JP6300664B2 - 鉄道車両用電源回路 - Google Patents

鉄道車両用電源回路 Download PDF

Info

Publication number
JP6300664B2
JP6300664B2 JP2014128188A JP2014128188A JP6300664B2 JP 6300664 B2 JP6300664 B2 JP 6300664B2 JP 2014128188 A JP2014128188 A JP 2014128188A JP 2014128188 A JP2014128188 A JP 2014128188A JP 6300664 B2 JP6300664 B2 JP 6300664B2
Authority
JP
Japan
Prior art keywords
voltage
power supply
circuit
smoothing capacitor
railway vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014128188A
Other languages
English (en)
Other versions
JP2016010193A (ja
Inventor
祐輔 森本
祐輔 森本
知之 川上
知之 川上
太 大川
太 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014128188A priority Critical patent/JP6300664B2/ja
Publication of JP2016010193A publication Critical patent/JP2016010193A/ja
Application granted granted Critical
Publication of JP6300664B2 publication Critical patent/JP6300664B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、直流電圧を受け、直流電源電圧を生成する鉄道車両用電源回路に関するものである。
従来、鉄道車両用空調システムでは、圧縮機やファンが必要とする電力を生成・供給するために、架線電圧や補助電源装置(SIV:Static InVerter/APU:Auxiliary Power Unit)の主電源から供給されるDCまたはAC電力の電力変換を空調システムの主回路が行なう。主回路は、コンバータやインバータにより電力変換を行なっている。
主回路のコンバータやインバータを制御する制御回路には、複数の制御用電圧が必要である。この制御用電圧を生成するために鉄道車両用電源回路(制御電源回路とも称される)が鉄道車両に搭載される。鉄道車両用電源回路は、直流電圧(例えば、バッテリ電圧)を、絶縁型スイッチング電源(例えば、フライバックコンバータやフォワードコンバータ)にて、電力変換を行い、互いに絶縁された複数の制御用電圧を生成している。
鉄道車両から供給されるバッテリ電圧は、電圧変動が大きく、また鉄道車両メーカによって仕様が異なる。そのため、後段の絶縁型スイッチング電源は鉄道車両メーカ毎に異なったものが必要になる。一方、そういった問題に対して、バッテリと絶縁型スイッチング電源との間に昇降圧チョッパ回路を接続し、様々な仕様のバッテリ電圧を予め設定した所定の電圧(=後段の絶縁型スイッチング電源の動作電圧)に変換することで、後段の絶縁型スイッチング電源を共通化させる場合がある。
なお、昇降圧チョッパ回路は、バッテリ電圧が所定の電圧より高い場合は、降圧動作を行ない、バッテリ電圧が所定の電圧より低い場合は、昇圧動作を行なうことができるように構成されている。
このような昇降圧チョッパ回路を用いる構成として、特開2007−166783(特許文献1)には、バイパス回路を設け、昇圧チョッパ回路を必要に応じてバイパスすることが開示されている。
特開2007−166783号公報
昇降圧チョッパ回路の後段に接続された絶縁型スイッチング電源の入力部は、電圧平滑化のために平滑コンデンサが接続されている。バイパス回路としてバイパスリレーを用い、昇降圧チョッパ回路をバイパスさせる際に、鉄道車両用電源回路の起動時には平滑コンデンサに充電がされていない。このときにバイパスリレーをオン(導通)させると、後段に接続された平滑コンデンサには、コンデンサ充電のための大きな突入電流が流れる。
そのため、バイパスリレーは突入電流に対する耐量が大きなものが必要となり、バイパスリレーの大型化、高コストが問題となる。上記の特開2007−166783号公報には、このような突入電流に対する記載は無く、改善の余地がある。
