WO2011071106A1 - 二次電池用負極及びこれを用いた二次電池、並びに、二次電池の形成に用いるバインダー用樹脂前駆体、樹脂前駆体溶液、及びバインダー組成物 - Google Patents

二次電池用負極及びこれを用いた二次電池、並びに、二次電池の形成に用いるバインダー用樹脂前駆体、樹脂前駆体溶液、及びバインダー組成物 Download PDF

Info

Publication number
WO2011071106A1
WO2011071106A1 PCT/JP2010/072113 JP2010072113W WO2011071106A1 WO 2011071106 A1 WO2011071106 A1 WO 2011071106A1 JP 2010072113 W JP2010072113 W JP 2010072113W WO 2011071106 A1 WO2011071106 A1 WO 2011071106A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
negative electrode
active material
binder
resin precursor
Prior art date
Application number
PCT/JP2010/072113
Other languages
English (en)
French (fr)
Inventor
利昌 田中
和徳 小関
真二 及川
大佐 池田
Original Assignee
新日鐵化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010253993A external-priority patent/JP2011142068A/ja
Application filed by 新日鐵化学株式会社 filed Critical 新日鐵化学株式会社
Publication of WO2011071106A1 publication Critical patent/WO2011071106A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention provides a negative electrode for a secondary battery, a secondary battery using the same, and an electrode for a lithium secondary battery by forming an active material layer (a mixture layer) on a current collector.
  • the present invention relates to a binder resin precursor, a resin precursor solution, and a binder composition to be used.
  • Lithium secondary batteries which are one of the secondary batteries, have a higher energy density than other secondary batteries, so they can be reduced in size and weight, such as mobile phones, personal computers, and personal digital assistants (PDAs). It is widely used as a power source for mobile electronic devices such as handy video cameras, and its demand is expected to increase in the future.
  • HEVs Hybrid Electric Vehicles
  • a lithium secondary battery (lithium ion secondary battery) has a structure in which an electrolyte containing lithium ions is filled between a positive electrode and a negative electrode. Of these, for example, a negative electrode that intercalates lithium.
  • the active material is bound with a binder (binder) and includes an active material layer integrated on the current collector.
  • binder polyvinylidene fluoride (PVDF) has been mainly used so far.
  • PVDF has a problem in that the adhesive strength between the negative electrode and the positive electrode active materials or the current collector is not sufficient, the adhesiveness gradually deteriorates, and the cycle life is shortened. Further, if the battery temperature rises abnormally due to a short circuit or the like, PVDF is decomposed to generate HF, and this HF reacts violently with Li, so that the battery is damaged.
  • a negative electrode and a positive electrode using a polyimide resin as a binder have been proposed (see Patent Document 1 and Patent Document 2). Furthermore, the following improved technologies have been proposed for the negative electrode using a polyimide resin as a binder. For example, the compounding ratio of a negative electrode active material made of carbonaceous powder and a polyimide resin is specified to improve the charge / discharge capacity (see Patent Document 3), or an active material layer made of a polyimide resin and a negative electrode active material.
  • a specific acid anhydride By combining two types of polyimide resins using materials, the negative electrode active material and the binder are more reliably bonded to the current collector, and the binding force between the negative electrode active materials is increased to suppress an increase in resistance at the negative electrode.
  • Technology see Patent Document 5
  • a negative electrode active material containing silicon particles having a predetermined particle size is bound with a polyimide resin using a specific diamine to obtain a negative electrode. As withstand repeated electrodeposition, such techniques to improve the cycle characteristics (see Patent Document 6) are known.
  • Japanese Patent No. 3311402 Japanese Patent No. 3561701 JP 2008-252550 A JP 2008-84562 A Japanese Patent No. 4215532 JP 2008-34352 A
  • an object of the present invention is to provide a negative electrode capable of obtaining a secondary battery exhibiting performance such as discharge capacity, output characteristics, and cycle characteristics in a well-balanced manner.
  • Another object of the present invention is to provide a secondary battery suitable as a power source for a hybrid vehicle or an electric vehicle, using such a negative electrode.
  • Another object of the present invention is to provide a resin for a binder used for an electrode of a secondary battery that expresses performance such as discharge capacity, output characteristics, and cycle characteristics in a well-balanced manner required for a power source for a hybrid vehicle or an electric vehicle.
  • the object is to provide a precursor, a resin precursor solution, and a binder composition.
  • the present inventors were excellent in the balance of discharge capacity, output characteristics, and cycle characteristics by using a polyimide resin made from a specific acid anhydride and diamine as a raw material. It discovered that the negative electrode for secondary batteries could be obtained, and completed this invention.
  • the present invention is a negative electrode for a secondary battery including an active material layer in which a negative electrode active material is integrated with a binder, and the polyimide having a repeating unit represented by the following general formula (1) as the binder
  • a negative electrode for a secondary battery using a resin
  • Ar 1 represents a divalent aromatic diamine residue having at least two ether bonds
  • Ar 2 represents a tetravalent acid diacid represented by the following formula (2) or formula (3).
  • An anhydride residue is shown.
  • Y represents either a direct bond or —CO—.
  • the present invention is a secondary battery using the above negative electrode.
  • the present invention also relates to a resin precursor for a binder used for forming an active material layer (a mixture layer) on a current collector to form an electrode of a lithium secondary battery, the following general formula (6)
  • the resin precursor for binders is characterized by containing 50 mol% or more of a polyimide resin precursor having a repeating unit represented by: [In the formula, Ar 1 represents a divalent aromatic diamine residue having at least two ether bonds, and Ar 2 represents a tetravalent acid diacid represented by the following formula (2) or formula (3). An anhydride residue is shown. ] [In Formula (3), Y represents either a direct bond or —CO—. ]
  • the present invention is a resin precursor solution characterized by containing the binder resin precursor in an organic solvent and having a viscosity in the range of 500 to 10,000 cP.
  • the present invention is a binder composition
  • a binder composition comprising the resin precursor solution and an active material.
  • the binder composition of the present invention preferably contains 0.1 to 10% by mass of a polyimide resin precursor having a repeating unit represented by the general formula (1) with respect to the active material.
  • the active material is preferably a carbon material, and the average particle size of the active material is preferably in the range of 5 to 50 ⁇ m.
  • the negative electrode of the present invention can provide a negative electrode for a secondary battery having an excellent balance of discharge capacity, output characteristics, and cycle characteristics. Therefore, according to the negative electrode of the present invention, it is possible to obtain a secondary battery having a balance of practical characteristics required for a power source for in-vehicle use such as a hybrid vehicle or an electric vehicle.
  • a binder resin precursor, a resin precursor solution, and a binder composition suitable for forming an electrode for a secondary battery having an excellent balance of discharge capacity, output characteristics, and cycle characteristics are obtained.
  • a secondary battery having a balance of practical characteristics required for a vehicle-mounted power source such as a hybrid vehicle or an electric vehicle can be obtained.
  • the negative electrode for secondary batteries of this invention and a secondary battery using the same are first demonstrated in detail based on embodiment of the negative electrode for secondary batteries.
  • a predetermined polyimide resin is used as a binder as described below.
  • the polyimide resin is excellent in the binding force between the negative electrode active materials, and more excellent in adhesiveness to the current collector forming the negative electrode than PVDF.
  • PVDF which is a type of fluororesin
  • polyimide resin does not contain fluorine in the structure, and because it is thermally stable and has high heat resistance, the battery can be used even when the battery temperature rises abnormally. Low risk of breakage or rupture.
  • the polyimide resin used in the present invention has a repeating unit represented by the general formula (1), and Ar 1 is a divalent aromatic diamine residue having at least two ether bonds.
  • BAPP 2,2′-bis [4- (4-aminophenoxy) phenyl] propane
  • TPE-R 1,3-bis (4-amino) And phenoxy) benzene
  • APIB 1,3-bis (3-aminophenoxy) benzene
  • BAPB 4,4′-bis (4-aminophenoxy) biphenyl
  • BAPP 2,2′-bis [4- (4-aminophenoxy) phenyl] propane
  • TPE-R 1,3-bis (4-amino) And phenoxy) benzene
  • APB 1,3-bis (3-aminophenoxy) benzene
  • BAPB 4,4′-bis (4-aminophenoxy) biphenyl
  • Ar 2 shown in the general formula (1) is a tetravalent acid dianhydride residue represented by the following formula (2) or formula (3).
  • Y represents either a direct bond or —CO—.
  • Preferred acid dianhydrides that give such acid dianhydride residues are specifically pyromellitic anhydride (PMDA), 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride (BPDA) 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (BTDA) and the like.
  • the diamine and acid anhydride used as the raw material for the polyimide resin may be a mixture of two or more components, respectively, and a diamine or acid anhydride other than those represented by Ar 1 and Ar 2 may be used in combination. In that case, however, it is desirable that the ratio of the components other than those represented by Ar 1 and Ar 2 is less than 50% in terms of the molar ratio of each component.
  • Ar 1 is 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, m -Phenylenediamine, p-phenylenediamine, 4,4'-diaminodiphenylpropane, 3,3'-diaminodiphenylpropane, 4,4'-diaminodiphenylethane, 3,3'-diaminodiphenylethane, 4,4'- Diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfide,
  • Ar 2 may be used those comprising the formula (2) or (3) other than the acid dianhydride.
  • Examples of the acid anhydride in which Ar 2 gives an acid anhydride residue other than those represented by the general formulas (2) and (3) include 4,4′-oxydiphthalic dianhydride, naphthalene-2,3,6,7-tetracarboxylic Acid dianhydride, naphthalene-1,2,5,6-tetracarboxylic dianhydride, naphthalene-1,2,4,5-tetracarboxylic dianhydride, naphthalene-1,4,5,8-tetra Carboxylic dianhydride, naphthalene-1,2,6,7-tetracarboxylic dianhydride, 2,2-bis (2,3-dicarboxyphenyl) -propane dianhydride, 2,2-bis (3 , 4-dicarboxyphenyl) -propane dianhydride, bis (2,3-dicarboxyphenyl) ether
  • the polyimide resin of the general formula (1) When the polyimide resin of the general formula (1) is obtained, it is produced by polymerizing raw material diamine and acid anhydride in the presence of a solvent to obtain a polyimide precursor resin, followed by heat treatment and imidization. Can do.
  • a solvent When setting it as a negative electrode material binder, generally it is set as the composition for disperse-mixing with an active material, a solvent, and other required additives in the state of a polyimide precursor resin, and forming an active material layer.
  • the reaction solvent used here include dimethylacetamide, dimethylformamide, N-methylpyrrolidone, 2-butanone, diglyme, and xylene, and one or more of these may be used.
  • the polyimide precursor resin has a weight average molecular weight of 10,000 to 500, 500, from the viewpoint of the balance between the binding property / adhesiveness as a binder and the viscosity of the slurry obtained by mixing with the active material. It is preferable to be in the range of 000.
  • the negative electrode active material in this invention can be suitably selected according to the kind of secondary battery, for example, in the case of a lithium secondary battery (lithium ion secondary battery), lithium can be intercalated.
  • lithium lithium can be intercalated.
  • carbon materials such as graphite and amorphous carbon
  • lithium-transition metal compounds lithium-titanium composite oxides, metal materials, and lithium aluminum alloys
  • lithium tin An alloy lithium tin An alloy
  • a lithium alloy such as a lithium silicon alloy, or the like
  • these two or more negative electrode active materials may be used in combination.
  • carbonaceous materials are generally used, and in particular, graphite materials are excellent materials having a high energy density obtained at a high temperature of at least about 2000 ° C., usually about 2600 to 3000 ° C.
  • graphite materials are excellent materials having a high energy density obtained at a high temperature of at least about 2000 ° C., usually about 2600 to 3000 ° C.
  • a low crystalline carbon material having a low degree of graphitization is preferably used.
  • a low crystalline carbon material having a low degree of graphitization for example, a petroleum-based or coal-based heavy oil is obtained by performing a thermal decomposition / polycondensation reaction at a maximum temperature of about 400 ° C. to 800 ° C. for about 24 hours.
  • the raw coke produced and calcined coke obtained by calcining the raw coke at a maximum temperature of about 800 ° C. to 1500 ° C. may be mentioned, and these may be mixed at a predetermined ratio.
  • a material obtained by adding a boron compound, a phosphorus compound, a nitrogen compound, or the like to these carbon materials, firing, and replacing a part of carbon with a specific element can also be used.
  • the average particle diameter determined as the median diameter is preferably 5 to 50 ⁇ m, more preferably 5 to 15 ⁇ m, and the BET specific surface area is preferably 5 m 2 / g or less, more preferably. Is preferably 1 m 2 / g or less.
  • the pulverized carbon material can be used as a negative electrode active material by further firing at about 800 to 1400 ° C.
  • the polyimide resin or a precursor thereof and the negative electrode active material are mixed using a solvent such as N-methylpyrrolidone (NMP), dimethylacetamide (DMAC), dimethylformamide (DMF), water, or alcohol.
  • NMP N-methylpyrrolidone
  • DMAC dimethylacetamide
  • DMF dimethylformamide
  • water or alcohol.
  • the material of the conductive substrate used as the current collector is not particularly limited, but a metal foil such as aluminum, copper, nickel, titanium, and stainless steel can be used.
  • a metal foil such as aluminum, copper, nickel, titanium, and stainless steel
  • the form of such an electroconductive base material can be made into various forms, such as a continuous sheet, a perforated sheet, and a net-like (net-like) sheet, it is particularly preferable to use a continuous sheet.
  • the thickness of the conductive substrate is preferably 2 to 30 ⁇ m.
  • the active material layer In forming the active material layer on the current collector, a negative electrode active material and, if necessary, a conductive aid were mixed into a slurry obtained by dissolving a polyimide resin or a precursor thereof in an organic solvent such as NMP. Then, the active material layer is formed by coating the current collector with a uniform thickness by a known means such as extrusion coating, curtain coating, roll coating or gravure coating, drying to remove the organic solvent, and then heat curing. Form.
  • the content ratio of the polyimide resin with respect to the negative electrode active material is preferably in the range of 0.1 to 10% by mass, preferably 0.3 to It is good to make it the range of 8 mass%.
  • the thickness of the active material layer may be about the same as that for forming a known negative electrode for a secondary battery, and is not particularly limited, but is generally about 10 to 500 ⁇ m.
  • the negative electrode thus obtained can be suitably used as an electrode for a secondary battery such as a lithium secondary battery.
  • the opposite positive electrode includes a lithium-containing transition metal oxide LiM (1) x O 2 (where x is a numerical value in the range of 0 ⁇ x ⁇ 1).
  • M (1) represents a transition metal and is composed of at least one of Co, Ni, Mn, Ti, Cr, V, Fe, Zn, Al, Sn, and In
  • LiM (1) y M (2) 2-y O 4 wherein y is a numerical value in the range of 0 ⁇ y ⁇ 1, where M (1) and M (2) represent transition metals, Co, Ni, Mn , Ti, Cr, V, Fe, Zn, Al, Sn, In)
  • LiM (1) x PO 4 wherein x is a number in the range of 0 ⁇ x ⁇ 1, wherein M (1) represents a transition metal, Co, Ni, Mn, Ti , Cr, V
  • Examples of the electrolyte filling the space between the positive electrode and the negative electrode can be used, for example LiClO 4, LiBF 4, LiPF 6 , LiAsF 6, LiB (C 6 H 5), LiCl LiBr, Li 3 SO 3 , Li (CF 3 SO 2 ) 2 N, Li (CF 3 SO 2 ) 3 C, Li (CF 3 CH 2 OSO 2 ) 2 N, Li (CF 3 CF 2 CH 2 OSO 2 ) 2 N, Li (HCF 2 CF 2 CH 2 OSO 2 ) 2 N, Li ((CF 3 ) 2 CHOSO 2 ) 2 N, LiB [C 6 H 3 (CF 3 ) 2 ] 4 Mention may be made of mixtures of more than one species.
