WO2011067974A1 - Pfcコンバータ - Google Patents
Pfcコンバータ Download PDFInfo
- Publication number
- WO2011067974A1 WO2011067974A1 PCT/JP2010/066296 JP2010066296W WO2011067974A1 WO 2011067974 A1 WO2011067974 A1 WO 2011067974A1 JP 2010066296 W JP2010066296 W JP 2010066296W WO 2011067974 A1 WO2011067974 A1 WO 2011067974A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- capacitor
- pfc converter
- circuit
- series
- switch element
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/42—Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
- H02M1/4208—Arrangements for improving power factor of AC input
- H02M1/4258—Arrangements for improving power factor of AC input using a single converter stage both for correction of AC input power factor and generation of a regulated and galvanically isolated DC output voltage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Definitions
- This invention relates to a PFC converter, and more particularly to a PFC converter having a transformer.
- the switching power supply that performs power conversion while maintaining a high power factor has a PFC converter in the input stage.
- FIG. 1 is a circuit diagram of a conventional general PFC converter.
- This PFC converter includes a boost chopper circuit including a capacitor C1, a choke coil L1, a switching element Q1, a diode D1, and a capacitor C2, and a diode bridge that rectifies the voltage of the commercial AC power supply AC.
- a switching control circuit is connected to the switching element Q1 so that the input current to the diode bridge DB is a sine wave current having the same phase as the input voltage.
- a conventional general PFC converter is a step-up chopper circuit as shown in FIG. 1, and a DC-DC converter is connected to the output side of the PFC converter so as to output a predetermined DC voltage to a load. ing. That is, one power supply circuit is composed of the PFC converter and the DC-DC converter.
- the DC-DC converter may also serve as the PFC converter.
- an insulating transformer is used to insulate a load connected to the output of the converter from the commercial power source.
- a transformer is also used for the purpose of stepping down the output voltage.
- a PFC converter provided with a transformer is disclosed in Patent Document 2, for example.
- An object of the present invention is to provide a PFC converter that suppresses the superimposed voltage generated by the inrush current and solves the above-mentioned problems.
- a rectifier circuit that rectifies an AC voltage input from an AC input power source, a first series circuit including a primary winding of a transformer and a switching element is connected to an output portion of the rectifier circuit.
- a filtering capacitor connected to the output of the rectifying circuit, and a rectifying / smoothing circuit connected to the secondary winding of the transformer, and comprising a rectifying diode and a smoothing capacitor,
- a second series circuit in which a switch element and a second capacitor that are forward when a charging voltage is applied to the filter capacitor is connected in series is connected in parallel to the filter capacitor.
- the switch element is a diode that becomes forward when a charging voltage is applied to the filter capacitor.
- the switch element is a transistor that is turned on when the AC voltage is supplied from the AC input power source.
- a resistor may be connected in series with the second capacitor and the switch element.
- a discharge circuit for discharging the electric charge may be connected in parallel to the second capacitor.
- a discharge circuit for discharging the charge of the second capacitor may be connected in parallel to the switch element or a third series circuit in which the switch element and the primary winding of the transformer are connected in series. Good.
- the transformer is, for example, an insulating transformer in which the primary winding and the secondary winding are provided in an insulated state.
- the superimposed voltage generated by the inrush current flowing in the line when the input power is turned on is suppressed. Therefore, it is not necessary to use an element with a large rated voltage for the capacitor and the switching element, and the cost can be reduced.
- FIG. 1 is a circuit diagram of a PFC converter 101 according to a first embodiment.
- FIG. It is a circuit diagram of PFC converter 102 concerning a 2nd embodiment.
- FIG. 6 is a circuit diagram of a PFC converter 103 according to a third embodiment.
- FIG. 10 is a circuit diagram of a PFC converter 105 according to a fifth embodiment.
- FIG. 10 is a circuit diagram of a PFC converter 106 according to a sixth embodiment.
- FIG. 10 is a circuit diagram of a PFC converter 107 according to a seventh embodiment.
- FIG. 10 is a circuit diagram of a PFC converter according to an eighth embodiment.
- FIG. 10 is a circuit diagram of a PFC converter 109 according to a ninth embodiment.
- FIG. 2 is a circuit diagram of the PFC converter 101 according to the first embodiment.
