WO2011067979A1 - 耐応力腐食割れ性と加工性に優れた微細粒オーステナイト系ステンレス鋼板 - Google Patents

耐応力腐食割れ性と加工性に優れた微細粒オーステナイト系ステンレス鋼板 Download PDF

Info

Publication number
WO2011067979A1
WO2011067979A1 PCT/JP2010/066968 JP2010066968W WO2011067979A1 WO 2011067979 A1 WO2011067979 A1 WO 2011067979A1 JP 2010066968 W JP2010066968 W JP 2010066968W WO 2011067979 A1 WO2011067979 A1 WO 2011067979A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
stress corrosion
corrosion cracking
stainless steel
austenitic stainless
Prior art date
Application number
PCT/JP2010/066968
Other languages
English (en)
French (fr)
Inventor
秦野 正治
石丸 詠一朗
Original Assignee
新日鐵住金ステンレス株式会社
高橋 明彦
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金ステンレス株式会社, 高橋 明彦 filed Critical 新日鐵住金ステンレス株式会社
Priority to CN201080054359.7A priority Critical patent/CN102753717B/zh
Priority to KR1020127014003A priority patent/KR101411703B1/ko
Priority to EP10834432.6A priority patent/EP2508639B1/en
Priority to ES10834432.6T priority patent/ES2546412T3/es
Publication of WO2011067979A1 publication Critical patent/WO2011067979A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Definitions

