WO2011069975A1 - Verwendung von schichtaufbauten in windkraftanlagen - Google Patents

Verwendung von schichtaufbauten in windkraftanlagen Download PDF

Info

Publication number
WO2011069975A1
WO2011069975A1 PCT/EP2010/068992 EP2010068992W WO2011069975A1 WO 2011069975 A1 WO2011069975 A1 WO 2011069975A1 EP 2010068992 W EP2010068992 W EP 2010068992W WO 2011069975 A1 WO2011069975 A1 WO 2011069975A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
plastic
optionally
fiber
reaction mixture
Prior art date
Application number
PCT/EP2010/068992
Other languages
German (de)
English (en)
French (fr)
Inventor
Dirk Passmann
Klaus Franken
Stefan Lindner
Original Assignee
Bayer Materialscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2012542497A priority Critical patent/JP6000852B2/ja
Priority to ES10784326T priority patent/ES2899656T3/es
Priority to AU2010329978A priority patent/AU2010329978B2/en
Priority to CN201080056524.2A priority patent/CN102753345B/zh
Priority to MX2012006685A priority patent/MX348378B/es
Priority to CA2783986A priority patent/CA2783986A1/en
Priority to DK10784326.0T priority patent/DK2509790T3/da
Priority to EP10784326.0A priority patent/EP2509790B1/de
Application filed by Bayer Materialscience Ag filed Critical Bayer Materialscience Ag
Priority to PL10784326T priority patent/PL2509790T3/pl
Priority to KR1020127015048A priority patent/KR101761954B1/ko
Priority to IN5174DEN2012 priority patent/IN2012DN05174A/en
Priority to US13/514,523 priority patent/US10293586B2/en
Priority to BR112012014193A priority patent/BR112012014193A2/pt
Priority to RU2012129266/12A priority patent/RU2549070C9/ru
Publication of WO2011069975A1 publication Critical patent/WO2011069975A1/de
Priority to ZA2012/03805A priority patent/ZA201203805B/en
Priority to US15/799,511 priority patent/US11904582B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/095Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0025Producing blades or the like, e.g. blades for turbines, propellers, or wings
    • B29D99/0028Producing blades or the like, e.g. blades for turbines, propellers, or wings hollow blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4244Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups
    • C08G18/4247Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups derived from polyols containing at least one ether group and polycarboxylic acids
    • C08G18/4252Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups derived from polyols containing at least one ether group and polycarboxylic acids derived from polyols containing polyether groups and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2875/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as mould material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • B29L2031/082Blades, e.g. for helicopters
    • B29L2031/085Wind turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2603/00Vanes, blades, propellers, rotors with blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the use of layer structures in the manufacture of rotor blades for wind turbines and rotor blades for wind turbines.
  • the previously known rotor blades for wind turbines consist of fiber-reinforced plastics based on resins as matrix material, such as polyester resins (UP), vinyl ester resins (VE), epoxy resins (EP).
  • UP polyester resins
  • VE vinyl ester resins
  • EP epoxy resins
  • the production of the sheets is mainly borrowed so that in each case a lower and an upper half of the wing are produced in one piece. These two halves are then placed on each other and glued. Struts or straps are glued in for reinforcement.
  • the rotor blades for wind turbines of the aforementioned resins are usually prepared by hand lamination, hand lamination with the aid of prepreg technology, by winding method or the vacuum-assisted infusion method.
  • manual lamination a mold is first prepared by applying a release agent and optionally a gelcoat to the mold surface. Subsequently, glass scrims with unidirectional or biaxial orientation are successively placed in the mold. Thereafter, the resin is applied to the scrim and manually pressed by rolling into the scrim. This step can be repeated accordingly.
  • straps can be incorporated as reinforcement material and other parts, such as lightning protection devices.
  • a so-called spacer layer usually made of balsa wood, polyvinyl chloride (PVC) - or polyurethane (PUR) foam, and a second glass fiber reinforced layer applied analogously to the first.
  • PVC polyvinyl chloride
  • PUR polyurethane
  • prepregs impregnated with resin prefabricated glass mats
  • the partial automation for the production of the prepregs which is carried out in comparison with the simple manual lamination, leads to improved quality consistency in rotor production
  • the protection of workers from the volatile compounds contained in the liquid resin mixtures requires a considerable effort (job security, etc.).
  • the molds are prepared by a release agent and possibly a gelcoat Then the dry fiber mats are put into the mold according to an exact manufacturing plan. The first layer will later be the outermost layer of the rotor blade, then the spacers will be inserted, whereupon fiber mats will be placed again The entire mold is then hermetically sealed with a vacuum-resistant film, and air is removed from fiber mats and spacers from the prepared mold before the resin is injected into the mold (space between film and mold) at various points This procedure has - as well as the two previously mentioned - the disadvantage that the necessary curing time to demolding of the component with up to 12 hours is very long and the productivity of the system is very limited.
  • the rotor blades are made with polyurethane as a plastic instead of the above-mentioned resins.
  • polyurethane is used as a plastic according to the invention; The fiber layers used in the outer shell are thus applied.
  • the invention relates to rotor blades for wind turbines, which have an outer shell, which consists at least partially of a layer structure with the following layers a) a release agent layer
  • Another object of the invention is a method for producing the rotor blades according to the invention for wind turbines, which have an outer shell, which consists at least partially of a layer structure with the following layers a) a release agent layer
  • the fiber layers are treated with a reaction mixture for the production of polyurethane as a plastic.
  • Another object of the invention is the use of a layer structure in the manufacture of rotor blades for wind turbines, wherein the layer structure has the following layers
  • Silicone or wax-containing release agents are preferably used for the release agent layer. These are known from the literature.
  • the gelcoat layer preferably consists of polyurethane, epoxy, unsaturated polyester or vinyl resins.
  • a fibrous layer preferably Glasturawirrlagen, glass fiber fabrics and -gelege, cut or ground glass or mineral fibers and fiber mats, nonwovens and -wirirke on the basis of polymer, mineral, carbon, glass or aramid fibers and mixtures thereof, Glass fiber mats or glass fiber webs are particularly preferably used.
  • a spacer layer preferably plastic foams, wood or metal can be used.