  • non-aqueous electrolyte examples include propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 1,1-dimethoxyethane, 1,2-dimethoxyethane, 1, 2-diethoxyethane, ⁇ -butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, anisole, diethyl ether, sulfolane, methylsulfolane, acetonitrile, chloronitrile, propio Nitrile, trimethyl borate, tetramethyl silicate, nitromethane, dimethylformamide, N-methylpyrrolidone, ethyl acetate, trimethyl orthoformate, nitrobenzene , Benzoyl chloride, benzoyl bromide, nitro
  • a predetermined polyimide resin precursor is used as described below.
  • the binder resin precursor of the present invention contains a polyimide resin precursor having a repeating unit represented by the general formula (6).
  • Ar 1 represents a divalent aromatic diamine residue having at least two ether bonds
  • Ar 2 is a tetravalent represented by Formula (2) or Formula (3).
  • An acid dianhydride residue is shown.
  • Y represents either a direct bond or —CO—.
  • Ar 1 preferably includes the following. [In Formula (4), X represents a divalent organic group having one or more aromatic rings, and preferably has a structure as shown in the following (5). ]
  • the ratio of the polyimide resin precursor having the repeating unit represented by the general formula (6) is preferably 50 mol% or more. In addition to the polyimide resin precursor having the repeating unit of the general formula (6), there is a possibility that it may be contained in less than 50 mol%.
  • Ar 1 is 4,4′-diaminodiphenyl ether.
  • a siloxane diamine having a siloxane chain having a repeating number of 1 to 20 may be used.
  • Ar 2 may be used those comprising the formula (2) or (3) other than the acid dianhydride.
  • Examples of the acid anhydride in which Ar 2 gives an acid anhydride residue other than those represented by the general formulas (2) and (3) include 4,4′-oxydiphthalic dianhydride, naphthalene-2,3,6,7-tetracarboxylic Acid dianhydride, naphthalene-1,2,5,6-tetracarboxylic dianhydride, naphthalene-1,2,4,5-tetracarboxylic dianhydride, naphthalene-1,4,5,8-tetra Carboxylic dianhydride, naphthalene-1,2,6,7-tetracarboxylic dianhydride, 2,2-bis (2,3-dicarboxyphenyl) -propane dianhydride, 2,2-bis (3 , 4-D
  • the polyimide resin precursor having a repeating unit represented by the general formula (6) may be a resin precursor solution in a state dispersed in an organic solvent.
  • a solvent may be added separately from the solvent used during polymerization of the polyimide resin precursor.
  • Such a solvent may be the same as that used in the polymerization of the polyimide resin precursor, or may be another solvent.
  • dimethylacetamide, dimethylformamide, N-methylpyrrolidone, 2-butanone, diglyme, xylene and the like may be used, and one or more of these may be used.
  • the viscosity of the resin precursor solution is preferably in the range of 500 to 10,000 cP, more preferably in the range of 1,000 to 5,000 cP. .
  • the resin precursor solution thus obtained is mixed with an active material and other additives used as necessary to obtain a binder composition.
  • the binder composition is applied to the current collector constituting the electrode as described in detail later, and the polyimide resin precursor having the repeating unit of the general formula (6) in the composition is at this stage. It is imidized by a means such as heating to become a polyimide resin having a repeating unit represented by the following general formula (1).
  • the imidized polyimide resin having the repeating unit of the general formula (1) is obtained by imidizing the polyimide resin precursor represented by the general formula (6), and Ar 1 and Ar 2 are represented by the general formula ( This represents the same as 6). That is, Ar 1 is a divalent aromatic diamine residue having at least two ether bonds. Ar 2 shown in the general formula (4) is a tetravalent acid dianhydride residue represented by the above formula (2) or formula (3).
  • the raw material diamine and acid anhydride are polymerized in the presence of a solvent to obtain a polyimide resin precursor, and then heat treated to imidize.
  • a polyimide resin precursor is used as a binder for an electrode, as described above, a binder composition in which an active material or the like and a polyimide resin precursor are mixed is usually on a current collector. And imidized by heat treatment.
  • the solvent used for the polymerization include dimethylacetamide, dimethylformamide, N-methylpyrrolidone, 2-butanone, diglyme, xylene and the like, and one or more of these may be used.
  • the polyimide resin precursor has a weight average molecular weight in the range of 10,000 to 500,000 from the viewpoint of the balance between the binding property / adhesiveness as the binder and the viscosity of the slurry obtained by mixing with the active material. It is preferable to do so.
  • the resin precursor solution of the present invention is mixed with a positive electrode active material or a negative electrode active material depending on the application to form a binder composition.
  • the positive electrode active material and the negative electrode active material are not particularly limited, and representative examples thereof include those described above.
  • the resin precursor solution containing the polyimide resin precursor is made into a slurry using a predetermined solvent as necessary together with the positive electrode or the negative electrode active material, as exemplified above.
  • the electrode provided with the active material layer can be obtained by applying and drying on the current collector.
  • the positive electrode or negative electrode active material and, if necessary, a conductive aid are mixed with the resin precursor solution to form a slurry, and then extrusion coating, curtain coating, roll
  • the active material layer is formed by applying a uniform thickness to the current collector by a known means such as coating or gravure coating, drying and removing the organic solvent, followed by heating imidization.
  • the content ratio of the polyimide resin precursor having the repeating unit of the general formula (6) to the active material is in the range of 0.1 to 10% by mass. It is preferable to make it in the range of 0.3 to 8% by mass.
  • the thickness of the active material layer may be about the same as that for forming a known electrode for a secondary battery, and is not particularly limited, but is generally about 10 to 500 ⁇ m.
  • Binder composition production example-Example 1 First, using a refined pitch from which heavy quinoline insolubles have been removed from coal-based heavy oil, a bulk coke produced by heat treatment at a temperature of 500 ° C. for 24 hours by a delayed coking method is obtained, and finely pulverized with a jet mill. The raw coke powder having an average particle size of 9.9 ⁇ m was obtained by pulverization and sizing.
  • the bulk raw coke obtained as described above is heat-treated for 1 hour or more at a temperature from the inlet temperature of 700 ° C. to the outlet temperature of 1500 ° C. (maximum temperature reached) by a rotary kiln to obtain massive calcined coke.
  • the powder was pulverized and sized by a mill to obtain calcined coke powder having an average particle size of 9.5 ⁇ m.
  • Phosphoric acid ester (14% by mass active phosphorus solid resin: manufactured by Sanko Co., Ltd.) with respect to the total of 50 parts by mass of raw coke powder and 50 parts by mass of calcined coke powder obtained as described above (100 parts by mass of coke powder).
  • Name HCA chemical name: 9,10-dihydro-9-oxa-10-osfaphenanthrene-10-oxide) 17.9 parts by mass (phosphorus equivalent: 2.5 parts by mass), and boron carbide 3.2 parts by mass (Boron conversion: 2.5 parts by mass) was added to obtain a coke material.
  • the coke material is heated from room temperature at a rate of 600 ° C./hour, reaches 900 ° C. (maximum temperature reached), and is further held for 2 hours for carbonization treatment (firing), and a lithium secondary battery Negative electrode active material A was obtained.
  • dimethylacetamide using pyromellitic anhydride (PMDA) as the acid dianhydride and 2,2'-bis [4- (4-aminophenoxy) phenyl] propane (BAPP) as the diamine is used in approximately the same mole.
  • PMDA pyromellitic anhydride
  • BAPP 2,2'-bis [4- (4-aminophenoxy) phenyl] propane
  • a precursor of polyimide resin having a weight average molecular weight of 144,000 was obtained by reacting in (DMAC) at room temperature for 4 hours.
  • the polyimide resin precursor thus obtained is used as a binder for a lithium secondary battery.
  • the negative electrode active material A obtained above and the precursor of the polyimide resin excluding the solvent (DMAC) at the time of polymerization are in a ratio of 95% by mass and 5% by mass, and dimethylacetamide (DMAC) is separately used as a solvent.
  • the mixture was added and kneaded to prepare a slurry (binder composition).
  • the composition of the obtained slurry is shown in Table 1.
  • the amount of DMAC (solvent) in the binder composition was such that the solid content concentration (polyimide resin precursor + negative electrode active material) of the slurry excluding all solvents was 50% by weight.
  • the viscosity of the polyimide resin precursor solution in Table 1 is a viscosity obtained by polymerizing raw material diamine and acid anhydride in the presence of a solvent using an E-type viscometer manufactured by TOKIMEC ( 25 ° C.).
  • the weight average molecular weight is a value in terms of polystyrene of the polyimide resin precursor.
  • Example 2 (Binder composition production example-Examples 2 to 6) Polyimide resin precursors according to Examples 2 to 6 were obtained in the same manner as in Example 1 except that the combination of acid dianhydride and diamine was changed as shown in Table 1. In addition, the polyimide resin precursors according to Examples 2 to 5 were kneaded with negative electrode active material A using dimethylacetamide (DMAC) as a solvent in the same manner as in Example 1 to obtain slurries (binder compositions). . On the other hand, about the polyimide resin precursor which concerns on Example 6, the natural graphite was used instead of the negative electrode active material A, and the slurry (binder composition) was obtained like Example 1 except it.
  • DMAC dimethylacetamide
  • BTDA 3,3 ', 4,4'-benzophenone tetracarboxylic dianhydride
  • BPDA 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride
  • TPE-R 1,3-bis (4-aminophenoxy) benzene
  • APB 1,3-bis (3-aminophenoxy) benzene
  • DSDA 3,3 ', 4,4'-diphenylsulfonetetracarboxylic dianhydride
  • BPADA 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] propane dianhydride
  • PDA p-Phenylenediamine DAPE: 4,4'-diaminodiphenyl ether
  • the negative electrode was produced in the following manner, and the performance as a secondary battery was evaluated. That is, the obtained binder composition was applied to a copper foil having a thickness of 10 ⁇ m so as to have a uniform thickness, and then the polyimide resin precursor was imidized by heat treatment at 350 ° C. for 30 minutes in a nitrogen atmosphere to obtain copper. An active material layer was formed on the foil. The copper foil provided with the active material layer is dried and pressed to a predetermined electrode density to produce an electrode sheet having a total thickness of 60 ⁇ m, and a negative electrode is obtained by cutting the sheet into a circle having a diameter of 15 mm ⁇ . It was.
  • a test lithium secondary battery was prepared as follows.
  • As the counter electrode metallic lithium cut out to about 15.5 mm ⁇ was used.
  • a coin cell was prepared by using a solution of LiPF 6 dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate (volume ratio of 1: 1) as the electrolytic solution at a concentration of 1 mol / l, and using a porous membrane of propylene as the separator. did.
  • a constant current discharge of 0.5 mA / cm 2 was initially carried out at a constant temperature of 25 ° C., with a terminal voltage lower limit voltage of 0 V and a discharge upper limit voltage of 1.5 V.
  • the discharge capacity was 313 mAh / g when the output characteristics and input characteristics at the time of carrying out constant current discharge and charging of 5 mA / cm 2 were examined by the capacity maintenance ratio, and the capacity maintenance ratio related to the output characteristics was The capacity maintenance ratio related to the input characteristics was 78.2% and 56.2%. The product of these ratios was evaluated as the input / output balance and found to be 0.44.
  • the capacity maintenance rate related to the output characteristics is obtained from the ratio of the discharge capacity during 5 mA / cm 2 constant current discharge to the initial discharge capacity, and the capacity maintenance ratio related to the input characteristics is 5 mA / cm 2 constant relative to the initial charge capacity. It calculated
  • the capacity maintenance rate after 3 cycles obtained from the ratio of the discharge capacity at the 3rd cycle to the discharge capacity at the 1st cycle by repeating the constant current discharge and the charge at 0.5 mA / cm 2 for 3 cycles is 95.2%. Met.
  • the negative electrode obtained in Comparative Example 6 for producing the negative electrode had a discharge capacity of 291 mAh / g, a capacity retention ratio of 61.2% for output characteristics, and a capacity maintenance ratio of 32.8 for input characteristics. %Met.
  • the input / output balance obtained from the product of these ratios was 0.20, and the capacity retention rate after 3 cycles obtained by repeating 3 cycles of constant current discharge and charge was 88.0%.
  • the capacity maintenance rate after 100 cycles obtained by repeating 100 cycles of constant current discharge and charge was 63.9%.
  • the bulk raw coke obtained as described above is heat-treated for 1 hour or more at a temperature from the inlet temperature of 700 ° C. to the outlet temperature of 1500 ° C. (maximum temperature reached) by a rotary kiln to obtain massive calcined coke.
  • the powder was pulverized and sized by a mill to obtain calcined coke powder having an average particle size of 9.5 ⁇ m.
  • Phosphoric acid ester (14% by mass active phosphorus solid resin: manufactured by Sanko Co., Ltd.) with respect to the total of 50 parts by mass of raw coke powder and 50 parts by mass of calcined coke powder obtained as described above (100 parts by mass of coke powder).
  • No. HCA chemical name: 9,10-dihydro-9-oxa-10-osfaphenanthrene-10-oxide
  • 17.9 parts by mass phosphorus equivalent: 2.5 parts by mass
  • the coke material is heated from room temperature at a rate of 600 ° C./hour, reaches 900 ° C. (maximum temperature reached), and is further held for 2 hours for carbonization treatment (firing), and a lithium secondary battery Negative electrode active material B was obtained.
  • a negative electrode was obtained in the same manner as in Example 7 of negative electrode production using the polyimide resin precursor used in Example 1 of binder composition production (Table 3). The obtained negative electrode was evaluated in the same manner as in Example 7. As a result, the discharge capacity was 313 mAh / g, the capacity maintenance ratio related to output characteristics was 80.1%, and the capacity maintenance ratio related to input characteristics was 57.0%. Met. The input / output balance obtained from the product of these ratios was 0.46. Further, the capacity retention rate after 3 cycles was 95.8%, and the evaluation of the cycle characteristics related to the capacity retention rate after 100 cycles was ⁇ .
  • Example 14 to 18 A negative electrode was obtained in the same manner as in Example 13 except that the binder used in Example 13 was changed to a polyimide resin precursor having the composition shown in Table 3. About the obtained negative electrode, it carried out similarly to Example 13, and evaluated discharge capacity, output characteristics, and cycling characteristics. The results are shown in Table 3. In addition, the meaning of the new abbreviation described in Table 3 is as follows, and others are as above-mentioned. Moreover, the polyimide resin was imidized by the heat processing at the time of forming an active material layer by polymerizing precursors in the same manner as in Example 1. m-TB: 2,2'-dimethyl-4,4'-diaminobiphenyl
  • the negative electrode of the present invention can provide a secondary battery with an excellent balance of discharge capacity, output characteristics, and cycle characteristics. Therefore, by using this negative electrode, it is possible to obtain a secondary battery having a balance of practical characteristics required for a power source for in-vehicle use such as a hybrid vehicle or an electric vehicle. Moreover, it is not restricted to these uses, It can utilize suitably as a power supply by which high output, a high capacity
  • the resin precursor for binder, the resin precursor solution, and the binder composition of the present invention provide an electrode useful for forming a secondary battery excellent in balance of discharge capacity, output characteristics, and cycle characteristics. Can do. Therefore, by using such an electrode, it is possible to obtain a secondary battery having a balance of practical characteristics required for a power source for use in a vehicle such as a hybrid vehicle or an electric vehicle.