  • the present invention relates to an austenitic stainless steel sheet having a fine grain structure (structure consisting of fine crystal grains) having an average crystal grain size of 10 ⁇ m or less and excellent in stress corrosion cracking resistance and workability.
  • Non-Patent Documents 1 and 2 disclose refinement of crystal grains using phase transformation from work-induced martensite to austenite in SUS304 defined in JIS G4305. By such a method, a fine grain structure having a crystal grain size of 1 to 5 ⁇ m is formed. As an effect of refinement, Non Patent Literature 1 reports an increase in yield strength (0.2% yield strength). Patent Document 2 reports the development of superplasticity at 650 to 750 ° C.
  • Patent Document 1 discloses a metal gasket, its material, and a manufacturing method thereof as a technique using the effect of crystal grain refinement.
  • This Patent Document 1 uses SUS301L defined in JIS G4305 to form a fine grain structure having a crystal grain size of 5 ⁇ m or less by utilizing the above-described phase transformation from processing-induced martensite to austenite and precipitation of chromium nitride. Yes. By combining the formation of this fine grain structure and temper rolling, the strength of Hv500 or higher is increased.
  • the crystal grain size is adjusted to 1 to 5 ⁇ m, thereby increasing the 0.2% proof stress and increasing the strength. Is oriented.
  • Non-Patent Document 3 describes that as a countermeasure, the change to ferritic stainless steel not containing Ni is certain.
  • ferritic stainless steel when it is difficult to use ferritic stainless steel from the viewpoint of workability and weldability, it is a high austenite (SUSXM15J1) with high Ni content (11.5-15%) and high Si content and Cu content. It is also described that stainless steel is effective.
  • Patent Document 2 discloses an austenitic stainless steel excellent in stress corrosion cracking resistance and pitting corrosion resistance containing about 9% Ni, 1.5% to less than 2.5% Cu, and a small amount of Mo and N. It is disclosed.
  • Patent Document 3 includes Cr: 18 to 35%, Ni: 25 to 50%, Mo: 8% or less, Mn: 6% or less, N: 0.5% or less, C: 0.03% or less, An austenitic alloy excellent in stress corrosion cracking resistance characterized by a large amount of Cr and Ni is disclosed.
  • Patent Document 4 C: 0.08% or less, Si: 0.1 to 3%, Cr: 18 to 23%, Ni: 8.5 to 12%, Mo: 0.2 to 2%, Cu: 0 .2 to 3.5%, N: 0.03 to 0.25%, the contents of Mn and S are adjusted, Cu and N are added together, and a small amount of Co , W, V, and Nb are added, and an austenitic stainless steel excellent in weather resistance, crevice corrosion resistance, and stress corrosion cracking resistance is disclosed.
  • Patent Documents 5 to 7 disclose improvement of grain boundary type stress corrosion cracking.
  • Patent Document 5 discloses an austenitic stainless steel excellent in intergranular corrosion resistance and intergranular stress corrosion cracking characteristics, characterized by containing either or both of Mo and Nb.
  • Patent Documents 6 and 7 the amount of carbide is reduced by restricting the C amount to 0.03% or less, containing N at 0.15% or less, and adjusting the heating temperature and time of the steel slab.
  • An austenitic stainless steel excellent in intergranular stress corrosion cracking resistance and a method for producing the same are disclosed, which is characterized by reducing the Cr deficiency in the vicinity of the grain boundary.
  • All of the austenitic stainless steels disclosed in Non-Patent Document 3 and Patent Documents 2 to 7 described above contain more than 8% Ni, and Cu, Mo, Si, and Nb, Co, W as trace elements. , V and the like are added to improve the stress corrosion cracking resistance.
  • the annealing temperature in industrial production is known in Non-Patent Documents 3 and 4.
  • the crystal grain size is known in Non-Patent Document 5.
  • austenitic stainless steel is annealed at 1000 to 1100 ° C., and even if the components are adjusted, the limit of refining is the grain size no. It is described that it is less than 10, that is, the crystal grain size is larger than 10 ⁇ m.
  • Patent Documents 2 to 7 do not specifically describe the production method (annealing temperature) and the crystal grain size. Therefore, the steel disclosed in Patent Documents 2 to 7 can be easily estimated that the grain size of the steel is larger than 10 ⁇ m, similarly to Non-Patent Document 3, unless a special production method different from usual is disclosed. it can.
  • the present invention overcomes stress corrosion cracking, which is a defect of austenitic stainless steel, by refining crystal grains, and does not rely on the addition of expensive Mo with Ni content of 8% or less,
  • An object is to provide an austenitic stainless steel sheet having a fine grain structure with an average crystal grain size of 10 ⁇ m or less that is compatible with workability.
  • the fine-grained austenitic stainless steel sheet excellent in stress corrosion cracking resistance and workability is C: 0.05% or less, Cr: 14-19%, Si: 2% in mass%.
  • Mn 4% or less, Ni: 5-8%, Cu: 4% or less, and N: 0.1% or less, with the balance being Fe and inevitable impurities, and the following Md is ⁇ 20 to It has a steel component in the range of 40, the average crystal grain size is 10 ⁇ m or less, and the ratio of the large tilt grain boundaries of 15 ° or more is more than 80%.
  • Md 551-462 (C + N) -9.2Si-8.1Mn-13.7Cr-29 (Ni + Cu) -18.2Mo
  • the steel component is further in mass%, Mo: 1% or less, V: 1% or less, B : 0.010% or less, Nb: 0.5% or less, Ti: 0.5% or less, Rare earth elements: 0.5% or less, Al: 0.5% or less, Mg: 0.005% or less, and Ca : You may contain 1 type, or 2 or more types selected from 0.005% or less.
  • the fine-grained austenitic stainless steel sheet excellent in stress corrosion cracking resistance and workability according to one aspect of the present invention is manufactured by cylindrical deep drawing of a steel sheet in a drawing ratio of 1.5 to 2.0.
  • the fine-grained austenitic stainless steel sheet excellent in stress corrosion cracking resistance and workability has a 0.2% proof stress of less than 400 MPa and a uniform elongation of more than 30%, as determined by a tensile test.
  • the amount of Ni is 8% or less, and without depending on the addition of expensive Mo, stress corrosion which is a disadvantage of the austenitic stainless steel It is possible to overcome cracking and achieve both stress corrosion cracking resistance and workability.
  • the present inventors have targeted an austenitic stainless steel with an Ni content of 8% or less, an optimum component balance for forming a fine grain structure, and an effect of improving stress corrosion cracking by refinement.
  • the present invention was completed by earnestly studying the compatibility between the process and workability. The typical experimental results will be described below.
  • the fine grain structure means that the average crystal grain size is 10 ⁇ m or less.
  • the austenitic stainless steel which shows a steel component in Table 1 was melted, and it hot-rolled, and manufactured the hot rolled sheet of thickness 3.0mm.
  • Hot-rolled sheet annealing was performed at 1150 ° C., pickled and cold-rolled to produce a 0.5 mm thick cold-rolled sheet.
  • cold-rolled sheet annealing was performed. In the cold rolling, the plate temperature was kept at 10 ° C. while cooling with water, and processing heat generation was suppressed. This promoted the formation of processing-induced martensite.
  • final annealing In cold-rolled sheet annealing (final annealing), the temperature is adjusted in the range of 600 to 1050 ° C and the holding time is 1 minute in order to form a fine grain structure by utilizing the phase transformation from work-induced martensite to austenite. Adjustment was made in the range of ⁇ 24 hours.
  • the steel sheet obtained by final annealing after cold rolling was pickled, and then subjected to measurement of the average crystal grain size, measurement of the ratio of the large-angle grain boundary, and measurement of crack generation time.
  • the steel sheet cross section was embedded in a resin and polished, and nitric acid electrolytic etching was performed.
  • the average crystal grain size was determined by a steel-grain size microscopic test method specified in JIS G 0551.
  • the ratio of the large tilt grain boundaries was measured by the grain boundary map display of the EBSP method.
  • a low-angle grain boundary of less than 15 ° and a large-angle grain boundary of 15 ° or more can be identified by displaying the grain boundary map, and the ratio of the large-angle grain boundary in all the crystal grain boundaries can be calculated.
  • Non-Patent Document 6 it is reported that the measurement result of 3000 or more crystal grains statistically reflects the bulk properties. For this reason, the measurement magnification was adjusted to include 3000 or more crystal grains.
  • FIG. 1 shows the relationship between the average crystal grain size and the component balance (Md) of a steel sheet obtained by performing cold-rolled sheet annealing at 800 ° C. for 4 hours.
  • Md is a value defined by the following formula (1).
  • the element symbol in a formula shows content (mass%) of the element.
  • the average crystal grain size decreases with increasing Md.
  • the Md increases, the amount of work-induced martensite generated by cold rolling increases. Therefore, it is considered that the increase in Md promoted the refinement utilizing the phase transformation from work-induced martensite to austenite in the annealing after cold rolling as described in Non-Patent Documents 1 and 2 described above. From this study, it is effective to set Md to ⁇ 20 or more for the target refinement to an average crystal grain size of 10 ⁇ m or less.
  • the steel component (steel D) in which the Cr content and the Ni content are reduced and Cu is added is better. It was confirmed that it was effective for miniaturization.
  • FIG. 2 shows the appearance of the molded product after immersion.
  • FIG. 3 shows a photograph of the microstructure of steel B (i), (ii) subjected to the test of FIG.
  • the average crystal grain size was refined to 3 ⁇ m as compared with steel (FIG. 2 (ii)) having an average crystal grain size of 28 ⁇ m manufactured by normal annealing (held at 1050 ° C. for 1 minute).
  • steel (FIG. 2 (i)) cracks are not generated in a test result in which a molded product (cylindrical deep drawn material) is immersed in a boiling 42% magnesium chloride aqueous solution.
  • SUS316L (17Cr-12Ni-2Mo) (FIG. 2 (iii)) contains Ni and Mo at a high content, and is more expensive than the general-purpose SUS304 (18Cr-8Ni) in terms of stress corrosion cracking resistance.
  • FIG. 4 shows the relationship between crack generation time, average crystal grain size and Md in the boiling 42% magnesium chloride aqueous solution.
  • the upward arrow ( ⁇ ) in FIG. 4 indicates that the crack occurrence time is longer than the value at the plotted point.
  • miniaturization shown in FIG. 4 is the final annealing of the cold rolled sheet after cold rolling at 800 degreeC for 4 hours or It was manufactured under the condition of heating for 24 hours.
  • the final annealing of the cold-rolled sheet after cold rolling is performed at 900 ° C. to 1050 ° C. for 1 minute to 4 hours. It was manufactured under the conditions of heating.
  • a steel plate having a crack generation time of less than 4 hours and an average crystal grain size of 10 ⁇ m or less is manufactured by performing final annealing of the cold-rolled sheet after cold rolling at 800 ° C. for 4 hours.
  • FIG. 5 is a graph showing the relationship between the crack generation time and the ratio of the large-angle grain boundaries of 15 ° or more in the steel sheet having the steel component of Steel B. Note that the up arrow ( ⁇ ) in FIG. 5 indicates that the crack occurrence time is longer than the value at the plotted point.
  • the items (b) and (c) The stress corrosion cracking resistance described in 1 is significantly improved. The reason is considered as follows.
  • the fine-grained material is produced by a method of generating as much work-induced martensite as possible by cold rolling and then utilizing reverse transformation from work-induced martensite to austenite by annealing at a lower temperature than usual. Since the accumulation of strain in cold rolling is large and low temperature annealing is performed, residual strain after annealing tends to increase. When a steel sheet is manufactured under such conditions, recrystallization of austenite grains is in progress, and there are many small-angle boundaries of less than 15 ° that are not recognized as large-angle boundaries. Therefore, a decrease in the ratio of the large-angle grain boundaries means that the residual strain of the steel is large, and it is presumed that the residual strain of the steel hinders the stress corrosion cracking resistance.
  • the steel plate having the steel component of Steel B shown in FIG. 5 is manufactured by performing final annealing of the cold-rolled sheet after cold rolling at 800 ° C. for 10 minutes to 24 hours. By adjusting the heating time of the final annealing, steel plates having different ratios of large tilt grain boundaries were produced.
  • the steel sheet having a large tilt grain boundary ratio of more than 80% shown in FIG. 5 is manufactured by performing the final annealing of the cold-rolled sheet after cold rolling at 800 ° C. for more than 1 hour. .
  • the refinement of crystal grains is affected by manufacturing conditions in addition to steel components.
  • it is effective to promote the work-induced martensite transformation in cold rolling.
  • it is preferable to increase the rolling reduction and suppress the processing heat generation by cold rolling.
  • the final annealing performed after cold rolling should be performed under the condition that the temperature is kept as low as possible for a long time. Is preferred. Specifically, it is effective to carry out the final annealing under the condition of heating at 700 to 900 ° C. for more than 1 hour.
  • increasing the ratio of the large tilt grain boundaries of 15 ° or more is effective in reducing the 0.2% proof stress and increasing the elongation, and contributes to the improvement of workability.
  • Patent Document 8 describes “aging cracking” after deep drawing, that is, “stress corrosion cracking” improved in this embodiment for the purpose of improving delayed fracture of a material, that is, a phenomenon involving corrosion and dissolution of a material. It is a technology related to different technical issues.
  • the ratio of the large-angle grain boundaries of 15 ° or more that affect the stress corrosion cracking described above is not studied at all.
  • the final annealing time is substantially 1 hour or less.
  • the upper limit of the C content is set to 0.05%. This upper limit is preferably 0.03%.
  • the lower limit of the C content is preferably 0.005% from the viewpoint of manufacturability.
  • the lower limit of the Cr content is 14%.
  • This lower limit is preferably 15%, more preferably 16%.
  • the upper limit of the Cr content is 19%. This upper limit is preferably 18%.
  • Si is effective as a powerful deoxidizer. However, when Si is added in a large amount, it hardens and manufacturability is impaired. For this reason, the upper limit of Si content is made 2%. This upper limit is preferably 1.5%. On the other hand, Si has an effect of improving the stress corrosion cracking resistance aimed at by this embodiment. In order to obtain these actions, it is preferable to contain 0.5% or more of Si.
  • the lower limit of the Si content is preferably 0.1% from the viewpoint of manufacturability.
  • Mn is an austenite-forming element and is added for the purpose of ensuring austenite stability and improving workability.
  • MnS is formed and the corrosion resistance is lowered.
  • the target stress corrosion cracking resistance of the present embodiment is hindered. Therefore, the upper limit of the Mn content is 4%. This upper limit is preferably 3%.
  • the lower limit of the Mn content is preferably 0.5%.
  • Ni is an indispensable element for austenitic stainless steel, and the lower limit of Ni content is 5% from the viewpoint of ensuring the stability and workability of austenite. This lower limit is preferably 6%.
  • Ni is an expensive and rare element, and also has an effect of inhibiting the refinement of crystal grains intended by the present embodiment. For this reason, the upper limit of Ni content is 8%. This upper limit is preferably 7.5% or less.
  • Cu is added for the purpose of ensuring the stability and softening of austenite, like Ni. Furthermore, it is a preferable element for reducing the Ni content, and improving the stress corrosion cracking resistance and promoting the refinement of crystal grains.
  • the upper limit of Cu content is 4%. This upper limit is preferably 3%. In order to acquire the said effect, it is preferable that the minimum of Cu content is 1%, More preferably, it is 1.5%.
  • N is an austenite-forming element like C, and is added for the purpose of ensuring the stability of austenite.
  • the upper limit of N content is 0.1%. This upper limit is preferably 0.06% or less.
  • the lower limit of the N content is preferably 0.005%, more preferably 0.01% from the viewpoint of manufacturability.
  • Mo is not an essential element in the present embodiment, but may be added in a timely manner in order to improve the corrosion resistance and the stress corrosion cracking resistance targeted by the present embodiment.
  • the upper limit of the Mo content is set to 1%. This upper limit is preferably 0.5%. In order to acquire the said effect, it is preferable to make the minimum of content of Mo into 0.1%.
  • V is not an essential element in the present embodiment, but may be added in a timely manner in order to improve the corrosion resistance and the stress corrosion cracking resistance targeted by the present embodiment, even if it does not reach Mo.