  • the optionally used plastic film can remain in the production of the rotor blade as a layer in the enclosure or removed during demolding half of the rotor blade.
  • it serves to seal the mold half-shell, which is equipped with the aforementioned layers, in the production process for evacuation before filling with the liquid resin mixture.
  • Polyurethanes are obtainable by the reaction of polyisocyanates with compounds having at least two isocyanate-reactive hydrogen atoms.
  • the reaction mixture of isocyanate component and compounds having at least two isocyanate-reactive hydrogen atoms is injected into the prepared evacuated layer structure.
  • Suitable compounds having at least two isocyanate-reactive hydrogen atoms are generally those which have two or more reactive groups, such as, for example, OH groups, SH groups, NH groups, NH 2 groups and CH-acidic groups, in the molecule wear.
  • polyether polyols and / or polyester polyols particularly preferably polyether polyols.
  • the polyol formulation preferably contains as polyols those having an OH number of 200 to 1830 mg KOH / g, preferably from 300 to 1000 mg KOH / g and more preferably from 350 to 500 mg KOH / g.
  • the viscosity of the polyols is preferably ⁇ 800 mPas (at 25 ° C).
  • the polyols have at least 60% secondary OH groups, preferably at least 80% secondary OH groups and more preferably 90% secondary OH groups.
  • Polyether polyols based on propylene oxide are particularly preferred.
  • the polyisocyanate component used are the customary aliphatic, cycloaliphatic and, in particular, aromatic di- and / or polyisocyanates.
  • suitable polyisocyanates are 1,4-butylene diisocyanate, 1,5-pentane diisocyanate, 1,6-hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), 2,2,4- and / or 2,4,4-trimethylhexamethylene diisocyanate, bis ( 4,4'-isocyanatocyclohexyl) methane or mixtures thereof with the remaining isomers, 1,4-cyclohexylene diisocyanate, 1,4-phenylene diisocyanate, 2,4- and / or 2,6-toluene diisocyanate (TDI), 1,5-naphthylene diisocyanate, 2,2'- and / or 2,4'- and / or 4,4'-diphenylmethane di
  • the isocyanate used is preferably diphenylmethane diisocyanate (MDI) and in particular mixtures of diphenylmethane diisocyanate and polyphenylene polymethylene polyisocyanate (pMDI).
  • Dic mixtures of diphenylmethane diisocyanate and polyphenylenepolymethylene polyisocyanate (pMDI) have a preferred monomer content of between 40 and 100% by weight, preferably between 50 and 90% by weight, more preferably between 60 and 80% by weight.
  • the NCO content of the polyisocyanate used should preferably be above 25% by weight, preferably above 30% by weight, particularly preferably above 31.4% by weight.
  • the MDI used should have a content of 2,2'-diphenylmethane diisocyanate and of 2,4'-diphenylmethane diisocyanate of at least 3
  • the viscosity of the isocyanate should preferably be ⁇ 250 mPas (at 25 ° C.), preferably ⁇ 100 mPas (at 25 ° C.) and particularly preferably ⁇ 50 mPas (at 25 ° C.).
  • the polyurethane reaction mixture may preferably contain fillers, such as carbon nanotubes, barium sulfate, titanium dioxide, short glass fibers, or natural fibrous or plate-like minerals, such as the known reactive components and additives and additives. Wollastonite or Muskowite included. Defoamers, catalysts and latent catalysts are preferably used as additives and additives. Other known additives and additives can be used as needed.
  • Suitable polyurethane systems are especially those which are transparent. Since in the production of larger moldings a low viscosity is necessary for a uniform filling of the mold, polyurethane systems are therefore particularly suitable which have a viscosity of ⁇ 5000 mPas (at 25 ° C., 30 minutes after mixing the components), preferably ⁇ 2000 mPas , particularly preferably 1000 mPas.
  • the reaction ratio between isocyanate component and compounds having at least two isocyanate-reactive hydrogen atoms is selected such that the ratio of the number of isocyanate groups to the number of isocyanate-reactive groups is between 0.9 and 1.5, preferably between 1.0 and 1 in the reaction mixture , 2, more preferably between 1.02 and 1.1.
  • reaction mixture of isocyanate component and compounds having at least two isocyanate-reactive hydrogen atoms at a temperature between 20 and 80 ° C, more preferably between 25 and 40 ° C injected.
  • the curing of the polyurethane can be accelerated by heating the mold.
  • the injected reaction mixture of isocyanate component and compounds having at least two isocyanate-reactive hydrogen atoms at a temperature between 40 and 160 ° C, preferably between 60 and 120 ° C, more preferably between 70 and 90 ° C, cured.
  • Moldings (panels) of different polyurethane systems were made and compared to a standard epoxy resin system.
  • the plate size was 17cm * 17cm with a thickness of 4mm.
  • the demolding time is the time after which the PU specimen can be removed manually from the plate shape without deformation.
  • Viscosity was determined 30 minutes after blending the components because for the production of larger moldings a low viscosity is necessary for a certain time for uniform filling of the mold. example 1
  • Baygal® K 55 polyether polyol from Bayer MaterialScience AG, OH number: 385 ⁇ 15 mg KOH / g, viscosity at 25 ° C: 600 ⁇ 50 mPas
  • 65.3 g Baymidur® K 88 product of Bayer MaterialScience AG; mixture of diphenylmethane diisocyanate and polyphenylene polymethylene polyisocyanate, NCO content 31.5 ⁇ 0.5% by weight, viscosity at 25 ° C.: 90 ⁇ 20 mPas
  • the solution was poured into a plate mold and stored for one hour at room temperature. Thereafter, the sample was annealed at 80 ° C.
  • the gelling time was about 70 minutes and the demolding time was two hours.
  • the test specimen had a hardness of 76 Shore D.
  • the viscosity at 25 ° C was 15 minutes after mixing the components 1540 mPas.
  • Baygal® K 55 polyether polyol from Bayer MaterialScience AG, OH number: 385 ⁇ 15 mg KOH / g; viscosity at 25 ° C.: 600 ⁇ 50 mPas
  • Baymidur® VP.KU 3-5009 Bayer MaterialScience AG; mixture of diphenylmethane diisocyanate and polyphenylenepolymethylene polyisocyanate, NCO content 31.5-33.5% by weight, viscosity at 25 ° C.: 15-30 mPas
  • the solution was poured into a plate mold and stored for one hour at room temperature. Thereafter, the sample was annealed at 80 ° C. The demolding time was two hours.
  • the test specimen had a hardness of 76 Shore D.
  • the viscosity at 25 ° C was 974 mPas 30 minutes after mixing the components.
  • Larit RIM 135 (L-135i) (product of Lange + Ritter) were stirred with 60 g of hardener Larit RIMH 137 (product of Lange + Ritter) at room temperature and with Degassed negative pressure. The solution was poured into a plate mold and allowed to stand for one hour
  • the test specimen had a hardness of 76 Shore D.
  • the polyurethane system could be removed significantly faster.
  • the faster demoulding time of the polyurethane system allows for higher productivity, since the occupation time of the molds can be significantly reduced and thus more moldings can be produced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
PCT/EP2010/068992 2009-12-12 2010-12-06 Verwendung von schichtaufbauten in windkraftanlagen WO2011069975A1 (de)

Priority Applications (16)

Application Number Priority Date Filing Date Title
PL10784326T PL2509790T3 (pl) 2009-12-12 2010-12-06 Zastosowanie struktur warstwowych w turbinach wiatrowych
ES10784326T ES2899656T3 (es) 2009-12-12 2010-12-06 Uso de estructuras estratificadas en plantas de energía eólica
KR1020127015048A KR101761954B1 (ko) 2009-12-12 2010-12-06 풍력 발전소에서의 층 구조의 용도
MX2012006685A MX348378B (es) 2009-12-12 2010-12-06 Uso de estructuras en capas en plantas eolicas.
CA2783986A CA2783986A1 (en) 2009-12-12 2010-12-06 Use of layer superstructures in wind power plants
DK10784326.0T DK2509790T3 (da) 2009-12-12 2010-12-06 Anvendelse af lagstrukturer i vindmøller
EP10784326.0A EP2509790B1 (de) 2009-12-12 2010-12-06 Verwendung von schichtaufbauten in windkraftanlagen
JP2012542497A JP6000852B2 (ja) 2009-12-12 2010-12-06 風力発電プラントにおける層状上部構造物の使用
AU2010329978A AU2010329978B2 (en) 2009-12-12 2010-12-06 Use of layer superstructures in wind power plants
CN201080056524.2A CN102753345B (zh) 2009-12-12 2010-12-06 多层结构在风力发电站中的应用
IN5174DEN2012 IN2012DN05174A (pl) 2009-12-12 2010-12-06
US13/514,523 US10293586B2 (en) 2009-12-12 2010-12-06 Use of layer structures in wind power plants
BR112012014193A BR112012014193A2 (pt) 2009-12-12 2010-12-06 uso de superestruturas em camadas em usinas eólicas
RU2012129266/12A RU2549070C9 (ru) 2009-12-12 2010-12-06 Применение слоистых конструкций в ветросиловых установках
ZA2012/03805A ZA201203805B (en) 2009-12-12 2012-05-24 Use of layer superstructures in wind power plants
US15/799,511 US11904582B2 (en) 2009-12-12 2017-10-31 Use of layer structures in wind power plants

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009058101A DE102009058101A1 (de) 2009-12-12 2009-12-12 Verwendung von Schichtaufbauten in Windkraftanlagen
DE102009058101.4 2009-12-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/514,523 A-371-Of-International US10293586B2 (en) 2009-12-12 2010-12-06 Use of layer structures in wind power plants
US15/799,511 Continuation US11904582B2 (en) 2009-12-12 2017-10-31 Use of layer structures in wind power plants

Publications (1)

Publication Number Publication Date
WO2011069975A1 true WO2011069975A1 (de) 2011-06-16

Family

ID=43875224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/068992 WO2011069975A1 (de) 2009-12-12 2010-12-06 Verwendung von schichtaufbauten in windkraftanlagen

Country Status (17)

Country Link
US (2) US10293586B2 (pl)
EP (1) EP2509790B1 (pl)
JP (1) JP6000852B2 (pl)
KR (1) KR101761954B1 (pl)
CN (1) CN102753345B (pl)
AU (1) AU2010329978B2 (pl)
BR (1) BR112012014193A2 (pl)
CA (1) CA2783986A1 (pl)
DE (1) DE102009058101A1 (pl)
DK (1) DK2509790T3 (pl)
ES (1) ES2899656T3 (pl)
IN (1) IN2012DN05174A (pl)
MX (1) MX348378B (pl)
PL (1) PL2509790T3 (pl)
RU (1) RU2549070C9 (pl)
WO (1) WO2011069975A1 (pl)
ZA (1) ZA201203805B (pl)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013053667A1 (en) 2011-10-11 2013-04-18 Bayer Intellectual Property Gmbh Method of manufacturing a composite panel
WO2016207191A1 (de) 2015-06-24 2016-12-29 Covestro Deutschland Ag Polyurethansysteme für schichtaufbauten in windkraftanlagen
WO2019053061A1 (en) 2017-09-12 2019-03-21 Covestro Deutschland Ag COMPOSITE MATERIAL COMPRISING A POLYURETHANE-POLYACRYLATE RESIN MATRIX
EP3549670A1 (en) 2018-04-06 2019-10-09 Covestro Deutschland AG Manufacturing method for a polyurethane-poly(meth)acrylate resin

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009058101A1 (de) * 2009-12-12 2011-06-16 Bayer Materialscience Ag Verwendung von Schichtaufbauten in Windkraftanlagen
DE102011004723A1 (de) * 2011-02-25 2012-08-30 Bayer Materialscience Aktiengesellschaft Verwendung von Schichtaufbauten in Windkraftanlagen
WO2013053666A1 (en) * 2011-10-11 2013-04-18 Bayer Intellectual Property Gmbh Composite profile and method for manufacturing a composite profile
DK2768891T3 (en) 2011-10-21 2018-10-29 Covestro Deutschland Ag FIBER REINFORCED POLYISOCYANURATE COMPONENT AND A PROCEDURE FOR PREPARING IT
WO2014076022A1 (de) * 2012-11-14 2014-05-22 Bayer Materialscience Ag Verfahren zur herstellung von verbundbauteilen
US20140248813A1 (en) * 2013-03-04 2014-09-04 Basf Se Crystal-clear polyurethanes
CN104045806B (zh) * 2013-03-13 2021-01-19 科思创德国股份有限公司 用于制备聚氨酯复合材料的聚氨酯组合物
WO2015197739A1 (de) * 2014-06-26 2015-12-30 Covestro Deutschland Ag Verbundbauteile auf basis von hydrophoben polyolen
CN105778005B (zh) * 2014-12-01 2020-04-28 科思创德国股份有限公司 可自由基聚合的聚氨酯组合物
DE102017108902A1 (de) 2017-04-26 2018-10-31 Wobben Properties Gmbh Verfahren zur zeitgleichen Herstellung von zwei oder mehr Faserverbundbauteilen sowie Faserverbundbauteil
EP3536492A1 (en) 2018-03-06 2019-09-11 Covestro Deutschland AG Composite wind turbine blade and manufacturing method and application thereof
WO2019072948A1 (en) 2017-10-13 2019-04-18 Covestro Deutschland Ag WIND TURBINE COMPOSITE BLADE AND METHOD FOR MANUFACTURING SAME AND APPLICATION THEREOF
CN111019089B (zh) * 2019-12-20 2021-10-22 万华化学(北京)有限公司 一种聚氨酯复合材料及其制备方法
IT202100023918A1 (it) * 2021-09-17 2023-03-17 Permare S R L Apparecchiatura per lo stampaggio di un elemento a guscio in materiale composito, particolarmente di uno scafo di imbarcazione, e metodo relativo

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2148087A2 (en) * 2008-07-24 2010-01-27 General Electric Company Expandable cable support for wind turbine

Family Cites Families (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3691000A (en) 1971-03-10 1972-09-12 Celanese Corp Glass fiber reinforced composite article exhibiting enhanced longitudinal tensile and compressive moduli
US3746604A (en) * 1971-05-21 1973-07-17 A Reynolds Foamed plastic laminate and method of making same
US3989781A (en) * 1971-08-17 1976-11-02 Shell Oil Company Process for producing a fibrous reinforced thermosetting resin impregnated foamed polymeric resin article
DE2248382C2 (de) * 1972-10-03 1982-12-02 Bayer Ag, 5090 Leverkusen Polyurethan-Elastomere, deren Herstellung und Verwendung
US3963656A (en) * 1972-10-03 1976-06-15 Bayer Aktiengesellschaft Thermoplastic polyurethanes and a two-stage process for their preparation
DE2300371C3 (de) * 1973-01-05 1979-04-19 Basf Ag, 6700 Ludwigshafen Photopolymerisierbare Druckplatte für den Flexodruck
NL180113C (nl) * 1974-05-17 1987-01-02 Bayer Ag Werkwijze ter bereiding van opgeschuimde polyurethanmaterialen alsmede gevormd voortbrengsel.
US4073997A (en) * 1974-12-06 1978-02-14 Owens-Corning Fiberglas Corporation Composite panel
US3911190A (en) * 1974-12-23 1975-10-07 Monsanto Co Composite construction
FR2336246A2 (fr) * 1975-02-05 1977-07-22 Roth Sa Freres Procede de fabrication de panneaux en forme a base de carton et de mousse, et panneaux ainsi realises
DE2623346C2 (de) * 1976-05-25 1978-07-13 Bayer Ag, 5090 Leverkusen Verfahren zum Verfestigen von geologischen Formationen und Zweikammer-Patrone
US4242415A (en) * 1978-12-26 1980-12-30 Ici Americas Inc. In-mold coating compositions containing functional group terminated liquid polymers
DE2915610A1 (de) * 1979-04-18 1980-10-30 Bayer Ag Verfahren zur herstellung von modifizierten polyetherpolyolen und deren verwendung in verfahren zur herstellung von polyurethankunststoffen
DE2920525A1 (de) * 1979-05-21 1980-12-04 Bayer Ag Verfahren zur herstellung von polyadditionsprodukten aus isocyanaten und denaturierten biomassen sowie deren verwendung als reaktiver fuellstoff und als pflanzennaehrstoffe und verfahren zur herstellung von platten oder formteilen unter verwendung der polyadditionsprodukte
DE2921681A1 (de) * 1979-05-29 1980-12-11 Bayer Ag Neue emulgatoren, diese emulgatoren enthaltende waessrige isocyanat-emulsionen sowie deren verwendung als bindemittel in einem verfahren zur herstellung von formkoerpern
US4289717A (en) * 1979-10-18 1981-09-15 The Soft Bathtub Company Method of making a cushioned bathroom article
US4692291A (en) * 1980-04-14 1987-09-08 Union Carbide Corporation Molding method using fast curing fiber reinforced, low viscosity thermosetting resin
DE3528812A1 (de) * 1985-08-10 1987-02-12 Bayer Ag Schichtstoffe
US4828910A (en) * 1987-12-16 1989-05-09 Reinhold Haussling Sound absorbing laminate
SU1548504A1 (ru) * 1988-01-13 1990-03-07 Днепропетровский государственный университет им.300-летия воссоединения Украины с Россией Ветросилова установка
DE3808081A1 (de) * 1988-03-11 1989-09-21 Bayer Ag Verfahren zur herstellung von polyurethanschaumstoffen
US4902215A (en) 1988-06-08 1990-02-20 Seemann Iii William H Plastic transfer molding techniques for the production of fiber reinforced plastic structures
JPH03104799A (ja) * 1989-09-20 1991-05-01 Fuji Heavy Ind Ltd 複合材ブレードの製造方法
SU1785910A1 (ru) * 1990-02-19 1993-01-07 B Yuzhn K Способ изготовления слоистой конструкции из композиционного материала и устройство для его осуществления
US5142835A (en) * 1990-10-12 1992-09-01 Taylor Building Products Company Reaction injection molded door assembly
US5830548A (en) * 1992-08-11 1998-11-03 E. Khashoggi Industries, Llc Articles of manufacture and methods for manufacturing laminate structures including inorganically filled sheets
US5783126A (en) * 1992-08-11 1998-07-21 E. Khashoggi Industries Method for manufacturing articles having inorganically filled, starch-bound cellular matrix
US5582670A (en) * 1992-08-11 1996-12-10 E. Khashoggi Industries Methods for the manufacture of sheets having a highly inorganically filled organic polymer matrix
EP0790276A3 (de) * 1996-02-14 1998-05-13 Basf Aktiengesellschaft Verfahren zur Herstellung von flächigen Polyurethan-Formteilen
FR2760681B1 (fr) * 1997-03-12 1999-05-14 Alternatives En Procede de fabrication d'une piece de grandes dimensions en materiau composite et pale d'helice, en particulier d'eolienne, fabriquee selon ce procede
US5821275A (en) * 1997-11-10 1998-10-13 Bayer Corporation Flexible foams and flexible molded foams based on liquid isocyanate-terminated allophanate-modified MDI prepolymer blends and processes for the production of these foams
JP3930200B2 (ja) 1998-10-06 2007-06-13 三菱重工業株式会社 風力発電翼の製造方法
CA2359560C (en) * 1998-11-16 2009-02-03 Huntsman International Llc Polyisocyanurate compositions and composites
US7202302B2 (en) * 1998-11-16 2007-04-10 Huntsman International Llc Polyisocyanurate compositions and composites
CN1447832A (zh) * 2000-08-18 2003-10-08 亨茨曼国际有限公司 单组分热固性聚氨酯体系
US8419883B2 (en) * 2000-12-27 2013-04-16 Milliken & Company Fiber reinforced composite cores and panels
JP3894035B2 (ja) * 2001-07-04 2007-03-14 東レ株式会社 炭素繊維強化基材、それからなるプリフォームおよび複合材料
DE10150247B4 (de) * 2001-10-11 2013-01-03 Josef Moser Außenhaut eines fluidumströmten Körpers, Verfahren zu deren Herstellung
DK176335B1 (da) * 2001-11-13 2007-08-20 Siemens Wind Power As Fremgangsmåde til fremstilling af vindmöllevinger
US6821087B2 (en) 2002-01-21 2004-11-23 Honda Giken Kogyo Kabushiki Kaisha Flow-rectifying member and its unit and method for producing flow-rectifying member
JP3983553B2 (ja) * 2002-01-21 2007-09-26 本田技研工業株式会社 整流部材
US7199168B2 (en) * 2002-02-13 2007-04-03 Bayer Materialscience Llc Process for making cellular composites using polymeric isocyanates as binders for hollow filler particles
US6773756B2 (en) * 2002-03-20 2004-08-10 Bayer Polymers Llc Process to manufacture three dimensionally shaped substrate for sound abatement
US6723273B2 (en) * 2002-09-11 2004-04-20 Keith Johnson Curable liquid sealant used as vacuum bag in composite manufacturing
US6811877B2 (en) * 2003-02-21 2004-11-02 The Goodyear Tire & Rubber Company Reinforcing structure
WO2004076852A2 (en) 2003-02-28 2004-09-10 Vestas Wind Systems A/S Method of manufacturing a wind turbine blade, wind turbine blade, front cover and use of a front cover
US7045090B2 (en) * 2003-06-06 2006-05-16 Bayer Materialscience Llc Method of preparing an article
DE10343099B3 (de) * 2003-09-18 2005-06-09 Bayer Materialscience Ag Verfahren zur Herstellung schadstoffarmer Kunststoffformteile und Verwendung von Carbonsäureanhydriden dafür
DE102004017294A1 (de) * 2004-04-05 2005-10-20 Basf Ag Verfahren zur Herstellung von Polyurethan-Schaumstoffen
US8129018B2 (en) 2004-06-18 2012-03-06 Ocv Intellectual Capital, Llc Sizing for high performance glass fibers and composite materials incorporating same
JP4302610B2 (ja) 2004-10-21 2009-07-29 日本光機工業株式会社 軽量風車翼の製造方法
EP2562413B1 (en) * 2005-02-03 2018-10-24 Vestas Wind Systems A/S Method of manufacturing a wind turbine blade shell member
JP4552019B2 (ja) 2005-02-08 2010-09-29 国立大学法人群馬大学 炭化ケイ素系ナノ繊維の製造方法
DE602005001391T2 (de) * 2005-02-24 2008-02-21 Vestas Wind Systems A/S Verfahren zur Herstellung eines Windturbinenblatts, eine Produktionsanlage von Windturbinenblättern und Verwendung hiervon
WO2006118883A2 (en) * 2005-04-29 2006-11-09 3M Innovative Properties Company Multilayer polyurethane protective films
AT502234B1 (de) * 2005-07-21 2008-06-15 Isovolta Verfahren zur herstellung witterungsbeständiger laminate für die einkapselung von solarzellensystemen
DE102005048808A1 (de) * 2005-10-10 2007-04-12 Basf Ag Beschichtete Schlacke
US8402652B2 (en) 2005-10-28 2013-03-26 General Electric Company Methods of making wind turbine rotor blades
TWI414543B (zh) * 2006-02-24 2013-11-11 Toray Industries 纖維強化熱可塑性樹脂成形體、成形材料及其製法
US20070251090A1 (en) * 2006-04-28 2007-11-01 General Electric Company Methods and apparatus for fabricating blades
EP1880833A1 (en) * 2006-07-19 2008-01-23 National University of Ireland, Galway Composite articles comprising in-situ-polymerisable thermoplastic material and processes for their construction
US8293807B2 (en) * 2006-09-15 2012-10-23 Basf Aktiengesellschaft Method for the production of rigid polyurethane foam
US20090025084A1 (en) * 2007-05-11 2009-01-22 Fraud Management Technologies Pty Ltd Fraud detection filter
DE102008004388A1 (de) * 2008-01-14 2009-07-16 Tesa Ag Geschäumte, insbesondere druckempfindliche Klebemasse, Verfahren zur Herstellung sowie die Verwendung derselben
US20090220795A1 (en) * 2008-02-29 2009-09-03 Ppg Industries Ohio, Inc. Composites comprising a multi-layer coating system
GB0805713D0 (en) 2008-03-28 2008-04-30 Blade Dynamics Ltd A wind turbine blade
DK2106900T3 (da) * 2008-04-03 2012-07-09 Siemens Ag Form og fremgangsmåde til vakuumunderstøttet resinoverføringsstøbning
EP2123431B1 (en) * 2008-05-21 2011-03-02 Siemens Aktiengesellschaft Method for manufacturing a composite
EP2153964A1 (en) * 2008-08-14 2010-02-17 Lm Glasfiber A/S A method of manufacturing a wind turbine blade comprising steel wire reinforced matrix material
EP2159039A1 (en) * 2008-08-14 2010-03-03 Lm Glasfiber A/S A method of manufacturing a composite structure comprising a magnetisable material
CN101402791A (zh) * 2008-11-14 2009-04-08 上海世鹏聚氨酯科技发展有限公司 低密度高强度纳米聚氨酯风轮叶片复合材料
US7988416B2 (en) * 2009-03-18 2011-08-02 Vestas Wind Systems A/S Wind turbine blade with damping element
DE102009001793A1 (de) * 2009-03-24 2010-10-07 Evonik Degussa Gmbh Prepregs und daraus hergestellte Formkörper
US7963747B2 (en) * 2009-04-02 2011-06-21 General Electric Company Braided wind turbine blades and method of making same
US8043065B2 (en) * 2009-05-01 2011-10-25 General Electric Company Wind turbine blade with prefabricated leading edge segments
DK2255957T3 (da) * 2009-05-25 2013-10-21 Lm Wp Patent Holding As En fremgangsmåde til fremstilling af et kompositlegeme med et præfremstillet forstærkningslegeme
JP2013504007A (ja) * 2009-09-04 2013-02-04 バイエル・マテリアルサイエンス・リミテッド・ライアビリティ・カンパニー ポリウレタンタービン翼のための自動化された製造方法
DE102009058101A1 (de) * 2009-12-12 2011-06-16 Bayer Materialscience Ag Verwendung von Schichtaufbauten in Windkraftanlagen
EP2338668A1 (en) * 2009-12-22 2011-06-29 Lm Glasfiber A/S Method of producing a composite shell structure
US7922454B1 (en) * 2010-10-29 2011-04-12 General Electric Company Joint design for rotor blade segments of a wind turbine
DE102011004723A1 (de) * 2011-02-25 2012-08-30 Bayer Materialscience Aktiengesellschaft Verwendung von Schichtaufbauten in Windkraftanlagen
US9580598B2 (en) * 2011-03-25 2017-02-28 Covestro Llc Polyurethane composites produced by a vacuum infusion process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2148087A2 (en) * 2008-07-24 2010-01-27 General Electric Company Expandable cable support for wind turbine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013053667A1 (en) 2011-10-11 2013-04-18 Bayer Intellectual Property Gmbh Method of manufacturing a composite panel
US9855711B2 (en) 2011-10-11 2018-01-02 Siemens Aktiengesellschaft Method for manufacturing a composite panel
WO2016207191A1 (de) 2015-06-24 2016-12-29 Covestro Deutschland Ag Polyurethansysteme für schichtaufbauten in windkraftanlagen
CN107771193A (zh) * 2015-06-24 2018-03-06 科思创德国股份有限公司 用于风力涡轮机中的层结构的聚氨酯体系
US10633482B2 (en) 2015-06-24 2020-04-28 Covestro Deutschland Ag Polyurethane systems for layer structures in wind turbines
WO2019053061A1 (en) 2017-09-12 2019-03-21 Covestro Deutschland Ag COMPOSITE MATERIAL COMPRISING A POLYURETHANE-POLYACRYLATE RESIN MATRIX
EP3549670A1 (en) 2018-04-06 2019-10-09 Covestro Deutschland AG Manufacturing method for a polyurethane-poly(meth)acrylate resin
WO2019193152A1 (en) 2018-04-06 2019-10-10 Covestro Deutschland Ag Manufacturing method for a polyurethane-poly(meth)acrylate resin

Also Published As

Publication number Publication date
MX348378B (es) 2017-05-19
US20180050526A1 (en) 2018-02-22
CN102753345B (zh) 2015-08-12
CN102753345A (zh) 2012-10-24
DK2509790T3 (da) 2021-12-06
PL2509790T3 (pl) 2022-02-14
JP2013513748A (ja) 2013-04-22
AU2010329978A1 (en) 2012-06-21
RU2549070C2 (ru) 2015-04-20
JP6000852B2 (ja) 2016-10-05
KR20120104573A (ko) 2012-09-21
EP2509790A1 (de) 2012-10-17
ES2899656T3 (es) 2022-03-14
RU2549070C9 (ru) 2015-11-27
ZA201203805B (en) 2013-08-28
US11904582B2 (en) 2024-02-20
US10293586B2 (en) 2019-05-21
IN2012DN05174A (pl) 2015-10-23
KR101761954B1 (ko) 2017-07-26
RU2012129266A (ru) 2014-01-20
MX2012006685A (es) 2012-10-15
EP2509790B1 (de) 2021-10-06
DE102009058101A1 (de) 2011-06-16
US20120244006A1 (en) 2012-09-27
AU2010329978B2 (en) 2015-06-11
BR112012014193A2 (pt) 2016-05-31
CA2783986A1 (en) 2011-06-16

Similar Documents

Publication Publication Date Title
EP2509790B1 (de) Verwendung von schichtaufbauten in windkraftanlagen
EP2678151B1 (de) Verwendung von schichtaufbauten in windkraftanlagen
EP2885331B1 (de) Faserverstärkte verbundbauteile und deren herstellung
EP2606079B1 (de) Faserverbundbauteil und ein verfahren zu dessen herstellung
EP2768891B1 (de) Faserverstärktes polyisocyanuratbauteil und ein verfahren zu dessen herstellung
EP3313910B1 (de) Polyurethansysteme für schichtaufbauten in windkraftanlagen
EP2714759A1 (de) Faserverbundbauteil und ein verfahren zu dessen herstellung
EP3423516B1 (de) Verfahren zur herstellung von faserverbundbauteilen
EP3137537B1 (de) Faserverbundbauteile und deren herstellung
EP2920220A1 (de) Verfahren zur herstellung von verbundbauteilen
EP2886322A1 (de) Verfahren zur Herstellung von Verbundbauteilen
EP0006557A2 (de) Verfahren zur Herstellung von glasfaserverstärkten Kunststoffschichten und deren Verwendung bei der Konstruktion von Sandwichbauteilen
EP2708354A1 (de) Verfahren zur Herstellung von Sandwichelementen
WO2011117186A1 (de) Verkleidungen für windkraftanlagen und verfahren zu deren herstellung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080056524.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10784326

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010784326

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010329978

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 13514523

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2783986

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20127015048

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012542497

Country of ref document: JP

Ref document number: MX/A/2012/006685

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 5174/DELNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2010329978

Country of ref document: AU

Date of ref document: 20101206

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012129266

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012014193

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012014193

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120612