WO2011070762A1 - 電力情報収集装置、電力測定装置、電力情報収集システム、及び電力情報収集方法 - Google Patents

電力情報収集装置、電力測定装置、電力情報収集システム、及び電力情報収集方法 Download PDF

Info

Publication number
WO2011070762A1
WO2011070762A1 PCT/JP2010/007089 JP2010007089W WO2011070762A1 WO 2011070762 A1 WO2011070762 A1 WO 2011070762A1 JP 2010007089 W JP2010007089 W JP 2010007089W WO 2011070762 A1 WO2011070762 A1 WO 2011070762A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power information
change rate
value
unit
Prior art date
Application number
PCT/JP2010/007089
Other languages
English (en)
French (fr)
Inventor
敬司 阪口
村上 隆史
慎一 土田
弘道 西山
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/258,245 priority Critical patent/US20120022711A1/en
Priority to CN2010800072781A priority patent/CN102317796A/zh
Priority to JP2011527916A priority patent/JP5760194B2/ja
Priority to EP10835688.2A priority patent/EP2511715B1/en
Publication of WO2011070762A1 publication Critical patent/WO2011070762A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00004Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the power network being locally controlled
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00034Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving an electric power substation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • H02J2310/14The load or loads being home appliances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/221General power management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances

Definitions

  • the present invention relates to a power information collection device that collects power information including a power consumption value for each of a plurality of devices.
  • total power consumption value exceeds the upper limit of the usable power value (hereinafter referred to as “maximum usable power value”), for example.
  • maximum usable power value there are devices that are not preferable to be turned off during operation, such as a microwave oven, a rice cooker, or a personal computer.
  • FIG. 19 is a diagram for explaining a problem to be solved by the invention. Specifically, FIG. 19 is a graph showing the time transition of the total power consumption value.
  • Time t1 is the time when one of the devices with a large power consumption value starts to operate.
  • time t2 is the time when another device having a large power consumption value starts to operate.
  • the control for suppressing the power consumption value for each device is delayed, and the total power consumption value is the maximum usable power. The value is exceeded.
  • Such a delay in collecting power information is more likely to occur as the number of devices increases. For example, when power information is collected sequentially from a plurality of devices, the frequency of collecting power information from each device decreases as the number of devices increases. Therefore, when the power consumption of a device changes greatly immediately after the power information of a device is collected, it is delayed to grasp the change. As a result, the control for suppressing the power consumption value is also delayed, and the total power consumption value exceeds the maximum usable power value.
  • the present invention has been made in view of the above problems, and a power information collection device and the like that can efficiently collect power information when collecting power information including power consumption values from a plurality of devices.
  • the purpose is to provide.
  • a power information collecting apparatus is a power information collecting apparatus that collects power information including a power consumption value for each of a plurality of devices.
  • a power change rate indicating a degree of increase or decrease in power consumption value using a communication unit that collects information, a data holding unit that holds power information collected by the communication unit, and power information held in the data holding unit
  • a control unit that controls the communication unit such that the frequency with which the power information is collected increases as the power change rate calculated by the change rate calculation unit increases.
  • power information can be collected at a frequency corresponding to the power change rate of the device, so that power information of a device that has a large influence on the total power consumption value can be preferentially collected efficiently. That is, the collection frequency of power information of a device that has a large influence on the total power consumption value can be made higher than the collection frequency of other devices. Therefore, it is possible to efficiently collect power information within a range that does not exceed the capabilities of the power information collection device (such as power information processing capability or communication capability). Further, by using the power information collected in this way, it is possible to quickly grasp the change in the total power consumption value, and it is possible to suppress exceeding the maximum usable power value.
  • the change rate calculation unit calculates the power change rate for each device using the power information collected most recently among the power information held in the data holding unit.
  • the change rate calculation unit calculates a maximum power change rate, which is the largest power change rate among the power change rates in a plurality of periods, for each device as the power change rate.
  • the change rate calculation unit calculates an average power change rate that is an average value of power change rates in a plurality of periods as the power change rate for each device.
  • power information can be collected according to the averaged power change rate, so that power information can be collected stably and efficiently.
  • control unit determines whether or not a total power consumption value that is a sum of power consumption values of the plurality of devices exceeds a first threshold value, and if the total power consumption value exceeds the first threshold value, It is preferable to control the communication unit such that the frequency of collection of power information by the communication unit increases as the rate of change increases.
  • the first threshold is a maximum use that indicates an upper limit value of a total power consumption value that can be used as a product of a maximum power change rate that is the largest of the maximum power change rates of the plurality of devices and a predetermined period. It is a value obtained by subtracting from the possible power value, and the maximum power change rate is preferably the largest power change rate among the power change rates in a plurality of periods.
  • the first threshold value is dynamically determined according to the maximum power change rate, it is possible to dynamically determine whether or not the total power consumption value is likely to exceed the maximum usable power value. Then, when there is a high possibility that the total power consumption value exceeds the maximum usable power value, it is possible to efficiently collect power information of devices that have a large influence on the total power consumption value.
  • control unit controls the communication unit not to collect power information of a device having a maximum power change rate smaller than the second threshold when the total power consumption value exceeds the first threshold.
  • the maximum usable power value is preferably a power value determined by a contract with an electric power company.
  • the maximum usable power value is preferably a power value that can be supplied by a power supply device that supplies power to the plurality of devices.
  • the maximum usable power value is preferably a sum of a power value determined by a contract with a power company and a power value that can be supplied by a power supply device that supplies power to the plurality of devices.
  • the maximum usable power value is a target value of the maximum usable power set in advance by the user.
  • the communication unit receives supplyable power information including a supplyable power value measured in the power supply device, and the control unit further uses the supplyable power information received by the communication unit.
  • the maximum usable power value is calculated, and the communication unit is controlled according to the first threshold value obtained from the calculated maximum usable power value.
  • the maximum usable power value can be dynamically changed according to the change in the power value that can be supplied by the power supply device, and the power information can be collected efficiently.
  • control unit further controls the communication unit such that the collection frequency of the suppliable power information increases as the change rate of the suppliable power value increases.
  • control unit further controls the plurality of devices using power information collected by the communication unit.
  • the device can be controlled using the power information collected according to the power change rate, the possibility that the total power consumption value exceeds the maximum usable power value can be reduced.
  • the power measurement device is a power measurement device that is connected to at least one device and transmits power information including a power consumption value of the connected device to a power information collection device, Using the power measurement unit that measures the power consumption value of the device, the data holding unit that holds the power information including the power consumption value measured by the power measurement unit, and the power information held in the data holding unit, Calculated by a change rate calculation unit that calculates a power change rate indicating the degree of increase or decrease of the power consumption value, a communication unit that transmits power information held in the data holding unit to a power information collection device, and the change rate calculation unit.
  • a control unit that controls the communication unit such that the frequency of transmission of power information increases as the power change rate increases.
  • the transmission frequency of the power information can be changed according to the power change rate, that is, according to the magnitude of the influence on the total power consumption value. Therefore, other devices to which the power information is transmitted from the power measuring device can efficiently collect the power information of devices that have a large influence on the total power consumption value.
  • the change rate calculation unit calculates the power change rate using power information indicating a power consumption value measured most recently among the power information held in the data holding unit.
  • the power information can be transmitted according to the latest power change rate, the power information can be transmitted with the transmission frequency according to the current situation.
  • the change rate calculation unit calculates a maximum power change rate, which is the largest power change rate among the power change rates in a plurality of periods, for each device as the power change rate.
  • the change rate calculation unit calculates an average power change rate that is an average value of power change rates over a plurality of periods as the power change rate for each device.
  • the power information can be transmitted according to the average power change rate, so that the transmission frequency can be changed stably.
  • the power information collection system includes a power information collection device that collects power information including a power consumption value for each of a plurality of devices, and the at least one device connected to the power information collection device.
  • a power information collection system comprising: a power measurement device that transmits power information of a device to a power information collection device, wherein the power information collection device includes a first communication unit that collects power information for each device; A first data holding unit that holds power information collected by one communication unit, and a power change rate that indicates a degree of increase or decrease in the power consumption value for each device using the power information held in the first data holding unit.
  • a control unit that controls the first communication unit so that the frequency of collecting power information increases as the power change rate calculated by the change rate calculation unit increases.
  • a second power measurement unit that measures a power consumption value of a connected device, and second data that holds power information including the power consumption value measured by the power measurement unit.
  • a holding unit and a second communication unit that transmits the power information held in the second data holding unit to the power information collection device.
  • An integrated circuit is an integrated circuit that collects power information including a power consumption value for each of a plurality of devices, the communication unit collecting power information for each device, and the communication A data holding unit that holds the power information collected by the unit, and a change rate calculation that calculates a power change rate indicating a degree of increase or decrease in the power consumption value for each device using the power information held in the data holding unit And a control unit that controls the communication unit so that a device with a larger power change rate calculated by the change rate calculating unit has a higher power information collection frequency.
  • the present invention can be realized not only as such a power information collecting device or a power measuring device, but also as a power information collecting method in which the operation of the characteristic components included in the power information collecting device is used as a step. be able to.
  • the present invention can also be realized as a program for causing a computer to execute each step included in such a power information collecting method. Needless to say, such a program can be distributed via a recording medium such as a CD-ROM or a transmission medium such as the Internet.
  • the power information can be collected at a frequency corresponding to the power change rate of the device, so that the power information of the device having a large influence on the total power consumption value can be preferentially collected.
  • FIG. 1 is a diagram showing an overview of a power information collection system according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram showing a functional configuration of the power information collecting apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 is a block diagram showing a functional configuration of the power measuring apparatus according to Embodiment 1 of the present invention.
  • FIG. 4 is a flowchart showing a flow of processing performed by the power information collection device according to Embodiment 1 of the present invention.
  • FIG. 5 is a flowchart showing a flow of processing performed by the power measurement apparatus according to Embodiment 1 of the present invention.
  • FIG. 1 is a diagram showing an overview of a power information collection system according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram showing a functional configuration of the power information collecting apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 is a block diagram showing a functional configuration of the power measuring apparatus according to Embodi
  • FIG. 6 is an example of a sequence diagram illustrating a flow of information in the power information collection system according to Embodiment 1 of the present invention.
  • FIG. 7 is an example of a sequence diagram showing a flow of information in the power information collection system according to Embodiment 1 of the present invention.
  • FIG. 8 is a diagram showing another example of the outline of the power information collection system according to Embodiment 1 of the present invention.
  • FIG. 9 is a block diagram showing a functional configuration of the power information collecting apparatus according to Embodiment 2 of the present invention.
  • FIG. 10 is a graph showing the time transition of the total power consumption value.
  • FIG. 11 is a flowchart showing a flow of processing performed by the power information collection device according to Embodiment 2 of the present invention.
  • FIG. 11 is a flowchart showing a flow of processing performed by the power information collection device according to Embodiment 2 of the present invention.
  • FIG. 12A is a sequence diagram showing an example of information flow in the power information collection system according to Embodiment 2 of the present invention.
  • FIG. 12B is a sequence diagram showing another example of the information flow in the power information collection system according to Embodiment 2 of the present invention.
  • FIG. 13 is a graph showing the time transition of the total power consumption value.
  • FIG. 14 is a block diagram showing a functional configuration of the power information collecting apparatus according to Embodiment 3 of the present invention.
  • FIG. 15 is a flowchart showing a flow of processing performed by the power information collecting apparatus according to Embodiment 3 of the present invention.
  • FIG. 16 is a block diagram showing a functional configuration of the power measuring apparatus according to the fourth embodiment of the present invention.
  • FIG. 17 is a flowchart showing a flow of processing performed by the power measuring apparatus according to Embodiment 4 of the present invention.
  • FIG. 18 is a diagram illustrating an example of a hardware configuration of a computer.
  • FIG. 19 is a diagram for explaining a problem to be solved by the invention.
  • FIG. 1 is a diagram showing an overview of a power information collection system according to Embodiment 1 of the present invention.
  • the power information collection system includes a power information collection device 11 and a power measurement device 12. Further, the power information collecting device 11 and the power measuring device 12 are connected via a wireless network or a wired network.
  • the power information collection device 11 is a device that collects power information including power consumption values for each of the plurality of devices 13. Specifically, the power information collection device 11 is a device that collects power information in order to control a plurality of devices 13. The power information collection device 11 is attached to a distribution board that distributes the power supplied to the plurality of devices 13, for example.
  • the power measuring device 12 measures the power consumption value of the connected device 13 and transmits power information including the measured power consumption value to the power information collecting device 11.
  • the power measuring device 12 is connected to the device 13 via a serial interface such as a USB (Universal Serial Bus).
  • the device 13 is a device that consumes power.