本発明は、上記のような問題点を解決するためになされたものであり、大型化を抑制し、低コストな鉄道車両用電源回路を提供することにある。
この発明は、鉄道車両用電源回路であって、昇降圧チョッパ回路と、バイパスリレーと、スイッチング電源と、平滑コンデンサとを備える。昇降圧チョッパ回路は、入力ノードの直流電圧を昇圧または降圧し、入力ノードの直流電圧と出力ノードの直流電圧との間の電圧変換が可能に構成される。バイパスリレーは、昇降圧チョッパ回路の入力ノードと出力ノードとの間の接続および切り離しが可能に構成される。スイッチング電源は、昇降圧チョッパ回路またはバイパスリレーから供給される直流電圧を受けて電源電源電圧を発生するように構成される。平滑コンデンサは、昇降圧チョッパ回路の出力ノードとスイッチング電源の入力ノードとを結ぶ経路に接続される。
昇降圧チョッパ回路は、平滑コンデンサの電圧が昇降圧チョッパ回路の入力ノードの電圧よりも低い電圧である場合に、バイパスリレーを接続するときには、バイパスリレーを接続する前に降圧動作を実行し、平滑コンデンサに充電を行なうことによって平滑コンデンサの電圧を昇降圧チョッパ回路の入力ノードの電圧に近づける。
本発明によれば、鉄道車両用電源回路の起動時には、昇降圧チョッパ回路を降圧動作させて平滑コンデンサを充電することにより、バイパスリレー接続時の突入電流が抑制される。そのため、突入電流抑制のために抵抗やリレー等の部品を追加させる必要が無くなり、電源回路の小型化、低コスト化が実現できる。
本発明の実施の形態1の鉄道車両用電源回路の構成を示した回路図である。 鉄道車両用電源回路の動作モードの切り替え制御を説明するためのフローチャートである。 突入電流防止用抵抗を設けた検討例を示した回路図である。 実施の形態1において制御回路が実行するバイパスモードでの制御を説明するためのフローチャートである。 実施の形態2の鉄道車両用電源回路の構成を示した回路図である。 実施の形態2において実行される磁気飽和抑制処理を説明するためのフローチャートである。 実施の形態3の鉄道車両用電源回路の構成を示した回路図である。 実施の形態3の鉄道車両用電源回路の動作を説明するためのフローチャートである。 実施の形態4の鉄道車両用電源回路の構成を示した回路図である。 実施の形態4の鉄道車両用電源回路の動作を説明するためのフローチャートである。 図10のフローチャートの処理に従って制御が実行された場合の動作の一例を説明するための動作波形図である。
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
[実施の形態1]
図1は、本発明の実施の形態1の鉄道車両用電源回路の構成を示した回路図である。図1を参照して、実施の形態1の鉄道車両用電源回路は、昇降圧チョッパ回路2と、バイパスリレー4と、平滑コンデンサ5と、絶縁型スイッチング電源3とを含んで構成される。
鉄道車両用電源回路には、例えばバッテリ等の直流電圧源1から電源電圧が供給される。鉄道車両用電源回路は、空調装置等の主回路のコンバータやインバータを制御する制御回路に、複数の制御用電圧を供給する。この制御用電圧を生成するため、鉄道車両用電源回路を制御電源回路と呼ぶこともある。
絶縁型スイッチング電源3には、例えば、フライバックコンバータやフォワードコンバータ等を用いることができるが、図1には、絶縁トランス32、スイッチング素子31、ダイオード33〜35、平滑コンデンサ36〜38を含む構成が開示されている。
まず、昇降圧チョッパ回路2の構成について説明する。昇降圧チョッパ回路2は、2つのMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)6,7と、2つのダイオード8,9と、コイル10と、制御回路11とを含む。
MOSFETは、スイッチング素子の一種であり、等価的には、MOSFET6,7の各々は、スイッチング素子本体部と、スイッチング素子本体部のドレイン−ソースに対して逆並列に接続された内蔵ダイオードとを含む。
MOSFET6とダイオード8とは、昇降圧チョッパ回路2の入力ノードN1,N3の間に直列接続される。また、ダイオード9とMOSFET7とは、昇降圧チョッパ回路2の出力ノードN2,N4の間に直列接続される。MOSFET6とダイオード8の接続ノードとダイオード9とMOSFET7の接続ノードとの間にコイル10が接続される。なお、入力ノードN3と出力ノードN4とは、昇降圧チョッパ回路2の内部で電気的に接続されている。
MOSFET6のドレインは直流電圧源1の正極と接続され、ダイオード8のアノードは直流電圧源1の負極に接続されている。一方、ダイオード9のカソードは、昇降圧チョッパの後段に接続される平滑コンデンサ5の正極側に接続され、MOSFET7のソースは、平滑コンデンサ5の負極に接続されるとともに、ダイオード8のアノード、つまり直流電圧源1の負極に接続される。