- commercial AC power is input to input terminals Pi and Pi, and loads are connected to output terminals Po and Po.
- This load is, for example, an LED of an LED lighting device.
- a diode bridge DB which is a rectifier circuit, is connected to the input terminals Pi and Pi.
- a first series circuit including the primary winding Np of the transformer T1 and the switching element Q1 is connected to the output side of the diode bridge DB.
- a filter capacitor C1 is connected to the output portion of the diode bridge DB.
- a rectifying / smoothing circuit including a rectifying diode D2 and a smoothing capacitor C2 is connected to the secondary winding Ns of the transformer T1.
- a second series circuit in which a diode D3 and a second capacitor C3 are connected in series is connected in parallel to the filter capacitor.
- the diode D3 is connected in a forward direction when a charging voltage is applied to the filter capacitor C1.
- a rectifying / smoothing circuit including a diode D4 and a capacitor C4 is connected to the control winding Nb of the transformer T1.
- the output voltage of the rectifying / smoothing circuit is applied to the switching control circuit 11 as a power supply voltage.
- the switching control circuit 11 outputs an on / off control signal to the switching element Q1.
- the switching control circuit 11 receives the output voltage of the input voltage detection circuit 12, the output voltage of the current detection resistor R1, and the output voltage (power inversion timing signal) of the control winding Nb, and turns on the switching element Q1 based on them. Control off / on. This makes it act as a PFC converter. A method of operating as a PFC converter based on these signals is known.
- the charging time constant becomes large, and the time during which the charging current flows becomes long. That is, the “dt” of the superimposed voltage (L ⁇ di / dt) generated by the inductance component such as a line and a line filter (not shown) connected to the line and the charging current is increased. As a result, the superimposed voltage (L ⁇ di / dt) becomes small.
- the capacity of the capacitor C3 is larger than several times the capacity of the filter capacitor C1. As the capacity of the capacitor C3 is increased, the charging time constant can be increased, and the effect of suppressing the superimposed voltage is improved accordingly.
- the charge of the filter capacitor C1 is discharged through a path of the filter capacitor C1 ⁇ the primary winding Np of the transformer T1 ⁇ the switching element Q1 ⁇ the resistor R1 ⁇ C1.
- a diode D3 is connected in series with the capacitor C3, and the discharge current does not flow through the diode D3. Therefore, even if the capacity of the capacitor C3 is increased, the power factor does not decrease because the operation of the PFC circuit is not affected.
- FIG. 3 is a circuit diagram of the PFC converter 102 according to the second embodiment.
- a difference from the PFC converter 101 shown in FIG. 2 in the first embodiment is that a second series circuit connected in parallel to the filter capacitor C1 includes a diode D3, a second capacitor C3, and a resistor R2. This is a circuit connected in series.
- the peak of the charging current to the capacitor C3 can be limited even if the capacity of the capacitor C3 is increased. Therefore, it is not necessary to use an element with a large rated current as an element in the charging current path such as the diode bridge DB and the diode D3, and the cost can be reduced.
- FIG. 4 is a circuit diagram of the PFC converter 103 according to the third embodiment. A difference from the PFC converter 101 shown in FIG. 2 in the first embodiment is that a resistor R3 is connected in parallel to a capacitor C3.
- the resistor R3 actively constitutes a discharge path for the charge of the capacitor C3. Therefore, the charge once charged in the capacitor C3 when the commercial AC power supply AC is turned on is quickly discharged when the commercial AC power supply AC is turned off. Therefore, even if the commercial AC power supply AC is intermittently connected to the input terminals Pi and Pi of the PFC converter 103 within a short time, a predetermined charging current flows to the capacitor C3, so that the effect of suppressing the superimposed current can be maintained.
- FIG. 5 is a circuit diagram of the PFC converter 104 according to the fourth embodiment.
- the second embodiment is different from the PFC converter 102 shown in FIG. 3 in that a second series circuit connected in parallel to the filter capacitor C1 includes a diode D3, a second capacitor C3, and a negative characteristic thermistor.
- Rt is a circuit connected in series.
- a resistor R3 is connected in parallel to the capacitor C3.