Abstract

 放電容量やサイクル特性といった性能をバランス良く発現する二次電池が得られる負極等を提供し、また、これらの形成に用いられるバインダー用樹脂前駆体等を提供する。 負極活物質を下記一般式(1)で表される繰返し単位を有するポリイミド樹脂を用いたバインダーで一体化した二次電池用負極であり、また、このポリイミド樹脂の前駆体を50モル%以上含んだことを特徴とする二次電池形成バインダー用樹脂前駆体である。(1)〔Ar1は、少なくとも2個のエーテル結合を有する2価の芳香族ジアミン残基を示し、Ar2は、下記式(2)又は式(3)で表される4価の酸二無水物残基を示す。〕(2)(3)〔式(3)において、Yは、直結合又は-CO-のいずれかを示す。〕

Description

二次電池用負極及びこれを用いた二次電池、並びに、二次電池の形成に用いるバインダー用樹脂前駆体、樹脂前駆体溶液、及びバインダー組成物
 この発明は、二次電池用の負極、及びそれを用いた二次電池、並びに、集電体上に活物質層(合材層)を形成してリチウム二次電池の電極を形成するのに用いるバインダー用樹脂前駆体、樹脂前駆体溶液、及びバインダー組成物に関する。
 二次電池のひとつであるリチウム二次電池は、他の二次電池と比べて高いエネルギー密度を有することから、小型化・軽量化が可能であり、携帯電話、パソコン、携帯情報端末(PDA)、ハンディビデオカメラ等の移動電子機器の電源として多く利用されており、今後もその需要は益々高くなると予想されている。
 特に、近年においては、エネルギー問題や環境問題に対応するために、電気自動車や、ニッケル水素電池駆動のモーターとガソリンエンジンとを組み合わせたハイブリッド電気自動車(Hybrid Electric Vehicle:HEV)への需要も増し、初期効率や充・放電容量のほか、入出力特性やサイクル寿命といったリチウム二次電池の性能の更なる向上が求められている。
 リチウム二次電池(リチウムイオン二次電池)は、正極と負極の間にリチウムイオンを含んだ電解質が満たされた構造を有し、このうち負極を例にとれば、リチウムをインターカレートする負極活物質がバインダー(結着剤)で結着されて、集電体上で一体化された活物質層を備える。そして、上記バインダーとしては、これまでポリフッ化ビニリデン(PVDF)が主に使用されてきた。
 ところが、PVDFでは、負極や正極の活物質同士、或いは集電体との接着力が十分ではなく、次第に密着性が悪くなり、サイクル寿命が短くなるといった問題が明らかになった。また、短絡等により電池温度が異常に上昇すると、PVDFが分解してHFが発生し、このHFがLiと激しく発熱反応するため、電池が破損するなど、信頼性の点でも問題があった。
 そこで、サイクル寿命をより長くすると共に、信頼性に優れた二次電池を得るために、ポリイミド樹脂をバインダーとして用いた負極や正極が提案されている(特許文献1、特許文献2参照)。更には、ポリイミド樹脂をバインダーとした負極について、以下のような改良技術が提案されている。例えば、炭素質粉末からなる負極活物質とポリイミド樹脂との配合割合を特定して、充放電容量を向上させる技術(特許文献3参照)や、ポリイミド樹脂と負極活物質とからなる活物質層の厚み、活物質層におけるポリイミド樹脂の割合、及び活物質層形成時の乾燥温度の3つのパラメータを特定することで、サイクル特性の改善を図る技術(特許文献4参照)のほか、特定の酸無水物を用いたポリイミド樹脂を2種類組み合わせることで、集電体に対する負極活物質とバインダーの接着をより確実にすると共に、負極活物質同士の結着力を高めて、負極における抵抗の増大を抑制する技術(特許文献5参照)、所定の粒径を有したケイ素粒子を含んだ負極活物質を、特定のジアミンを用いたポリイミド樹脂で結着して負極を得ることで、充放電の繰り返しに耐え得るようにして、サイクル特性の向上を図る技術(特許文献6参照)などが知られている。
特許第3311402号公報 特許第3561701号公報 特開2008-252550号公報 特開2008-84562号公報 特許第4215532号公報 特開2008-34352号公報
 とりわけ、リチウム二次電池をハイブリッド自動車や電気自動車の車載電源として利用する場合には、二次電池の代表的な性能である放電容量のほかに、充放電の繰り返し性能を示すサイクル寿命や、走行とエネルギー回生とのバランスを示す入出力特性に優れていることが重要になってくる。ところが、上述したように、ポリイミド樹脂をバインダーとして用いた負極について種々の改良がなされてはいるものの、サイクル寿命や出力特性は、未だ十分なレベルであるとは言えない。
 したがって、本発明の目的は、放電容量、出力特性、及びサイクル特性といった性能をバランス良く発現する二次電池を得ることができる負極を提供することにある。また、本発明の別の目的は、このような負極を用いて、特に、ハイブリッド自動車や電気自動車用等の電源として好適な二次電池を提供することにある。
 更に、本発明の別の目的は、ハイブリッド自動車や電気自動車用等の電源に求められる、放電容量、出力特性、及びサイクル特性といった性能をバランス良く発現する二次電池の電極に用いられるバインダー用樹脂前駆体、樹脂前駆体溶液、及びバインダー組成物を提供することにある。
 そこで、本発明者等は、上記問題について鋭意検討した結果、特定の酸無水物とジアミンを原料にしたポリイミド樹脂をバインダーとして用いることで、放電容量、出力特性、及びサイクル特性のバランスに優れた二次電池用の負極を得ることができることを見出し、本発明を完成した。
 すなわち、本発明は、負極活物質をバインダーで一体化した活物質層を備えた二次電池用の負極であって、前記バインダーとして、下記一般式(1)で表される繰返し単位を有するポリイミド樹脂を用いたことを特徴とする二次電池用負極である。
Figure JPOXMLDOC01-appb-I000005
 
〔式中、Ar1は、少なくとも2個のエーテル結合を有する2価の芳香族ジアミン残基を示し、Ar2は、下記式(2)又は式(3)で表される4価の酸二無水物残基を示す。〕
Figure JPOXMLDOC01-appb-I000006
〔式(3)において、Yは、直結合又は-CO-のいずれかを示す。〕
 また、本発明は、上記の負極を用いた二次電池である。
 また、本発明は、集電体上に活物質層(合材層)を形成してリチウム二次電池の電極を形成するのに用いるバインダー用樹脂前駆体であって、下記一般式(6)で表される繰返し単位を有するポリイミド樹脂前駆体を50モル%以上含有することを特徴とするバインダー用樹脂前駆体である。
Figure JPOXMLDOC01-appb-I000007
 