  • V is an expensive element and is a solid solution strengthening element, which impairs workability. Therefore, when adding, the upper limit of V content shall be 1%. This upper limit is preferably 0.5%. In order to acquire the said effect, it is preferable to make the minimum of V content into 0.1%.
  • B and rare earth elements may be added in a timely manner in order to improve hot workability.
  • the productivity and corrosion resistance may be significantly impaired. Therefore, when adding, the upper limit of B content is made 0.010%. This upper limit is preferably 0.005%.
  • the lower limit of the B content is preferably 0.0005%.
  • the upper limit of the rare earth element content is preferably 0.5%. This upper limit is more preferably 0.2%.
  • the lower limit of the rare earth element content is preferably 0.005%.
  • the rare earth element (REM) is one or more selected from Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. It is.
  • Nb and Ti suppress the formation of Cr carbide by forming carbonitride. Thereby, it contributes to the improvement of stress corrosion cracking resistance. For this reason, you may add timely.
  • the upper limit of each content of Nb and Ti is set to 0.5%.
  • the upper limit of each content of Nb and Ti is preferably 0.3%.
  • the lower limit of each content of Nb and Ti is preferably 0.005%, more preferably 0.01%.
  • Al is an element effective as a deoxidizing element, it may be added as appropriate. However, if an excessive amount of Al is added, workability and weldability are reduced, so the upper limit of Al content is 0.5%. This upper limit is preferably 0.3%, more preferably 0.1%. When added, the lower limit of the Al content is preferably 0.01%.
  • Mg and Ca form oxides with Al in molten steel and act as a deoxidizer, so they may be added as appropriate.
  • Ca has an action of fixing S and improving hot workability.
  • adding excessive amounts of Mg and Ca leads to a decrease in corrosion resistance and weldability, so the upper limit of the content of each of Mg and Ca is set to 0.005%.
  • the upper limit of each content of Mg and Ca is preferably 0.002%.
  • the minimum of each content of Mg and Ca is 0.0001%, More preferably, it is 0.0003%.
  • the austenitic stainless steel of this embodiment may contain P and S in the following ranges as a part of inevitable impurities in addition to the above components.
  • P and S are elements harmful to hot workability and corrosion resistance.
  • the P content is preferably 0.1% or less.
  • the P content is more preferably 0.05% or less.
  • the S content is preferably 0.01% or less.
  • the S content is more preferably 0.005% or less.
  • an optimal component balance for the formation of a fine grain structure is defined by Md shown in Equation (1).
  • Md 551-462 (C + N) -9.2Si-8.1Mn-13.7Cr-29 (Ni + Cu) -18.2Mo (1)
  • Metastable austenitic stainless steel undergoes martensitic transformation by plastic working even at temperatures above the Ms point (martensitic transformation start temperature).
  • the upper limit temperature that causes transformation by processing is called the Md point. That is, the Md point is an index indicating the stability of austenite.
  • (B) The manufacturing method of the steel plate of this embodiment is demonstrated below.
  • the steel component described in the item (A) is included, the average crystal grain size is 10 ⁇ m or less, and the proportion of the large-angle grain boundaries of 15 ° or more is occupied. Is more than 80%, and the following production conditions are preferable in order to effectively develop the stress corrosion cracking resistance.
  • the manufacturing method of the steel plate of the present embodiment includes a step of hot rolling a slab having the steel component of the item (A) to form a hot rolled plate, a step of annealing the hot rolled plate (hot rolled plate annealing), It has the process of cold-rolling the annealed hot-rolled sheet to make a cold-rolled sheet, and the process of annealing the cold-rolled sheet (also referred to as cold-rolled sheet annealing or final annealing).
  • the manufacturing method up to hot rolling is not particularly limited, and known conditions are applied.
  • it is effective to promote the work-induced martensitic transformation by cold rolling as described in item (g) above.
  • the volume ratio of processing-induced martensite is more than 60%.
  • the final annealing conditions after cold rolling are adjusted so that the crystal grains are refined and the ratio of the large-angle grain boundaries of 15 ° or more is increased. It is preferable that the cold rolling conditions are also adjusted, and it is more preferable that hot-rolled sheet annealing is also adjusted. The conditions for each step will be described below.
  • the austenite grains used for cold rolling are coarsened to 20 ⁇ m or more by hot rolling, and the temperature of hot rolling is 1050 to 1200 ° C. It is preferable to be in the range.
  • the temperature of hot-rolled sheet annealing is less than 1050 ° C.
  • the austenite grain size may be less than 20 ⁇ m.
  • the temperature of hot-rolled sheet annealing is higher than 1200 ° C., pickling properties after annealing are lowered, and surface quality may be hindered.
  • annealing above 1200 ° C. has a large load on the equipment.
  • the temperature of hot-rolled sheet annealing is more preferably in the range of 1080 to 1180 ° C.
  • the rolling reduction is 70% or more and the rolling temperature is 50 ° C. or less in order to promote the work-induced martensitic transformation.
  • the rolling reduction is less than 70%, the volume ratio of the processing-induced martensite is less than 50%, and it becomes difficult to form a fine grain structure as described above.
  • the rolling reduction is more preferably 80% or more.
  • the upper limit of the rolling reduction is not particularly specified, but is preferably 90% or less in consideration of hot-rolled sheet production and cold-rolling equipment capacity.
  • the rolling temperature is higher than 50 ° C., the work-induced martensite volume ratio is less than 50%, and it becomes difficult to form a fine grain structure as described above.
  • the lower limit of the rolling temperature is not particularly specified, but industrially, a temperature of 10 ° C. or higher that is reached by water cooling is preferable.
  • the rolling temperature is not limited to 10 ° C. or higher, and may be a low temperature (for example, ⁇ 200 ° C.) reached by cooling with liquid nitrogen or the like.
  • the final annealing temperature is set in the range of 700 to 1050 ° C. in order to make the average crystal grain size 10 ⁇ m or less and the ratio of the large-angle grain boundaries to more than 80%.
  • the final annealing temperature is less than 700 ° C., the strain in cold rolling is accumulated, the recrystallization of austenite grains becomes insufficient, and the workability is remarkably lowered. Further, the ratio of the large tilt grain boundaries of 15 ° or more is small, and the target stress corrosion cracking resistance of the present embodiment is hindered.
  • the lower limit of the final annealing temperature is preferably 750 ° C. or higher.
  • the final annealing temperature exceeds 1050 ° C., austenite crystal grain growth proceeds, and the average crystal grain size exceeds 10 ⁇ m.
  • the final annealing temperature is preferably 900 ° C. or lower. In order to realize a fine grain structure in which the ratio of the large-angle grain boundary targeted in the present embodiment is more than 80%, it is more preferable that the final annealing temperature is in the range of 750 to 850 ° C.
  • the annealing time of the final annealing is longer than 1 hour in order to promote the recrystallization of austenite and increase the ratio of the large tilt grain boundaries of 15 ° or more.
  • the annealing time of the final annealing is more preferably 2 hours or more.
  • the upper limit of the annealing time (holding time) of the final annealing is not limited, it is preferably 24 hours or less, assuming box annealing that is industrially known for chromium-based stainless steel.
  • the annealing time of the final annealing is in the range of 4 to 24 hours.
  • the annealing time for final annealing is not limited to 24 hours or less, and may exceed 24 hours.
  • the final annealing temperature is more than 900 ° C. to 1050 ° C., it is preferable to set the annealing time to 10 minutes or less (holding for a short time) in consideration of crystal grain growth. More preferably, the annealing time (holding time) of the final annealing may be 1 minute or less.
  • the average crystal grain size is 10 ⁇ m or less, and the ratio of large tilt grain boundaries of 15 ° or more is more than 80%.
  • This metal structure is obtained by using the slab having the steel component of the item (A) and carrying out the preferable production conditions of the item (B).
  • the average crystal grain size is more than 10 ⁇ m, it is difficult to develop excellent stress corrosion cracking resistance due to the refinement aimed at by this embodiment.
  • the average crystal grain size is 10 ⁇ m or less, when the ratio of the large-angle grain boundaries of 15 ° or more is less than 80%, as described in the above item (f), the stress corrosion resistance due to refinement Improvement in crackability is hindered.
  • the average crystal grain size is 5 ⁇ m or less and the ratio of the large tilt grain boundaries of 15 ° or more is more than 85%. .
  • the lower limit of the average crystal grain size is not particularly specified, but it is difficult to make the average crystal grain size less than 1 ⁇ m also from Non-Patent Documents 1 and 2 and Patent Document 1. Therefore, in consideration of practical use, the average crystal grain size is preferably in the range of 1 to 5 ⁇ m.
  • the ratio of the large tilt grain boundaries of 15 ° or more is more than 80%, preferably more than 85%.
  • Increasing the ratio of the large-angle grain boundaries is effective in reducing 0.2% proof stress and increasing elongation in a fine-grained material (steel plate with fine crystal grains), and contributes to improving workability.
  • the target workability of this embodiment is preferably close to that of ferritic stainless steel and close to that of austenitic stainless steel represented by SUS304 and the like. Therefore, it is preferable that the 0.2% proof stress is less than 400 MPa and the uniform elongation is more than 30%.
  • the ratio of the large-angle grain boundaries of 15 ° or more is preferably more than 85%, more preferably more than 90%.
  • the mechanical properties of 0.2% proof stress and uniform elongation are evaluated by a JIS No. 13 B tensile test.
  • An austenitic stainless steel slab having the steel components shown in Table 2 was melted and hot-rolled to obtain a hot-rolled sheet having a thickness of 4 mm.
  • Steel No. 1 to 23 satisfy the conditions of the steel components defined in this embodiment.
  • Steel No. Nos. 24-28 are outside the steel component conditions defined in this embodiment.
  • the hot rolled sheet was annealed, followed by cold rolling and final annealing.
  • Cold rolling and final annealing were performed under the preferable conditions of this embodiment and other conditions.
  • cold rolling is performed under conditions in which the rolling temperature is less than 30 ° C. while cooling with water at room temperature ( ⁇ 30 ° C.), and conditions in which the rolling temperature exceeds 50 ° C. during cold rolling due to processing heat generation without performing water cooling (> 50 ° C.).
  • the steel sheet produced by cold rolling and final annealing is pickled, then the average grain size is measured, the ratio of large-angle grain boundaries of 15 ° or more by the EBSP method, the stress corrosion cracking resistance (cracking) Generation time) and mechanical properties (0.2% yield strength, uniform elongation) were measured.
  • the average crystal grain size was determined by a steel-grain size microscopic test method specified in JIS G 0551.
  • the measurement magnification was adjusted so that 3000 or more crystal grains were included, and the grain boundary map of the microstructure of the steel sheet was measured by the EBSP method.
  • the grain boundary map display discriminates the small tilt grain boundary of less than 15 ° and the large tilt grain boundary of 15 ° or more, and calculates the ratio of the large tilt grain boundary in the total crystal grain boundary.
  • the drawing ratio (value obtained by dividing the blank diameter by the punch diameter) under the conditions of a blank diameter of 67.5 mm ⁇ , a punch diameter of 35 mm ⁇ , a die diameter of 37 mm ⁇ , and a wrinkle holding pressure of 1 ton as in the measurement method described above.
  • the cylindrical deep drawing of 1.9 was performed on the steel sheet.
  • the obtained molded product was left for 48 hours to confirm that no aging cracks occurred.
  • the molded article was immersed in a boiling 42% magnesium chloride aqueous solution specified in JIS G 0576, and the time when a crack (stress corrosion cracking) occurred was measured. The presence or absence of cracks was determined visually. Mechanical properties were evaluated by JIS No. 13 B tensile test.
  • Table 3 shows the relationship between manufacturing conditions and characteristics.
  • HA indicates hot-rolled sheet annealing
  • FA indicates final annealing.
  • Gram size represents the average crystal grain size
  • large tilt ratio represents the ratio (%) of the large angle grain boundary.
  • SCC occurrence time indicates the time at which stress corrosion cracking occurred. In “SCC occurrence time”, “ ⁇ ” means that it exceeds the value described on the left side. Further, the symbol * indicates that it is out of the essential conditions and preferred conditions defined in the present embodiment.
  • Test No. 1, 3, 8 to 29 have the steel components of the present embodiment and were manufactured under the preferable manufacturing conditions of the present embodiment. These steel sheets have an average crystal grain size of 10 ⁇ m or less, and a ratio of a large-angle grain boundary of 15 ° or more exceeds 80%, and the stress corrosion crack occurrence time greatly exceeds the target of 4 hours or more. Obtained. Furthermore, these steel sheets have mechanical properties with a 0.2% yield strength of less than 400 MPa and a uniform elongation of more than 30%. For this reason, preferable workability is achieved together with excellent stress corrosion cracking resistance.
  • the annealing time of the last annealing was as short as 1 hour. For this reason, recrystallization of austenite is not sufficiently promoted, and the ratio of the large-angle grain boundaries of 15 ° or more is 75%, which is less than 80%. For this reason, although the average crystal grain size was as small as 6 ⁇ m, the stress corrosion cracking time was 3 hr, and the target stress corrosion cracking resistance was not obtained.
  • Test No. 6 has the steel component of this embodiment, it was manufactured on the conditions which deviated from the preferable manufacturing conditions of this embodiment. Since the final annealing temperature is lower than 700 ° C., the strain in cold rolling is accumulated, the austenite grains are insufficiently recrystallized, and the ratio of large-angle grain boundaries of 15 ° or more is 80%. Less than Moreover, although the average crystal grain size was as small as 1 ⁇ m, the stress corrosion cracking resistance was not improved due to residual strain during cold rolling, and the stress corrosion cracking time was 0.5 hr. Further, the 0.2% proof stress was 400 MPa or more, the steel plate was hardened, and the workability was also lowered.
  • Test No. 7 has the steel component of this embodiment, but was manufactured at a known annealing temperature, and the final annealing temperature was higher than 1050 ° C. For this reason, the average crystal grain size was 30 ⁇ m. The ratio of the large-angle grain boundaries of 15 ° or more is 98%, but the stress corrosion cracking time is 3 hours, and the improvement of the stress corrosion cracking resistance due to the refinement of crystal grains was not observed.
  • Test No. 30, 32, 34, 35, and 37 have steel components that deviate from the conditions of this embodiment, but were manufactured under the preferable manufacturing conditions of this embodiment.
  • Test No. In 30, 32, and 37 the crystal grains were refined, and the average crystal grain size was 10 ⁇ m or less. However, the stress corrosion cracking occurrence time was less than 4 hr, and the improvement of the stress corrosion cracking resistance targeted by this embodiment was not observed.
  • test no. In No. 37 since Md exceeds 40, it is considered that the development of stress corrosion cracking resistance is inhibited.
  • Test No. In 34 and 35 since Md was less than ⁇ 20, it was difficult to form a fine grain structure, and the average crystal grain size was larger than 10 ⁇ m. For this reason, the stress corrosion cracking occurrence time was less than 4 hr, and the improvement of the stress corrosion cracking resistance targeted by this embodiment was not observed.
  • Test No. 31, 33, and 36 have steel components that deviate from the conditions of this embodiment, and were manufactured under conditions that deviate from the preferred production conditions of this embodiment. These steel sheets had an average crystal grain size of 28 ⁇ m or 30 ⁇ m, and did not reach the target stress corrosion cracking resistance of the present embodiment as expected from the conventionally known components.
  • the stress corrosion cracking which is a defect of the austenitic stainless steel, is overcome by refining the crystal grains without relying on the addition of Mo with an amount of Ni of 8% or less and expensive stress resistance.
  • An austenitic stainless steel sheet that achieves both corrosion cracking and workability is obtained.
  • the austenitic steel plate of this embodiment is applied suitably for the member etc. which are used in the corrosive environment containing a chloride ion.