- the inrush of the charging current to the capacitor C3 can be more effectively suppressed at a low temperature such as when the power is turned on.
- FIG. 6 is a circuit diagram of the PFC converter 105 according to the fifth embodiment.
- the fourth embodiment differs from the PFC converter 104 shown in FIG. 5 in that a resistor R3 is connected in parallel to a series circuit of a capacitor C3 and a thermistor Rt.
- the thermistor Rt is interposed in the charge charging and discharging paths of the capacitor C3, so that the charging current and discharging current can be effectively suppressed.
- FIG. 7 is a circuit diagram of the PFC converter 106 according to the sixth embodiment.
- the second series circuit connected in parallel to the filter capacitor C1 is a series circuit of the second capacitor C3 and the switch element Q2. Is a point.
- the switch element Q2 is a MOS-FET and includes a parasitic diode D5 between its drain and source.
- the switch element Q2 is ON / OFF controlled by the switch element control circuit 13. Specifically, when it is detected that the commercial AC power supply AC is turned on, the switch element Q2 is turned on and turned off before the switching control circuit 11 is operated. That is, the second capacitor C3 is connected in parallel to the filter capacitor C1 only when the commercial AC power supply AC is turned on.
- the parasitic diode D5 of the switch element Q2 constitutes a path for discharging the charge of the capacitor C3, the charge of the capacitor C3 is discharged after the switch element Q2 is turned off. Therefore, it is possible to prepare for the next turn-on of the commercial AC power supply AC.
- MOS-FET switch element is used, but a bipolar transistor and a diode may be used.
- FIG. 8 is a circuit diagram of the PFC converter 107 according to the seventh embodiment.
- the sixth embodiment is different from the PFC converter 106 shown in FIG. 7 in that the second series circuit connected in parallel to the filter capacitor C1 is a series circuit of the second capacitor C3 and the switch element SW1. Is a point.
- the switch element SW1 is, for example, a relay switch. In this way, a switch other than the semiconductor switch can be used.
- FIG. 9 is a circuit diagram of the PFC converter 108 according to the eighth embodiment.
- the third embodiment differs from the PFC converter 103 shown in FIG. 4 in that a resistor R4 is connected in parallel to the diode D3.
- the resistor R4 constitutes a discharge path for charge of the capacitor C3.
- this discharge is not performed in the vicinity of the peak of the rectified voltage that is the output of the diode bridge DB, but is performed only at times other than near the peak. Therefore, the loss due to the discharge of the charge once charged in the capacitor C3 when the commercial AC power supply AC is turned on can be more effectively suppressed.
- FIG. 10 is a circuit diagram of the PFC converter 109 according to the ninth embodiment.
- the third embodiment differs from the PFC converter 103 shown in FIG. 4 in that a diode D6 and a Zener diode ZD are connected to a third series circuit in which the diode D3 and the primary winding Np of the transformer T1 are connected in series.
- a fourth series circuit in which and are connected in series is a circuit connected in parallel.
- the fourth series circuit constitutes a discharge path for the charge of the capacitor C3 when the switching element Q1 is on.
- this discharge is performed only when the Zener breakdown voltage Vzd of the Zener diode ZD exceeds the rectified voltage that is the output of the diode bridge DB. Therefore, the loss due to the discharge of the charge once charged in the capacitor C3 when the commercial AC power supply AC is turned on can be more effectively suppressed.
- the insulation transformer was used, it can apply similarly to the thing using a non-insulation type transformer.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Rectifiers (AREA)
- Dc-Dc Converters (AREA)
Abstract
Description
トランスを有するPFCコンバータは、図1に示したチョークコイルL1がトランスの1次巻線に置換され、図1に示した整流用ダイオードD1及び平滑用コンデンサC2はトランスの二次側に接続されることになる。
前記フィルタ用コンデンサの充電電圧印加時に順方向となるスイッチ素子と第2のコンデンサとが直列に接続された第2の直列回路が、前記フィルタ用コンデンサに並列に接続されている。
図2は第1の実施形態に係るPFCコンバータ101の回路図である。
PFCコンバータ101は、入力端子Pi,Piに商用交流電源が入力され、出力端子Po,Poに負荷が接続される。この負荷は例えばLED照明装置のLEDである。
図3は第2の実施形態に係るPFCコンバータ102の回路図である。
第1の実施形態で図2に示したPFCコンバータ101と異なるのは、前記フィルタ用コンデンサC1に並列接続されている第2の直列回路が、ダイオードD3、第2のコンデンサC3、及び抵抗R2が直列接続された回路である点である。
図4は第3の実施形態に係るPFCコンバータ103の回路図である。
第1の実施形態で図2に示したPFCコンバータ101と異なるのは、コンデンサC3に抵抗R3が並列接続されている点である。
図5は第4の実施形態に係るPFCコンバータ104の回路図である。
第2の実施形態で図3に示したPFCコンバータ102と異なるのは、前記フィルタ用コンデンサC1に並列接続されている第2の直列回路が、ダイオードD3、第2のコンデンサC3、及び負特性サーミスタRtが直列接続された回路である点である。また、コンデンサC3には抵抗R3が並列に接続されている。
図6は第5の実施形態に係るPFCコンバータ105の回路図である。
第4の実施形態で図5に示したPFCコンバータ104と異なるのは、コンデンサC3とサーミスタRtとの直列回路に対して抵抗R3を並列接続した点である。
図7は第6の実施形態に係るPFCコンバータ106の回路図である。
第1の実施形態で図2に示したPFCコンバータ101と異なるのは、フィルタ用コンデンサC1に並列接続されている第2の直列回路が、第2のコンデンサC3及びスイッチ素子Q2の直列回路である点である。スイッチ素子Q2はMOS-FETであり、そのドレイン・ソース間に寄生ダイオードD5を備えている。
図8は第7の実施形態に係るPFCコンバータ107の回路図である。
第6の実施形態で図7に示したPFCコンバータ106と異なるのは、フィルタ用コンデンサC1に並列接続されている第2の直列回路が、第2のコンデンサC3及びスイッチ素子SW1の直列回路である点である。スイッチ素子SW1は例えばリレーのスイッチである。
このように半導体スイッチ以外のスイッチを用いることもできる。
図9は第8の実施形態に係るPFCコンバータ108の回路図である。
第3の実施形態で図4に示したPFCコンバータ103と異なるのは、ダイオードD3に抵抗R4が並列接続された回路である点である。
図10は第9の実施形態に係るPFCコンバータ109の回路図である。
第3の実施形態で図4に示したPFCコンバータ103と異なるのは、ダイオードD3とトランスT1の1次巻線Npとが直列に接続された第3の直列回路に、ダイオードD6とツェナーダイオードZDとが直列に接続された第4の直列回路が、並列に接続された回路である点である。
C1…フィルタ用コンデンサ
C2…平滑用コンデンサ
C3…コンデンサ
D2…整流用ダイオード
D5…寄生ダイオード
DB…ダイオードブリッジ
Nb…制御巻線
Np…1次巻線
Ns…2次巻線
Pi,Pi…入力端子
Po,Po…出力端子
Q1…スイッチング素子
Q2…スイッチ素子
R1…電流検出抵抗
Rt…負特性サーミスタ
SW1…スイッチ素子
T1…トランス
ZD…ツェナーダイオード
11…スイッチング制御回路
12…入力電圧検出回路
13…スイッチ素子制御回路
101~109…PFCコンバータ
Claims (7)
- 商用交流電源から入力される交流電圧を整流する整流回路と、
トランスの1次巻線とスイッチング素子とを含む第1の直列回路が前記整流回路の出力部に接続され、
前記整流回路の出力部に接続されたフィルタ用コンデンサと、
前記トランスの2次巻線に接続された、整流用ダイオードと平滑用コンデンサからなる整流平滑回路と、を備え、
前記フィルタ用コンデンサの充電電圧印加時に順方向となるスイッチ素子と第2のコンデンサとが直列に接続された第2の直列回路が前記フィルタ用コンデンサに並列に接続された、PFCコンバータ。 - 前記スイッチ素子は、前記フィルタ用コンデンサの充電電圧印加時に順方向となるダイオードである、請求項1に記載のPFCコンバータ。
- 前記スイッチ素子は、前記商用交流電源からの前記交流電圧の投入時にオンするトランジスタである、請求項1に記載のPFCコンバータ。
- 前記第2の直列回路は、前記第2のコンデンサ及び前記スイッチ素子に対して直列に接続された抵抗を含む、請求項1乃至3のうち何れかに記載のPFCコンバータ。
- 前記第2のコンデンサに並列接続され、前記第2のコンデンサの電荷を放電する放電用回路が設けられた、請求項1乃至4のうち何れかに記載のPFCコンバータ。
- 前記スイッチ素子又は、前記スイッチ素子と前記トランスの1次巻線とが直列に接続された第3の直列回路に並列接続され、前記第2のコンデンサの電荷を放電する放電用回路が設けられた、請求項1乃至4のうち何れかに記載のPFCコンバータ。
- 前記トランスは、前記1次巻線と前記2次巻線とが絶縁状態に設けられた、請求項1乃至6のうち何れかに記載のPFCコンバータ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011544211A JP5668692B2 (ja) | 2009-12-04 | 2010-09-21 | Pfcコンバータ |
CN2010800543313A CN102754325A (zh) | 2009-12-04 | 2010-09-21 | Pfc转换器 |
US13/477,363 US9048753B2 (en) | 2009-12-04 | 2012-05-22 | PFC converter including transformer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009276173 | 2009-12-04 | ||
JP2009-276173 | 2009-12-04 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/477,363 Continuation US9048753B2 (en) | 2009-12-04 | 2012-05-22 | PFC converter including transformer |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011067974A1 true WO2011067974A1 (ja) | 2011-06-09 |
Family
ID=44114833
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/066296 WO2011067974A1 (ja) | 2009-12-04 | 2010-09-21 | Pfcコンバータ |
Country Status (4)
Country | Link |
---|---|
US (1) | US9048753B2 (ja) |
JP (1) | JP5668692B2 (ja) |
CN (1) | CN102754325A (ja) |
WO (1) | WO2011067974A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109617385A (zh) * | 2019-02-12 | 2019-04-12 | 武汉永力睿源科技有限公司 | 一种电容预充电电路 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202013102618U1 (de) * | 2013-06-18 | 2014-09-19 | Weidmüller Interface GmbH & Co. KG | Netzteil, insbesondere Weitbereichsnetzteil |
KR20150074395A (ko) | 2013-12-24 | 2015-07-02 | 현대자동차주식회사 | 파워 팩터 코렉터의 출력 커패시터의 정전용량 값 변경 방법 및 변경 회로 |
US9621047B2 (en) * | 2014-10-10 | 2017-04-11 | Dell Products L.P. | Systems and methods for measuring power system current using OR-ing MOSFETs |
CA3043933C (en) | 2016-12-20 | 2021-08-03 | Verb Surgical Inc. | Sterile adapter control system and communication interface for use in a robotic surgical system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0639270U (ja) * | 1992-10-30 | 1994-05-24 | 株式会社ダイヘン | アーク加工用電源装置 |
JPH0880055A (ja) * | 1994-08-31 | 1996-03-22 | Toshiba Corp | インバータ装置 |
JP2006166656A (ja) * | 2004-12-09 | 2006-06-22 | Daikin Ind Ltd | 多相電流供給回路、駆動装置、圧縮機、及び空気調和機 |
JP2008161031A (ja) * | 2006-12-25 | 2008-07-10 | Yasuo Sano | フライバックPFC(PowerFactorCorrection)・コンバーターにおける効率化技術 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06311737A (ja) | 1993-04-15 | 1994-11-04 | Nippondenso Co Ltd | 直流直流変換器 |
FR2740627B1 (fr) * | 1995-10-30 | 1998-01-23 | Sgs Thomson Microelectronics | Alimentation a decoupage a correction de facteur de puissance |
SE510404C2 (sv) * | 1995-11-03 | 1999-05-17 | Ericsson Telefon Ab L M | Anordning och förfaranden för att mata energi från en växelspänningskälla |
JP4062307B2 (ja) * | 2002-05-30 | 2008-03-19 | サンケン電気株式会社 | コンバータ |
JP3772898B2 (ja) * | 2004-09-08 | 2006-05-10 | ダイキン工業株式会社 | 多相電流供給回路及び駆動装置 |
US7378805B2 (en) | 2005-03-22 | 2008-05-27 | Fairchild Semiconductor Corporation | Single-stage digital power converter for driving LEDs |
CN1913319A (zh) * | 2005-06-30 | 2007-02-14 | 索尼株式会社 | 开关电源电路 |
TW200717986A (en) * | 2005-06-30 | 2007-05-01 | Sony Corp | Switching power supply circuit |
CN102224668A (zh) * | 2008-11-25 | 2011-10-19 | 株式会社村田制作所 | Pfc变换器 |
JP5581808B2 (ja) * | 2010-05-27 | 2014-09-03 | サンケン電気株式会社 | 直流電源装置 |
-
2010
- 2010-09-21 JP JP2011544211A patent/JP5668692B2/ja not_active Expired - Fee Related
- 2010-09-21 CN CN2010800543313A patent/CN102754325A/zh active Pending
- 2010-09-21 WO PCT/JP2010/066296 patent/WO2011067974A1/ja active Application Filing
-
2012
- 2012-05-22 US US13/477,363 patent/US9048753B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0639270U (ja) * | 1992-10-30 | 1994-05-24 | 株式会社ダイヘン | アーク加工用電源装置 |
JPH0880055A (ja) * | 1994-08-31 | 1996-03-22 | Toshiba Corp | インバータ装置 |
JP2006166656A (ja) * | 2004-12-09 | 2006-06-22 | Daikin Ind Ltd | 多相電流供給回路、駆動装置、圧縮機、及び空気調和機 |
JP2008161031A (ja) * | 2006-12-25 | 2008-07-10 | Yasuo Sano | フライバックPFC(PowerFactorCorrection)・コンバーターにおける効率化技術 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109617385A (zh) * | 2019-02-12 | 2019-04-12 | 武汉永力睿源科技有限公司 | 一种电容预充电电路 |
CN109617385B (zh) * | 2019-02-12 | 2023-12-15 | 武汉永力睿源科技有限公司 | 一种电容预充电电路 |
Also Published As
Publication number | Publication date |
---|---|
JP5668692B2 (ja) | 2015-02-12 |
US20120230060A1 (en) | 2012-09-13 |
US9048753B2 (en) | 2015-06-02 |
JPWO2011067974A1 (ja) | 2013-04-18 |
CN102754325A (zh) | 2012-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9543839B2 (en) | Voltage stabilizing circuit | |
JP2016019463A (ja) | パルス幅変調共振コンバータおよびこれを利用した車両用充電器 | |
JP2016100989A (ja) | 直流変換装置 | |
JP5668692B2 (ja) | Pfcコンバータ | |
JP2017028873A (ja) | 電力変換装置 | |
JP6025885B2 (ja) | 電力変換装置 | |
WO2014020875A1 (ja) | 電源装置 | |
JP6300664B2 (ja) | 鉄道車両用電源回路 | |
US11356029B2 (en) | Rectifying circuit and switched-mode power supply incorporating rectifying circuit | |
JP6393962B2 (ja) | スイッチング電源装置 | |
US10014765B2 (en) | Single stage power factor correction converter | |
US11190107B2 (en) | Auxiliary power supply circuit, power supply apparatus, and power supply circuit | |
WO2017051814A1 (ja) | 電源装置 | |
WO2011161728A1 (ja) | スイッチング電源装置およびこれを用いた電源システム、電子装置 | |
EP3991286A1 (en) | Converter with hold-up circuit and inrush-control circuit | |
JP6371226B2 (ja) | 逆電流保護付きスイッチング電源装置 | |
JP2006333628A (ja) | 電源装置とその起動方法 | |
JP2015104298A (ja) | 車載用電圧変換装置、および車載装置 | |
JP6266323B2 (ja) | 車載用電圧変換装置、および車載装置 | |
JP5450255B2 (ja) | スイッチング電源装置 | |
KR101213172B1 (ko) | 레이저 생성용 전원 공급 장치 | |
JP2021118565A (ja) | 電源装置 | |
JP2014103756A (ja) | 電力変換装置およびそれを用いた空気調和機 | |
WO2018066063A1 (ja) | 電力変換装置 | |
JP2013183533A (ja) | 電源装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080054331.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10834427 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011544211 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10834427 Country of ref document: EP Kind code of ref document: A1 |