〔式中、Arは、少なくとも2個のエーテル結合を有する2価の芳香族ジアミン残基を示し、Arは、下記式(2)又は式(3)で表される4価の酸二無水物残基を示す。〕
Figure JPOXMLDOC01-appb-I000008
〔式(3)において、Yは、直結合又は-CO-のいずれかを示す。〕
 更に、本発明は、有機溶媒中に上記バインダー用樹脂前駆体を含有し、粘度が500~10,000cPの範囲にあることを特徴とする樹脂前駆体溶液である。
 更にまた、本発明は、上記樹脂前駆体溶液と活物質とを含有することを特徴とするバインダー組成物である。
 本発明のバインダー組成物は、活物質に対して、一般式(1)で表される繰返し単位を有するポリイミド樹脂前駆体を0.1~10質量%含有することが好ましく、また、負極の形成に用いる場合には、活物質は炭素材料であって、活物質の平均粒子径が5~50μmの範囲であることが好ましい。
 本発明の負極は、放電容量、出力特性、及びサイクル特性のバランスに優れた二次電池用の負極を得ることができる。そのため、本発明の負極によれば、ハイブリッド自動車や電気自動車用等の車載用途の電源に要求される実用特性をバランス良く兼ね備えた二次電池を得ることができる。
 また、本発明によれば、放電容量、出力特性、及びサイクル特性のバランスに優れた二次電池用の電極形成に適したバインダー用樹脂前駆体、樹脂前駆体溶液、及びバインダー組成物を得ることができる。そして、これらを用いて活物質のバインダーとして電極を形成することで、ハイブリッド自動車や電気自動車用等の車載用途の電源に要求される実用特性をバランス良く兼ね備えた二次電池を得ることができる。
 以下では、先ず、本発明の二次電池用負極及びこれを用いた二次電池について、二次電池用負極の実施の形態に基づいて、詳細に説明する。
 本発明では、バインダーとして、下記のとおり、所定のポリイミド樹脂を用いる。一般に、ポリイミド樹脂は、負極活物質同士の結着力に優れるほか、PVDFと比べて負極を形成する集電体に対する接着性に優れる。加えて、ポリイミド樹脂は、フッ素樹脂の一種であるPVDFと異なり、構造内にフッ素を含有せず、また、熱的に安定で耐熱性が高いため、電池温度が異常に上昇したときでも電池が破損、破裂する危険性が低い。
 本発明で用いるポリイミド樹脂は、先ず、上記一般式(1)に示した繰返し単位を有し、Ar1が、少なくとも2個のエーテル結合を有する2価の芳香族ジアミン残基であり、好適には以下のものを挙げることができる。
Figure JPOXMLDOC01-appb-I000009
〔式(4)においてXは、芳香環を1以上有する2価の有機基を表し、好ましくは、下記(5)に示した構造のものが挙げられる。〕
Figure JPOXMLDOC01-appb-I000010
 このような芳香族ジアミン残基を与える好ましいジアミン成分として、具体的には2,2'-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)、1,3-ビス(4-アミノフェノキシ)ベンゼン(TPE-R)、1,3-ビス(3-アミノフェノキシ)ベンゼン(APB)、4,4'-ビス(4-アミノフェノキシ)ビフェニル(BAPB)等が挙げられる。これらのジアミン成分の中でも、BAPPを必須成分として用いることが好ましく、特には、これを50モル%以上の割合で使用することが良い。
 また、本発明で用いるポリイミド樹脂は、上記一般式(1)に示したAr2が、下記式(2)又は式(3)で表される4価の酸二無水物残基である。
Figure JPOXMLDOC01-appb-I000011
〔式(3)において、Yは、直結合又は-CO-のいずれかを示す。〕
 このような酸二無水物残基を与える好ましい酸二無水物として、具体的には無水ピロメリット酸(PMDA)、3,3',4,4'-ビフェニルテトラカルボン酸二無水物(BPDA)、3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物(BTDA)等が挙げられる。なお、ポリイミド樹脂の原料となるジアミン及び酸無水物は、それぞれ2種以上の成分を混合してもよく、また、上記Ar1及びAr2で表される以外のジアミンや酸無水物を併用してもよいが、その場合には、上記Ar1及びAr2で表される以外の成分の割合が、それぞれの成分においてモル比で50%未満となるようにするのが望ましい。
 一般式(1)以外のポリイミド構成単位を構成するArとArとしては、Arが、4,4'-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3'-ジアミノジフェニルエーテル、m-フェニレンジアミン、p-フェニレンジアミン、4,4'-ジアミノジフェニルプロパン、3,3'-ジアミノジフェニルプロパン、4,4'-ジアミノジフェニルエタン、3,3'-ジアミノジフェニルエタン、4,4'-ジアミノジフェニルメタン、3,3'-ジアミノジフェニルメタン、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、4,4'-ジアミノジフェニルスルフィド、3,3'-ジアミノジフェニルスルフィド、4,4'-ジアミノジフェニルスルホン、3,3'-ジアミノジフェニルスルホン、ベンジジン、3,3'-ジアミノビフェニル、2,2'-ジメチル-4,4'-ジアミノビフェニル、3,3'-ジメチル-4,4'-ジアミノビフェニル、3,3'-ジメトキシベンジジン、4,4''-ジアミノ-p-ターフェニル、1,5-ジアミノナフタレン、2,6-ジアミノナフタレンなどから得られるジアミン残基が挙げられ、単独で又は2種以上混合して用いることができる。また、繰り返し数が1~20のシロキサン鎖を有するシロキサンジアミンなどを用いてもよい。
 更には、Arが式(2)又は式(3)以外の酸二無水物からなるものを使用してもよい。Arが一般式(2)及び(3)以外の酸無水物残基を与える酸無水物としては、4,4'-オキシジフタル酸二無水物,ナフタレン-2,3,6,7-テトラカルボン酸二無水物、ナフタレン-1,2,5,6-テトラカルボン酸二無水物、ナフタレン-1,2,4,5-テトラカルボン酸二無水物、ナフタレン-1,4,5,8-テトラカルボン酸二無水物、ナフタレン-1,2,6,7-テトラカルボン酸二無水物、2,2-ビス(2,3-ジカルボキシフェニル)-プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-プロパン二無水物、ビス(2,3-ジカルボキシフェニル)エーテル二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)スルホン二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物などが挙げられ、単独で又は2種以上用いることもできる。
 一般式(1)のポリイミド樹脂を得る際には、原料のジアミンと酸無水物とを溶媒の存在下で重合し、ポリイミド前駆体樹脂とした後、熱処理してイミド化することにより製造することができる。なお、負極材バインダーとする場合、一般には、ポリイミド前駆体樹脂の状態で活物質、溶媒、その他必要な添加剤と分散混合され活物質層を形成するための組成物とされる。ここで用いる反応溶媒としては、例えばジメチルアセトアミド、ジメチルホルムアミド、N-メチルピロリドン、2-ブタノン、ジグライム、キシレン等が挙げられ、これらの1種又は2種以上を使用してもよい。また、ポリイミド前駆体樹脂は、バインダーとしての結着性・接着性と活物質と混ぜて得られるスラリーの粘度とのバランスの観点から、得られるポリイミド樹脂の重量平均分子量が10,000~500,000の範囲となるようにするのが好ましい。
 また、本発明における負極活物質は、二次電池の種類に応じて適宜選定することができ、例えばリチウム二次電池(リチウムイオン二次電池)の場合には、リチウムをインターカレートすることができるものであればよく、具体的には、黒鉛や非晶質炭素などの炭素材料のほか、リチウム-遷移金属化合物、リチウム-チタン複合酸化物、金属材料、更には、リチウムアルミニウム合金、リチウムスズ合金、リチウムケイ素合金などのリチウム合金等を利用することができ、場合によっては、これら2種以上の負極活物質を併用するようにしてもよい。このうち、一般的には、炭素質材料が用いられ、なかでも黒鉛材料は、少なくとも2000℃程度以上、通常は2600~3000℃程度の高温で得られる、高エネルギー密度を持つ優れた材料であるが、入出力特性やサイクル特性に課題を有することから、ハイブリッド自動車、電気自動車などの車載電源や、電力貯蔵に用いられるような高入出力用途には、黒鉛材料よりも低い温度で焼成されて、黒鉛化度の低い低結晶炭素材料が好適に利用される。
 黒鉛化度の低い低結晶炭素材料としては、例えば、石油系又は石炭系の重質油を最高到達温度400℃~800℃程度の温度で24時間前後、熱分解・重縮合反応を行って得られた生コークスや、この生コークスを最高到達温度800℃~1500℃程度でか焼したか焼コークス等が挙げられ、これらを所定の割合で混合するようにしても良い。また、これらの炭素材料にホウ素化合物、リン化合物、窒素化合物等を加えて焼成し、特定の元素で炭素の一部を置換したものを用いることもできる。このような炭素材料は、通常、塊状で得られるため、粉砕機を用いて所定の粒径になるように粉砕するのが良く、その際、二次電池に用いたときのエネルギー効率の観点から、メジアン径として求められる平均粒子径が5~50μmであるのが好ましく、より好ましくは5~15μmであり、また、BET比表面積が5m2/g以下となるようにするのが好ましく、より好ましくは1m2/g以下となるようにするのが良い。粉砕された炭素材料は、更に800~1400℃程度で焼成することで、負極活物質として使用できる。
 そして、本発明では、上記ポリイミド樹脂又はその前駆体と負極活物質とを、N-メチルピロリドン(NMP)、ジメチルアセトアミド(DMAC)、ジメチルホルムアミド(DMF)あるいは水、アルコール等の溶媒を用いて混合することによりスラリーを作製し、集電体上に塗布、乾燥することにより、活物質層を備えた負極を得ることができる。
 ここで、集電体として使用される導電性基材の材質は、特に制限されるものではないが、アルミニウム、銅、ニッケル、チタン、ステンレス等の金属箔を用いることができる。また、このような導電性基材の形態は、連続シート、穴あきシート、ネット状(網状)シートなど、いろいろな形態とすることができるが、特に連続シートとすることが好ましい。さらに、導電性基材の厚さは2~30μmとすることが好ましい。
 集電体上への活物質層の形成にあたっては、ポリイミド樹脂又はその前駆体をNMP等の有機溶媒に溶かした溶液に、負極活物質及び必要に応じて導電助剤を混合してスラリーとした後、エクストルージョン塗布、カーテン塗布、ロール塗布、グラビア塗布等の公知の手段により集電体に均一な厚みで塗工し、乾燥して有機溶媒を除去した後、加熱硬化させることにより活物質層を形成する。この際、結着性と放電容量とのバランスの観点から、負極活物質に対するポリイミド樹脂の含有割合が0.1~10質量%の範囲となるようにするのが良く、好ましくは0.3~8質量%の範囲となるようにするのが良い。また、活物質層の厚みについては、公知の二次電池用の負極を形成する場合と同程度であればよく、特に制限はないが、一般には10~500μm程度である。
 こうして得た負極は、リチウム二次電池をはじめとした二次電池の電極として好適に用いることができる。本発明の負極を用いてリチウム二次電池を構成する場合、相対する正極としては、リチウム含有遷移金属酸化物LiM(1)x2(式中、xは0≦x≦1の範囲の数値であり、式中M(1)は遷移金属を表し、Co、Ni、Mn、Ti、Cr、V、Fe、Zn、Al、Sn、Inの少なくとも1種類からなる)、あるいはLiM(1)yM(2)2-y4(式中、yは0≦y≦1の範囲の数値であり、式中、M(1)及びM(2)は遷移金属を表し、Co、Ni、Mn、Ti、Cr、V、Fe、Zn、Al、Sn、Inの少なくとも1種類からなる)、LiM(1)M(2)M(3)(式中x、y及びzはx+y+z=1の関係を満たす範囲の数値であり、式中M(1)、M(2)及びM(3)は遷移金属を表し、Co、Ni、Mn、Ti、Cr、V、Fe、Zn、Al、Sn、Inの少なくとも1種類からなる)、LiM(1)PO(式中xは0≦x≦1の範囲の数値であり、式中M(1)は遷移金属を表し、Co、Ni、Mn、Ti、Cr、V、Fe、Zn、Al、Sn、Inの少なくとも1種類からなる)、遷移金属カルコゲン化物(Ti、S2、NbSe等)、バナジウム酸化物(V25、V613、V24、V36等)およびリチウム化合物、一般式MxMo6Ch6-y(式中、xは0≦x≦4、yは0≦y≦1の範囲の数値であり、式中Mは遷移金属をはじめとする金属、Chはカルコゲン金属を表す)で表されるシュブレル相化合物、あるいは活性炭、活性炭素繊維等の正極活物質を用いることができる。