  • the device 13 is a device such as a lighting fixture, an air conditioner, a television, a refrigerator-freezer, a microwave oven, or a PC (Personal Computer).
  • the device 13 is preferably a device capable of transmitting and receiving information by wireless communication such as ZigBee or wireless LAN (Local Area Network) or wired communication such as Ethernet (registered trademark).
  • the device 13 is preferably a so-called “digital home appliance” that can remotely control power ON / OFF, switching of various operation states, and the like.
  • FIG. 2 is a block diagram showing a functional configuration of the power information collecting apparatus according to Embodiment 1 of the present invention.
  • the power information collection device 11 includes a data holding unit 111, a change rate calculation unit 112, a communication unit 113, and a control unit 114.
  • the data holding unit 111 holds the power information collected by the communication unit 113.
  • the change rate calculation unit 112 reads the power information held in the data holding unit 111, and calculates the power change rate indicating the degree of increase in the power consumption value for each device 13 using the read power information. Specifically, the change rate calculation unit 112 calculates the power change rate P as shown in Expression (1) using the power information collected most recently among the power information held in the data holding unit 111. .
  • W1 is a power consumption value measured at the first time.
  • W1 is the power consumption value measured most recently.
  • W2 is a power consumption value measured at a second time that is a predetermined time before the first time. T is a period from the second time to the first time.
  • the communication unit 113 collects power information for each device 13. Specifically, the communication unit 113 receives the power information of the device 13 from each power measurement device 12 via a wireless network or a wired network.
  • the power information includes the power consumption value of the device 13 and the time when the power consumption value is measured. Note that the power information may include an integrated value of the power consumption value of the device 13 or an operation state (power ON, power OFF, etc.) of the device 13.
  • the time may be a relative time.
  • the control unit 114 controls the communication unit 113 so that the device 13 having a larger power change rate calculated by the change rate calculating unit 112 has a higher power information collection frequency. That is, the control unit 114 determines the collection frequency of the power information for each device 13 so that the collection frequency of the device 13 with a larger increase degree of the power consumption value is higher. Then, the control unit 114 causes the communication unit 113 to collect power information from the power measurement device 12 connected to each device 13 according to the determined collection frequency for each device 13.
  • control unit 114 transmits, for example, a power information request command for requesting transmission of power information to each power measurement device 12 according to the determined collection frequency for each device 13, thereby allowing the power of each device 13 to be transmitted.
  • Collect information (polling method).
  • control unit 114 collects power information of each device 13 by transmitting a time allocation command for assigning a time slot to each power measurement device 12 according to the determined collection frequency to each power measurement device 12. (TDMA (Time Division Multiple Access) method).
  • TDMA Time Division Multiple Access
  • FIG. 3 is a block diagram showing a functional configuration of the power measuring apparatus according to Embodiment 1 of the present invention.
  • the power measurement device 12 includes a data holding unit 121, a power measurement unit 122, a communication unit 123, and a control unit 124.
  • the data holding unit 121 holds power information including the power consumption value measured by the power measuring unit 122.
  • the power measuring unit 122 measures the power consumption value of the connected device 13.
  • the power measuring unit 122 may measure an integrated value of the power consumption values of the connected devices 13. Further, the power measurement unit 122 may acquire the operation status of the connected device 13.
  • the communication unit 123 transmits power information to the power information collection device 11. Specifically, the communication unit 113 transmits the power information held in the data holding unit 121 to the power information collection device 11 via the wireless network or the wired network according to the collection frequency determined by the power information collection device 11. To do. In addition, the communication unit 123 receives various commands from the power information collection device 11. These various commands include commands related to the collection frequency of power information. Specifically, the various commands are, for example, power information request commands.
  • the control unit 124 transmits the power information held in the data holding unit 121 via the communication unit 123 according to the command received by the communication unit 123 from the power information collection device 11.
  • FIG. 4 is a flowchart showing a flow of processing performed by the power information collecting apparatus according to Embodiment 1 of the present invention.
  • the communication unit 113 receives power information from the power measurement device 12 (S102). Subsequently, the data holding unit 111 holds the received power information (S104). Next, the change rate calculation unit 112 reads the power information held in the data holding unit 111, and calculates the power change rate for each device 13 using the read power information (S106).
  • control unit 114 determines the collection frequency of the power information for each device 13 so that the collection frequency of the device 13 having a larger calculated power change rate is higher (S108). And the control part 114 transmits a power information request command to each power measuring device 12 via the communication part 113 according to the determined collection frequency (S110).
  • the power information collection device 11 collects the power information of each device 13 at each time by repeatedly executing the processing from step S102 to step S110.
  • FIG. 5 is a flowchart showing a flow of processing performed by the power measurement apparatus according to Embodiment 1 of the present invention.
  • the power measuring unit 122 measures the power consumption value of the connected device 13 (S202). Specifically, the power measurement unit 122 measures the power consumption value of the connected device 13 at a predetermined time interval, for example. Note that the power measurement unit 122 may measure the power consumption value of the device 13 while dynamically changing the time interval according to the measured power consumption value.
  • the data holding unit 121 holds power information including the measured power consumption value (S204). Subsequently, the control unit 124 determines whether to transmit power information to the power information collection device 11 (S206). For example, when transmitting power information by a polling method, the control unit 124 has received a power information request command from the power information collection device 11 and still transmits power information as a response to the received power information request command. If not, it is determined that the power information is transmitted to the power information collection device 11.
  • the communication unit 123 transmits the power information held in the data holding unit 121 (S208). And the electric power measurement apparatus 12 repeats the process from step S202. On the other hand, when it is determined not to transmit the power information (No in S206), the power measurement device 12 repeats the processing from Step S202.
  • the power measuring device 12 repeatedly transmits the power information to the power information collecting device 11 by repeatedly executing the processing from step S202 to step S208.
  • FIG 6 and 7 are examples of sequence diagrams showing the flow of information in the power information collection system according to Embodiment 1 of the present invention.
  • FIG. 6 is a sequence diagram when the power change rates of the first to fourth devices connected to the first to fourth power measuring devices 12a to 12d are substantially the same.
  • FIG. 7 shows the second to fourth devices in which the power change rate of the first device connected to the first power measuring device 12a is connected to the second to fourth power measuring devices 12b to 12d. It is a sequence diagram when it is larger than the power change rate.
  • the fact that the power change rates substantially match means that in addition to the power change rates being in agreement, the power change rates may be regarded as matching.
  • FIG.6 and FIG.7 demonstrates the case where the power measuring device 12 is four units
  • the power information collecting device 11 has the same frequency for each of the first to fourth power measuring devices 12a to 12d. To send a power information request command. As a result, the power information collection device 11 can receive power information from each power measurement device at the same frequency.
  • the second to fourth power measurements are performed with respect to the first power measurement device 12a.
  • the power information request command is transmitted more frequently than the devices 12b to 12d.
  • the power information collecting device 11 can receive power information from the first power measuring device 12a at a frequency higher than that of the second to fourth power measuring devices 12b to 12d.
  • the power information collection device 11 can collect power information at a frequency according to the power change rate of the device 13, the power information of the device 13 having a large influence on the total power consumption value. Can be collected efficiently with priority.
  • the power information collection device 11 can make the power information collection frequency of a device having a large influence on the total power consumption value higher than the collection frequency of other devices. Therefore, the power information collection device 11 can efficiently collect power information within a range that does not exceed the capabilities of the power information collection device (such as power information processing capability or communication capability). Further, by using the power information collected in this way, it becomes easy to quickly grasp the change in the total power consumption value, and it is possible to suppress exceeding the maximum usable power value.
  • the power information collection device 11 can collect power information according to the latest power change rate, it can efficiently collect power information according to the current situation.
  • the collection frequency of the power information from the second to fourth power measurement devices is lowered to reduce the first power
  • the frequency of collecting power information from the measuring device may be increased. Thereby, it is possible to efficiently collect power information of a device having a great influence on the total power consumption value without increasing the overall collection frequency.
  • the power information collecting device 11 does not necessarily have to be attached to the distribution board.
  • the power information collection device 11 may be attached to a controller that controls a plurality of devices 13.
  • the power information collection device 11 may receive information on the power supplied from the distribution board from the power measurement device 12 attached to the distribution board.
  • Modification 1 of Embodiment 1 As a first modification of the first embodiment, an example will be described in which the power information collection frequency is controlled using a power change rate different from that of the first embodiment.
  • the power information collection device 11 controls the collection frequency of power information according to the maximum power change rate for each device 13.
  • the change rate calculation unit 112 calculates the maximum power change rate using the power information held in the data holding unit 111.
  • the maximum power change rate is the largest power change rate among the power change rates in a plurality of periods. That is, the maximum power change rate is the largest power change rate among a plurality of power change rates in different periods, which is calculated by the equation (1).
  • the change rate calculation unit 112 reads the power information held in the data holding unit 111. Then, the change rate calculation unit 112 calculates the power change rate for a plurality of periods for each device 13 according to the equation (1) using the read power information. The change rate calculation unit 112 calculates the maximum power change rate among the power change rates calculated in this way as the maximum power change rate for each device 13.
  • the change rate calculation unit 112 calculates the power change rate in the period related to the collected power information, and when the calculated power change rate is larger than the already held power change rate.
  • the held power change rate may be updated to a newly calculated power change rate. Thereby, the change rate calculation unit 112 can acquire the maximum power change rate by referring to the held power change rate.
  • the control unit 114 controls the communication unit 113 so that the device 13 having a larger maximum power change rate calculated by the change rate calculating unit 112 has a higher power information collection frequency.
  • the power information collection device 11 can determine the power information collection frequency according to the maximum power change rate in each device 13, and thus is highly likely to greatly increase the total power consumption value.
  • the power information of the device 13 can be efficiently collected.
  • the power information collection device 11 controls the collection frequency of power information using the average power change rate for each device 13.
  • the change rate calculation unit 112 calculates the average power change rate using the power information held in the data holding unit 111.
  • the average power change rate is an average value of the power change rates in a plurality of periods.
  • the average power change rate Pave is calculated by the equation (2).
  • n is the number of power change rates P in each period calculated according to the equation (1).
  • the change rate calculation unit 112 reads the power information held in the data holding unit 111. Then, the change rate calculation unit 112 calculates the power change rate of each period for each device 13 according to the equation (1) using the read power information. The change rate calculation unit 112 calculates the average value of the power change rates calculated in this way for each device 13 as the average power change rate.
  • the control unit 114 controls the communication unit 113 so that the device 13 having a larger average power change rate calculated by the change rate calculating unit 112 has a higher power information collection frequency.
  • the power information collecting apparatus 11 can collect power information at a frequency according to the averaged power change rate, so that it is possible to collect power information stably and efficiently. it can.
  • the power information collection device 21 controls the communication unit 113 so that the power information collection frequency is higher for the device 13 having a larger power change rate. This is different from the power information collecting apparatus 11 according to the first embodiment.
  • the power measurement apparatus according to the present embodiment is the same as the power measurement apparatus according to the first embodiment, and thus description and illustration thereof are omitted.
  • FIG. 9 is a block diagram showing a functional configuration of the power information collecting apparatus according to Embodiment 2 of the present invention. 9, the same components as those in FIG. 2 are denoted by the same reference numerals, and description thereof is omitted.
  • the power information collection device 21 includes a data holding unit 111, a change rate calculation unit 112, a communication unit 113, and a control unit 214.
  • the control unit 214 determines whether or not the total power consumption value exceeds the first threshold value. Then, when the total power consumption value exceeds the first threshold value, the control unit 214 controls the communication unit 113 so that the device 13 having a larger power change rate has a higher power information collection frequency. That is, the control unit 214 increases the frequency of collecting power information for the device 13 having a larger power change rate only when the total power consumption value exceeds or exceeds the first threshold value.
  • the communication unit 113 is controlled.
  • the total power consumption value is the sum of the power consumed by the plurality of devices 13.
  • the first threshold is the maximum available power indicating the upper limit of the total power consumption value that can be used as the product of the largest maximum power change rate among the maximum power change rates of the devices 13 and a predetermined period. The value is subtracted from the value.
  • the maximum usable power value is, for example, the allowable power value of a breaker provided in a distribution board, the upper limit value of the supplied power determined by a contract with the power company, or the electricity charge by the contract with the power company It is a predetermined power value such as a power value when changing.
  • FIG. 10 is a graph showing the time transition of the total power consumption value.
  • the vertical axis indicates the power consumption value
  • the horizontal axis indicates time.
  • the first threshold value is a value obtained by subtracting the maximum power change amount Q at time ⁇ from the maximum usable power value. Since the total power consumption value exceeds the first threshold value at the time ⁇ , the control unit 214 controls the communication unit 113 so that the device 13 having a larger power change rate has a higher power information collection frequency. In other words, assuming that the total power consumption value changes at the maximum power change rate ⁇ , the total power consumption value is estimated to exceed the maximum usable power value after a predetermined period ⁇ has elapsed (time ⁇ ). When this is done, the control unit 214 controls the communication unit 113 so that the device 13 having a larger power change rate has a higher power information collection frequency. This is because, when the total power consumption value exceeds the first threshold value, there is a high possibility that the total power consumption value exceeds the maximum usable power value.