また、昇降圧チョッパ回路2は、MOSFET6,7のオン・オフ制御を行う制御回路11をさらに含む。制御回路11は、MOSFET6,7のゲート端子に制御信号としてのオン・オフ信号を与え、MOSFET6,7を制御している。
なお、図1等の構成では、励磁エネルギー蓄積要素として、コイル10を用いているが、その他の励磁エネルギー蓄積要素、例えばスイッチングトランスの1次側などを用いて昇降圧チョッパ回路2を構成することも可能である。
続いて、バイパスリレー4の接続について説明する。バイパスリレー4は、入力ノードN1と出力ノードN2との間に接続される。バイパスリレー4は、直流電圧源1の電圧値に応じて、昇降圧チョッパ回路2をバイパスさせるように動作する。なお、バイパスリレー4には、半導体リレーやMOSFET等のスイッチング素子を代わりに用いても良い。
次に、実施の形態1の鉄道車両用電源回路の基本動作について説明する。
昇降圧チョッパ回路2は、直流電圧源1から出力される直流電圧を、所定の電圧値に変換し、後段に接続される絶縁型スイッチング電源3へ供給する機能を有している。また、バイパスリレー4は、直流電圧源1の電圧が所定の電圧範囲内にある場合、昇降圧チョッパ回路2をバイパスする機能を有している。また、絶縁型スイッチング電源3は、昇降圧チョッパ回路2あるいはバイパスリレー4からの電力供給を受けて、絶縁された複数の電圧を生成する機能を有している。絶縁された複数の電圧は、空調回路の制御回路の制御用電圧として使用される。
本実施の形態に係る鉄道車両用電源回路は、動作モードとして「降圧モード」、「昇圧モード」、「バイパスモード」を有する。図2は、鉄道車両用電源回路の動作モードの切り替え制御を説明するためのフローチャートである。このフローチャートの処理は、一定時間ごとまたは所定の条件が成立するごとにメインルーチンから呼び出されて実行される。
図1、図2を参照して、ステップS1において、オペレータなどから鉄道車両用電源回路の起動指令があったか否かが判断される。起動指令がなければステップS7に処理が進められ制御はメインルーチンに戻される。一方、制御指令があった場合には、ステップS2に処理が進められる。
ステップS2およびステップS3において、直流電圧源1から供給される電圧Vinが所定の電圧範囲に入っているか、または高いか、低いかが判断される。
まず、ステップS2において、制御回路11は、直流電圧源1から供給される電圧Vinが、所定の電圧範囲(例えば、70V〜100V)の下限値(例えば、70V)よりも低いか否かを判断する。Vin<下限値が成立した場合(ステップS2においてYES)、ステップS3に処理が進められ「昇圧モード」が動作モードとして選択される。一方、Vin<下限値が成立しない場合(ステップS2においてNO)、ステップS4に処理が進められる。
ステップS4において、制御回路11は、直流電圧源1から供給される電圧Vinが、所定の電圧範囲(例えば、70V〜100V)の上限値(例えば、100V)よりも高いか否かを判断する。Vin>上限値が成立した場合(ステップS4においてYES)、ステップS5に処理が進められ「降圧モード」が動作モードとして選択される。一方、Vin>上限値が成立しない場合(ステップS4においてNO)、ステップS6に処理が進められ「バイパスモード」が動作モードとして選択される。
ステップS3,S5,S6のいずれかにおいて動作モードが決定された後には、ステップS7に処理が進められ、制御はメインルーチンに戻される。
ステップS3で選択された「昇圧モード」では、昇降圧チョッパ回路2のMOSFET6は常時オン制御され、かつ、MOSFET7がオン・オフ制御される。この場合、MOSFET7がオンの時にコイル10に励磁エネルギーが蓄えられ、MOSFET7がオフの時にダイオード9を介してコイル10に蓄えられた励磁エネルギーが放出される。この一連の動作を繰り返すことにより、平滑コンデンサ5の両端電圧が所定の電圧値に制御される。
ステップS5で選択された「降圧モード」では、昇降圧チョッパ回路2のMOSFET7は常時オフ制御され、かつ、MOSFET6がオン・オフ制御される。この場合、MOSFET6がオンの時に、コイル10とダイオード9を介して平滑コンデンサ5が充電されるとともに、コイル10には励磁エネルギーが蓄えられる。その後、MOSFET6がオフの時に、ダイオード8及びダイオード9を介してコイル10に蓄えられた励磁エネルギーが放出される。この一連の動作を繰り返すことにより、平滑コンデンサ5の両端電圧が所定の電圧値に制御される。
また、ステップS6に進んだ場合、すなわち、直流電圧源1から供給される電圧値が、所定の電圧範囲内(下限値以上かつ上限値以下)である場合、昇降圧チョッパ回路2のMOSFET6及び7はともにオフ制御される。この場合、降圧も昇圧も行なわれず、バイパスリレー4がオン(導通)し、直流電圧源1から供給される電圧が、バイパスリレー4を介して平滑コンデンサ5に直接印加される。この時の動作モードを「バイパスモード」という。
以上のように、直流電圧源1から供給される電圧値に応じて、「降圧モード」、「昇圧モード」、「バイパスモード」の各モードに切り替えられる。
しかしながら、鉄道車両用電源回路の起動時においては、平滑コンデンサ5には電荷が全く貯まっていない状態であるため、直流電圧源1から供給される電圧値が所定の電圧範囲内にある場合にバイパスリレー4を接続すると、平滑コンデンサ5に大きな突入電流(充電電流)が流れる。そのため、バイパスリレー4には、突入電流に対する耐量が大きなものが必要となり、バイパスリレー4の大型化と高コストが問題となる。
一方、突入電流の抑制策としては、突入電流防止用抵抗を設けることも考えられる。図3は突入電流防止用抵抗を設けた検討例を示した回路図である。図3に示すように、昇降圧チョッパ回路2の出力と平滑コンデンサ5との間に突入電流防止用抵抗12と直結用のリレー13とを設ける。鉄道車両用電源回路の起動時には、このように突入電流防止用抵抗12を介して平滑コンデンサ5を充電する策が一般的である。また、この手法では、平滑コンデンサ5への充電完了後、突入電流防止用抵抗12と並列に接続されたリレー13を導通させることで突入電流防止用抵抗12を短絡し、突入電流防止用抵抗12での損失を抑制している。
しかしながら、図3に示した構成においても、突入電流防止用抵抗12とリレー13の追加により、電源回路が大型化、高コスト化するという課題があった。
突入電流防止用抵抗12を持たない図1に示す鉄道車両用電源回路においては、起動時にバイパスリレー4がオンすると、平滑コンデンサ5までの経路に電流を抑制する要素を持たないため、急峻な突入電流が流れてしまう。
そこで、本発明の実施の形態に係る鉄道車両用電源回路は、既存の回路部品を使用して突入電流を抑制するように制御を行なう。具体的には、電源回路の起動時においては、直流電圧源1から供給される電圧値が所定の電圧範囲内にあり、バイパスモードが選択される場合であっても、昇降圧チョッパ回路2を「降圧モード」と同様な降圧動作を実行させながら鉄道車両用電源回路を起動する。
図4は、実施の形態1において制御回路が実行するバイパスモードでの制御を説明するためのフローチャートである。図2のステップS6においてバイパスモードが選択されると、図4のフローチャートの処理が開始される。図1および図4を参照して、まず、ステップS10において起動時であるか否かが判断される。起動時には、平滑コンデンサ5に電荷がたまっておらず、バイパスリレー4を接続すると大きな突入電流が流れる可能性があるため、起動時か否かをチェックしている。なお、ステップS10の処理に代えて、平滑コンデンサ5の電圧を見て突入電流が生じるか否かを判断しても良い。
起動時と判断されなかった場合(ステップS10でNO)ステップS50において、バイパスリレー4が接続される。一方、起動時と判断された場合(ステップS10でYES)ステップS20に処理が進められる。
ステップS20では、制御回路11は、昇降圧チョッパ回路2に「降圧モード」と同様な降圧動作を実行させる。制御回路11からのオン・オフ信号により、MOSFET7は常時オフとなり、MOSFET6はオン・オフ制御される。MOSFET6がオン状態の時、直流電圧源1の正極から出力された電流が、MOSFET6、コイル10、ダイオード9、平滑コンデンサ5および直流電圧源1の負極からなる経路で流れ、平滑コンデンサ5が充電されるとともに、コイル10に励磁エネルギーが蓄積される。この場合、コイル10に流れる電流は、時間の経過とともに直線的に増加する。
次いで、制御回路11からのオフ信号により、MOSFET6がオフ状態になると、コイル10に蓄積されている励磁エネルギーに基づき、コイル10、ダイオード9、平滑コンデンサ5、ダイオード8、コイル10の経路で電流が流れる。このような経路で電流が流れる状態は一般的に還流と呼ばれる。この場合、コイル10に流れる電流は、時間の経過とともに直線的に減少する。
これらの動作が意味するところは、直流電圧源1から供給される電圧が所定の電圧範囲内であっても、「降圧モード」と同様な降圧動作を昇降圧チョッパ回路2に実行させることで、コイル10のインダクタンス成分により、急峻な突入電流が抑制されるということである。
ステップS20において、突入電流が抑制された状態で平滑コンデンサへの充電がほぼ完了するとステップS30においてバイパスリレー4が接続され、その後ステップS40において昇降圧チョッパ回路2のスイッチング動作が停止され、ステップS60において制御はメインルーチンに戻される。
図4に示したように、起動時には昇降圧チョッパ回路2に降圧動作をさせて平滑コンデンサを充電することにより突入電流抑制をするので、図3に示したような抵抗やリレー等の部品を追加する必要が無くなり、電源回路の小型化、低コスト化が図れる。
なお、起動時において直流電圧源1から供給される電圧が所定の電圧範囲の下限値より低い場合は、図2に示した通り「昇圧モード」で起動させる。この場合も「降圧モード」の動作同様、コイル10により、突入電流は抑制される。
実施の形態1の鉄道車両用電源回路の起動方法について以下にまとめる。直流電圧源1から供給される電圧が、所定の電圧範囲の下限値より低い場合は、「昇圧モード」で鉄道車両用電源回路を起動させる。直流電圧源1から供給される電圧が、所定の電圧範囲内及び所定の電圧範囲以上の場合は、「降圧モード」で鉄道車両用電源回路を起動させる。
以上の動作を行なうことで、電源回路起動時の平滑コンデンサへの突入電流が抑制され、前述したように、抵抗やリレー等の部品を追加させる必要が無くなり、鉄道車両用電源回路の小型化、低コスト化を実現できる。
[実施の形態2]
次に本発明の実施の形態2について、説明する。図5は、実施の形態2の鉄道車両用電源回路の構成を示した回路図である。
図5に示す実施の形態2では、図1に示した実施の形態1の構成に加えて、コイル10の電流を検出する電流検出手段14を追加した構成となっている。
鉄道車両用電源回路を「降圧モード」あるいは「昇圧モード」によって起動させる際、昇降圧チョッパ回路2のスイッチング素子であるMOSFET6及び7のオンデューティ(オン時間)によっては、コイル10が磁気飽和を起こし、過大電流が流れる可能性がある。そこで実施の形態2では、コイル10の電流を検出する電流検出手段14を備え、予め設定した電流値(=過電流設定値)に達すると、MOSFET6及び7のスイッチングを停止することで、コイル10の磁気飽和を抑制することが可能である。また、コイル電流のピーク値を低減できるため、平滑コンデンサへの突入電流ピーク値も抑制される。
図6は、実施の形態2において実行される磁気飽和抑制処理を説明するためのフローチャートである。図5、図6を参照して、ステップS100において、制御回路11は、降圧動作中であるか否かを判断する。降圧動作中でなければ(ステップS100でNO)、ステップS140に処理が進められ、制御はメインルーチンに戻される。降圧動作中である場合には(ステップS100でYES)、ステップS110に処理が進められる。
ステップS110では、制御回路11は、電流検出手段14が検出したコイル電流ILが判定値に達したか否かを判断する。判定値は、コイル10が磁気飽和を起こさない上限の電流値よりも小さい値で適切な値に設定すればよい。
コイル電流ILが判定値に達した場合には(ステップS110でYES)、ステップS120に処理が進められ、コイル電流ILが判定値に達していない場合には(ステップS110でNO)、ステップS130に処理が進められる。
ステップS130では、昇降圧チョッパ回路2の降圧動作でのスイッチング、すなわちMOSFET6のオン・オフ制御が実行される。一方、ステップS120では、昇降圧チョッパ回路2のスイッチング、すなわちMOSFET6のオン・オフ制御は、コイル10が磁気飽和しないように停止される。
なお、ステップS110過電流の判定値には、ヒステリシスを持たせ、コイル電流が増加し、ヒステリシスの上限値に達した場合にスイッチングを停止し、スイッチング停止によりコイル電流が減少し、ヒステリシスの下限値以下になった場合に、再びスイッチングを開始する構成としてもよい。
また、起動時だけではなく、定常動作時における磁気飽和抑制に対しても、電流検出手段14による電流制限は有効である。すなわち、ステップS100の降圧動作に限らず、昇圧動作にもS110〜S130の処理を適用してもよい。
以上説明したように、実施の形態2によれば、コイル10の磁気飽和による過大電流の抑制と、突入電流ピーク値の抑制効果が得られる。
[実施の形態3]
図7は、実施の形態3の鉄道車両用電源回路の構成を示した回路図である。図7に示すように、実施の形態3では、実施の形態1および2の構成に加えて、直流電圧源1の電圧値Vinを検出する第1の電圧検出手段15と、平滑コンデンサ5の両端電圧Vcを検出する第2の電圧検出手段16を備えた構成となっている。
図8は、実施の形態3の鉄道車両用電源回路の動作を説明するためのフローチャートである。図8のフローチャートは、図4で説明したバイパスモードの処理に加えてステップS25の処理が追加されたものである。ここではステップS25の前後の部分の説明をすることとし、他の処理については図4と同様であるので説明は繰り返さない。
図8を参照して、ステップS20においては、直流電圧源1から供給される電圧が所定の電圧範囲内である場合の電源回路の起動時において、バイパスリレー4がオンすることによる突入電流を抑制するために「降圧モード」で平滑コンデンサ5を充電する処理が実行される。
その後ステップS25において、平滑コンデンサ5の両端電圧Vcが直流電圧源1の電圧Vinと同等程度(所定の電圧範囲内)になるまで、平滑コンデンサ5が充電されたか否かを制御回路11が判断する。具体的には、制御回路11は、しきい値をVt1とすると、|Vin−Vc|<Vt1が成立するか否かによってこの判断を行なう。
制御回路11は、|Vin−Vc|<Vt1が成立しない間は(ステップS25でNO)、ステップS20の処理を実行して降圧動作を継続する。一方、制御回路11は、|Vin−Vc|<Vt1が成立すると(ステップS25でYES)、ステップS30の処理を実行する。
すなわち、制御回路11は、平滑コンデンサ5の両端電圧Vcが直流電圧源1の電圧Vinと同等程度(所定の電圧範囲内)になるまで、平滑コンデンサ5が充電されたことを第1の電圧検出手段15と第2の電圧検出手段16により確認すると、バイパスリレー4をオンさせる。
このように、第1の電圧検出手段15と第2の電圧検出手段16を設け、直流電圧源1の電圧値と、平滑コンデンサ5の両端電圧を検出、比較し、平滑コンデンサの電圧値が所定の電圧範囲内に達したことを確認した後にバイパスリレー4をオンする。これによって、バイパスリレー4に流れる突入電流が大幅に抑制されるため、バイパスリレーの小型化、低コスト化が図れるとともに、定常動作時における昇降圧チョッパでの回路損失を低減することができる。
[実施の形態4]
図9は、実施の形態4の鉄道車両用電源回路の構成を示した回路図である。図9を参照して、実施の形態4では、平滑コンデンサ5の両端電圧が直流電圧源1と同等程度(所定の電圧範囲内)まで充電されたことを第1の電圧検出手段15と第2の電圧検出手段16により確認し、その充電完了信号17を絶縁型スイッチング電源3に送り、平滑コンデンサ5が充電完了した後に、絶縁型スイッチング電源3を起動させている。
図10は、実施の形態4の鉄道車両用電源回路の動作を説明するためのフローチャートである。図10のフローチャートは、図8のフローチャートにステップS45の処理が追加されたものである。ステップS45においては、ステップS40の昇降圧チョッパ回路の停止の後に、制御回路11が絶縁型スイッチング電源3に充電完了信号17を送信して、絶縁型スイッチング電源3を起動する。なお、ステップS45以外の処理については、図8と同じであるので、ここでは説明は繰り返さない。
図11は、図10のフローチャートの処理に従って制御が実行された場合の動作の一例を説明するための動作波形図である。
図9、図11を参照して、時刻t0においてオペレータ等から鉄道車両用電源装置の起動指令が与えられると、昇降圧チョッパ回路2が降圧動作を開始する。時刻t0からt1においては、昇降圧チョッパ回路2が降圧動作を行なうことによって、平滑コンデンサ5に充電が行なわれ、電圧Vcが上昇する。このときの充電電流は、突入電流のような過大な電流とならないようにコイル10のインダクタンス成分とスイッチング素子のスイッチング動作によって制限される。
時刻t1において、電圧Vcが電圧Vinにほぼ等しくなる程度(Vin−Vc<Vt1が成立)に平滑コンデンサ5の充電が進むと、制御回路は、バイパスリレー4を接続する。そして、時刻t2において制御回路11は昇降圧チョッパ回路2のスイッチング動作を停止させ、時刻t3において充電完了信号17を絶縁型スイッチング電源3に送信しスイッチング電源3を起動する。
このように平滑コンデンサ5の充電完了後に絶縁型スイッチング電源3を起動させるようにする。これによって、平滑コンデンサ5の充電途中に絶縁型スイッチング電源3が起動し、その時の過大な起動電流により平滑コンデンサ5の充電電圧が上がりきらず、平滑コンデンサ5の電圧が中途半端な電圧で停滞してしまう状態を回避することができる。
今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明でなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 直流電圧源、2 昇降圧チョッパ回路、3 絶縁型スイッチング電源、4 バイパスリレー、5,36,38 平滑コンデンサ、6,7 MOSFET、8,9,33,34 ダイオード、10 コイル、11 制御回路、14 電流検出手段、15,16 電圧検出手段、31 スイッチング素子、32 絶縁トランス。

Claims (4)

  1. 鉄道車両用電源回路であって、
    入力ノードの直流電圧を昇圧または降圧し、入力ノードの直流電圧と出力ノードの直流電圧との間の電圧変換が可能に構成された昇降圧チョッパ回路と、
    前記昇降圧チョッパ回路の入力ノードと出力ノードとの間の接続および切り離しが可能に構成されたバイパスリレーと、
    前記昇降圧チョッパ回路または前記バイパスリレーから供給される直流電圧を受けて電源電圧を発生するように構成されたスイッチング電源と、
    前記昇降圧チョッパ回路の出力ノードと前記スイッチング電源の入力ノードとを結ぶ経路に接続された平滑コンデンサとを備え、
    前記鉄道車両用電源回路は、前記昇降圧チョッパ回路の入力ノードの電圧に基づいて、昇圧モード、降圧モード、バイパスモードを含む動作モードの中からひとつの動作モードを選択するように構成され、
    前記鉄道車両用電源回路は、前記バイパスモードにおいて前記平滑コンデンサの電圧前記昇降圧チョッパ回路の入力ノードの電圧との差が判定値より大きい起動時である場合には、前記バイパスリレーを接続する前に前記昇降圧チョッパ回路に降圧動作を実行させ、前記平滑コンデンサに充電を行なうことによって前記平滑コンデンサの電圧を前記昇降圧チョッパ回路の入力ノードの電圧に近づけてから前記バイパスリレーを接続し、前記起動時でない場合には、直ちに前記バイパスリレーを接続する、鉄道車両用電源回路。
  2. 前記昇降圧チョッパ回路は、
    2個以上のスイッチング素子と、
    2個以上のダイオードと、
    コイルと、
    前記コイルに流れる電流を検出する電流検出部と、
    前記スイッチング素子のスイッチング制御を行なう制御回路とを含み、
    前記制御回路は、前記スイッチング素子のスイッチングを実行中である場合に前記電流検出部が検出した前記コイルに流れる電流が判定電流値に達したときには、前記スイッチング素子のスイッチングを停止させて電流を制限する、請求項1に記載の鉄道車両用電源回路。
  3. 前記昇降圧チョッパ回路の入力ノードの電圧を検出する第1の電圧検出部と、
    前記平滑コンデンサの電圧を検出する第2の電圧検出部とをさらに備え、
    前記制御回路は、前記平滑コンデンサの電圧が前記昇降圧チョッパ回路の入力ノードの電圧に対して所定の電圧範囲内に入った場合に、前記バイパスリレーを接続する、請求項に記載の鉄道車両用電源回路。
  4. 前記制御回路は、前記平滑コンデンサの電圧が所定の電圧に達した後に、前記スイッチング電源を起動させる、請求項またはに記載の鉄道車両用電源回路。
JP2014128188A 2014-06-23 2014-06-23 鉄道車両用電源回路 Active JP6300664B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014128188A JP6300664B2 (ja) 2014-06-23 2014-06-23 鉄道車両用電源回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014128188A JP6300664B2 (ja) 2014-06-23 2014-06-23 鉄道車両用電源回路

Publications (2)

Publication Number Publication Date
JP2016010193A JP2016010193A (ja) 2016-01-18
JP6300664B2 true JP6300664B2 (ja) 2018-03-28

Family

ID=55227419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014128188A Active JP6300664B2 (ja) 2014-06-23 2014-06-23 鉄道車両用電源回路

Country Status (1)

Country Link
JP (1) JP6300664B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3099320B1 (fr) * 2019-07-22 2021-10-22 St Microelectronics Rousset Démarrage d'une alimentation à découpage
WO2023007721A1 (ja) * 2021-07-30 2023-02-02 三菱電機株式会社 制御装置、電力変換装置および制御方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5277527B2 (ja) * 2006-09-22 2013-08-28 トヨタ自動車株式会社 車両の電源装置および車両
JP5134236B2 (ja) * 2006-12-12 2013-01-30 四変テック株式会社 高電圧電源装置
JP5350843B2 (ja) * 2009-03-11 2013-11-27 川崎重工業株式会社 電源制御装置及び電源制御方法

Also Published As

Publication number Publication date
JP2016010193A (ja) 2016-01-18

Similar Documents

Publication Publication Date Title
US9543839B2 (en) Voltage stabilizing circuit
US10763754B2 (en) Power supply device
US20170117731A1 (en) Power source device
JP2015192527A (ja) 電力供給装置
JP6228059B2 (ja) Dc/dcコンバータおよびバッテリシステム
JP6964240B2 (ja) Ac−dcコンバータ
JP6012822B1 (ja) 電力変換装置
KR101851930B1 (ko) 교류-직류 컨버터
JP6009027B1 (ja) 電力変換装置
JPWO2016157441A1 (ja) 電源装置及び空気調和装置
JP6187180B2 (ja) 電力変換システム
JP6711466B2 (ja) 蓄電装置用昇降圧装置及び蓄電装置
US11050353B2 (en) Power conversion device that generates switching signals
JP5668692B2 (ja) Pfcコンバータ
JP6300664B2 (ja) 鉄道車両用電源回路
JP6025885B2 (ja) 電力変換装置
JP2014171313A (ja) Dc/dcコンバータ
WO2014119374A1 (ja) プリチャージ回路
WO2018235438A1 (ja) Dc-dcコンバータ、これを用いた電源システム及び当該電源システムを用いた自動車
JP7276064B2 (ja) Dcdcコンバータ
JP2007336609A (ja) プリチャージ回路
JP4784153B2 (ja) 電源装置
KR102159264B1 (ko) Dc-dc 전압 컨버터 회로를 제어하는 제어 시스템
JP2011120416A (ja) スイッチング電源装置
JP2016220433A (ja) 電力変換装置及びこれを用いた電源システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180227

R150 Certificate of patent or registration of utility model

Ref document number: 6300664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250