 また、上記正極と負極との間を満たす電解質としては、従来公知のものをいずれも使用することができ、例えばLiClO4、LiBF4、LiPF6、LiAsF6、LiB(C65)、LiCl、LiBr、Li3SO3、Li(CF3SO2)2N、Li(CF3SO2)3C、Li(CF3CH2OSO2)2N、Li(CF3CF2CH2OSO2)2N、Li(HCF2CF2CH2OSO2)2N、Li((CF3)2CHOSO2)2N、LiB[C63(CF3)2]4等の1種または2種以上の混合物を挙げることができる。
 また、非水系電解液としては、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、1,1-ジメトキシエタン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、γ-ブチロラクトン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、アニソール、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、クロロニトリル、プロピオニトリル、ホウ酸トリメチル、ケイ酸テトラメチル、ニトロメタン、ジメチルホルムアミド、N-メチルピロリドン、酢酸エチル、トリメチルオルトホルメート、ニトロベンゼン、塩化ベンゾイル、臭化ベンゾイル、テトラヒドロチオフェン、ジメチルスルホキシド、3-メチル-2-オキサゾリドン、エチレングリコール、サルファイト、ジメチルサルファイト等の単独溶媒もしくは2種類以上の混合溶媒を使用できる。
 次に、本発明の二次電池の形成に用いるバインダー用樹脂前駆体、樹脂前駆体溶液、及びバインダー組成物について詳細に説明する。
 活物質を結着するバインダー用途に関する本発明では、下記のとおり、所定のポリイミド樹脂前駆体を用いる。
 本発明のバインダー用樹脂前駆体は、上記一般式(6)で表される繰返し単位を有するポリイミド樹脂前駆体を含有する。一般式(6)中、Arは、少なくとも2個のエーテル結合を有する2価の芳香族ジアミン残基を示し、Arは、式(2)又は式(3)で表される4価の酸二無水物残基を示す。なお、式(3)において、Yは、直結合又は-CO-のいずれかを示す。そして、Arは、好適には以下のものを挙げることができる。
Figure JPOXMLDOC01-appb-I000012
〔式(4)においてXは、芳香環を1以上有する2価の有機基を表し、好ましくは、下記(5)に示したような構造のものが挙げられる。〕
Figure JPOXMLDOC01-appb-I000013
 このような芳香族ジアミン残基を与える好ましいジアミン成分や、酸二無水物残基を与える好ましい酸二無水物については、上記で挙げたようなものがある。
 バインダー用樹脂前駆体において、上記一般式(6)で表される繰返し単位を有するポリイミド樹脂前駆体の割合は50モル%以上であることが好ましい。一般式(6)の繰返し単位を有するポリイミド樹脂前駆体以外で、50モル%未満で含まれる可能性のあるものとしては、一般式(6)において、Arが、4,4'-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3'-ジアミノジフェニルエーテル、m-フェニレンジアミン、p-フェニレンジアミン、4,4'-ジアミノジフェニルプロパン、3,3'-ジアミノジフェニルプロパン、4,4'-ジアミノジフェニルエタン、3,3'-ジアミノジフェニルエタン、4,4'-ジアミノジフェニルメタン、3,3'-ジアミノジフェニルメタン、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、4,4'-ジアミノジフェニルスルフィド、3,3'-ジアミノジフェニルスルフィド、4,4'-ジアミノジフェニルスルホン、3,3'-ジアミノジフェニルスルホン、ベンジジン、3,3'-ジアミノビフェニル、2,2'-ジメチル-4,4'-ジアミノビフェニル、3,3'-ジメチル-4,4'-ジアミノビフェニル、3,3'-ジメトキシベンジジン、4,4''-ジアミノ-p-ターフェニル、1,5-ジアミノナフタレン、2,6-ジアミノナフタレンなどから得られるジアミン残基が挙げられ、単独で又は2種以上混合して用いることができる。また、繰り返し数が1~20のシロキサン鎖を有するシロキサンジアミンなどを用いてもよい。更には、Arが式(2)又は式(3)以外の酸二無水物からなるものを使用してもよい。Arが一般式(2)及び(3)以外の酸無水物残基を与える酸無水物としては、4,4'-オキシジフタル酸二無水物,ナフタレン-2,3,6,7-テトラカルボン酸二無水物、ナフタレン-1,2,5,6-テトラカルボン酸二無水物、ナフタレン-1,2,4,5-テトラカルボン酸二無水物、ナフタレン-1,4,5,8-テトラカルボン酸二無水物、ナフタレン-1,2,6,7-テトラカルボン酸二無水物、2,2-ビス(2,3-ジカルボキシフェニル)-プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-プロパン二無水物、ビス(2,3-ジカルボキシフェニル)エーテル二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3.4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)スルホン二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物などが挙げられ、単独で又は2種以上用いることもできる。
 上記一般式(6)で表される繰返し単位を有するポリイミド樹脂前駆体は、有機溶媒中に分散された状態で樹脂前駆体溶液としてもよい。ここで、必要に応じて、ポリイミド樹脂前駆体重合時に使用する溶媒とは別に、別途溶媒を添加してもよい。そのような溶媒としては、ポリイミド樹脂前駆体の重合で用いられるものと同一であってもよく、その他の溶媒であってもよい。一般的には、ジメチルアセトアミド、ジメチルホルムアミド、N-メチルピロリドン、2-ブタノン、ジグライム、キシレン等が挙げられ、これらの1種又は2種以上を使用してもよい。また、集電体に塗布することを考慮すると、樹脂前駆体溶液の粘度が500~10,000cPの範囲にあることが好ましく、より好ましくは1,000~5,000cPの範囲であるのがよい。
 このようにして得られた樹脂前駆体溶液は、活物質、その他必要に応じて用いられる添加剤とともに混合され、バインダー組成物とされる。そして、バインダー組成物は、後記に詳述するように、電極を構成する集電体に塗工等され、組成物中の一般式(6)の繰返し単位を有するポリイミド樹脂前駆体はこの段階で加熱等の手段でイミド化され、下記一般式(1)で表される繰返し単位を有したポリイミド樹脂になる。
Figure JPOXMLDOC01-appb-I000014
 イミド化された一般式(1)の繰返し単位を有するポリイミド樹脂は、上記一般式(6)で示されたポリイミド樹脂前駆体がイミド化されたものであり、Ar、Arは一般式(6)と同様のものを表す。すなわち、Arは少なくとも2個のエーテル結合を有する2価の芳香族ジアミン残基である。また、一般式(4)に示したArは、上記式(2)又は式(3)で表される4価の酸二無水物残基である。
 一般式(1)の繰返し単位を有するポリイミド樹脂を得る際には、原料のジアミンと酸無水物とを溶媒の存在下で重合し、ポリイミド樹脂前駆体とした後、熱処理してイミド化することにより製造することができ、ポリイミド樹脂前駆体を用いて電極用バインダーとする場合には、通常、上記したように、活物質等とポリイミド樹脂前駆体とを混合したバインダー組成物を集電体上に塗工し、熱処理によってイミド化される。重合に用いる溶媒としては、例えばジメチルアセトアミド、ジメチルホルムアミド、N-メチルピロリドン、2-ブタノン、ジグライム、キシレン等が挙げられ、これらの1種又は2種以上を使用してもよい。また、ポリイミド樹脂前駆体は、バインダーとしての結着性・接着性と活物質と混ぜて得られるスラリーの粘度とのバランスの観点から、重量平均分子量が10,000~500,000の範囲となるようにするのが好ましい。
 本発明の樹脂前駆体溶液は、用途に応じて正極活物質又は負極活物質と混合され、バインダー組成物となる。ここで、正極活物質や負極活物質は特に限定されるものではなく、代表的には上記で説明したようなものが挙げられる。そして、このように、ポリイミド樹脂前駆体を含んだ樹脂前駆体溶液は、正極又は負極活物質と共に、上述したように必要に応じて所定の溶媒を用いてスラリーにして、上記で例示したような集電体上に塗布、乾燥することにより、活物質層を備えた電極を得ることができる。
 集電体上への活物質層の形成にあたっては、樹脂前駆体溶液に、正極又は負極活物質及び必要に応じて導電助剤を混合してスラリーとした後、エクストルージョン塗布、カーテン塗布、ロール塗布、グラビア塗布等の公知の手段により集電体に均一な厚みで塗工し、乾燥して有機溶媒を除去した後、加熱イミド化させることにより活物質層を形成する。この際、結着性と放電容量とのバランスの観点から、活物質に対する一般式(6)の繰返し単位を有するポリイミド樹脂前駆体の含有割合が0.1~10質量%の範囲となるようにするのが良く、好ましくは0.3~8質量%の範囲となるようにするのが良い。また、活物質層の厚みについては、公知の二次電池用の電極を形成する場合と同程度であればよく、特に制限はないが、一般には10~500μm程度である。
 以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明は下記実施例により何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。
(バインダー組成物製造例-実施例1)
 先ず、石炭系重質油よりキノリン不溶分を除去した精製ピッチを用い、ディレードコーキング法によって500℃の温度で24時間熱処理して製造した塊状コークス(生コークス)を得て、ジェットミルにて微粉砕及び整粒し、平均粒径が9.9μmの生コークス粉を得た。
 上述のようにして得た塊状の生コークスを、ロータリーキルンによって入口付近温度700℃から出口付近温度1500℃(最高到達温度)の温度で1時間以上熱処理して塊状のか焼コークスを得て、同じくジェットミルにて微粉砕及び整粒し、平均粒径が9.5μmのか焼コークス粉を得た。
 上述のようにして得た生コークス粉の50質量部とか焼コークス粉の50質量部の合計(コークス粉100質量部)に対し、リン酸エステル(14質量%活性リン固形樹脂:三光社製商品名HCA、化学名:9,10-ジヒドロ-9-オキサ-10-オスファフェナントレン-10-オキサイド)17.9質量部(リン換算:2.5質量部)、及び炭化ホウ素3.2質量部(ホウ素換算:2.5質量部)を添加してコークス材料とした。
 次いで、上記コークス材料を、室温から600℃/時間の速度で昇温して、900℃に到達(最高到達温度)後、さらに2時間保持して炭化処理(焼成)を行い、リチウム二次電池用負極活物質Aを得た。
 一方、酸二無水物として無水ピロメリット酸(PMDA)と、ジアミンとして2,2'-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)とをほぼ同モル使用して、ジメチルアセトアミド(DMAC)中において常温で4時間反応させることにより、重量平均分子量が144,000のポリイミド樹脂の前駆体を得た。このようにして得られたポリイミド樹脂前駆体はリチウム二次電池用バインダーとして用いられる。
 上記で得られた負極活物質Aと重合時の溶媒(DMAC)を除いたポリイミド樹脂の前駆体とが95質量%と5質量%の比率になるようにし、別途ジメチルアセトアミド(DMAC)を溶媒として添加して混練し、スラリー(バインダー組成物)を作製した。得られたスラリーの組成等について表1に示す。なお、バインダー組成物中におけるDMAC(溶媒)の量は、全溶媒を除いたスラリーの固形分濃度(ポリイミド樹脂前駆体+負極活物質)が50重量%となるようにした。また、表1におけるポリイミド樹脂前駆体溶液の粘度とは、原料のジアミンと酸無水物とを溶媒の存在下で重合した時の溶液を、TOKIMEC社製E型粘度計を用いて測定した粘度(25℃)である。更に、重量平均分子量はポリイミド樹脂前駆体のポリスチレン換算での値である。
Figure JPOXMLDOC01-appb-T000015
 
(バインダー組成物製造例-実施例2~6)
 酸二無水物とジアミンの組み合わせを表1に示したように変更した以外は実施例1と同様にして、実施例2~6に係るポリイミド樹脂の前駆体を得た。また、実施例2~5に係るポリイミド樹脂前駆体については、実施例1と同様にして、ジメチルアセトアミド(DMAC)を溶媒として負極活物質Aと混練し、それぞれスラリー(バインダー組成物)を得た。一方、実施例6に係るポリイミド樹脂前駆体については、負極活物質Aのかわりに天然黒鉛を用いて、それ以外は実施例1と同様にしてスラリー(バインダー組成物)を得た。
(バインダー組成物製造例-比較例1~5)
 酸二無水物とジアミンの組み合わせを表1に示したように変更した以外は実施例1と同様にして、比較例2~5に係るポリイミド樹脂の前駆体を得た。これらを実施例1と同様にして、ジメチルアセトアミド(DMAC)を溶媒として負極活物質Aと混練し、それぞれスラリー(バインダー組成物)を得た。一方で、ポリイミド樹脂前駆体のかわりにポリフッ化ビニリデン(PVDF)を用いて、実施例1と同様にして、ジメチルアセトアミド(DMAC)を溶媒として負極活物質Aと混練したスラリーを比較例1とした。なお、表1に記した略称の意味は以下のとおりである。
BTDA:3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物
BPDA:3,3',4,4'-ビフェニルテトラカルボン酸二無水物
TPE-R:1,3-ビス(4-アミノフェノキシ)ベンゼン
APB:1,3-ビス(3-アミノフェノキシ)ベンゼン
DSDA:3,3',4,4'-ジフェニルスルホンテトラカルボン酸二無水物
BPADA:2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物
PDA:p-フェニレンジアミン
DAPE:4,4'-ジアミノジフェニルエーテル
(負極製造例-実施例7)
 上記実施例1で得られたバインダー組成物を用いて、次の要領で負極を作製し、二次電池としての性能を評価した。すなわち、得られたバインダー組成物を厚さ10μmの銅箔に厚みが均一となるように塗布し、その後窒素雰囲気中350℃で30分間熱処理することによりポリイミド樹脂前駆体をイミド化させて、銅箔上に活物質層を形成した。活物質層を備えた銅箔を乾燥し、所定の電極密度になるようにプレスして、トータル厚みとして60μmの電極シートを作製し、このシートから直径15mmΦの円形に切り出すことにより負極電極を得た。
 得られた負極電極について、負極電極単極での電極特性を評価するために、次のようにして試験用リチウム二次電池を作製した。対極には約15.5mmΦに切り出した金属リチウムを用いた。また、電解液としてエチレンカーボネートとジエチルカーボネートの混合溶媒(体積比1:1混合)にLiPFを1mol/lの濃度で溶解したものを用い、セパレーターにプロピレンの多孔質膜を用いてコインセルを作製した。
 得られたこのコインセルを使用して、25℃の恒温下、端子電圧の充電下限電圧を0V、放電上限電圧を1.5Vとした電圧範囲で、0.5mA/cmの定電流放電により初期の放電容量を、5mA/cmの定電流放電及び充電を実施した際の出力特性及び入力特性を容量維持率で調べたところ、放電容量は313mAh/gであり、出力特性に関する容量維持率が78.2%、入力特性に関する容量維持率が56.2%であった。また、これらの割合の積を入出力バランスとして評価したところ、0.44であった。ここで、出力特性に関する容量維持率は、初期の放電容量に対する5mA/cm定電流放電時の放電容量の比から求め、入力特性に関する容量維持率は、初期の充電容量に対する5mA/cm定電流充電時の充電容量の比から求めた。また、0.5mA/cmにおける定電流放電及び充電を3サイクル繰り返して、1サイクル目の放電容量に対する3サイクル目の放電容量の比から求めた3サイクル後の容量維持率は95.2%であった。更に、定電流放電及び充電を100サイクル繰り返して、1サイクル目の放電容量に対する100サイクル目の放電容量の比から求めた100サイクル後の容量維持率は87.7%であった。なお、この100サイクル後の容量維持率(サイクル特性)については、容量維持率が80%以上であれば◎、70%以上80%未満であれば○、60%以上70%未満であれば△、60%未満であれば×として、表2には4段階で評価した結果を記した。
Figure JPOXMLDOC01-appb-T000016
 
(負極製造例-実施例8~12、比較例6~10)
 上記実施例2~5及び比較例1~5で得られたバインダー組成物について、それぞれ上記負極製造の実施例7と同様にして負極を作製した上で、放電容量、出力特性、及びサイクル特性を評価した。結果を表2に示す。なお、比較例1のバインダー組成物を使用した負極製造の比較例6の場合には、銅箔に塗布した後の窒素雰囲気中での350℃での熱処理は省略した。その結果、負極製造の比較例6に関して得られた負極電極は、放電容量が291mAh/gであり、出力特性に関する容量維持率が61.2%であり、入力特性に関する容量維持率が32.8%であった。また、これらの割合の積から得られる入出力バランスは0.20であり、定電流放電及び充電を3サイクル繰り返して求めた3サイクル後の容量維持率は88.0%であった。更に、定電流放電及び充電を100サイクル繰り返して求めた100サイクル後の容量維持率は63.9%であった。
 上記負極製造例(実施例7~12、比較例6~10)の結果から明らかなように、本発明の実施例1~6に係るバインダー組成物を用いた実施例7~12の場合には、バインダーとしてPVDFを使用した比較例6や、一般式(1)で表されるもの以外のポリイミド樹脂を使用した比較例7~10の場合と比べて、放電容量、出力特性、及びサイクル特性のバランスに優れた二次電池を得ることができることが分かった。
(負極製造例-実施例13)
 石炭系重質油よりキノリン不溶分を除去した精製ピッチを用い、ディレードコーキング法によって500℃の温度で24時間熱処理して製造した塊状コークス(生コークス)を得て、ジェットミルにて微粉砕及び整粒し、平均粒径が9.9μmの生コークス粉を得た。
 上述のようにして得た塊状の生コークスを、ロータリーキルンによって入口付近温度700℃から出口付近温度1500℃(最高到達温度)の温度で1時間以上熱処理して塊状のか焼コークスを得て、同じくジェットミルにて微粉砕及び整粒し、平均粒径が9.5μmのか焼コークス粉を得た。
 上述のようにして得た生コークス粉の50質量部とか焼コークス粉の50質量部の合計(コークス粉100質量部)に対し、リン酸エステル(14質量%活性リン固形樹脂:三光社製商品名HCA、化学名:9,10-ジヒドロ-9-オキサ-10-オスファフェナントレン-10-オキサイド)17.9質量部(リン換算:2.5質量部)を添加してコークス材料とした。
 次いで、上記コークス材料を、室温から600℃/時間の速度で昇温して、900℃に到達(最高到達温度)後、さらに2時間保持して炭化処理(焼成)を行い、リチウム二次電池用負極活物質Bを得た。
 バインダーには、バインダー組成物製造の実施例1において使用したポリイミド樹脂の前駆体を用いて、負極製造の実施例7と同様にして負極電極を得た(表3)。得られた負極電極について、実施例7と同様にして評価したところ、放電容量は313mAh/gであり、出力特性に関する容量維持率が80.1%、入力特性に関する容量維持率が57.0%であった。これらの割合の積から得られる入出力バランスは0.46であった。また、3サイクル後の容量維持率は95.8%であり、100サイクル後の容量維持率に関するサイクル特性の評価は◎であった。
Figure JPOXMLDOC01-appb-T000017
 
(負極製造例-実施例14~18)
 上記実施例13において使用するバインダーを、表3に示す組成を有するポリイミド樹脂の前駆体にかえた以外は、実施例13と同様にして負極電極を得た。得られた負極電極について、実施例13と同様にして放電容量、出力特性、及びサイクル特性を評価した。結果を表3に示す。なお、表3に記した新たな略称の意味は以下のとおりであり、その他は上述したとおりである。また、ポリイミド樹脂は、実施例1と同様にしてそれぞれ前駆体を重合し、活物質層を形成する際の熱処理によりイミド化させた。
m-TB:2,2'-ジメチル-4,4'-ジアミノビフェニル
 上記負極製造例の実施例12~18の結果から明らかなように、いずれも放電容量、出力特性、及びサイクル特性のバランスに優れた二次電池を得ることができることが分かった。
 本発明の負極は、放電容量、出力特性、及びサイクル特性のバランスに優れた二次電池を得ることができる。そのため、この負極を用いれば、ハイブリッド自動車や電気自動車用等の車載用途の電源に要求される実用特性をバランス良く兼ね備えた二次電池を得ることができる。また、これらの用途に限られず、燃料電池自動車用電源をはじめ、電動工具用電源など、高出力、高容量、長寿命が要求される電源として好適に利用することができる。
 また、本発明のバインダー用樹脂前駆体、樹脂前駆体溶液、及びバインダー組成物は、放電容量、出力特性、及びサイクル特性のバランスに優れた二次電池を形成するのに有用な電極を与えることができる。そのため、このような電極を用いれば、ハイブリッド自動車や電気自動車用等の車載用途の電源に要求される実用特性をバランス良く兼ね備えた二次電池を得ることができる。

Claims (9)

  1.  負極活物質をバインダーで一体化した活物質層を備えた二次電池用の負極であって、前記バインダーとして、下記一般式(1)で表される繰返し単位を有するポリイミド樹脂を用いたことを特徴とする二次電池用負極。
    Figure JPOXMLDOC01-appb-I000001
     
    〔式中、Ar1は、少なくとも2個のエーテル結合を有する2価の芳香族ジアミン残基を示し、Ar2は、下記式(2)又は式(3)で表される4価の酸二無水物残基を示す。〕
    Figure JPOXMLDOC01-appb-I000002
     
    〔式(3)において、Yは、直結合又は-CO-のいずれかを示す。〕
  2.  負極活物質に対するポリイミド樹脂の含有割合が、0.1~10質量%の範囲である請求項1に記載の二次電池用負極。
  3.  請求項1又は2に記載の負極を用いた二次電池。
  4.  ハイブリッド自動車又は電気自動車用の車載電源として用いる請求項3に記載の二次電池。
  5.  集電体上に活物質層を形成してリチウム二次電池の電極を形成するのに用いるバインダー用樹脂前駆体であって、下記一般式(6)で表される繰返し単位を有するポリイミド樹脂前駆体を50モル%以上含有することを特徴とするバインダー用樹脂前駆体。
    Figure JPOXMLDOC01-appb-I000003
    〔式中、Arは、少なくとも2個のエーテル結合を有する2価の芳香族ジアミン残基を示し、Arは、下記式(2)又は式(3)で表される4価の酸二無水物残基を示す。〕
    Figure JPOXMLDOC01-appb-I000004
    〔式(3)において、Yは、直結合又は-CO-のいずれかを示す。〕
  6.  有機溶媒中に請求項5記載のバインダー用樹脂前駆体を含有し、粘度が500~10,000cPの範囲にあることを特徴とする樹脂前駆体溶液。
  7.  請求項6記載の樹脂前駆体溶液と活物質とを含有することを特徴とするバインダー組成物。
  8.  活物質に対して、一般式(6)で表される繰返し単位を有するポリイミド樹脂前駆体を0.1~10質量%含有する請求項7記載のバインダー組成物。
  9.  活物質が炭素材料であって、活物質の平均粒子径が5~50μmの範囲であり、負極の形成に用いられる請求項7又は8に記載のバインダー組成物。
PCT/JP2010/072113 2009-12-11 2010-12-09 二次電池用負極及びこれを用いた二次電池、並びに、二次電池の形成に用いるバインダー用樹脂前駆体、樹脂前駆体溶液、及びバインダー組成物 WO2011071106A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009282097 2009-12-11
JP2009-282097 2009-12-11
JP2010-253995 2010-11-12
JP2010253993A JP2011142068A (ja) 2009-12-11 2010-11-12 バインダー用樹脂前駆体、樹脂前駆体溶液、及びバインダー組成物
JP2010-253993 2010-11-12
JP2010253995A JP5653185B2 (ja) 2009-12-11 2010-11-12 二次電池用負極及びこれを用いた二次電池

Publications (1)

Publication Number Publication Date
WO2011071106A1 true WO2011071106A1 (ja) 2011-06-16

Family

ID=44145651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072113 WO2011071106A1 (ja) 2009-12-11 2010-12-09 二次電池用負極及びこれを用いた二次電池、並びに、二次電池の形成に用いるバインダー用樹脂前駆体、樹脂前駆体溶液、及びバインダー組成物

Country Status (1)

Country Link
WO (1) WO2011071106A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216320A (ja) * 2010-03-31 2011-10-27 Nippon Steel Chem Co Ltd 二次電池用負極及びこれを用いた二次電池
WO2015003725A1 (en) 2013-07-09 2015-01-15 Friedrich-Schiller-Universität Jena Electroactive polymers, manufacturing process thereof, electrode and use thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10302771A (ja) * 1997-04-22 1998-11-13 Toyobo Co Ltd 二次電池用負極及びそれを用いた二次電池
JP2003193398A (ja) * 2001-12-18 2003-07-09 Ube Ind Ltd ポリイミドをバインダ−とする含浸材および積層体
JP2007012310A (ja) * 2005-06-28 2007-01-18 Jsr Corp 固体高分子電解質、プロトン伝導膜、電極電解質、電極ペーストおよび膜−電極接合体
JP2008034352A (ja) * 2006-06-30 2008-02-14 Sanyo Electric Co Ltd リチウム二次電池及びその製造方法
JP2008050611A (ja) * 2007-09-25 2008-03-06 Ube Ind Ltd バインダー樹脂
JP2009238659A (ja) * 2008-03-28 2009-10-15 Sanyo Electric Co Ltd リチウム二次電池及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10302771A (ja) * 1997-04-22 1998-11-13 Toyobo Co Ltd 二次電池用負極及びそれを用いた二次電池
JP2003193398A (ja) * 2001-12-18 2003-07-09 Ube Ind Ltd ポリイミドをバインダ−とする含浸材および積層体
JP2007012310A (ja) * 2005-06-28 2007-01-18 Jsr Corp 固体高分子電解質、プロトン伝導膜、電極電解質、電極ペーストおよび膜−電極接合体
JP2008034352A (ja) * 2006-06-30 2008-02-14 Sanyo Electric Co Ltd リチウム二次電池及びその製造方法
JP2008050611A (ja) * 2007-09-25 2008-03-06 Ube Ind Ltd バインダー樹脂
JP2009238659A (ja) * 2008-03-28 2009-10-15 Sanyo Electric Co Ltd リチウム二次電池及びその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216320A (ja) * 2010-03-31 2011-10-27 Nippon Steel Chem Co Ltd 二次電池用負極及びこれを用いた二次電池
WO2015003725A1 (en) 2013-07-09 2015-01-15 Friedrich-Schiller-Universität Jena Electroactive polymers, manufacturing process thereof, electrode and use thereof
US10103384B2 (en) 2013-07-09 2018-10-16 Evonik Degussa Gmbh Electroactive polymers, manufacturing process thereof, electrode and use thereof

Similar Documents

Publication Publication Date Title
US10056614B2 (en) Polyimide binder for power storage device, electrode sheet using same, and power storage device
KR101620675B1 (ko) 폴리이미드 전구체 용액, 폴리이미드 전구체, 폴리이미드 수지, 합제 슬러리, 전극, 합제 슬러리 제조 방법, 및 전극 형성 방법
WO2017099247A1 (ja) 固体電解質組成物、全固体二次電池用シート、全固体二次電池用電極シート及びその製造方法、並びに、全固体二次電池及びその製造方法
CN107431207B (zh) 锂二次电池的电极用粘合剂树脂、锂二次电池用电极和锂二次电池
JP2009238659A (ja) リチウム二次電池及びその製造方法
JP6442607B2 (ja) 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法
JP2010251126A (ja) 非水電解質二次電池用負極材、並びにそれを用いた負極及び非水電解質二次電池
JP5715572B2 (ja) 二次電池用負極及びこれを用いた二次電池
WO2011142216A1 (ja) 蓄電デバイス用負極活物質ならびにこれを用いた蓄電デバイス用負極材料および蓄電デバイス用負極
KR102279820B1 (ko) 폴리아믹산 수용액 조성물
JP5653185B2 (ja) 二次電池用負極及びこれを用いた二次電池
JP5543826B2 (ja) 二次電池用負極及びこれを用いた二次電池
JP4503807B2 (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池用負極の製造方法
JP2001345103A (ja) 二次電池用負極材及びそれを用いたリチウムイオン二次電池及び二次電池用負極材の製造方法
WO2018105338A1 (ja) 蓄電素子用バインダー組成物、蓄電素子用スラリー組成物、電極、電極の製造方法、二次電池および電気二重層キャパシタ
WO2011071106A1 (ja) 二次電池用負極及びこれを用いた二次電池、並びに、二次電池の形成に用いるバインダー用樹脂前駆体、樹脂前駆体溶液、及びバインダー組成物
JP7144794B2 (ja) リチウムイオン二次電池製造用バインダー及びこれを用いたリチウムイオン二次電池
JP5886543B2 (ja) リチウム二次電池用負極及びこれを用いたリチウム二次電池
WO2023140276A1 (ja) ポリイミドバインダ前駆体組成物、およびそれを用いた蓄電デバイス
JP2010287566A (ja) リチウム二次電池用負極活物質及びそれを用いた車載用リチウム二次電池
KR20170043902A (ko) 표면 코팅된 양극 활물질 입자 및 이를 포함하는 이차 전지
WO2020196805A1 (ja) 蓄電デバイス用ポリイミド系バインダー、電極合剤ペースト、負極活物質層、蓄電デバイス用負極シート及び蓄電デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10836026

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10836026

Country of ref document: EP

Kind code of ref document: A1