  • the maximum power change amount Q is a product of the maximum power change rate ⁇ at time ⁇ and a predetermined period ⁇ .
  • the maximum power change rate ⁇ is the largest maximum power change rate among the maximum power change rates of the devices 13.
  • the predetermined period ⁇ is, for example, an arbitrary period such as 60 seconds or a period determined according to the polling interval.
  • FIG. 11 is a flowchart showing a flow of processing performed by the power information collecting apparatus according to Embodiment 2 of the present invention.
  • steps for performing the same processing as in FIG. 4 are denoted by the same reference numerals, and description thereof is omitted.
  • the control unit 214 acquires the total power consumption value (S302). Specifically, for example, the control unit 214 obtains the total power consumption value by calculating the sum of the latest power consumption values of the devices 13 held in the data holding unit 111. Further, for example, the control unit 214 may acquire the total power consumption value by acquiring supply power from a power measurement device attached to the distribution board.
  • the control unit 214 calculates a first threshold value (S304). Specifically, the control unit 214 subtracts, from the maximum usable power value, the first threshold value by subtracting the product of the largest maximum power change rate among the maximum power change rates of each device 13 and a predetermined period. Is calculated.
  • the control unit 214 determines whether or not the total power consumption value exceeds the first threshold (S306).
  • the power information collection device 21 executes the processing after Step S108.
  • the power information collection device 21 executes the process of step S102.
  • control unit 214 may control the communication unit 113 so as to receive the power information at a predetermined collection frequency.
  • FIG. 12A is a sequence diagram showing an example of information flow in the power information collection system according to Embodiment 2 of the present invention. Specifically, FIG. 12 shows that the power change rates of the first and second devices connected to the first and second power measuring devices 12a and 12b are the third and fourth power measuring devices 12c and 12d. It is a sequence diagram when it is larger than the power change rate of the 3rd and 4th apparatus connected to.
  • the power change rate of the first device and the power change rate of the second device are substantially the same, and the power change rate of the third device and the power change rate of the fourth device are It is almost coincident.
  • the power information collection device 21 is the same for each of the first to fourth power measurement devices 12a to 12d regardless of the power change rate of each device.
  • a power information request command is transmitted at a frequency.
  • the power information collection device 21 performs the third and fourth operations on the first and second power measurement devices 12a and 12b.
  • the power information request command is transmitted more frequently than the power measurement devices 12c and 12d.
  • the power information collection device 21 does not necessarily need to transmit a power information request command to the third and fourth devices after the total power consumption value exceeds the first threshold value. For example, when the power information collection capability is not sufficient, the power information collection device 21 does not have to transmit the power information request command to the third and fourth devices as illustrated in FIG. 12B. Specifically, when the maximum power change rate of the third and fourth devices is smaller than the second threshold, the power information collection device 21 supplies power to the third and fourth power measurement devices 12c and 12d. The information request command need not be transmitted.
  • the second threshold value for example, a value that has a constant ratio to the maximum usable power value may be used.
  • the power information collection device 21 may have the total power consumption value exceeding the maximum usable power value. Whether it is high or not can be determined dynamically.
  • the power information collection device 21 can efficiently collect power information of devices that have a large influence on the total power consumption value when the total power consumption value is likely to exceed the maximum usable power value. .
  • the maximum usable power value dynamically varies according to the power that can be supplied by the power supply device that supplies power to the plurality of devices 13.
  • the power supply device is, for example, a photovoltaic power conditioner, a fuel cell, or a storage battery installed in a building where the device 13 is used.
  • the communication unit 113 included in the power information collection device 21 receives suppliable power information including the upper limit value of power that can be supplied by the power supply device.
  • the communication unit 113 receives, for each power supply device, supplyable power information including power generated by a photovoltaic power generation panel or a fuel cell or a power value charged in a storage battery.
  • the control part 214 calculates the sum total of the upper limit of the electric power which can be supplied received for every electric power supply apparatus as a maximum usable electric power value.
  • the control unit 214 calculates the first threshold value using the maximum usable power value calculated in this way.
  • the control part 214 controls the collection frequency of electric power information using the 1st threshold value calculated in this way.
  • FIG. 13 is a graph showing the time transition of the total power consumption value.
  • the vertical axis represents the power consumption value
  • the horizontal axis represents time.
  • the first threshold value is a value obtained by subtracting the maximum power change amount Q from the maximum usable power value at time ⁇ .
  • the maximum usable power value at time ⁇ is the sum of the power values that can be supplied by the power supply device.
  • the power information collection device 21 can dynamically change the first threshold value according to the change in the power value that can be supplied by the power supply device, and can effectively perform the power information. Can be collected.
  • the maximum usable power value is the sum of the power values that can be supplied by the power supply device, but is determined by the sum of the power values that can be supplied by the power supply device and a contract with the power company. It may be a sum with the obtained power value. Further, the maximum usable power value may be a target value of the maximum usable power set in advance by the user.
  • control unit 214 controls the communication unit 113 such that the collection frequency of suppliable power information increases as the change rate of the suppliable power value increases.
  • the power information collecting device 21 can immediately reflect the change in the power value that can be supplied to the maximum usable power value.
  • the power information collecting apparatus 31 is further characterized in that the operation state of the plurality of devices 13 is controlled using the collected power information.
  • FIG. 14 is a block diagram showing a functional configuration of the power information collecting apparatus according to Embodiment 3 of the present invention. 14, the same components as those in FIG. 2 are denoted by the same reference numerals, and description thereof is omitted.
  • the power information collection device 31 includes a data holding unit 111, a change rate calculation unit 112, a communication unit 113, and a control unit 314.
  • the control unit 314 further controls the plurality of devices 13 using the power information received by the communication unit 113 in addition to the processing performed by the control unit 114 of the first embodiment. Specifically, for example, when the total power consumption value exceeds a predetermined value, the control unit 314 transmits a power control command that requests suppression of the power consumption value to the device 13 having a low priority. And the apparatus 13 which received the power control command suppresses power consumption by switching various operation states.
  • the device 13 is preferably a so-called “digital home appliance” that can remotely control power ON / OFF, switching of various operation states, and the like.
  • FIG. 15 is a flowchart showing a flow of processing performed by the power information collecting apparatus according to Embodiment 3 of the present invention.
  • steps that perform the same processing as in FIG. 4 are denoted by the same reference numerals, and description thereof is omitted.
  • the control unit 314 determines whether or not power control is necessary (S402). Specifically, the control unit 314 determines whether it is necessary to suppress the power consumption value of at least one of the plurality of devices 13.
  • control unit 314 determines whether or not power control is necessary, for example, based on whether or not the total power consumption value exceeds a predetermined value.
  • the predetermined value may be a value obtained by multiplying the maximum usable power value by a coefficient less than 1.
  • the power information collecting apparatus 31 repeats the processing from Step S102 again.
  • the control unit 314 sends a power control command that is a command related to power control to at least one of the plurality of devices 13 via the communication unit 113. Is transmitted (S404). Specifically, for example, the control unit 314 transmits a power control command for reducing the power consumption value to the device 13 having a predetermined low priority. Then, the power information collection device 31 repeats the processing from step S102 again.
  • the power information collection device 31 can control the device 13 using the power information collected at a frequency corresponding to the power change rate, the total power consumption value is the maximum usable power. The possibility of exceeding the value can be reduced. That is, since the power information collection device 31 can use the power information collected efficiently, the device 13 can be controlled while quickly following the current situation.
  • the power information collecting apparatus 31 can control each device 13 using actual power consumption collected instead of the rated power, the available power can also be used effectively.
  • the power information collection device 31 may control the device 13 via a power measurement device connected to the device 13 instead of directly controlling the device 13.
  • the communication unit 113 has a function of communicating with the device 13 in addition to a function of communicating with the power measurement device.
  • the communication unit 113 communicates with the device 13 in addition to the function of communicating with the power measurement device. It is not necessary to have a function.
  • the power measurement device connected to the device 13 includes a device control unit, receives a power control command from the power information collection device 31, and notifies the connected device 13 of the control command.
  • FIG. 16 is a block diagram showing a functional configuration of the power measuring apparatus according to the fourth embodiment of the present invention.
  • the same components as those in FIG. 3 are denoted by the same reference numerals, and description thereof is omitted.
  • the power measurement device 42 includes a data holding unit 121, a power measurement unit 122, a communication unit 123, a control unit 424, and a change rate calculation unit 425.
  • the control unit 424 controls the communication unit 123 so that the transmission rate of the power information increases as the power change rate calculated by the change rate calculation unit 425 increases.
  • the change rate calculation unit 425 reads the power information held in the data holding unit 121, and calculates the power change rate, which is the change rate of the power consumption value, using the read power information. Specifically, the change rate calculation unit 425 calculates the power change rate P shown in Expression (1) using the power information measured most recently among the power information held in the data holding unit 121.
  • change rate calculation unit 425 may calculate the maximum power change rate as the power change rate. Further, the change rate calculation unit 425 may calculate the average power change rate as the power change rate.
  • FIG. 17 is a flowchart showing a flow of processing performed by the power measurement device according to the fourth embodiment of the present invention. Note that, in FIG. 17, steps for performing the same processing as in FIG.
  • the change rate calculation unit 425 reads the power information held in the data holding unit 121, and uses the read power information to calculate a power change rate that is a change rate of the power consumption value. (S502). Subsequently, the control unit 424 determines the transmission frequency of the power information such that the transmission frequency increases as the power change rate calculated by the change rate calculation unit 425 increases (S504). Then, the control unit 424 transmits power information to the power information collecting apparatus via the communication unit 123 according to the determined transmission frequency (S506).
  • the power measuring device 42 transmits the measured power information to the power information collecting device or the like by repeatedly executing the processing from step S202 to step S506.
  • the power measurement device 42 can change the transmission frequency of the power information according to the power change rate, that is, according to the magnitude of the influence on the total power consumption value. Therefore, the power information collecting device to which the power information is transmitted from the power measuring device can efficiently collect the power information of the device 13 having a large influence on the total power consumption value with priority.
  • the power information collection device and the power measurement device according to the present invention have been described based on the embodiments.
  • the present invention is not limited to these embodiments.
  • various modifications conceived by those skilled in the art have been made in the present embodiment, or forms constructed by combining components in different embodiments or modifications thereof are also within the scope of the present invention. Contained within.
  • the power information includes information indicating the power consumption value, but may include a power change rate.
  • the power measurement device may include a change rate calculation unit, and the power information collection device may not include the change rate calculation unit.
  • the power change rate indicates the degree of increase in the power consumption value, but preferably indicates the degree of increase or decrease in the power consumption value.
  • the power change rate P is preferably calculated as shown in the following formula (3).
  • the power information collecting apparatus can also increase the frequency of collecting power information of devices whose power consumption value is greatly reduced. Therefore, the power information collecting apparatus can quickly grasp the change in the total power consumption value.
  • the power information collection device can perform control according to a change in the total power consumption value. For example, when an operation of a certain device is stopped in order to suppress an increase in the total power consumption value, the power information collection device can quickly grasp a change in the power consumption value of the device. Therefore, the power information collecting apparatus can appropriately determine whether or not other devices need to be stopped.
  • the present invention can also be realized as a power information collection method for executing processing performed by characteristic components of such a power information collection device.
  • the power information collecting method can be realized as a program for causing a computer as shown in FIG.
  • Such a program can be distributed via a recording medium such as a CD-ROM or a transmission medium such as the Internet.
  • FIG. 18 is a diagram illustrating an example of a hardware configuration of a computer.
  • a program for causing a computer to execute the power information collecting method is stored in, for example, a CD-ROM 515 that is a computer-readable medium, and is read out through the CD-ROM device 514. Further, for example, a program for causing a computer to execute the power information collecting method is transmitted via a wired or wireless network, broadcasting, or the like.
  • the computer 500 includes a CPU (Central Processing Unit) 501, a ROM (Read Only Memory) 502, a RAM (Random Access Memory) 503, a hard disk 504, a communication interface 505, and the like.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the CPU 501 executes a program read via the CD-ROM device 514 or a program received via the communication interface 505. Specifically, the CPU 501 expands a program read via the CD-ROM device 514 or a program received via the communication interface 505 in the RAM 503. The CPU 501 executes each coded instruction in the program expanded in the RAM 503.
  • the ROM 502 is a read-only memory that stores programs and data necessary for the operation of the computer 500.
  • the RAM 503 is used as a work area when the CPU 501 executes a program. Specifically, the RAM 503 temporarily stores data such as parameters at the time of program execution, for example.
  • the hard disk 504 stores programs, data, and the like.
  • the communication interface 505 communicates with other computers via a network.
  • the bus 506 connects the CPU 501, ROM 502, RAM 503, hard disk 504, communication interface 505, display 511, keyboard 512, mouse 513 and CD-ROM device 514 to one another.
  • the present invention can also be realized as a semiconductor integrated circuit (LSI: Large Scale Integration) that realizes part or all of the functions of such a power information collecting device or power measuring device.
  • LSI Large Scale Integration
  • the present invention can be realized as an integrated circuit including some or all of the components shown in FIG. 2, FIG. 9, FIG. 14, or FIG.
  • the integrated circuit may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • circuits are not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • An FPGA Field Programmable Gate Array
  • reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • It can be used as a power information collection device that collects power information including power consumption values for each of a plurality of devices, or a device controller equipped with the power information collection device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Selective Calling Equipment (AREA)

Abstract

 複数の機器の消費電力値を含む電力情報を効率的に収集する。複数の機器(13)のそれぞれについて消費電力値を含む電力情報を収集する電力情報収集装置(11)であって、機器(13)ごとに電力情報を収集する通信部(113)と、通信部(113)によって収集された電力情報を保持するデータ保持部(111)と、データ保持部(111)に保持された電力情報を用いて、消費電力値の増減度合いを示す電力変化率を機器(13)ごとに算出する変化率算出部(112)と、変化率算出部(112)によって算出された電力変化率が大きい機器(13)ほど電力情報の収集頻度が高くなるように通信部(113)を制御する制御部(114)とを備える。

Description

電力情報収集装置、電力測定装置、電力情報収集システム、及び電力情報収集方法
 本発明は、複数の機器のそれぞれについて消費電力値を含む電力情報を収集する電力情報収集装置等に関するものである。
 家電製品などの機器は同時に複数使用される。それらの機器によって消費される電力の総和(以下、「総消費電力値」という。)が使用可能な電力値の上限値(以下、「最大使用可能電力値」)を超えた場合、例えばブレーカが落ちてしまい、動作中の機器への電力の供給が停止する。これらの機器の中には、例えば電子レンジ、炊飯器、又はパソコンなどのように、動作中に電源がOFFされることが好ましくない機器もある。
 そこで、各機器の稼働状況をリアルタイムに把握し、把握した各機器の稼働状況に基づいて、総消費電力値が最大使用可能電力値を超えないように制御する技術が提案されている(例えば、特許文献1を参照)。
特開2004-23283号公報
 しかしながら、特許文献1に記載の技術では、各機器の稼働状況の把握に遅れが生じた場合、適切に機器を制御できずに総消費電力値が最大使用可能電力値を超えてしまうという問題がある。
 図19は、発明が解決しようとする課題を説明するための図である。具体的には、図19は、総消費電力値の時間推移を示すグラフである。
 時刻t1は、消費電力値が大きい機器の1つが稼働し始めた時刻である。また、時刻t2は、消費電力値が大きい機器の他の1つが稼働し始めた時刻である。図19では、時刻t2における稼働状況の変化を把握するための電力情報の収集が遅れたために、各機器に対する消費電力値を抑制するための制御が遅れて、総消費電力値が最大使用可能電力値を超えている。
 このような電力情報の収集の遅れは、機器の台数が多いほど発生しやすくなる。例えば、複数の機器から電力情報を順次収集している場合、機器の台数が多いほど各機器から電力情報を収集する頻度が低くなる。したがって、ある機器の電力情報が収集された直後にその機器の消費電力が大きく変化した場合には、その変化を把握することが遅れてしまう。その結果、消費電力値を抑制するための制御も遅れ、総消費電力値が最大使用可能電力値を超えてしまう。
 そこで、本発明は、上記課題を鑑みてなされたものであり、複数の機器から消費電力値を含む電力情報を収集する場合に、効率的に電力情報を収集することができる電力情報収集装置等を提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係る電力情報収集装置は、複数の機器のそれぞれについて消費電力値を含む電力情報を収集する電力情報収集装置であって、前記機器ごとに電力情報を収集する通信部と、前記通信部によって収集された電力情報を保持するデータ保持部と、前記データ保持部に保持された電力情報を用いて、消費電力値の増減度合いを示す電力変化率を前記機器ごとに算出する変化率算出部と、前記変化率算出部によって算出された電力変化率が大きい機器ほど電力情報の収集頻度が高くなるように前記通信部を制御する制御部とを備える。
 これにより、機器の電力変化率に応じた頻度で電力情報を収集できるので、総消費電力値に与える影響が大きい機器の電力情報を優先して効率的に収集することができる。つまり、総消費電力値に与える影響が大きい機器の電力情報の収集頻度を他の機器の収集頻度よりも高くすることができる。したがって、電力情報収集装置が有する能力(電力情報の処理能力あるいは通信能力など)を超えない範囲で、電力情報を効率的に収集することが可能となる。また、このように収集された電力情報を利用すれば、総消費電力値の変化をすみやかに把握することができ、最大使用可能電力値を超えることを抑制することも可能となる。
 また、前記変化率算出部は、前記データ保持部に保持された電力情報のうち、直近に収集された電力情報を用いて、前記電力変化率を前記機器ごとに算出することが好ましい。
 これにより、最新の電力変化率に応じて電力情報を収集できるので、現在の状況に応じて効率的に電力情報を収集することができる。
 また、前記変化率算出部は、複数の期間の電力変化率のうち最も大きい電力変化率である最大電力変化率を、前記電力変化率として前記機器ごとに算出することが好ましい。
 これにより、各機器において生じた最大の電力変化率に応じて電力情報を収集できるので、総消費電力値を大きく変化させる可能性の高い機器の電力情報を効率的に収集することができる。
 また、前記変化率算出部は、複数の期間の電力変化率の平均値である平均電力変化率を、前記電力変化率として前記機器ごとに算出することが好ましい。
 これにより、平均化された電力変化率に応じて電力情報を収集できるので、安定的に、かつ効率的に電力情報を収集することができる。
 また、前記制御部は、前記複数の機器の消費電力値の総和である総消費電力値が第1閾値を超えるか否かを判定し、総消費電力値が第1閾値を超える場合に、電力変化率が大きい機器ほど前記通信部による電力情報の収集頻度が高くなるように前記通信部を制御することが好ましい。
 これにより、総消費電力値が最大使用可能電力値を超える可能性が高いときにのみ、電力変化率に応じて電力情報の収集頻度を制御することができる。つまり、総消費電力値が最大使用可能電力値を超える可能性が低いときには、電力変化率に応じて電力情報の収集頻度を制御する必要がないので処理負荷を軽減することが可能となる。
 また、前記第1閾値は、前記複数の機器の最大電力変化率のうち最も大きい最大電力変化率と予め定められた期間との積を、使用可能な総消費電力値の上限値を示す最大使用可能電力値から減算した値であり、前記最大電力変化率は、複数の期間の電力変化率のうち最も大きい電力変化率であることが好ましい。
 これにより、最大電力変化率に従って動的に第1閾値が決定されるので、総消費電力値が最大使用可能電力値を超える可能性が高いか否かを動的に判定することができる。そして、総消費電力値が最大使用可能電力値を超える可能性が高いときに、総消費電力値に与える影響が大きい機器の電力情報を効率的に収集することができる。
 また、前記制御部は、総消費電力値が第1閾値を超える場合に、最大電力変化率が第2閾値より小さい機器の電力情報を収集しないように前記通信部を制御することが好ましい。
 これにより、総消費電力値に与える影響が小さい機器の電力情報を収集しないので、収集能力の上限値に達している場合であっても、収集能力の上限値を超えることなく、総消費電力値に与える影響が大きい機器の電力情報を収集することができる。
 また、前記最大使用可能電力値は、電力会社との契約により定められた電力値であることが好ましい。
 これにより、電力会社との契約電力値を超える可能性が高いときに、電力情報を効率的に収集することができる。
 また、前記最大使用可能電力値は、前記複数の機器に電力を供給する電力供給機器が供給可能な電力値であることが好ましい。
 これにより、電力供給機器が供給可能な電力の上限値を超える可能性が高いときに、電力情報を効率的に収集することができる。
 また、前記最大使用可能電力値は、電力会社との契約により定められた電力値と、前記複数の機器に電力を供給する電力供給機器が供給可能な電力値との総和であることが好ましい。
 これにより、電力会社との契約電力値と電力供給機器が供給可能な電力の上限値との和を超える可能性が高いときに、電力情報を効率的に収集することができる。
 また、前記最大使用可能電力値は、ユーザによって予め設定された最大使用電力の目標値であることが好ましい。
 これにより、ユーザによって予め設定された最大使用電力の目標値を超える可能性が高いときに、電力情報を効率的に収集することができる。
 また、前記通信部は、前記電力供給機器において測定された供給可能な電力値を含む供給可能電力情報を受信し、前記制御部は、さらに、前記通信部によって受信された供給可能電力情報を用いて前記最大使用可能電力値を算出し、算出した前記最大使用可能電力値から得られる前記第1閾値に従って前記通信部を制御することが好ましい。
 これにより、電力供給機器が供給可能な電力値の変化に応じて、最大使用可能電力値を動的に変動させることができ、効率的に電力情報を収集することができる。
 また、前記制御部は、さらに、供給可能な電力値の変化率が大きいほど供給可能電力情報の収集頻度が高くなるように前記通信部を制御することが好ましい。
 これにより、供給可能な電力値の変化をすみやかに最大使用可能電力値に反映することが可能となる。
 また、前記制御部は、さらに、前記通信部によって収集された電力情報を用いて、前記複数の機器を制御することが好ましい。
 これにより、電力変化率に応じて収集された電力情報を用いて機器を制御できるので、総消費電力値が最大使用可能電力値を超える可能性を低減させることができる。
 また、本発明の一態様に係る電力測定装置は、少なくとも1つの機器に接続され、接続された機器の消費電力値を含む電力情報を電力情報収集装置へ送信する電力測定装置であって、前記機器の消費電力値を測定する電力測定部と、前記電力測定部によって測定された消費電力値を含む電力情報を保持するデータ保持部と、前記データ保持部に保持された電力情報を用いて、消費電力値の増減度合いを示す電力変化率を算出する変化率算出部と、前記データ保持部に保持された電力情報を電力情報収集装置へ送信する通信部と、前記変化率算出部によって算出された電力変化率が大きいほど電力情報の送信頻度が高くなるように、前記通信部を制御する制御部とを備える。
 これにより、電力変化率に応じて、つまり総消費電力値に与える影響の大きさに応じて、電力情報の送信頻度を変更できる。したがって、電力測定装置から電力情報を送信される他の装置は、総消費電力値に大きな影響を与える機器の電力情報を優先して効率的に収集することができる。
 また、前記変化率算出部は、前記データ保持部に保持された電力情報のうち、直近に測定された消費電力値を示す電力情報を用いて、前記電力変化率を算出することが好ましい。
 これにより、最新の電力変化率に応じて電力情報を送信できるので、現在の状況に応じた送信頻度で電力情報を送信することができる。
 また、前記変化率算出部は、複数の期間の電力変化率のうち最も大きい電力変化率である最大電力変化率を、前記電力変化率として機器ごとに算出することが好ましい。
 これにより、各機器において生じた最大の電力変化率に応じて電力情報を送信できるので、総消費電力値を大きく変化させる可能性の高い機器の電力情報を高い頻度で送信することができる。
 また、前記変化率算出部は、複数の期間の電力変化率の平均値である平均電力変化率を、前記電力変化率として機器ごとに算出することが好ましい。
 これにより、平均化された電力変化率に応じて電力情報を送信できるので、安定的に送信頻度を変更することができる。
 また、本発明の一態様に係る電力情報収集システムは、複数の機器のそれぞれについて消費電力値を含む電力情報を収集する電力情報収集装置と、少なくとも1つの前記機器に接続され、接続された前記機器の電力情報を電力情報収集装置へ送信する電力測定装置とを備える電力情報収集システムであって、前記電力情報収集装置は、前記機器ごとに電力情報を収集する第1通信部と、前記第1通信部によって収集された電力情報を保持する第1データ保持部と、前記第1データ保持部に保持された電力情報を用いて、消費電力値の増減度合いを示す電力変化率を前記機器ごとに算出する変化率算出部と、前記変化率算出部によって算出された電力変化率が大きい機器ほど電力情報の収集頻度が高くなるように前記第1通信部を制御する制御部とを備え、前記電力測定装置は、接続された機器の消費電力値を測定する第2電力測定部と、前記電力測定部によって測定された消費電力値を含む電力情報を保持する第2データ保持部と、前記第2データ保持部に保持された電力情報を前記電力情報収集装置へ送信する第2通信部とを備える。
 これにより、機器の電力変化率に応じた頻度で電力情報を収集できるので、総消費電力値に大きな影響を与える機器の電力情報を優先して効率的に収集することができる。
 また、本発明の一態様に係る集積回路は、複数の機器のそれぞれについて消費電力値を含む電力情報を収集する集積回路であって、前記機器ごとに電力情報を収集する通信部と、前記通信部によって収集された電力情報を保持するデータ保持部と、前記データ保持部に保持された電力情報を用いて、消費電力値の増減度合いを示す電力変化率を前記機器ごとに算出する変化率算出部と、前記変化率算出部によって算出された電力変化率が大きい機器ほど電力情報の収集頻度が高くなるように前記通信部を制御する制御部とを備える。
 これにより、上記の電力情報収集装置と同様の効果を奏することができる。
 なお、本発明は、このような電力情報収集装置又は電力測定装置として実現することができるだけでなく、電力情報収集装置が備える特徴的な構成部の動作をステップとする電力情報収集方法として実現することができる。また、本発明は、このような電力情報収集方法に含まれる各ステップをコンピュータに実行させるためのプログラムとして実現することもできる。そして、そのようなプログラムは、CD-ROM等の記録媒体やインターネット等の伝送媒体を介して配信することができるのは言うまでもない。
 本発明によれば、機器の電力変化率に応じた頻度で電力情報を収集できるので、総消費電力値に与える影響が大きい機器の電力情報を優先して効率的に収集することができる。
図1は、本発明の実施の形態1に係る電力情報収集システムの概要を示す図である。 図2は、本発明の実施の形態1に係る電力情報収集装置の機能構成を示すブロック図である。 図3は、本発明の実施の形態1に係る電力測定装置の機能構成を示すブロック図である。 図4は、本発明の実施の形態1に係る電力情報収集装置が行う処理の流れを示すフローチャートである。 図5は、本発明の実施の形態1に係る電力測定装置が行う処理の流れを示すフローチャートである。 図6は、本発明の実施の形態1に係る電力情報収集システムにおける情報の流れを示すシーケンス図の一例である。 図7は、本発明の実施の形態1に係る電力情報収集システムにおける情報の流れを示すシーケンス図の一例である。 図8は、本発明の実施の形態1に係る電力情報収集システムの概要の他の一例を示す図である。 図9は、本発明の実施の形態2に係る電力情報収集装置の機能構成を示すブロック図である。 図10は、総消費電力値の時間推移を示すグラフである。 図11は、本発明の実施の形態2に係る電力情報収集装置が行う処理の流れを示すフローチャートである。 図12Aは、本発明の実施の形態2に係る電力情報収集システムにおける情報の流れの一例を示すシーケンス図である。 図12Bは、本発明の実施の形態2に係る電力情報収集システムにおける情報の流れの他の一例を示すシーケンス図である。 図13は、総消費電力値の時間推移を示すグラフである。 図14は、本発明の実施の形態3に係る電力情報収集装置の機能構成を示すブロック図である。 図15は、本発明の実施の形態3に係る電力情報収集装置が行う処理の流れを示すフローチャートである。 図16は、本発明の実施の形態4に係る電力測定装置の機能構成を示すブロック図である。 図17は、本発明の実施の形態4に係る電力測定装置が行う処理の流れを示すフローチャートである。 図18は、コンピュータのハードウェア構成の一例を示す図である。 図19は、発明が解決しようとする課題を説明するための図である。
 以下に、本発明の実施の形態について、図面を参照しながら説明する。
 (実施の形態1)
 図1は、本発明の実施の形態1に係る電力情報収集システムの概要を示す図である。電力情報収集システムは、電力情報収集装置11と、電力測定装置12とを備える。また、電力情報収集装置11と電力測定装置12とは、無線ネットワーク又は有線ネットワークを介して接続されている。
 電力情報収集装置11は、複数の機器13のそれぞれについて消費電力値を含む電力情報を収集する装置である。具体的には、電力情報収集装置11は、複数の機器13を制御するために、電力情報を収集する装置である。また、電力情報収集装置11は、例えば、複数の機器13へ供給される電力を分配する分電盤に取り付けられる。
 電力測定装置12は、接続された機器13の消費電力値を測定し、測定した消費電力値を含む電力情報を電力情報収集装置11へ送信する。例えば、電力測定装置12は、USB(Universal Serial Bus)などのシリアルインタフェースを介して、機器13に接続される。
 機器13は、電力を消費する機器である。具体的には、機器13は、例えば照明器具、エアコン、テレビ、冷凍冷蔵庫、オーブンレンジ、又はPC(Personal Computer)等の機器である。
 また、機器13は、ZigBee、又は無線LAN(Local Area Network)などの無線通信、又はイーサネット(登録商標)などの有線通信によって情報を送受信可能な機器であることが好ましい。特に、機器13は、電源のON/OFF、各種運転状態の切り替え等を遠隔制御することができる、いわゆる「デジタル家電」であることが好ましい。
 次に、電力情報収集装置11及び電力測定装置12の機能構成を、図面を用いて詳細に説明する。まず、電力情報収集装置11について、図2を用いて説明する。
 図2は、本発明の実施の形態1に係る電力情報収集装置の機能構成を示すブロック図である。図2に示すように、電力情報収集装置11は、データ保持部111と、変化率算出部112と、通信部113と、制御部114とを備える。
 データ保持部111は、通信部113によって収集された電力情報を保持する。
 変化率算出部112は、データ保持部111に保持された電力情報を読み出し、読み出した電力情報を用いて、消費電力値の増加度合いを示す電力変化率を機器13ごとに算出する。具体的には、変化率算出部112は、データ保持部111に保持された電力情報のうち直近に収集された電力情報を用いて、式(1)に示すように電力変化率Pを算出する。
Figure JPOXMLDOC01-appb-M000001
 ここで、W1は、第1時刻に測定された消費電力値である。なお、本実施の形態では、W1は、直近に測定された消費電力値である。また、W2は、第1時刻よりも所定時間前の第2時刻に測定された消費電力値である。また、Tは、第2時刻から第1時刻までの期間である。
 通信部113は、機器13ごとに電力情報を収集する。具体的には、通信部113は、無線ネットワーク又は有線ネットワークを介して、各電力測定装置12から機器13の電力情報を受信する。電力情報には、機器13の消費電力値と、その消費電力値が測定された時刻とが含まれる。なお、電力情報には、機器13の消費電力値の積算値、又は機器13の運転状態(電源ON、電源OFFなど)が含まれてもよい。時刻は相対的な時刻でもよい。
 制御部114は、変化率算出部112によって算出された電力変化率が大きい機器13ほど電力情報の収集頻度が高くなるように通信部113を制御する。つまり、制御部114は、消費電力値の増加度合いが大きい機器13ほど収集頻度が高くなるように電力情報の収集頻度を機器13ごとに決定する。そして、制御部114は、決定した機器13ごとの収集頻度に従って、通信部113に、各機器13に接続された電力測定装置12から電力情報を収集させる。
 具体的には、制御部114は、例えば、決定した機器13ごとの収集頻度に従って、電力情報の送信を要求する電力情報要求コマンドを各電力測定装置12へ送信することにより、各機器13の電力情報を収集する(ポーリング方式)。また、例えば、制御部114は、決定した収集頻度に応じて各電力測定装置12にタイムスロットを割り当てる時間割当コマンドを各電力測定装置12へ送信することにより、各機器13の電力情報を収集する(TDMA(Time Division Multiple Access)方式)。
 次に、電力測定装置12について、図3を用いて説明する。
 図3は、本発明の実施の形態1に係る電力測定装置の機能構成を示すブロック図である。図3に示すように、電力測定装置12は、データ保持部121と、電力測定部122と、通信部123と、制御部124とを備える。
 データ保持部121は、電力測定部122によって測定された消費電力値を含む電力情報を保持する。
 電力測定部122は、接続されている機器13の消費電力値を測定する。なお、電力測定部122は、接続されている機器13の消費電力値の積算値を測定してもよい。また、電力測定部122は、接続されている機器13の運転状況を取得してもよい。
 通信部123は、電力情報を電力情報収集装置11へ送信する。具体的には、通信部113は、電力情報収集装置11によって決定された収集頻度に従って、無線ネットワーク又は有線ネットワークを介して、データ保持部121に保持された電力情報を電力情報収集装置11へ送信する。また、通信部123は、電力情報収集装置11から各種コマンドを受信する。この各種コマンドには、電力情報の収集頻度に関するコマンドが含まれる。具体的には、この各種コマンドは、例えば、電力情報要求コマンドである。
 制御部124は、通信部123が電力情報収集装置11から受信したコマンドに従って、データ保持部121に保持された電力情報を、通信部123を介して送信する。
 次に、以上のように構成された電力情報収集システムにおける各種動作について説明する。
 図4は、本発明の実施の形態1に係る電力情報収集装置が行う処理の流れを示すフローチャートである。
 まず、通信部113は、電力測定装置12から電力情報を受信する(S102)。続いて、データ保持部111は、受信された電力情報を保持する(S104)。次に、変化率算出部112は、データ保持部111に保持された電力情報を読み出し、読み出した電力情報を用いて機器13ごとの電力変化率を算出する(S106)。
 続いて、制御部114は、算出された電力変化率が大きい機器13ほど収集頻度が高くなるように、電力情報の収集頻度を機器13ごとに決定する(S108)。そして、制御部114は、決定した収集頻度に従って、通信部113を介して、電力情報要求コマンドを各電力測定装置12へ送信する(S110)。
 このように、電力情報収集装置11は、ステップS102からステップS110までの処理を繰り返し実行することにより、各時刻における各機器13の電力情報を収集する。
 図5は、本発明の実施の形態1に係る電力測定装置が行う処理の流れを示すフローチャートである。
 まず、電力測定部122は、接続された機器13の消費電力値を測定する(S202)。具体的には、電力測定部122は、接続された機器13の消費電力値を、例えば予め定められた時間間隔で測定する。なお、電力測定部122は、測定された消費電力値に応じて時間間隔を動的に変更させながら、機器13の消費電力値を測定してもよい。
 次に、データ保持部121は、測定された消費電力値を含む電力情報を保持する(S204)。続いて、制御部124は、電力情報を電力情報収集装置11へ送信するか否かを判定する(S206)。例えば、ポーリング方式により電力情報を送信する場合、制御部124は、電力情報要求コマンドを電力情報収集装置11から受信しており、かつ、その受信した電力情報要求コマンドの応答として電力情報をまだ送信していないときに、電力情報を電力情報収集装置11へ送信すると判定する。
 ここで、電力情報を送信すると判定された場合(S206のYes)、通信部123は、データ保持部121に保持された電力情報を送信する(S208)。そして、電力測定装置12は、ステップS202からの処理を繰り返す。一方、電力情報を送信しないと判定された場合(S206のNo)、電力測定装置12は、ステップS202からの処理を繰り返す。
 このように、電力測定装置12は、ステップS202からステップS208までの処理を繰り返し実行することにより、電力情報収集装置11へ電力情報を繰り返し送信する。
 次に、電力情報収集システムにおいて送受信される情報の流れについて説明する。
 図6及び図7は、本発明の実施の形態1に係る電力情報収集システムにおける、情報の流れを示すシーケンス図の一例である。
 具体的には、図6は、第1~第4の電力測定装置12a~12dに接続された第1~第4の機器の電力変化率が略一致しているときのシーケンス図である。また、図7は、第1の電力測定装置12aに接続された第1の機器の電力変化率が、第2~第4の電力測定装置12b~12dに接続された第2~第4の機器の電力変化率よりも大きいときのシーケンス図である。ここで、電力変化率が略一致しているとは、電力変化率が一致していることに加えて、電力変化率が一致しているとみなしてもよい程度の差しかないことをいう。
 なお、図6及び図7では、電力測定装置12が4台である場合について説明しているが、電力測定装置12は必ずしも4台である必要はない。
 図6に示すように、各機器の電力変化率が略一致しているときは、電力情報収集装置11は、第1~第4の電力測定装置12a~12dのそれぞれに対して、同一の頻度で電力情報要求コマンドを送信する。その結果、電力情報収集装置11は、各電力測定装置から、同一の頻度で電力情報を受信することができる。
 一方、図7に示すように、第1の機器の電力変化率が他の機器の電力変化率よりも大きい場合は、第1の電力測定装置12aに対して、第2~第4の電力測定装置12b~12dよりも高い頻度で電力情報要求コマンドを送信する。その結果、電力情報収集装置11は、第1の電力測定装置12aから、第2~第4の電力測定装置12b~12dよりも高い頻度で電力情報を受信することができる。
 以上のように、本実施の形態に係る電力情報収集装置11は、機器13の電力変化率に応じた頻度で電力情報を収集できるので、総消費電力値に与える影響が大きい機器13の電力情報を優先して効率的に収集することができる。つまり、電力情報収集装置11は、総消費電力値に与える影響が大きい機器の電力情報の収集頻度を他の機器の収集頻度よりも高くすることができる。したがって、電力情報収集装置11は、電力情報収集装置が有する能力(電力情報の処理能力あるいは通信能力など)を超えない範囲で、電力情報を効率的に収集することが可能となる。また、このように収集された電力情報を利用すれば、総消費電力値の変化をすみやかに把握することが容易となり、最大使用可能電力値を超えることを抑制することも可能となる。
 また、電力情報収集装置11は、最新の電力変化率に応じて電力情報を収集できるので、現在の状況に応じて効率的に電力情報を収集することができる。
 なお、電力情報収集装置11の収集能力などが制約となって全体の収集頻度が高められない場合、第2~第4の電力測定装置からの電力情報の収集頻度を下げて、第1の電力測定装置からの電力情報の収集頻度を高めてもよい。これにより、全体の収集頻度を高めることなく、総消費電力値に与える影響が大きい機器の電力情報を優先して効率的に収集することができる。
 また、電力情報収集装置11は、必ずしも分電盤に取り付けられる必要はない。例えば、図8に示すように、電力情報収集装置11は、複数の機器13を制御するコントローラに取り付けられてもよい。さらに、電力情報収集装置11は、分電盤から供給される電力に関する情報を、分電盤に取り付けられた電力測定装置12から受信してもよい。
 (実施の形態1の変形例1)
 実施の形態1の変形例1として、実施の形態1とは異なる電力変化率を用いて電力情報の収集頻度を制御する一例を説明する。
 本変形例に係る電力情報収集装置11は、機器13ごとの最大電力変化率に応じて電力情報の収集頻度を制御する。
 変化率算出部112は、データ保持部111に保持された電力情報を用いて最大電力変化率を算出する。最大電力変化率とは、複数の期間の電力変化率のうち、最も大きい電力変化率である。つまり、最大電力変化率は、式(1)によって算出される、異なる期間の複数の電力変化率のうち、最も大きい電力変化率である。
 具体的には、変化率算出部112は、データ保持部111に保持された電力情報を読み出す。そして、変化率算出部112は、読み出した電力情報を用いて、式(1)に従って、複数の期間の電力変化率を機器13ごとに算出する。変化率算出部112は、このように算出された電力変化率のうち、最大の電力変化率を最大電力変化率として機器13ごとに算出する。
 なお、変化率算出部112は、電力情報が収集されるたびに、収集された電力情報に関する期間における電力変化率を算出し、算出した電力変化率が既に保持された電力変化率より大きい場合に、保持された電力変化率を新たに算出された電力変化率に更新してもよい。これにより、変化率算出部112は、保持された電力変化率を参照することにより、最大電力変化率を取得することができる。
 制御部114は、変化率算出部112によって算出された最大電力変化率が大きい機器13ほど電力情報の収集頻度が高くなるように、通信部113を制御する。
 以上のように、本変形例に係る電力情報収集装置11は、各機器13における最大電力変化率に応じて電力情報の収集頻度を決定できるので、総消費電力値を大きく増加させる可能性が高い機器13の電力情報を効率的に収集することができる。
 (実施の形態1の変形例2)
 実施の形態1の変形例2として、実施の形態1とは異なる電力変化率を用いて収集頻度を制御する他の一例を説明する。
 本変形例に係る電力情報収集装置11は、機器13ごとの平均電力変化率を用いて電力情報の収集頻度を制御する。
 変化率算出部112は、データ保持部111に保持された電力情報を用いて平均電力変化率を算出する。ここで平均電力変化率とは、複数の期間の電力変化率の平均値である。平均電力変化率Paveは、式(2)によって算出される。
Figure JPOXMLDOC01-appb-M000002
 ここで、nは、式(1)に従って算出される、各期間の電力変化率Pの数である。
 具体的には、変化率算出部112は、データ保持部111に保持された電力情報を読み出す。そして、変化率算出部112は、読み出した電力情報を用いて、式(1)に従って、各期間の電力変化率を機器13ごとに算出する。変化率算出部112は、このように算出された電力変化率の平均値を平均電力変化率として機器13ごとに算出する。
 制御部114は、変化率算出部112によって算出された平均電力変化率が大きい機器13ほど電力情報の収集頻度が高くなるように、通信部113を制御する。
 以上のように、本変形例に係る電力情報収集装置11は、平均化された電力変化率に応じた頻度で電力情報を収集できるので、安定的、かつ効率的に電力情報を収集することができる。
 (実施の形態2)
 次に、本発明の実施の形態2について、図面を参照しながら説明する。
 本実施の形態に係る電力情報収集装置21は、総消費電力値が第1閾値を超える場合に、電力変化率が大きい機器13ほど電力情報の収集頻度が高くなるように通信部113を制御する点が、実施の形態1に係る電力情報収集装置11と異なる。なお、本実施の形態に係る電力測定装置は、実施の形態1に係る電力測定装置と同じであるので、説明及び図示を省略する。
 図9は、本発明の実施の形態2に係る電力情報収集装置の機能構成を示すブロック図である。図9において、図2と同一の構成要素については同一の符号を付し、説明を省略する。
 図9に示すように、電力情報収集装置21は、データ保持部111と、変化率算出部112と、通信部113と、制御部214とを備える。
 制御部214は、総消費電力値が第1閾値を超えるか否かを判定する。そして、総消費電力値が第1閾値を超える場合に、制御部214は、電力変化率が大きい機器13ほど電力情報の収集頻度が高くなるように通信部113を制御する。すなわち、制御部214は、総消費電力値が第1閾値を超える場合と超えない場合とのうち、超える場合にのみ、電力変化率が大きい機器13ほど電力情報の収集頻度が高くなるように、通信部113を制御する。
 ここで、総消費電力値とは、複数の機器13によって消費される電力の総和である。また、第1閾値は、各機器13の最大電力変化率のうち最も大きい最大電力変化率と予め定められた期間との積を、使用可能な総消費電力値の上限値を示す最大使用可能電力値から減算した値である。また、最大使用可能電力値は、例えば、分電盤等に設けられたブレーカの許容電力値、電力会社との契約により定められた供給電力の上限値、又は電力会社との契約により電気料金が変化するときの電力値などの予め定められた電力値である。
 図10は、総消費電力値の時間推移を示すグラフである。図10において、縦軸は消費電力値を示し、横軸は時間を示す。
 図10に示すように、第1閾値は、最大使用可能電力値から時刻αにおける最大電力変化量Qを減算した値である。時刻αにおいて、総消費電力値が第1閾値を超えているので、制御部214は、電力変化率が大きい機器13ほど電力情報の収集頻度が高くなるように、通信部113を制御する。言い換えると、最大電力変化率γで総消費電力値が推移すると仮定した場合に、予め定められた期間δだけ経過した後(時刻β)に総消費電力値が最大使用可能電力値を超えると推定されるときは、制御部214は、電力変化率が大きい機器13ほど電力情報の収集頻度が高くなるように通信部113を制御する。これは、総消費電力値が第1閾値を超えるときは、総消費電力値が最大使用可能電力値を超える可能性が高いからである。
 なお、最大電力変化量Qは、時刻αにおける最大電力変化率γと予め定められた期間δとの積である。また、最大電力変化率γは、各機器13の最大電力変化率の中で、最も大きい最大電力変化率である。また、予め定められた期間δは、例えば、60秒などの任意の期間、又はポーリング間隔に応じて決定される期間などである。
 次に、以上のように構成された電力情報収集装置21における各種動作について説明する。
 図11は、本発明の実施の形態2に係る電力情報収集装置が行う処理の流れを示すフローチャートである。なお、図11において、図4と同一の処理を行うステップについては同一の符号を付し、説明を省略する。
 変化率が算出された後、制御部214は、総消費電力値を取得する(S302)。具体的には、例えば、制御部214は、データ保持部111に保持された、各機器13の最新の消費電力値の総和を算出することにより、総消費電力値を取得する。また、例えば、制御部214は、分電盤に取り付けられた電力測定装置から供給電力を取得することにより、総消費電力値を取得してもよい。
 続いて、制御部214は、第1閾値を算出する(S304)。具体的には、制御部214は、各機器13の最大電力変化率のうち最も大きい最大電力変化率と予め定められた期間との積を最大使用可能電力値から減算することにより、第1閾値を算出する。