Abstract

 この耐応力腐食割れ性と加工性に優れた微細粒オーステナイト系ステンレス鋼板は、質量%にて、C:0.05%以下、Cr:14~19%、Si:2%以下、Mn:4%以下、Ni:5~8%,Cu:4%以下,及びN:0.1%以下を含み、残部がFeおよび不可避的不純物からなり、かつ下記のMdが-20~40の範囲にある鋼成分を有し、平均結晶粒径が10μm以下であり、かつ15°以上の大傾角粒界の占める比率が80%超である。 Md=551-462(C+N)-9.2Si-8.1Mn-13.7Cr-29(Ni+Cu)-18.2Mo

Description

耐応力腐食割れ性と加工性に優れた微細粒オーステナイト系ステンレス鋼板
 本発明は、平均結晶粒径が10μm以下の微細粒組織(微細な結晶粒からなる組織)を有し、耐応力腐食割れ性と加工性に優れたオーステナイト系ステンレス鋼板に関する。
 本願は、2009年12月1日に、日本に出願された特願2009-273868号に基づき優先権を主張し、その内容をここに援用する。
 近年、鉄鋼材料において、結晶粒を微細化することは、合金元素の添加によらず強度・靭性を上昇させる最も有効な方法であることが知られている。オーステナイト系ステンレス鋼においても、非特許文献1,2において、JISG4305に規定するSUS304で、加工誘起マルテンサイトからオーステナイトへの相変態を利用した結晶粒の微細化が開示されている。このような方法により、結晶粒径1~5μmの微細粒組織を形成しており、微細化による効果として、非特許文献1には降伏強度(0.2%耐力)の上昇が報告され、非特許文献2には650~750℃での超塑性の発現が報告されている。
 オーステナイト系ステンレス鋼において、結晶粒の微細化による効果を利用した技術として、特許文献1には金属ガスケットとその素材およびそれらの製造方法が開示されている。この特許文献1には、JISG4305に規定するSUS301Lで、上述した加工誘起マルテンサイトからオーステナイトへの相変態とクロム窒化物の析出を利用して、結晶粒径5μm以下の微細粒組織を形成している。この微細粒組織の形成と調質圧延との組み合わせにより、Hv500以上の高強度化を図っている。
 従来、オーステナイト系ステンレス鋼の結晶粒微細化の技術では、上述したようにSUS304やSUS301Lにおいて、結晶粒径を1~5μmに調整しており、これにより0.2%耐力の上昇や高強度化を指向している。
 古くから、オーステナイト系ステンレス鋼板では、塩化物イオンを含む腐食環境で応力腐食割れを発生するという問題がよく知られている。非特許文献3では、その対策として、Niを含まないフェライト系ステンレス鋼への変更が確実であることが記載されている。また、加工性や溶接性の点からフェライト系ステンレス鋼の使用が困難な場合には、高Ni量(11.5~15%)であり、かつSi量とCu量を高めたSUSXM15J1系のオーステナイト系ステンレス鋼が有効であることも記載されている。
 孔食や隙間腐食を起点とする応力腐食割れの改善に対して、上述した合金添加は有効に作用する。特許文献2には、Niを約9%、Cuを1.5%超え2.5%未満含み、MoおよびNを少量含有する耐応力腐食割れ性および耐孔食性に優れたオーステナイト系ステンレス鋼が開示されている。特許文献3には、Cr:18~35%,Ni:25~50%,Mo:8%以下,Mn:6%以下,N:0.5%以下,C:0.03%以下を含み、Cr量及びNi量が多いことを特徴とする耐応力腐食割れ性に優れたオーステナイト系合金が開示されている。特許文献4では、C:0.08%以下,Si:0.1~3%,Cr:18~23%,Ni:8.5~12%,Mo:0.2~2%,Cu:0.2~3.5%,N:0.03~0.25%を含み、MnとSとの含有量が調整されていること、CuとNが複合添加されていること、更に少量のCo,W,V,Nbが添加されていることを特徴とする耐候性、耐隙間腐食性および耐応力腐食割れ性に優れたオーステナイト系ステンレス鋼が開示されている。
 また、応力腐食割れとして、粒界型の割れも生じるため、特許文献5~7には、粒界型応力腐食割れの改善について開示されている。特許文献5には、Mo及びNbのいずれか一方または両方を含むことを特徴とする耐粒界腐食性および耐粒界応力腐食割れ性の優れたオーステナイト系ステンレス鋼が示されている。特許文献6,7には、C量を0.03%以下に制約し、Nを0.15%以下で含有させ、鋼片の加熱温度や時間を調整することによって、炭化物の析出量を低減し、粒界近傍のCr欠乏量を軽減することを特徴とする耐粒界応力腐食割れ性に優れたオーステナイト系ステンレス鋼およびその製造方法が開示されている。
 上述した非特許文献3および特許文献2~7で開示されたオーステナイト系ステンレス鋼は、いずれも8%超のNiを含有し、かつCu,Mo,Si,さらには微量元素としてNb,Co,W,V等が添加されたことによって、耐応力腐食割れ性が改善されている。
 工業生産における焼鈍温度は、非特許文献3,4で公知である。また、結晶粒径については、非特許文献5で公知である。通常、オーステナイト系ステンレス鋼は、1000~1100℃で焼鈍され、成分を調整しても、細粒化の限度は、結晶粒度No.10に満たない、すなわち結晶粒径は10μmより大きくなると説明されている。
 従来のオーステナイト系ステンレス鋼の結晶粒を微細化する技術では、耐応力腐食割れ性に対する結晶粒の微細化による効果については全く明らかにされていない。
 また、上述したように、通常、オーステナイト系ステンレス鋼は、1000~1100℃で焼鈍され、成分を調整しても、結晶粒径は10μmより大きくなると説明されている。特許文献2~7には、製造方法(焼鈍温度)と結晶粒径に関して特に記載されていない。従って、特許文献2~7に開示された鋼も、通常と異なる特別な製造方法を開示していない限りにおいて、その結晶粒径は、非特許文献3と同様に10μmより大きいことが容易に推定できる。
 以上に述べたように、オーステナイト系ステンレス鋼において、8%以下のNi量で耐応力腐食割れ性の改善を試みた検討は見当たらない。さらに、Ni量が8%以下であり、かつ高価なMoの添加に頼らずに、結晶粒の微細化によって、オーステナイト系ステンレス鋼の欠点である応力腐食割れを低減し、耐応力腐食割れ性と加工性との両立を図るという技術思想ならびにそのような開示は全く皆無である。
国際公開第02/088410号パンフレット 特開昭61-9557号公報 特開昭62-180037号公報 特開昭62-247048号公報 特開昭62-287051号公報 特開平8-269550号公報 特開平10-317104号公報 特願2008-157717号(特開2009-299171号公報)
鉄と鋼,78(1992),141~148 鉄と鋼,80(1994),249~253 ステンレス鋼便覧,第3版,560 西山記念技術講座「ステンレス鋼製造技術の最近の進歩」115(社)日本鉄鋼協会 日本鋼管技報,No.87(1980),51~60 OIM ACADEMY,(株)TSLソリュ-ションズ
 本発明は、Ni量が8%以下であり、かつ高価なMoの添加に頼らず、オーステナイト系ステンレス鋼の欠点である応力腐食割れを結晶粒の微細化により克服し、耐応力腐食割れ性と加工性との両立を図った平均結晶粒径が10μm以下の微細粒組織を有するオーステナイト系ステンレス鋼板を提供することを目的とする。
 本発明の一態様に係る耐応力腐食割れ性と加工性に優れた微細粒オーステナイト系ステンレス鋼板は、質量%にて、C:0.05%以下、Cr:14~19%、Si:2%以下、Mn:4%以下、Ni:5~8%,Cu:4%以下,及びN:0.1%以下を含み、残部がFeおよび不可避的不純物からなり、かつ下記のMdが-20~40の範囲にある鋼成分を有し、平均結晶粒径が10μm以下であり、かつ15°以上の大傾角粒界の占める比率が80%超である。
 Md=551-462(C+N)-9.2Si-8.1Mn-13.7Cr-29(Ni+Cu)-18.2Mo
 本発明の一態様に係る耐応力腐食割れ性と加工性に優れた微細粒オーステナイト系ステンレス鋼板では、前記鋼成分が、さらに質量%にて、Mo:1%以下、V:1%以下,B:0.010%以下,Nb:0.5%以下,Ti:0.5%以下,希土類元素:0.5%以下,Al:0.5%以下,Mg:0.005%以下,及びCa:0.005%以下から選択される1種または2種以上含有してもよい。
 本発明の一態様に係る耐応力腐食割れ性と加工性に優れた微細粒オーステナイト系ステンレス鋼板は、鋼板を絞り比1.5~2.0の範囲で円筒深絞り加工して成形品を作製し、前記成形品を沸騰42%塩化マグネシウム水溶液中に4hr浸漬し、前記成形品の割れの発生を確認する応力割れ試験において、割れが発生しないことを特徴とする。
 なお、前記絞り比は、ブランク径をポンチ径で割った値とする。
 本発明の一態様に係る耐応力腐食割れ性と加工性に優れた微細粒オーステナイト系ステンレス鋼板は、引張試験によって求められる0.2%耐力が400MPa未満、均一伸びが30%超である。
 本発明の一態様に係る微細粒組織を有するオーステナイト系ステンレス鋼板によれば、Ni量が8%以下であり、かつ高価なMoの添加に頼らずに、オーステナイト系ステンレス鋼の欠点である応力腐食割れを克服し、耐応力腐食割れ性と加工性との両立を図ることができる。
平均結晶粒径とMdとの関係を示すグラフである。 沸騰42%塩化マグネシウム水溶液中に4hr浸漬後の成形品の外観を示す写真である。 図2の(i),(ii)の鋼のミクロ組織を示す写真である。 沸騰42%塩化マグネシウム水溶液中での割れ発生時間と、平均結晶粒径およびMdとの関係を示すグラフである。 微細粒材(結晶粒が微細な鋼板)の沸騰42%塩化マグネシウム水溶液中での割れ発生時間と大傾角粒界の比率との関係を示すグラフである。
 本発明者らは、前記した課題を解決するために、Ni量8%以下のオーステナイト系ステンレス鋼を対象とし、微細粒組織の形成に最適な成分バランスと、微細化による応力腐食割れの改善作用と加工性との両立について鋭意研究を行い、本発明を完成させた。以下にその代表的な実験結果について説明する。
 なお、本実施形態において、微細粒組織とは、平均結晶粒径が10μm以下であることを意味する。
 表1に鋼成分を示すオーステナイト系ステンレス鋼を溶製し、熱間圧延して3.0mm厚の熱延板を製造した。熱延板焼鈍を1150℃で行い、酸洗して冷間圧延して0.5mm厚の冷延板を作製した。そして冷延板焼鈍を行なった。
 冷間圧延では、水冷しながら板温を10℃に保ち、加工発熱を抑制した。これにより、加工誘起マルテンサイトの生成を促進した。
 冷延板焼鈍(最終焼鈍)では、加工誘起マルテンサイトからオーステナイトへの相変態を活用して微細粒組織を形成させるために、温度を600~1050℃の範囲で調整し、保持時間を1分~24時間の範囲で調整した。
 冷間圧延後に最終焼鈍して得られた鋼板を酸洗し、次いで平均結晶粒径の測定、大傾角粒界の占める比率の測定、割れ発生時間の測定に供した。
Figure JPOXMLDOC01-appb-T000001
 平均結晶粒径の測定では、鋼板断面を樹脂に埋め込み研磨して硝酸電解エッチングした。次いで、JISG 0551に規定する鋼-結晶粒度の顕微鏡試験方法により平均結晶粒径を求めた。
 大傾角粒界の占める比率は、EBSP法の粒界マップ表示により測定した。EBSP法では、粒界マップ表示によって15°未満の小傾角粒界と15°以上の大傾角粒界を識別して、全結晶粒界に占める大傾角粒界の比率を算出できる。ここで、非特許文献6において、結晶粒数3000個以上の測定結果が統計的にバルクの性質を反映すると報告されている。このため、結晶粒数3000個以上含むように測定倍率を調整した。
 割れ発生時間の測定では、ブランク径67.5mmφ,ポンチ径35mmφ,ダイス径37mmφ,しわ押さえ圧1トンの条件で絞り比(ブランク径をポンチ径で割った値)1.9の円筒深絞り加工を鋼板に対して行った。得られた成形品を48hr放置して時効割れの発生しないことを確認した。そして、成形品をJIS G 0576に規定する沸騰42%塩化マグネシウム水溶液中に浸漬して、割れ発生時間を測定した。
(a)図1は、800℃で4hr保持した条件で冷延板焼鈍を行って得られた鋼板の平均結晶粒径と成分バランス(Md)の関係を示す。
 Mdは、下記(1)式で定義される値である。なお、式中の元素記号は、その元素の含有量(質量%)を示す。
 Md=551-462(C+N)-9.2Si-8.1Mn-13.7Cr-29(Ni+Cu)-18.2Mo ・・・(1)
 図1から、Mdの上昇とともに、平均結晶粒径は小さくなる。Mdの上昇により、冷間圧延で生成する加工誘起マルテンサイトの量は増加する。そのため、Mdの上昇によって、前記した非特許文献1,2で述べたように冷間圧延後の焼鈍において、加工誘起マルテンサイトからオーステナイトへの相変態を活用した微細化が促進したと考えられる。この検討から、目標とする平均結晶粒径10μm以下への微細化には、Mdを-20以上にすることが効果的である。
 また、Mdがほぼ同等のSUS304(図1中の菱形の符号)と鋼Dの結果を比較すると、Cr量及びNi量が低減され、かつCuが添加された鋼成分(鋼D)の方が、微細化に対して有効であることが確認された。
(b)上記の割れ発生時間の測定と同様にして、平均結晶粒径(d)の異なる鋼B(i),(ii)とSUS316L(iii)を円筒深絞り加工して成形品(円筒深絞り材)を作製した。この成形品を沸騰42%塩化マグネシウム水溶液中に4hr浸漬した。図2は、浸漬後の成形品の外観を示す。さらに、図3は、図2の試験に供した鋼B(i),(ii)のミクロ組織の写真を示す。
 図2に示すように、通常の焼鈍(1050℃で1分保持)で製造した平均結晶粒径28μmの鋼(図2(ii))と比較して、平均結晶粒径を3μmまで微細化した鋼(図2(i))では、成形品(円筒深絞り材)を沸騰42%塩化マグネシウム水溶液に浸漬した試験結果において割れが発生していない。
 SUS316L(17Cr-12Ni-2Mo)(図2(iii))は、高い含有量でNiかつMoを含有し、汎用のSUS304(18Cr-8Ni)と比較して耐応力腐食割れにも優れた高価なオーステナイト系ステンレス鋼である。しかしながら、図2(iii)に示されたように、成形品の開口端部において、複数の割れが発生した。
 この結果から、耐応力腐食割れ性(割れ発生の有無)は、結晶粒の微細化により飛躍的に向上する新規な知見を見出した。
(c)図4は、前記した沸騰42%塩化マグネシウム水溶液中での割れ発生時間と、平均結晶粒径及びMdとの関係を示す。なお、図4中の上矢印(↑)は割れ発生時間がプロットされた点での値より長いことを示す。
 Md=29.5の鋼成分(鋼B)を有する鋼板では、結晶粒の微細化(平均結晶粒径10μm以下)による効果によって、割れ発生時間は飛躍的に上昇することが分かる。この理由は、必ずしも明らかでないが、以下のように推定される。応力腐食割れは基本的に粒内割れである。結晶粒の微細化によって、割れの起点となる粒内面積率が大幅に減少する。さらに、鉄鋼材料における破壊靭性は、結晶粒の微細化によって格段に向上することが知られている。これら要因が、耐応力腐食割れ性に対して少なからず効果を発揮したためであると思われる。
 比較としたSUS316Lでは、同じ試験条件において2~3hrの浸漬で割れが発生した。本実施形態では、この試験条件において4時間(hr)浸漬して割れが発生しないことを目標特性とした。この目標特性は、割れ発生時間が4時間超となることを意味し、SUS316Lの耐応力腐食割れ性(割れ発生時間)を明らかに凌駕する。
 なお、図4に示す結晶粒微細化により耐応力腐食割れ性が向上した鋼板(鋼Bの鋼成分を有する鋼板)は、冷間圧延後の冷延板の最終焼鈍を800℃で4時間又は24時間加熱する条件で実施して製造されたものである。
 また、図4に示す割れ発生時間が4時間未満であり、平均結晶粒径が10μm超の鋼板は、冷間圧延後の冷延板の最終焼鈍を900℃~1050℃で1分~4時間加熱する条件で実施して製造されたものである。割れ発生時間が4時間未満で平均結晶粒径が10μm以下の鋼板は、冷間圧延後の冷延板の最終焼鈍を800℃で4時間加熱する条件で実施して製造されたものである。
(d)耐応力腐食割れ性に対する微細化による効果の発現は、成分バランス(Md)の影響を受ける。応力腐食割れを抑制する微細化による効果の発現には、Mdを-20~40の範囲とする必要がある。
 図4において、Md=43の鋼成分(鋼A)を有する鋼板では、結晶粒が微細化しても、割れ発生時間は大きく上昇していない。この理由は、以下のように推定される。微細化によって材料そのものが硬質化したと考えられる。これにより、円筒深絞りにおいて多量の加工誘起マルテンサイトが生成し、カップ側壁での残留応力の上昇によって応力腐食割れの抑止効果が発現しなかったと推定される。この検討から、応力腐食割れを抑制する微細化による効果の発現には、Md:40以下が有効である。
(e)Md値の低いMd=-25の鋼成分(鋼G)を有する鋼板では、項目(a)で述べたように微細粒組織の形成が困難になる。そのため、図4において、平均結晶粒径を10μm以下として応力腐食割れを抑制すること(微細化による効果)は困難である。この結果から、応力腐食割れを抑制する微細化による効果の発現には、Md:-20以上が効果的である。
(f)微細粒材(結晶粒が微細な鋼板)の耐応力腐食割れ性には、Mdに加えて、結晶粒界において大傾角粒界が占める比率も影響する。図5は、鋼Bの鋼成分を有する鋼板における割れ発生時間と15°以上の大傾角粒界の比率との関係を示したグラフである。なお、図5中の上矢印(↑)は割れ発生時間がプロットされた点での値より長いことを示す。図5に示すように、鋼Bの鋼成分を有し、結晶粒が微細な鋼板では、15°以上の大傾角粒界の比率が80%超のとき、前記項目(b)及び(c)に記載した耐応力腐食割れ性が大幅に向上する。この理由は、以下のように考えられる。微細粒材は、冷間圧延で加工誘起マルテンサイトを極力多く生成させ、次いで通常より低温の焼鈍で加工誘起マルテンサイトからオーステナイトへの逆変態を活用する方法によって製造される。冷間圧延での歪の蓄積が大きく、かつ低温焼鈍であることから、焼鈍後の残留歪も大きくなりやすい。このような条件で鋼板が製造される場合、オーステナイト粒の再結晶が進行途上となり、大傾角粒界と認識されない15°未満の小傾角粒界が多数存在することになる。従って、大傾角粒界の比率が低下することは、鋼の残留歪が大きいことを意味し、鋼の残留歪が耐応力腐食割れ性を阻害したと推定される。
 なお、図5に示す鋼Bの鋼成分を有する鋼板は、冷間圧延後の冷延板の最終焼鈍を800℃で10分~24時間加熱する条件で実施して製造されたものである。最終焼鈍の加熱時間を調整することによって、大傾角粒界の比率の異なる鋼板を製造した。図5に示す大傾角粒界の比率が80%超である鋼板は、冷間圧延後の冷延板の最終焼鈍を800℃で1時間超加熱する条件で実施して製造されたものである。
(g)結晶粒の微細化は、鋼成分に加えて、製造条件の影響を受ける。加工誘起マルテンサイトからオーステナイトへの相変態を活用するために、冷間圧延において加工誘起マルテンサイト変態を促進させることが効果的である。そのためには、冷間圧延で、圧下率を大きくし、かつ加工発熱を抑制することが好ましい。さらに、微細粒材において、大傾角粒界の比率を上昇させて耐応力腐食割れ性を発現させるために、冷間圧延後に実施する最終焼鈍を、なるべく低温で長時間保持する条件で実施することが好ましい。具体的には、700~900℃で1時間超加熱する条件で最終焼鈍を実施することが効果的である。また、15°以上の大傾角粒界の比率を上昇させることは、0.2%耐力の低下と伸びの上昇にも有効であり、加工性の向上にも寄与する。
 本発明者らは、既に、特許文献8において、平均結晶粒径10μm以下の微細粒組織を有するプレス成形用オーステナイト系ステンレス鋼板およびその製造方法を提案している。特許文献8は、深絞り加工後の「時効割れ」、すなわち材料の遅れ破壊の改善を目的とし、本実施形態で改善する「応力腐食割れ」、すなわち材料の腐食と溶解が関与する現象とは異なる技術課題に係る技術である。特許文献8では、前述した応力腐食割れに影響がある15°以上の大傾角粒界の比率については全く検討していない。また、最終の焼鈍時間は、実質的に1時間以下である。
 本実施形態では、特許文献8で提案した微細粒鋼において、耐応力腐食割れ性を向上させるために、その影響因子である15°以上の大傾角粒界の比率の必須範囲を見出した。また、最終の焼鈍時間を1時間超にコントロールすることが極めて有効であること知見した。
 本実施形態は、上記(a)~(g)の知見に基づいて完成された。
 以下、本実施形態の各要件について詳しく説明する。なお、各元素の含有量の「%」表示は「質量%」を意味する。
(A)本実施形態の鋼板の鋼成分に関する限定理由を以下に説明する。
 本実施形態では、平均結晶粒径10μm以下の微細粒組織を形成して、この微細化による効果によって、耐応力腐食割れ性を向上させる。このために、本実施形態のオーステナイト系ステンレス鋼板では、成分および成分バランス(Md)が規定されている。
 Cは、オーステナイト生成元素であり、オーステナイトの安定度を確保する目的で添加される。多量にCが添加されると、硬質になり加工性が低下する。また、炭化物の析出が促進されて、本実施形態の目的とする耐応力腐食割れ性が阻害される。そのため、C含有量の上限を0.05%とする。この上限は、好ましくは0.03%である。C含有量の下限は、製造性との関係から、0.005%とすることが好ましい。
 十分な耐食性を得るためには、Crを14%以上含有する必要があるため、Cr含有量の下限を14%とする。この下限は、好ましくは15%であり、より好ましくは16%である。一方、多量にCrが添加されると、硬質化し、またδフェライトが形成され、これにより加工性が低下する。さらに、本実施形態の目的とする結晶粒の微細化が阻害される。そのため、Cr含有量の上限を19%とする。この上限は、好ましくは18%である。
 Siは、強力な脱酸剤として有効である。しかし、多量にSiを添加すると、硬質化するとともに製造性を阻害する。このため、Si含有量の上限を2%とする。この上限は、好ましくは1.5%である。一方、Siは、本実施形態の目的とする耐応力腐食割れ性を向上させる作用を持つ。これら作用を得るには、Siを0.5%以上含有することが好ましい。Si含有量の下限は、製造性との関係から、0.1%とすることが好ましい。
 Mnは、オーステナイト生成元素であり、オーステナイト安定度の確保と加工性の向上を目的として添加される。多量にMnが添加されると、MnSが形成され、耐食性が低下する。これにより本実施形態の目的とする耐応力腐食割れ性が阻害される。そのため、Mn含有量の上限を4%とする。この上限は、好ましくは3%である。Mn含有量の下限は、上記目的のために0.5%とすることが好ましい。
 Niは、オーステナイト系ステンレス鋼には不可欠な元素であり、オーステナイトの安定度および加工性の確保の点から、Ni含有量の下限を5%とする。この下限は、好ましくは6%である。一方、Niは、高価で希少な元素であり、かつ本実施形態の目的とする結晶粒の微細化を阻害する作用も有する。このため、Ni含有量の上限を8%とする。この上限は、好ましくは7.5%以下である。
 Cuは、前記Niと同様に、オーステナイトの安定度の確保および軟質化を目的として添加される。さらに、Ni含有量を節減し、かつ耐応力腐食割れ性の向上と結晶粒の微細化を促進するためにも好ましい元素である。しかし、多量にCuを添加すると、熱間加工性が低下する。さらに、Cu金属成分を全く不要とする鋼種の溶鋼の品質、排出されるスラグ品質、及びその有効利用に悪影響を及ぼし支障を生じる場合がある。そのため、Cu含有量の上限を4%とする。この上限は、好ましくは3%である。Cu含有量の下限は、上記効果を得るために、1%であることが好ましく、より好ましくは1.5%である。
 Nは、Cと同様にオーステナイト生成元素であり、オーステナイトの安定度を確保する目的で添加される。しかし、多量にNを添加すると、硬質になり加工性が低下する。そのため、N含有量の上限を0.1%とする。この上限は、好ましくは0.06%以下である。N含有量の下限は、製造性との関係から、0.005%であることが好ましく、より好ましくは、0.01%である。
 Moは、本実施形態において必須元素ではないが、耐食性および本実施形態の目的とする耐応力腐食割れ性を向上させるために適時添加しても良い。しかし、Moは大変高価で希少な元素であるため、添加する場合には、Moの含有量の上限を1%とする。この上限は、好ましくは0.5%である。上記効果を得るために、Moの含有量の下限を0.1%とすることが好ましい。
 Vは、本実施形態において必須元素ではないが、Moに及ばないまでも、耐食性および本実施形態の目的とする耐応力腐食割れ性を向上させるために適時添加しても良い。しかし、Vは高価な元素であるとともに、固溶強化元素であるために加工性を阻害する。そのため、添加する場合には、V含有量の上限を1%とする。この上限は、好ましくは0.5%である。上記効果を得るために、V含有量の下限を0.1%とすることが好ましい。
 B、希土類元素(REM)は、熱間加工性を向上させるために適時添加しても良い。しかし、B含有量が0.010%を超えると、製造性や耐食性を著しく損なう場合がある。そのため、添加する場合には、B含有量の上限を0.010%とする。この上限は、好ましくは0.005%である。添加する場合、B含有量の下限は0.0005%が好ましい。
 一方、希土類元素の含有量が0.5%を超えると、製造性および経済性を損なう場合がある。そのため、希土類元素の含有量の上限を0.5%とすることが好ましい。この上限は、より好ましくは、0.2%である。添加する場合、希土類元素の含有量の下限は0.005%が好ましい。
 なお、希土類元素(REM)は、Sc,Y,La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,及びLuから選択される1種以上である。
 Nb、Tiは、炭窒化物を形成してCr炭化物の生成を抑制する。これにより、耐応力腐食割れ性の向上に寄与する。このため、適時添加しても良い。しかし、Nb、Tiを多量に添加すると、加工性や製造性が低下するため、Nb、Tiのそれぞれの含有量の上限を0.5%とする。Nb、Tiのそれぞれの含有量の上限は、好ましくは0.3%である。添加する場合、Nb、Tiのそれぞれの含有量の下限は、0.005%が好ましく、より好ましくは0.01%である。
 Alは、脱酸元素として有効な元素であるため、適時添加しても良い。しかし、過度の量のAlを添加すると、加工性や溶接性の低下に繋がるため、Al含有量の上限を0.5%とする。この上限は、好ましくは0.3%であり、より好ましくは0.1%である。添加する場合、Al含有量の下限は、0.01%が好ましい。
 Mg、Caは、溶鋼中でAlとともに酸化物を形成して脱酸剤として作用するため、適時添加しても良い。Caは、Sを固定して熱間加工性を改善する作用を有する。しかし、Mg、Caを過度な量で添加すると、耐食性や溶接性の低下に繋がるため、Mg、Caのそれぞれの含有量の上限は0.005%とする。Mg、Caのそれぞれの含有量の上限は、好ましくは、0.002%である。添加する場合、Mg、Caのそれぞれの含有量の下限は、0.0001%であり、より好ましくは0.0003%である。
 さらに、本実施形態のオーステナイト系ステンレス鋼は、上記の成分以外に、不可避的不純物の一部としてP,Sを下記の範囲で含有してもよい。P、Sは、熱間加工性や耐食性に有害な元素である。P含有量を0.1%以下とすることが好ましい。P含有量は、より好ましくは0.05%以下である。S含有量を0.01%以下とすることが好ましい。S含有量は、より好ましくは0.005%以下である。
 本実施形態では、前記した成分範囲に加え、微細粒組織の形成に最適な成分バランスを(1)式に示すMdにより規定する。
 Md=551-462(C+N)-9.2Si-8.1Mn-13.7Cr-29(Ni+Cu)-18.2Mo ・・・(1)
 準安定オ-ステナイト系ステンレス鋼は、Ms点(マルテンサイト変態開始温度)以上の温度でも、塑性加工によってマルテンサイト変態を起こす。加工によって変態を生じる上限温度は、Md点と呼ばれる。すなわち、Md点はオーステナイトの安定度を示す指標である。
 (1)式に示すMdが-20~40の範囲となるように成分調整することにより、本実施形態の目的とする微細粒組織の形成と微細化による耐応力腐食割れ性の向上作用が得られる。Mdが-20未満の場合、上記の項目(d),(e)で述べたように、微細粒組織の形成及び耐応力腐食割れ性の発現が困難である。一方、Mdが40を越える場合、上記の項目(d),(e)で述べたように、微細粒組織の形成には有効であるが、耐応力腐食割れ性の発現が阻害される。好ましいMdの範囲は-5~35である。
(B)本実施形態の鋼板の製造方法について以下に説明する。
 本実施形態の微細粒オーステナイト系ステンレス鋼板を製造する際には、(A)項に述べた鋼成分を有し、平均結晶粒径10μm以下とし、かつ15°以上の大傾角粒界の占める比率を80%超とし、耐応力腐食割れ性を効果的に発現させるために、以下の製造条件とすることが好ましい。
 本実施形態の鋼板の製造方法は、(A)項の鋼成分を有する鋳片を熱間圧延して熱延板とする工程と、熱延板を焼鈍する工程(熱延板焼鈍)と、焼鈍された熱延板を冷間圧延して冷延板とする工程と、冷延板を焼鈍する工程(冷延板焼鈍又は最終焼鈍とも言う)を有する。
 熱間圧延までの製造方法は、特に限定されず、公知の条件が適用される。
 冷間圧延後の最終焼鈍により、微細粒組織を形成するためには、上記の項目(g)に記載したように、冷間圧延で加工誘起マルテンサイト変態を促進させることが有効である。本実施形態の目的とする平均結晶粒径10μm以下とするためには、冷間圧延後に加工誘起マルテンサイトの体積率を50%以上とすることが効果的である。好ましくは、加工誘起マルテンサイトの体積率を60%超とする。冷間圧延後の最終焼鈍条件は、結晶粒を微細化し、かつ15°以上の大傾角粒界の比率を上昇させるように調整される。冷間圧延条件も調整されることが好ましく、さらに、熱延板焼鈍も調整されることがより好ましい。
 各工程の条件について以下に説明する。
 熱延板焼鈍にて、冷間圧延に供するオーステナイト粒を20μm以上に粗粒化して、冷間圧延で加工誘起マルテンサイト変態を促進するために、熱延板焼鈍の温度を1050~1200℃の範囲とすることが好ましい。熱延板焼鈍の温度が1050℃未満の場合、オーステナイト粒径が20μm未満となる場合がある。熱延板焼鈍の温度が1200℃超の場合、焼鈍後の酸洗性などが低下し、表面品質を阻害する場合がある。また、1200℃超の焼鈍は、設備への負荷も大きい。熱延板焼鈍の温度は、より好ましくは1080~1180℃の範囲である。
 冷間圧延では、加工誘起マルテンサイト変態を促進させるために、圧下率を70%以上とし、かつ圧延温度を50℃以下とすることが好ましい。
 圧下率が70%未満の場合、加工誘起マルテンサイトの体積率は50%未満となり、上述したように微細粒組織を形成することが困難となる。圧下率は、80%以上がより好ましい。圧下率の上限は、特に規定するものではないが、熱延板製造と冷延設備能力を考慮して90%以下が好ましい。
 圧延温度が50℃超の場合、加工誘起マルテンサイト体積率は50%未満となり、前記したように微細粒組織の形成が困難となる。圧延温度の下限は、特に規定するものではないが、工業的には水冷で到達する温度10℃以上が好ましい。小規模の圧延設備で製造する場合、圧延温度は、10℃以上に限定されず、液体窒素等の冷却で到達する低温(例えば、-200℃)でも構わない。
 冷間圧延後の最終焼鈍では、平均結晶粒径を10μm以下かつ大傾角粒界の比率を80%超とするために、最終焼鈍の温度を700~1050℃の範囲とする。最終焼鈍の温度が700℃未満の場合、冷間圧延での歪が蓄積された状態であり、オーステナイト粒の再結晶が不十分となり加工性が著しく低下する。また15°以上の大傾角粒界の比率も小さく、本実施形態の目的とする耐応力腐食割れ性が阻害される。最終焼鈍の温度の下限を750℃以上とすることが好ましい。最終焼鈍の温度が1050℃超の場合、オーステナイトの結晶粒成長が進行し、平均結晶粒径は10μm超となる。最終焼鈍の温度を900℃以下とすることが好ましい。本実施形態の目標とする大傾角粒界の比率が80%超である微細粒組織を実現するためには、最終焼鈍の温度を750~850℃の範囲とすることが、より好ましい。
 最終焼鈍の温度が700~900℃の場合、オーステナイトの再結晶を促進して15°以上の大傾角粒界の比率を上昇させるために、最終焼鈍の焼鈍時間を1時間超とすることが好ましい。最終焼鈍の焼鈍時間は、より好ましくは2時間以上である。最終焼鈍の焼鈍時間(保持時間)の上限は、限定するものではないが、クロム系ステンレスで工業的に公知な箱焼鈍を想定して、24時間以下とすることが好ましい。本実施形態の目標とする大傾角粒界の比率が80%超である微細粒組織を実現するためには、最終焼鈍の焼鈍時間を4~24時間の範囲とすることがより好ましい。小規模の焼鈍設備で製造する場合、最終焼鈍の焼鈍時間は24時間以下に限定されず、24時間を超過しても構わない。
 最終焼鈍の温度が900℃超~1050℃の場合、結晶粒成長を考慮して、焼鈍時間を10分以下とすること(短時間保持)が好ましい。より好ましくは、最終焼鈍の焼鈍時間(保持時間)を1分以下としても構わない。
(C)本実施形態の鋼板の金属組織の限定理由を以下に説明する。
 本実施形態の微細粒オーステナイト系ステンレス鋼板では、平均結晶粒径が10μm以下であり、かつ15°以上の大傾角粒界の比率が80%超である。この金属組織は、(A)項の鋼成分を有する鋳片を用い、(B)項の好ましい製造条件を実施して得られる。
 平均結晶粒径が10μm超の場合、本実施形態の目的とする微細化による優れた耐応力腐食割れ性の発現が困難となる。加えて、平均結晶粒径10μm以下であっても、15°以上の大傾角粒界の比率が80%に満たない場合、上記の項目(f)に記載したように、微細化による耐応力腐食割れ性の向上が阻害される。
 本実施形態の目的とする耐応力腐食割れ性を有効に発現させるには、平均結晶粒径が5μm以下であり、かつ15°以上の大傾角粒界の比率が85%超であることが好ましい。平均結晶粒径の下限は、特に規定するものではないが、非特許文献1,2や特許文献1からも、平均結晶粒径を1μm未満とすることは困難である。従って、実用面を考慮して、平均結晶粒径は1~5μmの範囲とすることが好ましい。
 15°以上の大傾角粒界の比率は、前記したように80%超とし、好ましくは85%超とする。大傾角粒界の比率を上昇させることは、微細粒材(結晶粒が微細な鋼板)において0.2%耐力の低下と伸びの上昇にも有効であり、加工性の向上にも寄与する。
 本実施形態の目標とする加工性は、上述した背景から、フェライト系ステンレス鋼を凌駕してSUS304等に代表されるオーステナイト系ステンレス鋼に近いことが好ましい。そのため、0.2%耐力が400MPa未満であり、かつ均一伸びが30%超であることが好ましい。
 耐応力腐食割れ性とこれら加工性を両立するために、15°以上の大傾角粒界の比率は、好ましくは85%超であり、より好ましくは90%超である。
 なお、本実施形態においては、機械的性質である0.2%耐力及び均一伸びは、JIS13号B引張試験により評価される。
 以下に、本実施形態の実施例について述べる。
 表2に示された鋼成分を有するオーステナイト系ステンレス鋳片を溶製し、熱間圧延を行い板厚4mmの熱延板とした。鋼No.1~23は、本実施形態で規定する鋼成分の条件を満たす。鋼No.24~28は、本実施形態で規定する鋼成分の条件から外れる。
Figure JPOXMLDOC01-appb-T000002
 熱延板を焼鈍し、次いで冷間圧延と最終焼鈍を行なった。冷間圧延と最終焼鈍は、本実施形態の好ましい条件とそれ以外の条件で実施した。特に、冷間圧延は、常温で水冷しながら圧延温度を30℃未満とする条件(<30℃)と、水冷など実施せず加工発熱により冷延途中で圧延温度が50℃を上回る条件(>50℃)のいずれかで行った。
 冷間圧延と最終焼鈍を行って製造された鋼板を酸洗し、次いで、平均結晶粒径の測定、EBSP法による15°以上の大傾角粒界の比率の測定、耐応力腐食割れ性(割れ発生時間)の測定、機械的性質(0.2%耐力、均一伸び)の測定を行った。
 各種評価方法は、上述した条件で行った。
 具体的には、平均結晶粒径の測定では、鋼板断面を樹脂に埋め込み研磨して硝酸電解エッチングした。次いで、JISG 0551に規定する鋼-結晶粒度の顕微鏡試験方法により平均結晶粒径を求めた。
 大傾角粒界の比率の測定では、3000個以上の結晶粒が含まれるように測定倍率を調整し、EBSP法により鋼板のミクロ組織の粒界マップを測定した。粒界マップ表示によって15°未満の小傾角粒界と15°以上の大傾角粒界を識別して、全結晶粒界に占める大傾角粒界の比率を算出した。
 割れ発生時間の測定では、上述した測定方法と同様に、ブランク径67.5mmφ,ポンチ径35mmφ,ダイス径37mmφ,しわ押さえ圧1トンの条件で絞り比(ブランク径をポンチ径で割った値)1.9の円筒深絞り加工を鋼板に対して行った。得られた成形品を48hr放置して時効割れの発生しないことを確認した。そして、成形品をJIS G 0576に規定する沸騰42%塩化マグネシウム水溶液中に浸漬して、割れ(応力腐食割れ)が発生した時間を測定した。割れの有無は、目視により判定した。
 機械的性質は、JIS13号B引張試験により評価した。
 製造条件と特性の関係を表3に示す。
 なお、表3中の『HA』は、熱延板焼鈍を示し、『FA』は、最終焼鈍を示す。『粒径』は、平均結晶粒径を示し、『大傾角比率』は、大傾角粒界(large angle grain boundary)の占める比率(%)(ratio of large angle grain boundary)を示す。『SCC発生時間』は、応力腐食割れが発生した時間を示す。『SCC発生時間』において、『↑』は、その左側に記載の数値を上回ることを意味する。また、符号*は、本実施形態にて規定された必須条件や好ましい条件から外れていることを示す。
Figure JPOXMLDOC01-appb-T000003
 試験No.1,3,8~29は、本実施形態の鋼成分を有し、本実施形態の好ましい製造条件で製造された。これら鋼板は、平均結晶粒径が10μm以下であり、かつ15°以上の大傾角粒界の比率が80%超であり、応力腐食割れ発生時間は、目標とした4hr以上を大きく上回る評価結果が得られた。さらに、これら鋼板は、0.2%耐力が400MPa未満であり、かつ均一伸びが30%超の機械的性質を有する。このため、優れた耐応力腐食割れ性と共に好ましい加工性も達成している。これより、本実施形態の鋼成分を有し、本実施形態の好ましい製造条件で製造されたオーステナイト系ステンレス鋼板では、結晶粒の微細化により、優れた耐応力腐食割れ性が発現し、耐応力腐食割れ性と加工性との両立が達成された。
 試験No.5は、本実施形態の鋼成分を有するが、最終焼鈍の焼鈍時間が1時間と短かった。このため、オーステナイトの再結晶が十分に促進されず、15°以上の大傾角粒界の比率が75%であり、80%に満たない。このため、平均結晶粒径が6μmと小さいが、応力腐食割れの発生時間は3hrとなり、目標の耐応力腐食割れ性は得られなかった。
 試験No.6は、本実施形態の鋼成分を有するが、本実施形態の好ましい製造条件から外れた条件で製造された。最終焼鈍の温度が700℃未満で低いために、冷間圧延での歪が蓄積された状態であり、オーステナイト粒の再結晶が不十分となり、15°以上の大傾角粒界の比率が80%に満たない。また、平均結晶粒径が1μmと小さいが、冷間圧延時の残留歪により、耐応力腐食割れ性が向上せず、応力腐食割れの発生時間は0.5hrとなった。更に、0.2%耐力は400MPa以上となり、鋼板は硬質化しており、加工性も低下した。
 試験No.7は、本実施形態の鋼成分を有するが、公知の焼鈍温度で製造され、最終焼鈍温度が1050℃よりも高かった。このため、平均結晶粒径が30μmであった。15°以上の大傾角粒界の比率は98%であるが、応力腐食割れ発生時間は3hrであり、結晶粒の微細化による耐応力腐食割れの向上が見られなかった。
 試験No.30,32,34,35,37は、本実施形態の条件から外れる鋼成分を有するが、本実施形態の好ましい製造条件により製造された。試験No.30,32,37では、結晶粒が微細化され、平均結晶粒径が10μm以下であった。しかし、応力腐食割れ発生時間が4hr未満となり、本実施形態の目標とする耐応力腐食割れ性の向上は見られなかった。特に、試験No.37では、Mdが40を超えているために耐応力腐食割れ性の発現が阻害されたと考えられる。試験No.34、35では、Mdが-20未満であるため、微細粒組織の形成が困難となり、平均結晶粒径は10μmよりも大きくなった。このため、応力腐食割れ発生時間が4hr未満となり、本実施形態の目標とする耐応力腐食割れ性の向上は見られなかった。
 試験No.31,33,36は、本実施形態の条件から外れる鋼成分を有し、かつ本実施形態の好ましい製造条件から外れる条件により製造された。これら鋼板の平均結晶粒径は28μmまたは30μmであり、従来から公知の成分から、予想どおり本実施形態の目標とする耐応力腐食割れ性に到達しなかった。
 本実施形態によれば、8%以下のNi量でかつ高価なMoの添加に頼らず、結晶粒を微細化することによって、オーステナイト系ステンレス鋼の欠点である応力腐食割れが克服され、耐応力腐食割れと加工性との両立を図ったオーステナイト系ステンレス鋼板が得られる。このため、本実施形態のオーステナイト系鋼板は、塩化物イオンを含む腐食環境で使用される部材などに好適に適用される。

Claims (4)

  1.  質量%にて、C:0.05%以下、Cr:14~19%、Si:2%以下、Mn:4%以下、Ni:5~8%,Cu:4%以下,及びN:0.1%以下を含み、残部がFeおよび不可避的不純物からなり、かつ下記のMdが-20~40の範囲にある鋼成分を有し、
     平均結晶粒径が10μm以下であり、かつ15°以上の大傾角粒界の占める比率が80%超であることを特徴とする耐応力腐食割れ性と加工性に優れた微細粒オーステナイト系ステンレス鋼板。
     Md=551-462(C+N)-9.2Si-8.1Mn-13.7Cr-29(Ni+Cu)-18.2Mo
  2.  前記鋼成分が、さらに質量%にて、Mo:1%以下、V:1%以下,B:0.010%以下,Nb:0.5%以下,Ti:0.5%以下,希土類元素:0.5%以下,Al:0.5%以下,Mg:0.005%以下,及びCa:0.005%以下から選択される1種または2種以上を含有していることを特徴とする請求項1に記載の耐応力腐食割れ性と加工性に優れた微細粒オーステナイト系ステンレス鋼板。
  3.  鋼板を絞り比1.5~2.0の範囲で円筒深絞り加工して成形品を作製し、前記成形品を沸騰42%塩化マグネシウム水溶液中に4hr浸漬し、前記成形品の割れの発生を確認する応力割れ試験において、割れが発生しないことを特徴とする請求項1または請求項2に記載の耐応力腐食割れ性と加工性に優れた微細粒オーステナイト系ステンレス鋼板。
  4.  引張試験によって求められる0.2%耐力が400MPa未満,均一伸びが30%超であることを特徴とする請求項1から3のいずれかに記載の耐応力腐食割れ性と加工性に優れた微細粒オーステナイト系ステンレス鋼板。
PCT/JP2010/066968 2009-12-01 2010-09-29 耐応力腐食割れ性と加工性に優れた微細粒オーステナイト系ステンレス鋼板 WO2011067979A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080054359.7A CN102753717B (zh) 2009-12-01 2010-09-29 耐应力腐蚀裂纹性和加工性优异的细粒度奥氏体系不锈钢板及其制造方法
KR1020127014003A KR101411703B1 (ko) 2009-12-01 2010-09-29 내응력 부식 균열성과 가공성이 우수한 미세립 오스테나이트계 스테인리스 강판
EP10834432.6A EP2508639B1 (en) 2009-12-01 2010-09-29 Fine grained austenitic stainless steel sheet exhibiting excellent stress corrosion cracking resistance and processability
ES10834432.6T ES2546412T3 (es) 2009-12-01 2010-09-29 Chapa de acero inoxidable austenítico, de grano fino, que exhibe una excelente resistencia al agrietamiento por corrosión bajo tensión y capacidad de tratamiento

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009273868A JP5500960B2 (ja) 2009-12-01 2009-12-01 耐応力腐食割れ性と加工性に優れた微細粒オーステナイト系ステンレス鋼板
JP2009-273868 2009-12-01

Publications (1)

Publication Number Publication Date
WO2011067979A1 true WO2011067979A1 (ja) 2011-06-09

Family

ID=44114838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066968 WO2011067979A1 (ja) 2009-12-01 2010-09-29 耐応力腐食割れ性と加工性に優れた微細粒オーステナイト系ステンレス鋼板

Country Status (6)

Country Link
EP (1) EP2508639B1 (ja)
JP (1) JP5500960B2 (ja)
KR (1) KR101411703B1 (ja)
CN (1) CN102753717B (ja)
ES (1) ES2546412T3 (ja)
WO (1) WO2011067979A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117024A (ja) * 2009-12-01 2011-06-16 Nippon Steel & Sumikin Stainless Steel Corp 耐応力腐食割れ性と加工性に優れた微細粒オーステナイト系ステンレス鋼板
TWI628296B (zh) * 2012-09-27 2018-07-01 奧托昆布公司 沃斯田鐵系不鏽鋼
JP2020084288A (ja) * 2018-11-29 2020-06-04 株式会社特殊金属エクセル ステンレス鋼帯またはステンレス鋼箔及びその製造方法
CN113201695A (zh) * 2021-04-21 2021-08-03 中国科学院金属研究所 一种超塑性成型沉淀硬化纳米晶抗菌不锈钢及其制备方法
US11597982B2 (en) 2018-09-28 2023-03-07 Japan Atomic Energy Agency Production process of fine-grained austenitic stainless steel

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101620252B1 (ko) * 2012-08-20 2016-05-12 신닛테츠스미킨 카부시키카이샤 스테인리스 강판과 그 제조 방법
JP5960809B2 (ja) 2012-09-04 2016-08-02 新日鐵住金株式会社 精密加工用ステンレス鋼板およびその製造方法
CN103540860A (zh) * 2013-09-27 2014-01-29 泰州永兴合金材料科技有限公司 一种高强度耐腐蚀的不锈钢板
SG11201701799RA (en) * 2014-09-17 2017-04-27 Nippon Steel & Sumitomo Metal Corp Austenitic stainless steel sheet
KR101659186B1 (ko) * 2014-12-26 2016-09-23 주식회사 포스코 가요성이 우수한 오스테나이트계 스테인리스강
CN104846291B (zh) * 2015-04-21 2017-11-28 宝山钢铁股份有限公司 一种高强度抗腐蚀不锈钢、不锈钢油套管及其制造方法
EP3365473B1 (en) * 2015-10-19 2020-07-29 AB Sandvik Materials Technology New austenitic stainless alloy
KR101736636B1 (ko) * 2015-12-23 2017-05-17 주식회사 포스코 방진특성이 우수한 고Mn강판 및 그 제조방법
CN108200771B (zh) * 2016-03-28 2021-02-12 Lg电子株式会社 不锈钢及由所述不锈钢构成的配管
CN106167849B (zh) * 2016-06-17 2018-05-04 浙江大学 一种高强高韧全奥氏体不锈钢的加工方法
CN108070789B (zh) * 2018-01-17 2020-04-03 山东钢铁集团日照有限公司 屈服强度不小于480MPa级超细晶特厚钢及制备方法
EP3875624A4 (en) * 2018-10-30 2022-08-31 NIPPON STEEL Stainless Steel Corporation SHEET MADE OF AUSTENITIC STAINLESS STEEL
CN111020381B (zh) * 2019-12-09 2022-01-11 宁波宝新不锈钢有限公司 一种奥氏体不锈钢及其制备方法
KR102448735B1 (ko) * 2020-09-03 2022-09-30 주식회사 포스코 오스테나이트계 스테인리스강 및 그 제조 방법
CN114507825A (zh) * 2021-12-30 2022-05-17 苏州森锋医疗器械有限公司 一种具有食品保鲜功能的奥氏体不锈钢及其热处理方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619557A (ja) 1984-06-25 1986-01-17 Kawasaki Steel Corp 耐応力腐食割れ性および耐孔食性に優れたオ−ステナイト系ステンレス鋼
JPS62180037A (ja) 1986-02-03 1987-08-07 Daido Steel Co Ltd 耐応力腐食割れ性に優れたオ−ステナイト系合金
JPS62247048A (ja) 1986-04-18 1987-10-28 Nisshin Steel Co Ltd 耐候性、耐隙間腐食性および耐応力腐食割れ性に優れたオ−ステナイト系ステンレス鋼
JPS62287051A (ja) 1986-06-03 1987-12-12 Kobe Steel Ltd 耐粒界腐食性並びに耐粒界応力腐食割れ性の優れたオ−ステナイト系ステンレス鋼
JPH04214841A (ja) * 1990-12-14 1992-08-05 Nisshin Steel Co Ltd 成形加工性に優れたエンジンガスケット用ステンレス鋼およびその製造方法
JPH08269550A (ja) 1995-03-31 1996-10-15 Nippon Steel Corp 耐粒界応力腐食割れ性に優れたオーステナイト系ステンレス鋼の製造方法
JPH10317104A (ja) 1997-05-16 1998-12-02 Nippon Steel Corp 耐粒界応力腐食割れ性に優れたオーステナイト系ステンレス鋼およびその製造方法
JP2000079405A (ja) * 1998-09-07 2000-03-21 Sumitomo Metal Ind Ltd 表面性状の良好なオーステナイト系ステンレス薄鋼板の製造方法
WO2002088410A1 (fr) 2001-04-27 2002-11-07 Sumitomo Metal Industries, Ltd. Garniture metallique, materiau brut et procedes de production
JP2005105412A (ja) * 2003-09-10 2005-04-21 Nippon Steel & Sumikin Stainless Steel Corp ステンレス鋼板及びその製造方法
JP2008157717A (ja) 2006-12-22 2008-07-10 Toshiba Corp 放射線検出器およびその製造方法
JP2009273868A (ja) 2008-04-15 2009-11-26 Kao Corp 吸収性物品
JP2009299171A (ja) 2008-06-17 2009-12-24 Nippon Steel & Sumikin Stainless Steel Corp 微細粒組織を有するプレス成形用オーステナイト系ステンレス鋼板およびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4578296B2 (ja) * 2005-03-18 2010-11-10 日新製鋼株式会社 エアコン四方弁のバルブシート用鋼板
JP4503483B2 (ja) * 2005-04-14 2010-07-14 日立Geニュークリア・エナジー株式会社 被溶接材とそれを用いた溶接構造物及び高耐食性オーステナイト系ステンレス鋼
KR101185978B1 (ko) * 2007-08-02 2012-09-26 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 내식성과 가공성이 우수한 페라이트?오스테나이트계 스테인리스 강 및 그 제조 방법
JP5500960B2 (ja) * 2009-12-01 2014-05-21 新日鐵住金ステンレス株式会社 耐応力腐食割れ性と加工性に優れた微細粒オーステナイト系ステンレス鋼板

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619557A (ja) 1984-06-25 1986-01-17 Kawasaki Steel Corp 耐応力腐食割れ性および耐孔食性に優れたオ−ステナイト系ステンレス鋼
JPS62180037A (ja) 1986-02-03 1987-08-07 Daido Steel Co Ltd 耐応力腐食割れ性に優れたオ−ステナイト系合金
JPS62247048A (ja) 1986-04-18 1987-10-28 Nisshin Steel Co Ltd 耐候性、耐隙間腐食性および耐応力腐食割れ性に優れたオ−ステナイト系ステンレス鋼
JPS62287051A (ja) 1986-06-03 1987-12-12 Kobe Steel Ltd 耐粒界腐食性並びに耐粒界応力腐食割れ性の優れたオ−ステナイト系ステンレス鋼
JPH04214841A (ja) * 1990-12-14 1992-08-05 Nisshin Steel Co Ltd 成形加工性に優れたエンジンガスケット用ステンレス鋼およびその製造方法
JPH08269550A (ja) 1995-03-31 1996-10-15 Nippon Steel Corp 耐粒界応力腐食割れ性に優れたオーステナイト系ステンレス鋼の製造方法
JPH10317104A (ja) 1997-05-16 1998-12-02 Nippon Steel Corp 耐粒界応力腐食割れ性に優れたオーステナイト系ステンレス鋼およびその製造方法
JP2000079405A (ja) * 1998-09-07 2000-03-21 Sumitomo Metal Ind Ltd 表面性状の良好なオーステナイト系ステンレス薄鋼板の製造方法
WO2002088410A1 (fr) 2001-04-27 2002-11-07 Sumitomo Metal Industries, Ltd. Garniture metallique, materiau brut et procedes de production
JP2005105412A (ja) * 2003-09-10 2005-04-21 Nippon Steel & Sumikin Stainless Steel Corp ステンレス鋼板及びその製造方法
JP2008157717A (ja) 2006-12-22 2008-07-10 Toshiba Corp 放射線検出器およびその製造方法
JP2009273868A (ja) 2008-04-15 2009-11-26 Kao Corp 吸収性物品
JP2009299171A (ja) 2008-06-17 2009-12-24 Nippon Steel & Sumikin Stainless Steel Corp 微細粒組織を有するプレス成形用オーステナイト系ステンレス鋼板およびその製造方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Nishiyama Memorial Technology Course", vol. 115, IRON AND STEEL INST. OF JAPAN, article "Recent Advances in Technology of Producing of Stainless Steel"
"Stainless Steel Handbook", pages: 560
IRON AND STEEL, vol. 78, 1992, pages 141 - 148
IRON AND STEEL, vol. 80, 1994, pages 249 - 253
NIPPON KOKAN TECHNICAL REPORT, 1980, pages 51 - 60
See also references of EP2508639A4 *
YOICHI TOKUNAGA: "Austenitic stainless steels having ultra-fine crystal grains", THE JAPAN SOCIETY FOR HEARTTREATMENT KOEN TAIKAI KOEN GAIYOSHU, vol. 26, May 1988 (1988-05-01), pages 71 - 74, XP008160338 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117024A (ja) * 2009-12-01 2011-06-16 Nippon Steel & Sumikin Stainless Steel Corp 耐応力腐食割れ性と加工性に優れた微細粒オーステナイト系ステンレス鋼板
TWI628296B (zh) * 2012-09-27 2018-07-01 奧托昆布公司 沃斯田鐵系不鏽鋼
US11597982B2 (en) 2018-09-28 2023-03-07 Japan Atomic Energy Agency Production process of fine-grained austenitic stainless steel
JP2020084288A (ja) * 2018-11-29 2020-06-04 株式会社特殊金属エクセル ステンレス鋼帯またはステンレス鋼箔及びその製造方法
CN113201695A (zh) * 2021-04-21 2021-08-03 中国科学院金属研究所 一种超塑性成型沉淀硬化纳米晶抗菌不锈钢及其制备方法

Also Published As

Publication number Publication date
KR20120093996A (ko) 2012-08-23
KR101411703B1 (ko) 2014-06-25
CN102753717A (zh) 2012-10-24
JP2011117024A (ja) 2011-06-16
EP2508639A1 (en) 2012-10-10
ES2546412T3 (es) 2015-09-23
EP2508639A4 (en) 2014-08-13
JP5500960B2 (ja) 2014-05-21
EP2508639B1 (en) 2015-08-05
CN102753717B (zh) 2015-02-11

Similar Documents

Publication Publication Date Title
WO2011067979A1 (ja) 耐応力腐食割れ性と加工性に優れた微細粒オーステナイト系ステンレス鋼板
US20190226068A1 (en) Process for manufacturing hot-rolled plate, strip or coil made of duplex stainless steel
KR100912570B1 (ko) 성형성이 뛰어난 고강도 용융아연도금강판 및 그 제조방법
JP5335503B2 (ja) プレス成形性に優れた二相ステンレス鋼板
JP6096907B2 (ja) オーステナイト系ステンレス鋼
JP5315811B2 (ja) 耐硫酸腐食性に優れたフェライト系ステンレス鋼板
JP5308726B2 (ja) 微細粒組織を有するプレス成形用オーステナイト系ステンレス鋼板およびその製造方法
KR20140014275A (ko) 내 리징성이 우수한 페라이트계 스테인리스 강판 및 그 제조 방법
US20230001504A1 (en) Carbon steel and austenitic stainless steel rolling clad plate manufacturing method therefor
JP6811112B2 (ja) フェライト・オーステナイト2相ステンレス鋼板およびその製造方法
KR101850231B1 (ko) 페라이트계 스테인리스강 및 그 제조 방법
JP2011219809A (ja) 高強度鋼板
AU2019200246A1 (en) Steel material and expandable oil country tubular goods
US20220010451A1 (en) Ferritic stainless steel having improved corrosion resistance, and manufacturing method therefor
JP2011208244A (ja) イヤリングの小さいプレス成形用フェライト・オーステナイト系ステンレス鋼板およびその製造方法
CN112930409B (zh) 具有高扩孔率的冷轧退火钢板及其制造方法
CN115466902B (zh) 耐晶间腐蚀优良的含铌经济型高塑性双相不锈钢及其制造方法
JP4606113B2 (ja) 比例限界応力の高いオーステナイト系ステンレス鋼材および製造法
JP2003213376A (ja) 二次穴拡げ性に優れたフェライト系ステンレス鋼板およびその製造方法
CN111479944A (zh) 具有优异的冲击韧性的基于铁素体的不锈钢及其生产方法
JP6895864B2 (ja) せん断加工面の耐食性に優れた二相ステンレス鋼、二相ステンレス鋼板及び二相ステンレス線状鋼材
JP2010202966A (ja) 引張特性に優れた高耐食性ステンレス鋼
US20230287549A1 (en) Austenitic stainless steel with improved deep drawing
KR20140083166A (ko) 페라이트계 스테인리스강 및 그 제조방법
JP2012201924A (ja) ステンレス鋼板及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080054359.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10834432

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127014003

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010834432

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE