (I) dauerhaft geschont.
In einer alternativen Ausführungsform gemäß der Erfindung enthielt die Scheibe (I) ein elektrisches Anschlusselement (4) mit einer 0,8 mm dicken und 14 x 24 mm2 großen Kupferplatte mit Silberbeschichtung. Die 14 x 24 mm2 große Zwischenlage (3) hatte eine Dicke von 250 μηη und enthielt zwei quadratische 6 x 6 mm2 große Aussparungen (5) mit verrundeten Ecken. Die Zwischenlage (3) überragte die elektrisch leitfähige Struktur (2) rahmenförmig mit einer Breite von 8 mm. Die Hohlräume (5) bildeten mit dem elektrischen Anschlusselement (4) und der elektrisch leitfähigen Struktur (2) einen Hohlraum (5), der teilweise mit elektrisch leitfähiger Masse (7) mit 68 Gew.% Gallium und 22 Gew.% Indium gefüllt waren. Die elektrisch leitfähige Masse (7) war oberhalb von -19 °C flüssig und wurde durch die Aussparung am Zerfließen gehindert. Das elektrische Anschlusselement (4) war dauerhaft über die elektrisch leitfähige Masse (7) mit dem Kontaktbereich der elektrisch leitfähigen Struktur (2) elektrisch verbunden. Das elektrische Anschlusselement (4) war mechanisch mit der Glasscheibe (1 ) über dem die elektrisch leitfähigen Strukturen (2) überragenden Teil der Zwischenschicht (3) mit der Glasscheibe (1 ) verklebt und dauerhaft mechanisch verbunden. Aufgrund des flüssigen Zustandes der elektrisch leitfähigen Masse (7) wurden die mechanischen Spannungen vollständig über die Zwischenlage (3) geleitet und kritische Kräfte zwischen dem elektrischen Anschlusselement (4) und der Glasscheibe (1 ) nicht beobachtet.
Figur 4 zeigt eine bevorzugte Ausgestaltung in Fortführung des Ausführungsbeispiels der Figuren 1 bis 3. Die Zwischenlage (3) war als löttemperaturbeständige Polyimid- Folie mit einer Dicke von 100 μηη ausgeführt. Die Zwischenlage (3) wurde zwischen dem Flachleiter (4) und der elektrisch leitfähigen Struktur (2) aufgeklebt. Die Hohlräume (5) waren kreisförmig ausgeführt. Die Aussparungen in dem elektrischen Anschlusselement (4) zugewandten Bereich (5a) hatten einen Querschnitt von 0,8 mm, die Hohlräume (5) in dem die elektrisch leitfähige Struktur (2) und der Scheibe (1 ) zugewandten Bereich (5c) hatten einen Querschnitt von 1 ,2 mm. Die elektrisch leitfähige Masse (7) bildete in der Aussparung (5) eine hyperbolische inverse Trichterform aus. Der Betrag und die Richtung der mechanischen Kräfte, die zur Beschädigung der elektrisch leitfähigen Strukturen oder der Scheibe führen könnten, wurden minimiert.
Figur 5 zeigt eine alternative Ausgestaltung in Fortführung des Ausführungsbeispiels der Figuren 1 bis 3. Die Zwischenlage (3) war als löttemperaturbeständige Polyimid- Folie mit einer Dicke von 100 μηη ausgeführt. Die Hohlräume (5) waren ebenfalls kreisförmig mit einem Durchmesser von 5 mm ausgeführt. Der Querschnitt der Zwischenlage (3) im Bereich der Hohlräume (5) war an der oberen Kante (5a) zum elektrischen Anschlusselement (4) und an der unteren Kante (5c) zum Kontaktbereich der elektrisch leitfähigen Struktur (2) verrundet ausgeführt. Die Zwischenlage (3) wurde zwischen dem elektrischen Anschlusselement (4) und der elektrisch leitfähigen Struktur (2) aufgeklebt. Es wurde damit ein Hohlraum (5) ausgebildet, der eine verbesserte mechanische und elektrische Verbindung zwischen dem elektrischen Anschlusselement (4) und der elektrisch leitfähigen Struktur (2) ermöglichte. Die mechanischen Kräfte zwischen der elektrisch leitfähigen Masse (7) und der elektrisch leitfähigen Struktur (2) auf der Glasscheibe (1 ) wiesen einen flachen Angriffswinkel auf. Beschädigungen an der erfindungsgemäßen Scheibe (I) konnten verhindert werden.
Figur 6 zeigt in der weiteren Fortbildung des Ausführungsbeispiels nach Figur 5 eine kaminartige Ausgestaltung des Hohlraumes (5) durch eine angepasste Formgebung des elektrischen Anschlusselementes (4). Mit dieser Ausgestaltung konnte die Temperaturverteilung im Abkühlvorgang und das Ausgasen von Flussmittel im Lötvorgang verbessert werden. Der Hohlraum (2) war in etwa der Form eines hyperbolischen Trichters angepasst. Die Fläche und der Durchmesser des Bereiches (5a) zum elektrischen Anschlusselement (4) waren kleiner als die Fläche und der Durchmesser des Bereichs (5c) zugewandt zur elektrisch leitfähigen Struktur (2). Es wurde damit eine Zwischenlage (3) mit Hohlräumen (5) gefunden, die auf einfache Weise eine verbesserte mechanische und elektrische Verbindung zwischen dem elektrischem Anschlusselement (4) und dem Kontaktbereich der elektrisch leitfähigen Struktur (2) ermöglichte.
Figur 7 zeigt in der weiteren Fortbildung des Ausführungsbeispiels nach Figur 5 eine Zwischenlage (3), die als Schichtverbund ausgestaltet wurde. Eine Schicht aus temperaturbeständigem Polyimid wurde von einer oberen und unteren Cyanacrylat- Kleberschicht eingefasst. Aufgrund des Schichtaufbaus mit Klebeschichten wurde ein besonders vorteilhafter formschlüssiger Kontakt zwischen dem elektrischen Anschlusselement (4), der Zwischenlage (3) und der elektrisch leitfähigen Struktur (2) gebildet. Die mechanischen Kräfte zwischen der elektrisch leitfähigen Masse (7) und der elektrisch leitfähigen Struktur (2) auf der Glasscheibe (1 ) wiesen einen flachen Angriffswinkel auf. Beschädigungen an der elektrisch leitfähigen Struktur (2) oder der Glasscheibe (1 ) wurden verhindert.
Figur 8 zeigt eine alternative Ausführungsform der erfindungsgemäßen Scheibe (I). Eine 14 x 12 mm2 große Zwischenlage (3) mit Cyanacrylat hatte eine Dicke von 250 μηη. Das elektrische Anschlusselement (4) war eine 0,8 mm dicke Kupferplatte mit einer Fläche von 14 x 20 mm2. Das elektrische Anschlusselement (4) überragte die Zwischenlage (3) an zwei Seitenflächen mit jeweils 4 mm und war leicht zur Glasscheibe (1 ) hin gekrümmt. Die Zwischenlage (3), das gekrümmte elektrisch Anschlusselement (4) und die elektrisch leitfähige Struktur (2) bildeten an den zwei Seitenflächen Hohlräume (5). Die Hohlräume (5) waren teilweise mit elektrisch leitfähiger Masse (7) gefüllt. Die elektrisch leitfähige Masse (7) war ein Lot mit 67 Gew.% Bismut und 33 Gew.% Indium mit einer Solidustemperatur von 1 10 °C. Die elektrisch leitfähige Masse (7) bildete einen konkaven Meniskus innerhalb des Hohlraums (5). Die Zwischenlage (3) mit zur elektrisch leitfähigen Struktur (2) verrundeter Kante wurde durch die elektrisch leitfähige Masse (7) vollständig benetzt. Die elektrisch leitfähige Masse (7) bildete mit dem gekrümmten elektrischen Anschlusselement (4) und der elektrisch leitfähigen Struktur (2) sehr kleine Benetzungswinkel. Die elektrisch leitfähige Masse (7) war vollständig innerhalb der Hohlräume (5) angeordnet. In Draufsicht auf die Scheibe (I) war keine elektrisch leitfähige Masse (7) sichtbar. Das elektrische Anschlusselement (4) war dauerhaft über die elektrisch leitfähige Masse (7) mit der elektrisch leitfähigen Struktur (2) elektrisch verbunden. Das elektrische Anschlusselement (4) war mechanisch über die Zwischenschicht (3) mit der Glasscheibe (1 ) verklebt und dauerhaft mechanisch verbunden. Aufgrund der Form und der Viskosität der elektrisch leitfähigen Masse (7) wurden die mechanischen Spannungen vollständig über die Zwischenlage (3) geleitet. Kritische Kräfte zwischen dem elektrischen Anschlusselement (4) und der Glasscheibe (1 ) wurden bei der Herstellung und bei der Verwendung nicht beobachtet. Figur 9 zeigt eine Fortführung des Ausführungsbeispiels der Figur 1. Die Hohlräume (5) waren durch Verbindungskavitaten (8) mit einem Durchmesser von etwa 100 μηη untereinander und mit dem äußeren Rand der Zwischenlage (3) verbunden. Elektrisch leitfähige Masse (7) war in den Verbindungskavitäten (8) nicht vorhanden. Die im Lötvorgang flüssige elektrisch leitfähige Masse (7) benetzte innerhalb der Hohlräume (5). Expandierende Luft oder gasförmige Löthilfsmittel während des Lötprozess konnten über die Verbindungskavitäten (8) aus den Hohlräumen (5) austreten. Dadurch wurde eine verbesserte Verteilung der elektrisch leitfähigen Masse (7) innerhalb der Hohlräume (5) erzielt.
Figur 10 zeigt detailliert ein Flussdiagramm eines erfindungsgemäßen Ausführungsbeispiels zur Herstellung einer erfindungsgemäßen Scheibe (I).
Die erfindungsgemäßen Scheiben (I) sind im Vergleich zum Stand der Technik länger haltbar.
Bezugszeichenliste:
(I) Scheibe
(1 ) Glasscheibe
(2) Elektrisch leitfähige Struktur
(3) Zwischenlage
(4) Elektrisches Anschlusselement
(5) Hohlraum, Aussparung in der Zwischenlage
(5a) Oberer Bereich des Hohlraums (5), dem elektrischen Anschlusselement (4) zugewandt
(5c) Unterer Bereich des Hohlraums (5), der elektrisch leitfähigen Struktur (2) zugewandt
(7) Elektrisch leitfähige Masse
(8) Verbindungskavität

Claims

Patentansprüche
1. Scheibe (I) wobei,
eine elektrisch leitfähige Struktur (2) auf einer Glasscheibe (1 ) aufgebracht ist,
mindestens eine Zwischenlage (3) auf der elektrisch leitfähigen Struktur
(2) aufgebracht ist,
mindestens ein elektrisches Anschlusselement (4) auf der Zwischenlage
(3) aufgebracht ist und
wobei die Zwischenlage (3), elektrisches Anschlusselement (4) und elektrisch leitfähige Struktur (2) mindestens einen Hohlraum (5) bilden und der Hohlraum (5) eine elektrisch leitfähige Masse (7) enthält.
2. Scheibe (I) nach Anspruch 1 , wobei die elektrisch leitfähige Masse (7) innerhalb des Hohlraums (5) angeordnet ist.
3. Scheibe (I) nach Anspruch 1 oder 2, wobei der Hohlraum (5) vollständig von der Zwischenlage (3) umschlossen ist.
4. Scheibe (I) nach einem der Ansprüche 1 bis 3, wobei die Zwischenlage (3) eine Dicke von 0,5 μηη bis 1 mm, bevorzugt 10 μηη bis 500 μηη und besonders bevorzugt 100 μηη bis 300 μηη aufweist.
5. Scheibe (I) nach einem der Ansprüche 1 bis 4, wobei der Hohlraum (5) einen Durchmesser oder Flächenäquivalent von 0,1 mm bis 2 mm und bevorzugt von 0,2 mm bis 1 mm aufweist.
6. Scheibe (I) nach einem der Ansprüche 1 bis 5, wobei der Hohlraum (5) einen Durchmesser oder Flächenäquivalent von 2 mm bis 25 mm, bevorzugt von 3 mm bis 10 mm und ganz besonders bevorzugt von 7,5 mm bis 8,5 mm aufweist.
7. Scheibe (I) nach einem der Ansprüche 1 bis 6, wobei die Zwischenlage (3) Polymere, keramische Siebdruckpasten, Lötstopplacke und / oder Klebebänder, bevorzugt Polyacrylat, Cyanacrylat, Methylmethacrylat, Silan und Siloxan- vernetzende Polymere, Epoxidharz, Polyurethan, Polychloropren, Polyamid, Acetat, Silikonkleber, Polyethylen, Polypropylen, Polyvinylchlorid, Polyamid, Polycarbonat, Polyethylenterephthalat, Polyethylennaphthalat, Polyimide, Polytetraflourethylen, Polyethylen Terephtalat, Polyetherimide, Polybenzimidazole, thermisch aushärtebare Kleber deren Copolymer und / oder Gemische davon und besonders bevorzugt Polyimide oder Polytetraflourethylen enthält.
8. Scheibe nach einem der Ansprüche 1 bis 7, wobei die Zwischenlage (3) zusätzliche Verbindungskavitäten (8) enthält und die Hohlräume (5) über die zusätzlichen Verbindungskavitäten (8) untereinander und / oder mit dem Rand der Zwischenlage (3) verbunden sind.
9. Scheibe nach einem der Ansprüche 1 bis 8, wobei die elektrisch leitfähige Masse (7) eine leitfähige Flüssigkeit, Metalllegierung, und / oder Verbundmaterialien, bevorzugt Metalllegierungen mit Silber, Zinn, Zink, Indium, Bismut und / oder Gallium und besonders bevorzugt Metalllegierungen mit 60 Gew.% bis etwa 98 Gew.% Gallium, 15% Gew.% bis 70% Gew.% Indium, 50 Gew.% bis 98 Gew.% Zinn, 10 Gew.% bis 80 Gew.% Zink, 2 Gew.% bis 10 Gew.% Silber und / oder 30 Gew.% bis 70 Gew.% Bismut enthält.
10. Scheibe nach einem der Ansprüche 1 bis 9, wobei die elektrisch leitfähigen Masse (7) mit einer Solidustemperatur von < 65 °C bevorzugt 60 Gew.% bis etwa 98 Gew.% Gallium enthält.
1 1. Verfahren zur Herstellung einer Scheibe (I), wobei
eine elektrisch leitfähige Struktur (2) auf eine Glasscheibe (1 ) aufgebracht wird,
eine Zwischenlage (3) auf die elektrisch leitfähige Struktur (2) oder ein elektrisches Anschlusselement (4) aufgebracht wird,
elektrisch leitfähige Masse (7) auf das elektrische Anschlusselement (4) oder auf die elektrische leitfähige Struktur (2) aufgebracht wird, das elektrische Anschlusselement (4) über die Zwischenlage (3) mit der elektrisch leitfähigen Struktur (2) und / oder Glasscheibe mechanisch verbunden wird und die elektrisch leitfähige Masse (7) innerhalb eines Hohlraumes (5) mit dem elektrischen Anschlusselement (4) und der elektrisch leitfähigen Struktur (2) elektrisch verbunden wird.
12. Verfahren zur Herstellung einer Scheibe (I) nach Anspruch 1 1 , wobei
die Zwischenlage (3) auf die elektrisch leitfähige Struktur (2) aufgebracht wird und
die elektrisch leitfähige Masse (7) auf das elektrische Anschlusselement (4) aufgebracht wird.
13. Verfahren nach Anspruch 1 1 oder 12, wobei die Zwischenlage (3) auf die elektrisch leitfähige Struktur (2), elektrisches Anschlusselement (4) und / oder Glasscheibe (1 ) durch mindestens eines der Verfahren, wie Siebdruck, Sprühen, Vorhanggießen, Walzenauftrag, Klebebandauftrag oder Klebung aufgebracht wird.
14. Verfahren nach einem der Ansprüche 1 1 bis 13, wobei das elektrische Anschlusselement (4) mit der elektrisch leitfähigen Struktur (2) und der Glasscheibe (1 ) elektrisch und / oder gleichzeitig mechanisch verbunden wird.
15. Verwendung einer Scheibe (I) gemäß der Ansprüche 1 bis 10 in der Bau- / Architektur oder Fahrzeugverglasung zu Lande, zu Wasser, extraterrestrisch oder in der Luft.
PCT/EP2010/068804 2009-12-22 2010-12-03 Scheibe mit elektrischem anschlusselement WO2011076540A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
PL10788062T PL2517530T3 (pl) 2009-12-22 2010-12-03 Szyba z elektrycznym elementem przyłączeniowym
EA201290548A EA027939B1 (ru) 2009-12-22 2010-12-03 Оконное стекло с элементом электрического соединения
KR1020127011955A KR101740083B1 (ko) 2009-12-22 2010-12-03 전기 접속 소자를 갖는 페인
BR112012010298A BR112012010298B8 (pt) 2009-12-22 2010-12-03 painel, método para produzir um painel, e, uso de um painel
ES10788062.7T ES2688657T3 (es) 2009-12-22 2010-12-03 Cristal con elemento de conexión eléctrico
US13/501,452 US9370048B2 (en) 2009-12-22 2010-12-03 Pane having electrical connecting element
JP2012545199A JP5767651B2 (ja) 2009-12-22 2010-12-03 電気的接続部を有する窓ガラス
MX2012005102A MX2012005102A (es) 2009-12-22 2010-12-03 Luna teniendo elemento de conexion electrica.
EP10788062.7A EP2517530B1 (de) 2009-12-22 2010-12-03 Scheibe mit elektrischem anschlusselement
CN201080058857.9A CN102656945B (zh) 2009-12-22 2010-12-03 具有电连接元件的板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP09180346.0 2009-12-22
EP09180346A EP2339894A1 (de) 2009-12-22 2009-12-22 Scheibe mit elektrischem Anschlusselement

Publications (1)

Publication Number Publication Date
WO2011076540A1 true WO2011076540A1 (de) 2011-06-30

Family

ID=42169462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/068804 WO2011076540A1 (de) 2009-12-22 2010-12-03 Scheibe mit elektrischem anschlusselement

Country Status (13)

Country Link
US (1) US9370048B2 (de)
EP (2) EP2339894A1 (de)
JP (1) JP5767651B2 (de)
KR (1) KR101740083B1 (de)
CN (1) CN102656945B (de)
BR (1) BR112012010298B8 (de)
EA (1) EA027939B1 (de)
ES (1) ES2688657T3 (de)
MX (1) MX2012005102A (de)
PL (1) PL2517530T3 (de)
PT (1) PT2517530T (de)
TR (1) TR201814672T4 (de)
WO (1) WO2011076540A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150076217A (ko) * 2012-11-21 2015-07-06 쌩-고벵 글래스 프랑스 전기 연결 소자 및 보상판을 갖는 디스크

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2820427T3 (es) 2011-07-04 2021-04-21 Saint Gobain Procedimiento para la fabricación de una luna con un elemento de conexión eléctrico
EP2888075B1 (de) 2012-08-24 2019-05-08 Saint-Gobain Glass France Scheibe mit elektrischem anschlusselement
PL2896269T5 (pl) 2012-09-14 2020-10-19 Saint-Gobain Glass France Szyba z elektrycznym elementem przyłączeniowym
AU2013314647B2 (en) 2012-09-14 2016-12-15 Saint-Gobain Glass France Pane having an electrical connection element
WO2014079594A1 (de) 2012-11-21 2014-05-30 Saint-Gobain Glass France Scheibe mit elektrischem anschlusselement und verbindungssteg
GB201514397D0 (en) 2015-08-13 2015-09-30 Pilkington Group Ltd Electrical Connector
JP6554358B2 (ja) * 2015-08-20 2019-07-31 イリソ電子工業株式会社 コネクタ
DE102019200659A1 (de) * 2019-01-18 2020-07-23 Te Connectivity Germany Gmbh Elektrische Verbindungsanordnung mit zwei verschweißten Leitern und einer Schicht Cyanacrylat-Klebstoff zwischen den Leitern sowie Verfahren hierzu
CN112233834B (zh) * 2020-10-14 2022-07-12 苏州贝克诺斯电子科技股份有限公司 一种导电泡棉的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1159390A (en) * 1965-08-12 1969-07-23 Ritter Pfaudler Corp Electrical Terminals and method of making the same
US4388522A (en) * 1980-12-08 1983-06-14 Ford Motor Company Electrically heated backlite structure
FR2519477A1 (fr) * 1982-01-06 1983-07-08 Siv Soc Italiana Vetro Borne de connexion pour vitre a chauffage electrique et procede d'application
US5879206A (en) * 1997-11-05 1999-03-09 Ford Global Technologies, Inc. Terminal connector capable of attachment to a metallic surface
US6019272A (en) * 1997-11-12 2000-02-01 Ford Global Technologies, Inc. Method for attaching a terminal connector to a metallic surface
DE10392500T5 (de) 2002-04-01 2005-05-12 Nas Interplex, Inc. Lottragende Artikel und Verfahren zum Zurückhalten einer Lotmasse darauf
WO2007116088A1 (en) 2006-04-12 2007-10-18 Pilkington Automotive Deutschland Gmbh Glass pane having soldered electrical terminal connections
DE102007059818B3 (de) 2007-12-11 2009-04-09 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Fensterscheibe mit einem elektrischen Flachanschlusselement

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2924540A (en) 1958-05-23 1960-02-09 Du Pont Ceramic composition and article
GB874257A (en) 1960-03-02 1961-08-02 Controllix Corp Improvements in or relating to circuit-breaker actuating mechanisms
DE1555053B1 (de) 1964-04-23 1970-04-30 Saint Gobain Verfahren zur Herstellung einer heizbaren Autoscheibe
US3616122A (en) * 1969-06-30 1971-10-26 Ppg Industries Inc Laminated window panels
US4196338A (en) 1974-04-29 1980-04-01 Saint-Gobain Industries Electrically heated vehicle window
JPS5131619A (en) * 1974-09-12 1976-03-17 Toyo Baru Kk Taishokusei oyobi seikeikakoseinisugureta dokigokin
US4046933A (en) * 1975-09-16 1977-09-06 Ppg Industries, Inc. Laminated window structure and its method of fabrication
JPS5853031Y2 (ja) * 1979-07-30 1983-12-02 日本電気株式会社 デイスプレイパネル
DE3344958C1 (de) 1983-12-13 1984-07-19 VEGLA Vereinigte Glaswerke GmbH, 5100 Aachen Verfahren zum Verloeten eines Stromanschlusselementes mit dem Stromzufuehrungsleiter einer heizbaren Glasscheibe
GB9203044D0 (en) * 1992-02-13 1992-03-25 Pilkington Plc Glazing assemblies
US5436412A (en) * 1992-10-30 1995-07-25 International Business Machines Corporation Interconnect structure having improved metallization
US5368814A (en) * 1993-06-16 1994-11-29 International Business Machines, Inc. Lead free, tin-bismuth solder alloys
FR2717339B3 (fr) * 1994-03-08 1996-05-24 Saint Gobain Vitrage Etanchéité d'une liaison électrique d'un vitrage.
JPH0899610A (ja) * 1994-09-30 1996-04-16 Tsutsunaka Plast Ind Co Ltd 防曇性能を有する合成樹脂製窓材およびその製造方法
JP3541070B2 (ja) 1994-11-15 2004-07-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 自動車ガラスの厚膜導電体ペースト
JPH10256687A (ja) * 1997-03-14 1998-09-25 Matsushita Electric Ind Co Ltd ビアホール充填用導体ペースト組成物とそれを用いたプリント配線基板
US6261941B1 (en) * 1998-02-12 2001-07-17 Georgia Tech Research Corp. Method for manufacturing a multilayer wiring substrate
US6207259B1 (en) * 1998-11-02 2001-03-27 Kyocera Corporation Wiring board
JP3865115B2 (ja) * 1999-09-13 2007-01-10 Hoya株式会社 多層配線基板及びその製造方法、並びに該多層配線基板を有するウエハ一括コンタクトボード
US6361823B1 (en) * 1999-12-03 2002-03-26 Atotech Deutschland Gmbh Process for whisker-free aqueous electroless tin plating
US6462568B1 (en) * 2000-08-31 2002-10-08 Micron Technology, Inc. Conductive polymer contact system and test method for semiconductor components
TW532050B (en) * 2000-11-09 2003-05-11 Matsushita Electric Ind Co Ltd Circuit board and method for manufacturing the same
GB0302230D0 (en) 2003-01-30 2003-03-05 Pilkington Plc Vehicular glazing panel
DE10325476B3 (de) * 2003-06-05 2004-12-23 Saint-Gobain Glass Deutschland Gmbh Plattenelement mit einer Schichtheizung
US6953897B2 (en) * 2003-08-21 2005-10-11 International Business Machines Corporation Device and method for clamping and grounding a cable
US20050127895A1 (en) * 2003-12-10 2005-06-16 Functional Devices, Inc. Current sensor wire clamp
JP4746852B2 (ja) * 2004-06-30 2011-08-10 ソニーケミカル&インフォメーションデバイス株式会社 伝送ケーブルの製造方法
US20070105412A1 (en) * 2004-11-12 2007-05-10 Agc Automotive Americas R&D, Inc. Electrical Connector For A Window Pane Of A Vehicle
TWI319297B (en) * 2006-06-06 2010-01-01 Phoenix Prec Technology Corp Repair structure of circuit board having pre-soldering bumps and method thereof
JP5033523B2 (ja) * 2007-07-17 2012-09-26 株式会社オートネットワーク技術研究所 導電部材、及び端子
JP2009054550A (ja) * 2007-08-29 2009-03-12 Auto Network Gijutsu Kenkyusho:Kk 電線接続構造の製造方法、及び電線接続構造
KR20090067249A (ko) * 2007-12-21 2009-06-25 삼성전기주식회사 인쇄회로기판 및 그 제조방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1159390A (en) * 1965-08-12 1969-07-23 Ritter Pfaudler Corp Electrical Terminals and method of making the same
US4388522A (en) * 1980-12-08 1983-06-14 Ford Motor Company Electrically heated backlite structure
FR2519477A1 (fr) * 1982-01-06 1983-07-08 Siv Soc Italiana Vetro Borne de connexion pour vitre a chauffage electrique et procede d'application
US5879206A (en) * 1997-11-05 1999-03-09 Ford Global Technologies, Inc. Terminal connector capable of attachment to a metallic surface
US6019272A (en) * 1997-11-12 2000-02-01 Ford Global Technologies, Inc. Method for attaching a terminal connector to a metallic surface
DE10392500T5 (de) 2002-04-01 2005-05-12 Nas Interplex, Inc. Lottragende Artikel und Verfahren zum Zurückhalten einer Lotmasse darauf
WO2007116088A1 (en) 2006-04-12 2007-10-18 Pilkington Automotive Deutschland Gmbh Glass pane having soldered electrical terminal connections
DE102007059818B3 (de) 2007-12-11 2009-04-09 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Fensterscheibe mit einem elektrischen Flachanschlusselement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150076217A (ko) * 2012-11-21 2015-07-06 쌩-고벵 글래스 프랑스 전기 연결 소자 및 보상판을 갖는 디스크
JP2017147229A (ja) * 2012-11-21 2017-08-24 サン−ゴバン グラス フランスSaint−Gobain Glass France 電気的接続部材及び補償プレートを備えた板ガラス、板ガラスの製造方法および板ガラスの使用

Also Published As

Publication number Publication date
EA201290548A1 (ru) 2012-11-30
BR112012010298B8 (pt) 2019-12-03
EP2517530A1 (de) 2012-10-31
CN102656945B (zh) 2015-11-25
US9370048B2 (en) 2016-06-14
KR20120104203A (ko) 2012-09-20
KR101740083B1 (ko) 2017-05-25
TR201814672T4 (tr) 2018-11-21
JP2013515340A (ja) 2013-05-02
MX2012005102A (es) 2012-05-22
ES2688657T3 (es) 2018-11-06
EP2517530B1 (de) 2018-08-08
JP5767651B2 (ja) 2015-08-19
PT2517530T (pt) 2018-10-23
US20120205152A1 (en) 2012-08-16
CN102656945A (zh) 2012-09-05
EA027939B1 (ru) 2017-09-29
BR112012010298A2 (pt) 2016-03-29
EP2339894A1 (de) 2011-06-29
PL2517530T3 (pl) 2019-01-31

Similar Documents

Publication Publication Date Title
EP2517530B1 (de) Scheibe mit elektrischem anschlusselement
DE112011104307B4 (de) Vakuumglas-Komponente
EP3576491B1 (de) Scheibe mit einem elektrischen anschlusselement
EP2708093B1 (de) Scheibe mit einem elektrischen anschlusselement
EP2923529B1 (de) Scheibe mit elektrischem anschlusselement und kompensatorplatten
EP2888075B1 (de) Scheibe mit elektrischem anschlusselement
EP2923528B1 (de) Scheibe mit elektrischem anschlusselement und verbindungssteg
EP2859620B1 (de) Scheibe mit einem elektrischen anschlusselement
EP3235340B1 (de) Scheibe mit einem elektrischen anschlusselement und einem flexiblen anschlusskabel
DE102006017675A1 (de) Glasscheibe mit elektrischem Funktionselement mit durch Lötverbindung befestigten Anschlußdrähten und Verfahren zum Herstellen elektrischer Anschlüsse
WO2014040774A1 (de) Scheibe mit einem elektrischen anschlusselement
WO2015165632A1 (de) Elektrisches anschlusselement zur kontaktierung einer elektrisch leitfähigen struktur auf einem substrat
DE202012013541U1 (de) Scheibe mit einem elektrischen Anschlusselement
WO2011107342A1 (de) Scheibe mit einem elektrischen anschlusselement
DE69929537T2 (de) Herstellungsverfahren einer evakuierten isolierverglasung
EP2190665A1 (de) Verbundelement und verfahren zur herstellung seiner befestigung
DE69015385T3 (de) Herstellung von beheizten Fenstern.
DE19960450C1 (de) Scheibenelement und Verfahren zu seiner Herstellung
DE102016112566A1 (de) Verbindungsanordnung für einen elektrisch leitenden Kontakt sowie Verfahren zur Herstellung einer solchen Verbindungsanordnung
DE202019004359U1 (de) Flachleiteranschlusselement
EP1062674B1 (de) Glastastatur, sowie verfahren zur herstellung einer glastastatur
WO2016156061A1 (de) Verfahren zur herstellung eines solarzellenmoduls sowie ein solarzellenmodul
DE202006020185U1 (de) Scheibenelement mit einer elektrischen Leitstruktur
DE10154558C1 (de) Scheibenelement mit einer elektrischen Leiterstruktur und Verfahren zu seiner Herstellung
DE3049092A1 (de) Zelle fuer ein elektrooptisches anzeigeelement und verfahren zu ihrer herstellung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080058857.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10788062

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 785/KOLNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13501452

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/005102

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20127011955

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010788062

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012545199

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 201290548

Country of ref document: EA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012010298

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012010298

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120430