 そして、制御部214は、総消費電力値が第1閾値を超えているか否かを判定する(S306)。ここで、総消費電力値が第1閾値を超えている場合(S306のYes)、電力情報収集装置21は、ステップS108以降の処理を実行する。一方、総消費電力値が第1閾値を超えていない場合(S306のNo)、電力情報収集装置21は、ステップS102の処理を実行する。
 なお、総消費電力値が第1閾値を超えていない場合には、例えば、制御部214は、予め定められた収集頻度で電力情報を受信するように通信部113を制御してもよい。
 図12Aは、本発明の実施の形態2に係る電力情報収集システムにおける、情報の流れの一例を示すシーケンス図である。具体的には、図12は、第1及び第2の電力測定装置12a、12bに接続された第1及び第2の機器の電力変化率が、第3及び第4の電力測定装置12c、12dに接続された第3及び第4の機器の電力変化率よりも大きいときのシーケンス図である。
 なお、図12Aにおいて、第1の機器の電力変化率と第2の機器の電力変化率とは略一致しており、第3の機器の電力変化率と第4の機器の電力変化率とは略一致している。
 図12に示すように、時刻αより前は、各機器の電力変化率に関わらず、電力情報収集装置21は、第1~第4の電力測定装置12a~12dのそれぞれに対して、同一の頻度で電力情報要求コマンドを送信する。
 一方、時刻αの後は、総消費電力値が第1閾値を超えているので、電力情報収集装置21は、第1及び第2の電力測定装置12a、12bに対して、第3及び第4の電力測定装置12c、12dよりも高い頻度で電力情報要求コマンドを送信する。
 なお、電力情報収集装置21は、総消費電力値が第1閾値を超えた後に、必ずしも第3及び第4の機器に電力情報要求コマンドを送信する必要はない。例えば、電力情報の収集能力に余裕がない場合には、電力情報収集装置21は、図12Bに示すように第3及び第4の機器に電力情報要求コマンドを送信しなくてもよい。具体的には、第3及び第4の機器の最大電力変化率が第2閾値より小さい場合に、電力情報収集装置21は、第3及び第4の電力測定装置12c、12dに対して、電力情報要求コマンドを送信しなくてもよい。これにより、電力情報収集装置21が収集能力の上限値に達している場合であっても、収集能力の上限値を超えることなく、総消費電力値に与える影響が大きい機器である第1及び第2の機器の電力情報を収集することができる。この第2閾値としては、例えば、最大使用可能電力値に対する比が一定値となる値などが利用されればよい。
 以上のように、最大電力変化率に従って動的に第1閾値が算出されるので、本実施の形態に係る電力情報収集装置21は、総消費電力値が最大使用可能電力値を超える可能性が高いか否かを動的に判定することができる。そして、電力情報収集装置21は、総消費電力値が最大使用可能電力値を超える可能性が高いときに、総消費電力値に与える影響が大きい機器の電力情報を効率的に収集することができる。
 (実施の形態2の変形例)
 実施の形態2の変形例として、複数の機器13に電力を供給する電力供給機器が供給可能な電力に応じて、最大使用可能電力値が動的に変動する場合について説明する。なお、電力供給機器とは、例えば、機器13が使用される建物に設置された太陽光発電用パワーコンディショナー、燃料電池、又は蓄電池などである。
 本変形例に係る電力情報収集装置21が備える通信部113は、電力供給機器が供給可能な電力の上限値を含む供給可能電力情報を受信する。例えば、通信部113は、太陽光発電パネルもしくは燃料電池によって発電された電力、又は、蓄電池に充電されている電力値を含む供給可能電力情報を電力供給機器ごとに受信する。そして、制御部214は、電力供給機器ごとに受信した供給可能な電力の上限値の総和を、最大使用可能電力値として算出する。制御部214は、このように算出された最大使用可能電力値を用いて、第1閾値を算出する。そして、このように算出された第1閾値を用いて、制御部214は、電力情報の収集頻度を制御する。
 図13は、総消費電力値の時間推移を示すグラフである。図13において、縦軸は消費電力値を示し、横軸は時間を示す。
 図13に示すように、電力供給機器によって供給可能な電力値が変動するので、最大使用可能電力値も時間とともに変化している。なお、第1閾値は、時刻α における最大使用可能電力値から最大電力変化量Qを減算した値である。時刻αにおける最大使用可能電力値は、電力供給機器によって供給可能な電力値の総和である。
 以上のように、本変形例に係る電力情報収集装置21は、電力供給機器が供給可能な電力値の変化に応じて、第1閾値を動的に変化させることができ、効果的に電力情報を収集することができる。
 なお、本変形例において、最大使用可能電力値は、電力供給機器によって供給可能な電力値の総和であったが、電力供給機器によって供給可能な電力値の総和と、電力会社との契約により定められた電力値との和であってもよい。また、最大使用可能電力値は、ユーザによって予め設定された最大使用電力の目標値であってもよい。
 また、本変形例において、制御部214は、供給可能な電力値の変化率が大きいほど供給可能電力情報の収集頻度が高くなるように通信部113を制御することが好ましい。これにより、電力情報収集装置21は、供給可能な電力値の変化をすみやかに最大使用可能電力値に反映することが可能となる。
 (実施の形態3)
 次に、本発明の実施の形態3について、図面を参照しながら説明する。
 本実施の形態に係る電力情報収集装置31は、さらに、収集した電力情報を用いて、複数の機器13の動作状態の制御を行う点に特徴を有する。
 図14は、本発明の実施の形態3に係る電力情報収集装置の機能構成を示すブロック図である。図14において、図2と同一の構成要素については同一の符号を付し、説明を省略する。
 本実施の形態に係る電力情報収集装置31は、データ保持部111と、変化率算出部112と、通信部113と、制御部314とを備える。
 制御部314は、実施の形態1の制御部114が行う処理に加えてさらに、通信部113によって受信された電力情報を用いて、複数の機器13を制御する。具体的には、制御部314は、例えば、総消費電力値が所定値を超えている場合に、優先度が低い機器13へ消費電力値の抑制を要求する電力制御コマンドを送信する。そして、電力制御コマンドを受信した機器13は、各種運転状態を切り替えるなどにより消費電力を抑制する。
 なお、機器13は、電源のON/OFF、各種運転状態の切り替え等を遠隔制御することができる、いわゆる「デジタル家電」であることが好ましい。
 次に、以上のように構成された電力情報収集装置31における各種動作について説明する。
 図15は、本発明の実施の形態3に係る電力情報収集装置が行う処理の流れを示すフローチャートである。なお、図15において、図4と同一の処理を行うステップについては同一の符号を付し、説明を省略する。
 電力情報要求コマンドが送信された後、制御部314は、電力制御が必要か否かを判定する(S402)。具体的には、制御部314は、複数の機器13の少なくとも1台の消費電力値を抑制する必要があるか否かを判定する。
 さらに具体的には、制御部314は、例えば、総消費電力値が所定値を超えているか否かにより、電力制御が必要か否かを判定する。この所定値は、例えば、最大使用可能電力値に対して1未満の係数を乗算した値であればよい。
 ここで、電力制御が必要でないと判定された場合(S402のNo)、電力情報収集装置31は、再びステップS102からの処理を繰り返す。
 一方、電力制御が必要であると判定された場合(S402のYes)、制御部314は、通信部113を介して、複数の機器13の少なくとも1台へ、電力制御に関するコマンドである電力制御コマンドを送信する(S404)。具体的には、制御部314は、例えば、予め定められた優先度が低い機器13へ、消費電力値を減少させるための電力制御コマンドを送信する。そして、電力情報収集装置31は、再びステップS102からの処理を繰り返す。
 以上のように、本実施の形態に係る電力情報収集装置31は、電力変化率に応じた頻度で収集された電力情報を用いて機器13を制御できるので、総消費電力値が最大使用可能電力値を超える可能性を低減させることができる。つまり、電力情報収集装置31は、効率的に収集された電力情報を利用することができるので、現在の状況にすばやく追随しながら機器13を制御することができる。
 さらに、電力情報収集装置31は、定格電力ではなく収集された実際の消費電力を利用して各機器13を制御することができるので、利用可能な電力を有効に活用することもできる。
 なお、電力情報収集装置31が、機器13に対して直接制御するのではなく、機器13に接続された電力測定装置を介して機器13を制御してもよい。電力情報収集装置31が機器13に対して直接制御する場合は、通信部113は、電力測定装置と通信する機能のほかに、機器13と通信する機能を備える。
 一方、電力情報収集装置31が機器13に接続された電力測定装置を介して機器13を制御する場合には、通信部113は、電力測定装置と通信する機能のほかに、機器13と通信する機能を備える必要はない。この場合、機器13に接続された電力測定装置は、機器制御部を具備し、電力情報収集装置31から電力制御コマンドを受信し、接続した機器13に対して制御コマンドを通知する。
 (実施の形態4)
 次に、本発明の実施の形態4について、図面を参照しながら説明する。
 図16は、本発明の実施の形態4に係る電力測定装置の機能構成を示すブロック図である。図16において、図3と同一の構成要素については同一の符号を付し、説明を省略する。
 本実施の形態に係る電力測定装置42は、データ保持部121と、電力測定部122と、通信部123と、制御部424と、変化率算出部425とを備える。
 制御部424は、変化率算出部425によって算出された電力変化率が大きいほど、電力情報の送信頻度が高くなるように、通信部123を制御する。
 変化率算出部425は、データ保持部121に保持された電力情報を読み出し、読み出した電力情報を用いて、消費電力値の変化率である電力変化率を算出する。具体的には、変化率算出部425は、データ保持部121に保持された電力情報のうち、直近に測定された電力情報を用いて、式(1)に示す電力変化率Pを算出する。
 なお、変化率算出部425は、最大電力変化率を電力変化率として算出してもよい。また、変化率算出部425は、平均電力変化率を電力変化率として算出してもよい。
 次に、以上のように構成された電力測定装置42における各種動作について説明する。
 図17は、本発明の実施の形態4に係る電力測定装置が行う処理の流れを示すフローチャートである。なお、図17において、図5と同一の処理を行うステップについては同一の符号を付し、説明を省略する。
 電力情報が保持された後、変化率算出部425は、データ保持部121に保持された電力情報を読み出し、読み出した電力情報を用いて、消費電力値の変化率である電力変化率を算出する(S502)。続いて、制御部424は、変化率算出部425によって算出された電力変化率が大きいほど送信頻度が高くなるように、電力情報の送信頻度を決定する(S504)。そして、制御部424は、決定した送信頻度に従って、電力情報を電力情報収集装置へ、通信部123を介して送信する(S506)。
 このように、電力測定装置42は、ステップS202からステップS506までの処理を繰り返し実行することにより、測定した電力情報を電力情報収集装置等へ送信する。
 以上のように、本実施の形態に係る電力測定装置42は、電力変化率に応じて、つまり総消費電力値に与える影響の大きさに応じて、電力情報の送信頻度を変更できる。したがって、電力測定装置から電力情報を送信される電力情報収集装置は、総消費電力値に与える影響の大きい機器13の電力情報を優先して効率的に収集することができる。
 以上、本発明に係る電力情報収集装置及び電力測定装置等について、実施の形態に基づいて説明したが、本発明は、これらの実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したもの、又は異なる実施の形態もしくはその変形例における構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。
 例えば、上記実施の形態1~3において、電力情報は、消費電力値を示す情報を含んでいたが、電力変化率を含んでもよい。この場合、電力測定装置が変化率算出部を備え、電力情報収集装置は変化率算出部を備えなくてもよい。
 また、上記実施の形態1~3において、電力変化率は、消費電力値の増加度合いを示していたが、消費電力値の増減度合いを示すことが好ましい。具体的には、電力変化率Pは、以下の式(3)に示すように算出されることが好ましい。
Figure JPOXMLDOC01-appb-M000003
 これにより、電力情報収集装置は、消費電力値が大きく減少している機器の電力情報の収集頻度も高めることができる。したがって、電力情報収集装置は、総消費電力値の変化をすみやかに把握することができる。その結果、例えば、最大使用可能電力値を超えることを抑制するために機器の消費電力を制御する場合に、電力情報収集装置は、総消費電力値の変化に応じた制御が可能となる。例えば、総消費電力値の増加を抑制するために、ある機器の動作を停止させた場合に、電力情報収集装置は、その機器の消費電力値の変化をすみやかに把握することが可能となる。したがって、電力情報収集装置は、さらに他の機器を停止させる必要があるか否かなどを適切に判断することが可能となる。
 なお、本発明は、このような電力情報収集装置の特徴的な構成要素が行う処理を実行する電力情報収集方法として実現することもできる。また、その電力情報収集方法を図18に示すようなコンピュータに実行させるためのプログラムとして実現することもできる。そして、そのようなプログラムは、CD-ROM等の記録媒体、インターネット等の伝送媒体を介して配信することができる。
 図18は、コンピュータのハードウェア構成の一例を示す図である。電力情報収集方法をコンピュータに実行させるためのプログラムは、例えば、コンピュータが読取可能な媒体であるCD-ROM515に記憶され、CD-ROM装置514を介して読み出される。また例えば、電力情報収集方法をコンピュータに実行させるためのプログラムは、有線もしくは無線ネットワーク、又は放送などを介して伝送される。
 コンピュータ500は、CPU(Central Processing Unit)501、ROM(Read Only Memory)502、RAM(Random Access Memory)503、ハードディスク504、通信インタフェース505等を備える。
 CPU501は、CD-ROM装置514を介して読み出されたプログラム、又は通信インタフェース505を介して受信したプログラムを実行する。具体的には、CPU501は、CD-ROM装置514を介して読み出されたプログラム、又は通信インタフェース505を介して受信したプログラムをRAM503に展開する。そして、CPU501は、RAM503に展開されたプログラム中のコード化された各命令を実行する。
 ROM502は、コンピュータ500の動作に必要なプログラム及びデータを記憶する読み出し専用メモリである。RAM503は、CPU501がプログラムを実行するときにワークエリアとして使用される。具体的には、RAM503は、例えば、プログラム実行時のパラメータなどのデータを一時的に記憶する。ハードディスク504は、プログラム、データなどを記憶する。
 通信インタフェース505は、ネットワークを介して他のコンピュータとの通信を行う。バス506は、CPU501、ROM502、RAM503、ハードディスク504、通信インタフェース505、ディスプレイ511、キーボード512、マウス513及びCD-ROM装置514を相互に接続する。
 さらに、本発明は、このような電力情報収集装置又は電力測定装置の機能の一部又はすべてを実現する半導体集積回路(LSI:Large Scale Integration)として実現することもできる。具体的には、本発明は、例えば、図2、図9、図14又は図16のそれぞれに示された構成要素の一部又は全部を備える集積回路として実現することができる。
 また、集積回路化は個別に1チップ化されてもよいし、一部又はすべてを含むように1チップ化されてもよい。
 また、集積回路化はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後にプログラムすることが可能なFPGA(Field Programmable Gate Array)、又はLSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
 さらには、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて各処理部の集積化を行ってもよい。
 複数の機器のそれぞれについて消費電力値を含む電力情報を収集する電力情報収集装置、又はその電力情報収集装置を備える機器コントローラ等として利用することができる。
  11、21、31  電力情報収集装置
  12、12a、12b、12c、12d、42  電力測定装置
  13  機器
 111、121  データ保持部
 112、425  変化率算出部
 113、123  通信部
 114、124、214、314、424  制御部
 122  電力測定部

Claims (22)

  1.  複数の機器のそれぞれについて消費電力値を含む電力情報を収集する電力情報収集装置であって、
     前記機器ごとに電力情報を収集する通信部と、
     前記通信部によって収集された電力情報を保持するデータ保持部と、
     前記データ保持部に保持された電力情報を用いて、消費電力値の増減度合いを示す電力変化率を前記機器ごとに算出する変化率算出部と、
     前記変化率算出部によって算出された電力変化率が大きい機器ほど電力情報の収集頻度が高くなるように前記通信部を制御する制御部とを備える
     電力情報収集装置。
  2.  前記変化率算出部は、前記データ保持部に保持された電力情報のうち、直近に収集された電力情報を用いて、前記電力変化率を前記機器ごとに算出する
     請求項1に記載の電力情報収集装置。
  3.  前記変化率算出部は、複数の期間の電力変化率のうち最も大きい電力変化率である最大電力変化率を、前記電力変化率として前記機器ごとに算出する
     請求項1に記載の電力情報収集装置。
  4.  前記変化率算出部は、複数の期間の電力変化率の平均値である平均電力変化率を、前記電力変化率として前記機器ごとに算出する
     請求項1に記載の電力情報収集装置。
  5.  前記制御部は、前記複数の機器の消費電力値の総和である総消費電力値が第1閾値を超えるか否かを判定し、総消費電力値が第1閾値を超える場合に、電力変化率が大きい機器ほど前記通信部による電力情報の収集頻度が高くなるように前記通信部を制御する
     請求項1~4のいずれか1項に記載の電力情報収集装置。
  6.  前記第1閾値は、前記複数の機器の最大電力変化率のうち最も大きい最大電力変化率と予め定められた期間との積を、使用可能な総消費電力値の上限値を示す最大使用可能電力値から減算した値であり、
     前記最大電力変化率は、複数の期間の電力変化率のうち最も大きい電力変化率である
     請求項5に記載の電力情報収集装置。
  7.  前記制御部は、総消費電力値が第1閾値を超える場合に、最大電力変化率が第2閾値より小さい機器の電力情報を収集しないように前記通信部を制御する
     請求項5又は6に記載の電力情報収集装置。
  8.  前記最大使用可能電力値は、電力会社との契約により定められた電力値である
     請求項5~7のいずれか1項に記載の電力情報収集装置。
  9.  前記最大使用可能電力値は、前記複数の機器に電力を供給する電力供給機器が供給可能な電力値である
     請求項5~7のいずれか1項に記載の電力情報収集装置。
  10.  前記最大使用可能電力値は、電力会社との契約により定められた電力値と、前記複数の機器に電力を供給する電力供給機器が供給可能な電力値との総和である
     請求項5~7のいずれか1項に記載の電力情報収集装置。
  11.  前記最大使用可能電力値は、ユーザによって予め設定された最大使用電力の目標値である
     請求項5~7のいずれか1項に記載の電力情報収集装置。
  12.  前記通信部は、前記電力供給機器において測定された供給可能な電力値を含む供給可能電力情報を受信し、
     前記制御部は、さらに、前記通信部によって受信された供給可能電力情報を用いて前記最大使用可能電力値を算出し、算出した前記最大使用可能電力値から得られる前記第1閾値に従って前記通信部を制御する
     請求項9又は10に記載の電力情報収集装置。
  13.  前記制御部は、さらに、供給可能な電力値の変化率が大きいほど供給可能電力情報の収集頻度が高くなるように前記通信部を制御する
     請求項12に記載の電力情報収集装置。
  14.  前記制御部は、さらに、前記通信部によって収集された電力情報を用いて、前記複数の機器を制御する
     請求項1~12のいずれか1項に記載の電力情報収集装置。
  15.  少なくとも1つの機器に接続され、接続された機器の消費電力値を含む電力情報を電力情報収集装置へ送信する電力測定装置であって、
     前記機器の消費電力値を測定する電力測定部と、
     前記電力測定部によって測定された消費電力値を含む電力情報を保持するデータ保持部と、
     前記データ保持部に保持された電力情報を用いて、消費電力値の増減度合いを示す電力変化率を算出する変化率算出部と、
     前記データ保持部に保持された電力情報を電力情報収集装置へ送信する通信部と、
     前記変化率算出部によって算出された電力変化率が大きいほど電力情報の送信頻度が高くなるように、前記通信部を制御する制御部とを備える
     電力測定装置。
  16.  前記変化率算出部は、前記データ保持部に保持された電力情報のうち、直近に測定された消費電力値を示す電力情報を用いて、前記電力変化率を算出する
     請求項15に記載の電力測定装置。
  17.  前記変化率算出部は、複数の期間の電力変化率のうち最も大きい電力変化率である最大電力変化率を、前記電力変化率として機器ごとに算出する
     請求項15に記載の電力測定装置。
  18.  前記変化率算出部は、複数の期間の電力変化率の平均値である平均電力変化率を、前記電力変化率として機器ごとに算出する
     請求項15に記載の電力測定装置。
  19.  複数の機器のそれぞれについて消費電力値を含む電力情報を収集する電力情報収集装置と、少なくとも1つの前記機器に接続され、接続された前記機器の電力情報を電力情報収集装置へ送信する電力測定装置とを備える電力情報収集システムであって、
     前記電力情報収集装置は、
     前記機器ごとに電力情報を収集する第1通信部と、
     前記第1通信部によって収集された電力情報を保持する第1データ保持部と、
     前記第1データ保持部に保持された電力情報を用いて、消費電力値の増減度合いを示す電力変化率を前記機器ごとに算出する変化率算出部と、
     前記変化率算出部によって算出された電力変化率が大きい機器ほど電力情報の収集頻度が高くなるように前記第1通信部を制御する制御部とを備え、
     前記電力測定装置は、
     接続された機器の消費電力値を測定する第2電力測定部と、
     前記電力測定部によって測定された消費電力値を含む電力情報を保持する第2データ保持部と、
     前記第2データ保持部に保持された電力情報を前記電力情報収集装置へ送信する第2通信部とを備える
     電力情報収集システム。
  20.  複数の機器のそれぞれについて消費電力値を含む電力情報を収集する集積回路であって、
     前記機器ごとに電力情報を収集する通信部と、
     前記通信部によって収集された電力情報を保持するデータ保持部と、
     前記データ保持部に保持された電力情報を用いて、消費電力値の増減度合いを示す電力変化率を前記機器ごとに算出する変化率算出部と、
     前記変化率算出部によって算出された電力変化率が大きい機器ほど電力情報の収集頻度が高くなるように前記通信部を制御する制御部とを備える
     集積回路。
  21.  複数の機器のそれぞれについて消費電力値を含む電力情報を収集する電力情報収集方法であって、
     前記機器ごとに電力情報を収集する通信ステップと、
     前記通信ステップにおいて収集された電力情報を保持するデータ保持ステップと、
     前記データ保持部に保持された電力情報を用いて、消費電力値の増減度合いを示す電力変化率を前記機器ごとに算出する変化率算出ステップと、
     前記変化率算出ステップにおいて算出された電力変化率が大きい機器ほど前記通信ステップにおける電力情報の収集頻度が高くなるように前記通信部を制御する制御ステップとを含む
     電力情報収集方法。
  22.  請求項21に記載の電力情報収集方法をコンピュータに実行させるためのプログラム。
PCT/JP2010/007089 2009-12-10 2010-12-06 電力情報収集装置、電力測定装置、電力情報収集システム、及び電力情報収集方法 WO2011070762A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/258,245 US20120022711A1 (en) 2009-12-10 2010-12-06 Power information collecting apparatus, power measuring apparatus, power information collecting system, and power information collecting method
CN2010800072781A CN102317796A (zh) 2009-12-10 2010-12-06 功率信息收集装置、功率测定装置、功率信息收集系统及功率信息收集方法
JP2011527916A JP5760194B2 (ja) 2009-12-10 2010-12-06 電力情報収集装置、電力測定装置、電力情報収集システム、及び電力情報収集方法
EP10835688.2A EP2511715B1 (en) 2009-12-10 2010-12-06 Power information collection apparatus, power measurement apparatus, power information collection system, and power information collection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009280934 2009-12-10
JP2009-280934 2009-12-10

Publications (1)

Publication Number Publication Date
WO2011070762A1 true WO2011070762A1 (ja) 2011-06-16

Family

ID=44145324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007089 WO2011070762A1 (ja) 2009-12-10 2010-12-06 電力情報収集装置、電力測定装置、電力情報収集システム、及び電力情報収集方法

Country Status (5)

Country Link
US (1) US20120022711A1 (ja)
EP (1) EP2511715B1 (ja)
JP (1) JP5760194B2 (ja)
CN (1) CN102317796A (ja)
WO (1) WO2011070762A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013152659A (ja) * 2012-01-26 2013-08-08 Panasonic Corp データ収集送信ノード、センター装置、データ収集送信システムおよびデータ収集送信方法
WO2013145756A1 (ja) * 2012-03-28 2013-10-03 京セラ株式会社 通信装置、通信装置を有する電力管理システム、及び通信装置の制御方法
JP2014021095A (ja) * 2012-07-24 2014-02-03 Sanyo Electric Co Ltd 消費電力表示装置および消費電力表示システム
JP2015100000A (ja) * 2013-11-19 2015-05-28 東芝ライテック株式会社 通信装置、通信方法、および通信システム
JP2018097561A (ja) * 2016-12-13 2018-06-21 Necプラットフォームズ株式会社 判定装置
WO2023152940A1 (ja) * 2022-02-14 2023-08-17 三菱電機株式会社 データ収集装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110099542A (ko) * 2010-03-02 2011-09-08 삼성전자주식회사 수요 반응 시스템
EP2638704B1 (en) * 2010-11-10 2015-02-25 Koninklijke Philips N.V. Resource metering system and method using such a system for smart energy consumption
JP6081444B2 (ja) * 2011-04-04 2017-02-15 フィリップス ライティング ホールディング ビー ヴィ 照明システムにおける複数の照明装置の電気消費を調整するためのデバイス及び方法
WO2013033687A1 (en) 2011-09-02 2013-03-07 Rtetta Holdings, Llc System for tracking and allocating renewable energy contributions to a modular renewable energy system
US11022343B2 (en) 2011-09-02 2021-06-01 Pv Solutions, Llc Mounting system for photovoltaic arrays
US10008974B2 (en) 2011-09-02 2018-06-26 Pv Solutions, Llc Mounting system for photovoltaic arrays
JP5440655B2 (ja) * 2012-05-21 2014-03-12 富士ゼロックス株式会社 情報処理システム及びプログラム
JP5253617B1 (ja) * 2012-10-18 2013-07-31 三菱電機株式会社 管理装置、管理システム、管理方法及びプログラム
US9606609B2 (en) * 2014-09-08 2017-03-28 Google Inc. Modifying power consumption based on energy-usage messages
WO2016123357A2 (en) 2015-01-28 2016-08-04 Pv Solutions, Llc Integrated electrical and mechanical photovoltaic array interconnection system
JP6944426B2 (ja) * 2018-09-05 2021-10-06 株式会社日立建機ティエラ 電動式建設機械
CN111077364A (zh) * 2019-12-28 2020-04-28 广东电科院能源技术有限责任公司 一种电能计量通信方法及装置
CN110989394B (zh) * 2019-12-31 2021-07-20 海信集团有限公司 共享家电的功率控制方法及装置
CN111864904B (zh) * 2020-07-27 2022-04-01 湖南创业德力电气有限公司 一种配电监控终端
US11971795B2 (en) * 2021-07-23 2024-04-30 Dell Products L.P. Adaptively uploading data center asset data for analysis

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10282161A (ja) * 1997-04-09 1998-10-23 Matsushita Electric Ind Co Ltd 消費電力監視システム
JP2004023283A (ja) 2002-06-13 2004-01-22 Kojima Co Ltd 家電制御装置、家電制御方法及びプログラム
JP2004348319A (ja) * 2003-05-21 2004-12-09 Matsushita Electric Ind Co Ltd 制御方法、制御システム、情報端末、家電機器・設備機器およびプログラム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0340724A (ja) * 1988-11-18 1991-02-21 Jan Gerrit Toennies 電力システムの負荷作用方法、並びに、その方法に使用される電気メータ、指示装置及びスイッチング装置
US5543667A (en) * 1992-12-29 1996-08-06 Honeywell Inc. Load control for partially increasing/decreasing power usage
DE10008185B4 (de) * 2000-02-18 2004-07-29 Elbas Elektrische Bahnsysteme Ingenieurgesellschaft Mbh Kurzschlussschutz beim Einsatz von Energiequellen mit Stromregelcharakteristik
JP2003288390A (ja) * 2002-03-27 2003-10-10 Ntt Comware Corp 電力量集計装置、サービス提供装置、電力量集計プログラム、サービス提供装置用プログラム及び電力量集計プログラムまたはサービス提供装置用プログラムを記録した記録媒体
JP2005301095A (ja) * 2004-04-15 2005-10-27 Semiconductor Energy Lab Co Ltd 表示装置
CA2649838C (en) * 2006-04-06 2014-02-25 Programmable Control Services, Inc. Electrical power distribution control systems and processes
GB0803983D0 (en) * 2008-03-04 2008-04-09 Sentec Ltd Energy use monitor with separate current and voltage measurement
US7895017B2 (en) * 2008-07-24 2011-02-22 Solfocus, Inc. System to increase SNR of CPV-generated power signal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10282161A (ja) * 1997-04-09 1998-10-23 Matsushita Electric Ind Co Ltd 消費電力監視システム
JP2004023283A (ja) 2002-06-13 2004-01-22 Kojima Co Ltd 家電制御装置、家電制御方法及びプログラム
JP2004348319A (ja) * 2003-05-21 2004-12-09 Matsushita Electric Ind Co Ltd 制御方法、制御システム、情報端末、家電機器・設備機器およびプログラム

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013152659A (ja) * 2012-01-26 2013-08-08 Panasonic Corp データ収集送信ノード、センター装置、データ収集送信システムおよびデータ収集送信方法
WO2013145756A1 (ja) * 2012-03-28 2013-10-03 京セラ株式会社 通信装置、通信装置を有する電力管理システム、及び通信装置の制御方法
JP5695798B2 (ja) * 2012-03-28 2015-04-08 京セラ株式会社 通信装置、通信装置を有する電力管理システム、及び通信装置の制御方法
JPWO2013145756A1 (ja) * 2012-03-28 2015-12-10 京セラ株式会社 通信装置、通信装置を有する電力管理システム、及び通信装置の制御方法
US9609591B2 (en) 2012-03-28 2017-03-28 Kyocera Corporation Communication device, power management system having communication device and control method of communication device
JP2014021095A (ja) * 2012-07-24 2014-02-03 Sanyo Electric Co Ltd 消費電力表示装置および消費電力表示システム
JP2015100000A (ja) * 2013-11-19 2015-05-28 東芝ライテック株式会社 通信装置、通信方法、および通信システム
JP2018097561A (ja) * 2016-12-13 2018-06-21 Necプラットフォームズ株式会社 判定装置
JP6993082B2 (ja) 2016-12-13 2022-01-13 Necプラットフォームズ株式会社 判定装置
US11402832B2 (en) 2016-12-13 2022-08-02 Nec Platforms, Ltd. Determining device, determining method, and recording medium having determining program recorded thereon
WO2023152940A1 (ja) * 2022-02-14 2023-08-17 三菱電機株式会社 データ収集装置

Also Published As

Publication number Publication date
EP2511715A4 (en) 2014-06-25
CN102317796A (zh) 2012-01-11
US20120022711A1 (en) 2012-01-26
JP5760194B2 (ja) 2015-08-05
EP2511715A1 (en) 2012-10-17
EP2511715B1 (en) 2018-05-30
JPWO2011070762A1 (ja) 2013-04-22

Similar Documents

Publication Publication Date Title
JP5760194B2 (ja) 電力情報収集装置、電力測定装置、電力情報収集システム、及び電力情報収集方法
JP5424161B2 (ja) 需給調停システム、需給調停装置、需給調停方法および需給調停プログラム
US10886755B2 (en) Power control system, method, and power control apparatus
EP3125374A1 (en) Operation control device for electronic apparatus
JP5439424B2 (ja) 制御装置
JP2009124846A (ja) 集合住宅の電力配電システム、集合住宅の電力配分方法、集合住宅の電力配電管理装置
JP2011135748A (ja) 電力供給装置、電力受電装置及び電力供給方法
WO2016002346A1 (ja) 電力制御システム及び電力制御装置
US10756540B2 (en) Received power control device and received power control method
JP2007028036A (ja) 制御装置及び制御装置を用いた機器の制御方法
JP6059039B2 (ja) 送信装置及び送信方法
JP2013078177A (ja) 電力融通システム、デマンド制御装置、デマンド制御方法及びプログラム
JPWO2015166758A1 (ja) エネルギー制御システム、エネルギー制御装置、エネルギー制御方法及びプログラム
JP2017135824A (ja) 電力消費管理装置、電力消費管理システムおよび電力消費管理プログラム
EP3331117B1 (en) Power saving control device and power saving control method
JP5857228B2 (ja) 周波数制御方法および周波数制御システム
JP5632415B2 (ja) 制御機器、及び制御方法
JP2018064430A (ja) 充放電装置及び電力制御装置
JP6075584B2 (ja) 制御装置、エネルギーマネジメントシステム、制御方法、および、プログラム
TW201722023A (zh) 蓄電裝置的輸出控制裝置、輸出控制方法、電力系統及電腦程式
JP2016140188A (ja) 電力システム
US20240088695A1 (en) Control device, power management system, and control method
JP6316921B2 (ja) 送信装置及び送信方法
JP6590975B2 (ja) 送信装置及び送信方法
JP2018085807A (ja) 機器制御システム、機器制御装置、電気機器、機器制御方法および電気機器制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080007278.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011527916

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835688

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010835688

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13258245

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE