WO2018066063A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2018066063A1
WO2018066063A1 PCT/JP2016/079489 JP2016079489W WO2018066063A1 WO 2018066063 A1 WO2018066063 A1 WO 2018066063A1 JP 2016079489 W JP2016079489 W JP 2016079489W WO 2018066063 A1 WO2018066063 A1 WO 2018066063A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
relay
power
voltage
power supply
Prior art date
Application number
PCT/JP2016/079489
Other languages
English (en)
French (fr)
Inventor
秀敏 山川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/079489 priority Critical patent/WO2018066063A1/ja
Priority to JP2018543510A priority patent/JP6682003B2/ja
Publication of WO2018066063A1 publication Critical patent/WO2018066063A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current

Definitions

  • the present invention relates to a power conversion device.
  • Patent Document 1 describes a relay control device that performs on / off control of a relay disposed between a power source and a capacitor, and supplies power from the power source to a load via the capacitor and the relay.
  • the relay is welded.
  • Patent Document 1 discloses a technique for comparing the amount of change in voltage value before and after discharging a capacitor with the welding withstand voltage value of a relay, and determining the occurrence of welding using the comparison result.
  • Patent Document 1 discloses a technique in which, when it is determined that relay welding has occurred, on / off control is repeatedly performed on the relay, and the welding is released by an operation associated with the on / off control.
  • the welding may not be released even if the on / off control is repeatedly executed depending on the welding force generated in the welded relay.
  • the present invention has been made in view of the above, and an object thereof is to obtain a power conversion device that can suppress welding of a relay.
  • the power conversion device controls the supply of the power supply voltage to the capacitor by switching the relay according to the control signal, and discharges derived in advance. Reduce the voltage across the capacitor based on time.
  • FIG. 1 The figure which shows the power converter device which concerns on Embodiment 1.
  • FIG. The figure which shows the power transmission path
  • FIG. 1 The figure which shows the power transmission path
  • FIG. 1 is a diagram illustrating a power conversion device according to Embodiment 1.
  • the power conversion device 100 causes the power output from the power source 1 to be supplied to the load 2.
  • the power source 1 is an AC power source that outputs AC power.
  • the load 2 is a motor that drives a compressor used in an electric device such as an air conditioner or a refrigerator.
  • the relays 5 a and 5 b included in the power conversion device 100 are route switching devices for switching the power supply route to the load 2.
  • Relays 5a and 5b have switching terminals for switching paths, and are turned on or off based on a control signal output from relay control device 200.
  • a power supply 1 includes a power supply 1, relays 5a, 5b, 5c, diodes 6a, 6b, 6c, capacitors 7a, 7b, a resistor 11, a noise filter 30, a protection circuit 35a, 35b, a rectifier circuit 40, a converter 50, an inverter circuit 60, and a DC (Direct Current) DC converter 70.
  • the noise filter 30 includes capacitors 8a and 8b, a common coil 9, and a normal coil 10.
  • the capacitor 8 a is disposed between the power source 1 and the common coil 9. One end of the capacitor 8a is connected to the first power supply path A, and the other end of the capacitor 8a is connected to the second power supply path B.
  • the capacitor 7a is charged by the voltage of the electric power supplied from the power source 1 when the relay 5a is turned on.
  • the common coil 9 is disposed between the capacitor 8a and the capacitor 8b.
  • the rectifier circuit 40 is disposed between the noise filter 30 and the converter 50.
  • Rectifier circuit 40 includes diodes 40a, 40b, 40c, and 40d.
  • the anode of the diode 40a is connected to one end of the capacitor 8b.
  • the cathode of the diode 40 a is connected to one end of the reactors 52 a and 52 b included in the converter 50.
  • the anode of the diode 40b is connected to shunt resistors 53a and 53b included in the converter 50.
  • the cathode of diode 40b is connected to capacitor 8b and normal coil 10.
  • the anode of the diode 40c is connected to the midpoint between the capacitor 7a and the diode 40b.
  • the cathode of the diode 40c is connected to the midpoint between the capacitor 8b and the diode 40a.
  • the anode of the diode 40d is connected to the midpoint between the capacitor 8b and the diode 40b.
  • the cathode of the diode 40 d is connected to the midpoint between the diode 40 a and the converter 50.
  • the converter 50 is disposed between the rectifier circuit 40 and the capacitor 7a.
  • Converter 50 includes a PFC 51 (Power Factor Correction), reactors 52a and 52b, and shunt resistors 53a and 53b.
  • the PFC 51 includes switching elements 51a and 51b and diodes 51A and 51B.
  • the switching element 51a is disposed between the shunt resistor 53a and the diode 51A.
  • the switching element 51b is disposed between the shunt resistor 53b and the diode 51B.
  • the reactor 52a and the reactor 52b are arranged in parallel with each other. One end of the reactor 52a is connected to a midpoint between the diode 40a and the reactor 52b.
  • the other end of the reactor 52a is connected to a midpoint between the switching element 51b and the diode 51B.
  • One end of the reactor 52b is connected to the diode 40a and the diode 40d.
  • the other end of the reactor 52b is connected to a midpoint between the switching element 51a and the diode 51A.
  • the anode of the diode 51A is connected to the switching element 51a.
  • the cathode of the diode 51A is connected to the capacitor 7a.
  • the anode of the diode 51B is connected to the switching element 51b.
  • the cathode of the diode 51B is connected to the capacitor 7a.
  • the capacitor 7a is arranged in parallel between the converter 50 and the inverter circuit 60.
  • the inverter circuit 60 is arranged in parallel between the capacitor 7a and the load 2.
  • Inverter circuit 60 is connected to DCDC converter 70.
  • the DCDC converter 70 includes a microcomputer (hereinafter referred to as a microcomputer as appropriate) 71 and a DCDC circuit 72.
  • the protection circuit 35a is disposed between the noise filter 30 and the capacitor 7a.
  • the protection circuit 35a includes a PTC thermistor 4a, a relay 5a, and a diode 6a.
  • a PTC thermistor 4a, a relay 5a, and a diode 6a are arranged between the common coil 9 and the capacitor 7a.
  • One end of the PTC thermistor 4 a is connected to the other end of the common coil 9.
  • the other end of the PTC thermistor 4a is connected to the anode of the diode 6a via the relay 5a.
  • the cathode of the diode 6a is connected to the capacitor 7a.
  • the protection circuit 35b is disposed between the noise filter 30 and the capacitor 7b.
  • Protection circuit 35b includes a relay 5c, a PTC thermistor 4b, a resistor 11, and a diode 6b.
  • a relay 5c, a PTC thermistor 4b, a resistor 11, and a diode 6b are arranged between the noise filter 30 and the capacitor 7b.
  • the PTC thermistor 4b and the resistor 11 are arranged in parallel with each other.
  • One end of the PTC thermistor 4b is connected to the other end of the common coil 9 via a relay 5c.
  • the other end of the PTC thermistor 4b is connected to the anode of the diode 6b.
  • One end of the resistor 11 is connected to the other end of the common coil 9 via the relay 5a.
  • the other end of the resistor 11 is connected to the anode of the diode 6b.
  • the cathode of the diode 6b is connected to the capacitor 7b.
  • the relay control device 200 included in the power conversion device 100 shown in FIG. 1 includes a storage unit 200M, a detection unit 200D, and a processing unit 200P.
  • the relay control device 200 acquires the detection result of the voltage value detected by the detection unit 200D, and controls the relay 5b using the acquired detection result.
  • the relay control device 200 controls the relays 5a, 5b, and 5c to supply the power output from the power source 1 to the capacitor 7a, the capacitor 7b, and the capacitor 8b.
  • the capacitor 7a, the capacitor 7b, and the capacitor 8b can store electric charges when supplied with electric power.
  • the storage unit 200M stores a computer program for controlling the on / off operation of the relay 5b.
  • the detection unit 200D detects the voltage across the capacitor 8b, and outputs the detected voltage value to the processing unit 200P.
  • Processing unit 200P executes a process for controlling relay 5b.
  • the processing unit 200P is a processor such as a CPU (Central Processing Unit, a central processing unit, a processing unit, a processing unit, a microprocessor, a microcomputer, a processor, and a DSP (Digital Signal Processor)).
  • the storage unit 200M is a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), and an EEPROM (Electrically Erasable Memory).
  • the relay control device 200 is an operation mode that indicates a state in which the load 2 is operated by the power supply of the power conversion device 100, a stop mode that indicates a state in which the load 2 is stopped by the stop of the power supply of the power conversion device 100, or the power conversion device 100.
  • the on / off operation of the relay 5b is controlled according to any one of the reactive power reduction modes indicating the state of reducing the reactive power.
  • FIGS. 2 and 3 show power transmission paths in the stop mode of the power conversion apparatus according to the first embodiment.
  • the state of the stop mode the supply of power to the load 2 is stopped.
  • the stop mode power is supplied to the capacitors 7a and 7b, and charges are stored in the capacitors 7a and 7b.
  • the diodes 40a, 40b, 40c and 40d included in the rectifier circuit 40 are used to rectify the positive half wave and the negative half wave independently.
  • FIG. 2 shows a positive half-wave transmission path using thick lines in the AC power supplied from the power supply 1 in the stop mode.
  • Capacitor 7a and capacitor 7b arranged in the positive half-wave transmission path are charged by electric power supplied from power supply 1.
  • relay control device 200 turns off relay 5a and turns on relay 5b.
  • the power source 1 outputs AC power.
  • the AC power is rectified by the diodes 40a and 40d of the rectifier circuit 40 via the relay 5b.
  • the rectified electric power is transmitted to the converter 50 through the reactor 52a and the reactor 52b arranged in parallel.
  • the diode 51A and the diode 51B of the converter 50 rectify the transmitted power, supply the positive half-wave voltage of the power obtained by rectification to the capacitor 7a, and charge it.
  • the AC power output from the power source 1 is rectified by the diode 6b via the relay 5c.
  • the capacitor 7b can be charged with a positive half-wave voltage of the electric power obtained by rectification.
  • FIG. 3 shows a negative half-wave transmission path using thick lines in the AC power supplied from the power supply 1 in the stop mode.
  • the capacitor 7a arranged in the negative half-wave transmission path can be charged using the supplied power.
  • the relay 5a, the relay 5b, and the relay 5c are the same as the on / off state shown in FIG. 3 is different from the power transmission path of FIG. 2 in that the AC power supplied from the power source 1 is rectified by the diode 40c and the diode 40d of the rectifier circuit 40.
  • the transmission path from the rectifier circuit 40 to the converter 50 is the same as the transmission path shown in FIG.
  • the capacitor 7a is charged by being supplied with a negative half-wave voltage of power.
  • condenser 7b since the electric power transmitted from the power supply 1 is not transmitted to the capacitor
  • FIGS. 4 and 5 show power transmission paths in the reactive power reduction mode of the power conversion device according to the first embodiment.
  • the supply of power to the load 2 is stopped, the supply of power to the capacitor 8b included in the noise filter 30 is stopped, and the supply of power to the capacitor 7a is stopped.
  • a switching element (not shown) of the microcomputer 71 or the inverter circuit 60 that is driven by the supply of power is in a state where it can be driven because a voltage charged in advance is supplied to the capacitor 7b. 2 and 3, the relay 5a is turned off and the relay 5b is turned on.
  • the relay 5a is kept off.
  • the relay 5b is turned off.
  • the power conversion apparatus 100 reduces the power used when the capacitor 8b is charged by stopping the supply of power to the capacitor 8b by the on / off operation of the relay 5b in the reactive power reduction mode. can do.
  • FIG. 4 shows a positive half-wave transmission path using a bold line in the AC power supplied from the power source 1 in the reactive power reduction mode.
  • the capacitor 8b arranged in the positive half-wave transmission path is not charged because the supply of power is stopped when the relay 5b is turned off.
  • Capacitor 7b disposed in the positive half-wave transmission path can be charged using power supplied from power supply 1. For this reason, as described above, power can be supplied from the capacitor 7b to the microcomputer 71 even in the reactive power reduction mode.
  • the microcomputer 71 to which power is supplied can perform control according to each mode such as an operation mode, a stop mode, and a reactive power reduction mode.
  • the power source 1 outputs AC power.
  • the AC power is rectified by the diode 6b via the relay 5c.
  • the positive half-wave voltage of the rectified power is supplied to the capacitor 7a and charged.
  • FIG. 5 shows the transmission path of the negative half-wave among the AC power supplied by the power supply 1 in the reactive power reduction mode using a bold line.
  • the capacitor 8a arranged in the negative half-wave transmission path is charged using the supplied power. 5 is different from the power transmission path in FIG. 4 in that the power supplied by the power source 1 is not transmitted to the capacitor 7b.
  • the relay 5a, the relay 5b, and the relay 5c are the same as the on / off state shown in FIG.
  • the capacitor 8 a disposed between the first power supply path A and the second power supply path B is charged using a negative half-wave voltage of the power supplied from the power supply 1.
  • FIG. 5 shows the transmission path of the negative half-wave among the AC power supplied by the power supply 1 in the reactive power reduction mode using a bold line.
  • the capacitor 8a arranged in the negative half-wave transmission path is charged using the supplied power. 5 is different from the power transmission path in FIG. 4 in that the power supplied by the power source 1 is not transmitted to the capacitor 7b.
  • the voltage of the power supply 1 is supplied to the capacitor 8b.
  • the supply of voltage to the capacitor 8b is stopped by switching off the relay 5b.
  • the relay 5b is switched on.
  • the relay 5a is switched on, the capacitor 7a is charged, and then the relay 5b is switched on.
  • the relay 5b is switched on.
  • the energy of the capacitor 8b charged during the stop mode flows as an overcurrent to the contact of the relay 5b, so that the switching terminal of the relay 5b may be welded.
  • a relay used as a transmission path switching device has a characteristic of transmitting power, it is set to have a resistance value lower than the resistance value of a resistance element incorporated in the circuit.
  • the overcurrent flowing into the relay is proportional to the sum of the voltage value in the phase of the power supply voltage sent from the power supply 1 and the voltage value of the charge stored in the capacitor.
  • FIG. 6 is a diagram showing fluctuations in the voltage of the capacitor 8b and the waveform of the power supply voltage when the relay 5b is turned off.
  • the horizontal axis indicates the on / off operation time t of the relay 5 b shown in FIGS. 1 to 5, and the vertical axis indicates the remaining voltage Vc of the capacitor 8 b and the power supply voltage Vs of the power source 1.
  • the residual voltage Vc indicates a voltage between terminals of the capacitor 8b.
  • the residual voltage Vc and the power supply voltage Vs have sinusoidal waveforms because AC power from the power supply 1 is used.
  • a periodically displaced sine wave is indicated by a phase angle where one period is 360 degrees. As shown in FIG.
  • the relay 5 b is switched from on to off at the timing of time t ⁇ b> 2 by the input of the control signal to be turned off by the relay control device 200.
  • the phase angle ⁇ c of the remaining voltage Vc is 270 degrees
  • the phase angle ⁇ s1 of the power supply voltage Vs is 270 degrees.
  • the charging of the capacitor 8b is cut off in a state where the peak value of the power supply voltage Vs has been reached.
  • the relay 5b switches from OFF to ON.
  • the phase angle ⁇ s2 of the power supply voltage Vs is 90 degrees.
  • the power supply voltage Vs has a peak value.
  • the remaining voltage Vc is charged with the power supply voltage Vs being in a phase where the peak value is reached.
  • the relay 5b is switched on, and a voltage obtained by adding the power supply voltage Vs of the power supply 1 and the residual voltage Vc of the capacitor 8b is applied between the contacts of the relay 5b.
  • a voltage twice as high as that of the power source 1 is applied between the contacts of the relay 5b, and then an overcurrent flows between the contacts of the relay 5b.
  • the relay 5b may be welded.
  • relay welding is suppressed by providing a discharge time during which the residual voltage Vc of the capacitor 8b is reduced during the reactive power reduction mode.
  • FIG. 7 is a diagram showing a decrease in the residual voltage when a time for reducing the residual voltage is provided.
  • the operation of the relay 5b and the change in the remaining voltage Vc between the time t1 and the time t2 ′ shown in FIG. 7 are the same as the operation of the relay 5b and the change in the remaining voltage Vc between the time t1 and the time t2 shown in FIG. It is the same.
  • the remaining voltage Vc is lowered by providing the discharge time tc from time t2 'to time t3'.
  • FIG. 8 is a flowchart illustrating an example of processing when the power conversion device according to Embodiment 2 executes relay control.
  • step S101 the power converter device 100 shifts to the reactive power reduction mode and turns off the relay 5b.
  • step S102 the detection unit 200D included in the relay control device 200 shown in FIG. 1 detects the voltage value of the remaining voltage Vc of the capacitor 8b.
  • step S103 the processing unit 200P acquires the voltage value of the residual voltage Vc of the capacitor 8b detected by the detection unit 200D.
  • the relay 5b is kept off.
  • the processing unit 200P compares the voltage value with a threshold value. When the voltage value is equal to or greater than the threshold value (step S103, no), the relay control device 200 stands by until the voltage value falls below the threshold value.
  • step S104 the processing unit 200P permits the power converter 100 in the reactive power reduction mode to return. Note that the power conversion apparatus 100 may return at a timing when a predetermined time has elapsed after the discharge time tc ends.
  • the power conversion device 100 includes a PFC 51.
  • the phase of the voltage waveform of the power supply 1 detected by a power supply phase detection circuit (not shown) and the phase of the current waveform are the same in order to suppress harmonic currents that may cause problems in the electronic circuit.
  • Control to be The power supply phase detection circuit is connected to the capacitor 8b. Therefore, the residual voltage Vc of the capacitor 8b is supplied to the power supply phase detection circuit, so that the voltage of the capacitor 8b can be discharged during the relay 5b off period, that is, the discharge time tc.
  • the discharge time tc is derived according to the following description.
  • the residual voltage Vc of the capacitor 8b that is in conduction with the power supply phase detection circuit is detected by the detection unit 200D, and the time from the discharge start time to the discharge end time is used as the discharge time tc. More specifically, in the example of FIG. 7, the time when the residual voltage Vc of the capacitor 8b reaches the peak value is defined as the discharge start time, and the time when the residual voltage Vc of the capacitor 8b reaches 0V is defined as the discharge end time.
  • the discharge time tc by providing the discharge time tc, it is possible to control the voltage value of the capacitor and suppress the welding of the relay.
  • the voltage value of the capacitor 8b is detected, and the discharge time tc is secured until the detected voltage value becomes equal to or less than a predetermined value.
  • FIG. 9 is a diagram illustrating a power conversion device according to the third embodiment.
  • the power conversion device 100 is different from the first embodiment in that it includes a discharge circuit 20.
  • the discharge circuit 20 is connected to the capacitor 8b.
  • the discharge circuit 20 may be a semiconductor element such as a resistor or a photocoupler.
  • the operation mode In the reactive power reduction mode, in order to suppress the inflow of overcurrent, the operation mode cannot be shifted until the discharge time for discharging the residual voltage of the capacitor 8b is completed. For this reason, when the discharge time is large, the time for shifting from the reactive power reduction mode to the operation mode also increases.
  • the control is performed to ensure the discharge time tc until the residual voltage of the capacitor 8b is discharged. Therefore, in power converter 100 according to Embodiment 3, by providing discharge circuit 20, it is possible to further shorten the discharge time of the residual voltage of capacitor 8b.
  • FIG. 10 is a diagram illustrating the relationship between the delay time of the relay switching operation and the voltage phase.
  • a phase detection circuit (not shown) is arranged between power supply 1 and capacitor 8b.
  • the phase detection circuit is connected to the processing unit 200P of the relay control device 200 and detects the phase of the voltage of the power supply 1 and the capacitor 8b.
  • the delay time is 10 ms.
  • the delay time is accumulated every time the relay switching operation is repeated. As the accumulated delay time increases, the timing of switching between relays also increases.
  • the relay control device 200 outputs a control signal to be turned on to the relay 5b at the zero cross point of the power supply voltage Vc.
  • the relay 5b to which the control signal is input is turned on after a delay time td from time t2 to time t3 has elapsed.
  • the capacitor 8b starts charging at the timing of time t3 after the lapse of the delay time td.
  • the relay control device 200 outputs a control signal based on the calculated delay time td.
  • the delay time td can be calculated using the phase difference of the remaining voltage Vc at the time t3 when charging is started, the phase difference between the phases of the power supply voltage Vs at the time t2 and the power supply frequency.
  • the relay by outputting a control signal based on the delay time td, the relay can be switched according to the delay time, the voltage value of the capacitor is controlled, and the relay is welded. Can be suppressed.
  • FIG. FIG. 11 is a diagram illustrating the switching operation of the relay and changes in the voltages of the power supply and the capacitor.
  • the relay control device 200 switches the relay 5b to the on state at the timing when the power supply voltage Vs and the remaining voltage Vc become the same potential.
  • the relay 5b is switched at a timing using the delay time td calculated in the fourth embodiment.
  • the potential difference between the power supply voltage Vs and the remaining voltage Vc disappears. For this reason, in power converter 100 according to the fifth embodiment, the voltage value of the capacitor can be controlled to suppress the welding of the relay.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Keying Circuit Devices (AREA)
  • Inverter Devices (AREA)

Abstract

本実施の形態に係る電力変換装置(100)は、電源(1)から電圧が供給されることで、電荷を充電または放電するコンデンサ(8b)と、電源(1)とコンデンサ(8b)との間に配置され、オンまたはオフを切り替えることで、電源(1)からコンデンサ(8b)への電圧の供給を制御するリレー(5a)と、オンまたはオフを切り替える制御信号をリレー(5b)に出力し、予め導出した放電時間に基づいてコンデンサ(8b)の端子間電圧を低下させるリレー制御装置(200)と、を含む。

Description

電力変換装置
 本発明は、電力変換装置に関する。
 特許文献1には、電源とコンデンサの間に配置されたリレーをオンオフ制御し、コンデンサおよびリレーを介して、電源から負荷に電力を供給するリレー制御装置が記載されている。従来の技術では、リレーの溶着耐圧値を超える電圧がコンデンサからリレーに印加された場合、リレーが溶着してしまう問題があった。特許文献1には、コンデンサの放電前および放電後の電圧値の変化量と、リレーの溶着耐圧値とを比較し、比較結果を用いて溶着の発生を判断する技術が開示されている。また、特許文献1には、リレーの溶着が発生していると判断した場合、リレーに対しオンオフ制御を繰り返し実行し、オンオフ制御にともなう動作により溶着を解除する技術が開示されている。
特開2006-310091号公報
 特許文献1の技術は、溶着したリレーに生じる溶着力によっては、オンオフ制御を繰り返し実行しても、溶着を解除することができない場合がある。
 本発明は、上記に鑑みてなされたものであって、リレーの溶着を抑制できる電力変換装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る電力変換装置は、制御信号に応じてリレーを切り替えることで、コンデンサへの電源の電圧の供給を制御し、予め導出した放電時間に基づいてコンデンサの端子間電圧を低下させる。
 本発明によれば、リレーの溶着を抑制できる電力変換装置を得ることができるという効果を奏する。
実施の形態1に係る電力変換装置を示す図 実施の形態1に係る電力変換装置の停止モードにおける電力の伝送経路を示す図 実施の形態1に係る電力変換装置の停止モードにおける電力の伝送経路を示す図 実施の形態1に係る電力変換装置の無効電力削減モードにおける電力の伝送経路を示す図 実施の形態1に係る電力変換装置の無効電力削減モードにおける電力の伝送経路を示す図 リレーをオフにした場合の、コンデンサの電圧、および電源電圧の波形の変動を示す図 残存電圧を低下させる時間を設けた場合における、残存電圧の低下を示す図 実施の形態2に係るリレー制御装置がリレー制御を実行する際の処理を示すフローチャート 実施の形態3に係る電力変換装置を示す図 リレーの切り替え動作の遅延時間と、電圧の位相との関係を示す図 リレーの切り替え動作と、電源およびコンデンサの電圧の変化を示す図
 以下に、本発明の実施の形態に係る電力変換装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、実施の形態1に係る電力変換装置を示す図である。電力変換装置100は、電源1が出力した電力を負荷2に供給させる。電源1は、交流電力を出力する交流電源である。負荷2は、空気調和器または冷蔵庫といった電気機器に用いられる圧縮機を駆動するモータである。電力変換装置100が備えるリレー5a,5bは、負荷2への電力供給経路を切り替えるための経路切替装置である。リレー5a,5bは、経路を切り替える切替端子を有し、リレー制御装置200から出力される制御信号にもとづき、オンまたはオフする。
 図1に示される電力変換装置100は、電源1と、リレー5a,5b,5cと、ダイオード6a,6b,6cと、コンデンサ7a,7bと、抵抗11と、ノイズフィルタ30と、保護回路35a,35bと、整流回路40と、コンバータ50と、インバータ回路60と、DC(Direct Current)DCコンバータ70とを備える。
 図1に示される電力変換装置100において、ノイズフィルタ30は、コンデンサ8a,8bと、コモンコイル9と、ノーマルコイル10とを含む。コンデンサ8aは、電源1とコモンコイル9との間に配置される。コンデンサ8aの一端は第1電源経路Aと接続され、コンデンサ8aの他端は、第2電源経路Bと接続される。コンデンサ7aは、リレー5aがオンすることで供給された電源1からの電力の電圧により充電される。コモンコイル9は、コンデンサ8aとコンデンサ8bとの間に配置される。
 整流回路40は、ノイズフィルタ30とコンバータ50との間に配置される。整流回路40は、ダイオード40a,40b,40c,および40dを含む。ダイオード40aのアノードは、コンデンサ8bの一端と接続される。ダイオード40aのカソードは、コンバータ50が有するリアクタ52a,52bの一端と接続される。ダイオード40bのアノードは、コンバータ50が有するシャント抵抗53a,53bと接続される。ダイオード40bのカソードは、コンデンサ8bおよびノーマルコイル10と接続される。ダイオード40cのアノードは、コンデンサ7aとダイオード40bとの中点と接続される。ダイオード40cのカソードは、コンデンサ8bとダイオード40aとの中点と接続される。ダイオード40dのアノードは、コンデンサ8bとダイオード40bとの中点と接続される。ダイオード40dのカソードは、ダイオード40aとコンバータ50との中点と接続される。
 コンバータ50は、整流回路40とコンデンサ7aとの間に配置される。コンバータ50は、PFC51(Power Factor Correction)と、リアクタ52a,52bと、シャント抵抗53a,53bとを含む。PFC51は、スイッチング素子51a,51bと、ダイオード51A,51Bとを有する。スイッチング素子51aは、シャント抵抗53aとダイオード51Aとの間に配置される。スイッチング素子51bは、シャント抵抗53bとダイオード51Bとの間に配置される。リアクタ52aおよびリアクタ52bは、互いに並列に配置されている。リアクタ52aの一端は、ダイオード40aとリアクタ52bとの中点と接続される。リアクタ52aの他端は、スイッチング素子51bとダイオード51Bとの中点と接続される。リアクタ52bの一端は、ダイオード40aおよびダイオード40dと接続される。リアクタ52bの他端は、スイッチング素子51aとダイオード51Aとの中点と接続される。ダイオード51Aのアノードは、スイッチング素子51aと接続される。ダイオード51Aのカソードは、コンデンサ7aと接続される。ダイオード51Bのアノードは、スイッチング素子51bと接続される。ダイオード51Bのカソードは、コンデンサ7aと接続される。
 コンデンサ7aは、コンバータ50とインバータ回路60との間に並列して配置される。インバータ回路60は、コンデンサ7aと負荷2との間に並列に配置される。インバータ回路60は、DCDCコンバータ70と接続される。DCDCコンバータ70は、マイクロコンピュータ(以下においては適宜、マイコンと称する)71およびDCDC回路72を含む。
 保護回路35aは、ノイズフィルタ30とコンデンサ7aとの間に配置される。保護回路35aは、PTCサーミスタ4aと、リレー5aと、ダイオード6aとを含む。コモンコイル9とコンデンサ7aとの間に、PTCサーミスタ4aと、リレー5aと、ダイオード6aとが配置されている。PTCサーミスタ4aの一端は、コモンコイル9の他端と接続される。PTCサーミスタ4aの他端は、リレー5aを介して、ダイオード6aのアノードと接続される。ダイオード6aのカソードは、コンデンサ7aと接続される。
 保護回路35bは、ノイズフィルタ30とコンデンサ7bとの間に配置される。保護回路35bは、リレー5cと、PTCサーミスタ4bと、抵抗11と、ダイオード6bとを含む。ノイズフィルタ30とコンデンサ7bとの間に、リレー5cと、PTCサーミスタ4bと、抵抗11と、ダイオード6bとが配置されている。PTCサーミスタ4bおよび抵抗11は、互いに並列して配置されている。PTCサーミスタ4bの一端は、リレー5cを介して、コモンコイル9の他端と接続される。PTCサーミスタ4bの他端は、ダイオード6bのアノードと接続される。抵抗11の一端は、リレー5aを介して、コモンコイル9の他端と接続される。抵抗11の他端は、ダイオード6bのアノードと接続される。ダイオード6bのカソードは、コンデンサ7bと接続される。
 図1に示される電力変換装置100が含むリレー制御装置200は、記憶部200Mと、検出部200Dと、処理部200Pとを含む。リレー制御装置200は、検出部200Dで検出した電圧値の検出結果を取得し、取得した検出結果を用いて、リレー5bを制御する。また、リレー制御装置200は、リレー5a,5b,5cを制御することによって、電源1が出力した電力を、コンデンサ7a、コンデンサ7b、およびコンデンサ8bに供給する。コンデンサ7a、コンデンサ7b、およびコンデンサ8bは、電力が供給されることで、電荷を蓄えることができる。
 記憶部200Mは、リレー5bのオンオフ動作を制御するためのコンピュータプログラムを記憶している。検出部200Dは、コンデンサ8bの両端電圧を検出し、検出された電圧値を処理部200Pに出力する。処理部200Pは、リレー5bを制御するための処理を実行する。処理部200Pは、CPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSP(Digital Signal Processor)ともいう)をはじめとしたプロセッサである。記憶部200Mは、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、EPROM(Erasable Programmable Read Only Memory)、およびEEPROM(Electrically Erasable Programmable Read Only Memory)といったメモリである。
 リレー制御装置200は、電力変換装置100の給電により負荷2を運転させる状態を示す運転モード、電力変換装置100の給電の停止により負荷2を停止させる状態を示す停止モード、または電力変換装置100の無効電力を削減する状態を示す無効電力削減モードのいずれかのモードに応じて、リレー5bのオンオフ動作を制御する。
 図2および図3は、実施の形態1に係る電力変換装置の停止モードにおける電力の伝送経路を示す。停止モードの状態では、負荷2への電力の供給を停止させる。また、停止モードの状態では、コンデンサ7aおよびコンデンサ7bへ電力を供給し、コンデンサ7aおよびコンデンサ7bに電荷を蓄えさせる。なお、実施の形態1においては、整流回路40が含むダイオード40a,40b,40cおよび40dを用いて、正の半波、および負の半波をそれぞれ独立して整流する方式とした。
 図2は、停止モードにおいて、電源1が供給する交流の電力のうち、正の半波の伝送経路を太線を用いて示したものである。正の半波の伝送経路に配置されるコンデンサ7aおよびコンデンサ7bは、電源1から供給される電力によって充電される。リレー制御装置200は、停止モードでは、リレー5aをオフさせ、リレー5bをオンさせる。電源1は、交流電力を出力する。交流電力は、リレー5bを介して、整流回路40のダイオード40aおよび40dで整流される。整流された電力は、並列に配置されたリアクタ52aおよびリアクタ52bを介してコンバータ50に伝送される。コンバータ50のダイオード51Aおよびダイオード51Bは、伝送された電力を整流し、整流して取得した電力の正の半波の電圧をコンデンサ7aに供給し、充電させる。また、電源1が出力する交流電力は、リレー5cを介して、ダイオード6bで整流される。整流されて取得した電力の正の半波の電圧で、コンデンサ7bを充電させることができる。
 図3は、停止モードにおいて、電源1が供給する交流の電力のうち、負の半波の伝送経路を太線を用いて示したものである。負の半波の伝送経路に配置されるコンデンサ7aは、供給される電力を用いて充電することができる。リレー5a、リレー5bおよびリレー5cは、図2に示すオンオフの状態と同様である。図3に示す電力変換装置100では、電源1が供給する交流電力を、整流回路40のダイオード40cおよびダイオード40dで整流させる点で、図2の電力の伝送経路と異なる。整流回路40からコンバータ50までの伝送経路は、図2に示す伝送経路と同様である。図3に示す伝送経路により、コンデンサ7aは、電力の負の半波の電圧が供給されることで充電される。なお、図3に示すように、電源1から伝送される電力は、コンデンサ7bには伝送されないため、充電されない。
 図4および図5は、実施の形態1に係る電力変換装置の無効電力削減モードにおける電力の伝送経路を示す。無効電力削減モードの状態では、負荷2への電力の供給を停止させ、ノイズフィルタ30が有するコンデンサ8bへの電力の供給を停止させ、コンデンサ7aへの電力の供給を停止させる。電力の供給により駆動するマイコン71またはインバータ回路60のスイッチング素子(不図示)は、コンデンサ7bに予め充電された電圧が供給されるため駆動が可能な状態となる。図2および図3に示す停止モードでは、リレー5aをオフの状態、リレー5bをオンの状態としたが、図4および図5に示す無効電力削減モードでは、リレー5aをオフの状態のままとし、リレー5bをオフさせる点が異なる。図2および図3に示す停止モードと、図4および図5に示す無効電力削減モードとでは、リレー5cを抵抗11と接続させる点が同様である。図4および図5に示す無効電力削減モードのリレー5bのオンオフ動作により、電力変換装置100は、コンデンサ8bへの電力の供給を停止させることで、コンデンサ8bが充電される際に用いる電力を削減することができる。
 図4は、無効電力削減モードにおいて、電源1が供給する交流の電力のうち、正の半波の伝送経路を、太線を用いて示したものである。正の半波の伝送経路に配置されるコンデンサ8bは、リレー5bがオフとなることで電力の供給も停止されるため、充電は実行されない。正の半波の伝送経路に配置されるコンデンサ7bは、電源1から供給される電力を用いて充電することができる。このため、上述したように、無効電力削減モードの状態でも、コンデンサ7bからマイコン71に電力供給が可能である。電力供給されたマイコン71は、運転モード、停止モード、および無効電力削減モードといった各モードに応じて制御を行うことができる。電源1は、交流電力を出力する。交流電力は、リレー5cを介して、ダイオード6bで整流される。整流された電力の正の半波の電圧をコンデンサ7aに供給し、充電させる。
 図5は、無効電力削減モードにおいて、電源1が供給する交流の電力のうち、負の半波の伝送経路を、太線を用いて示したものである。負の半波の伝送経路に配置されるコンデンサ8aは、供給される電力を用いて充電する。図5において、コンデンサ7bに対し、電源1が供給する電力を伝送しない点は、図4における電力の伝送経路と異なる。図5においてリレー5a、リレー5bおよびリレー5cは、図4に示すオンオフの状態と同様である。また、図5において、第1電源経路Aと第2電源経路Bとの間に配置されたコンデンサ8aは、電源1が供給する電力の負の半波の電圧を用いて充電される点で、図4と同様である。
 実施の形態1において、停止モードでは、電源1の電圧がコンデンサ8bに供給される。無効電力削減モードでは、リレー5bをオフに切り替えることで、コンデンサ8bへの電圧の供給を停止する。無効電力削減モードにおける電力変換装置100がすぐに運転可能となるように、停止モードに移行して、コンデンサ7aを充電する場合、リレー5bをオンに切り替えることとなる。ここで、コンデンサ7aに充電された電圧値が予め定められた値より小さい場合、リレー5aをオンに切り替え、コンデンサ7aを充電させた後に、リレー5bをオンに切り替える。コンデンサ7aに充電された電圧値が予め定められた値より大きい場合、リレー5bをオンに切り替える。この場合、リレー5bがオンに切り替わったタイミングによっては、停止モード中に充電されたコンデンサ8bのエネルギーが、リレー5bの接点に過電流として流れることで、リレー5bの切替端子が溶着してしまう可能性がある。伝送経路の切替装置として用いられるリレーは、電力を伝送する特性を有しているため、回路に組み込まれる抵抗素子の抵抗値よりも、より低い抵抗値となるように設定されている。このようなリレーに対し、過電流が流れ込むと、正常な運転時に流れる電流よりも大きな電流が流れ、溶着を一層進める可能性がある。リレーに流れ込む過電流は、電源1が送出する電源電圧の位相における電圧値と、コンデンサに蓄電された電荷の電圧値とを足し合わせた大きさに比例する。
 図6は、リレー5bをオフにした場合の、コンデンサ8bの電圧、および電源電圧の波形の変動を示す図である。図6では、図1から図5に示すリレー5bのオンオフ動作の時間tを横軸に示し、コンデンサ8bの残存電圧Vc、および電源1の電源電圧Vsを縦軸に示した。以下において、残存電圧Vcは、コンデンサ8bの端子間電圧を示す。残存電圧Vcおよび電源電圧Vsは、電源1の交流電力を用いるため、正弦波の波形となる。周期的に変位する正弦波は、1周期が360度である位相角により示される。図6に示すように、リレー5bは、リレー制御装置200のオフする制御信号の入力により、時間t2のタイミングでオンからオフに切り替わる。図6に示す例では、オフに切り替わる時間t2の時点では、残存電圧Vcの位相角θは270度となり、電源電圧Vsの位相角θs1は270度となる。この同じ位相角の状態では、電源電圧Vsのピーク値に達した状態で、コンデンサ8bに対し充電が遮断される。オンに切り替わる時間t3の時点では、リレー5bはオフからオンに切り替わる。また、時間t3の時点では、電源電圧Vsの位相角θs2は90度となる。位相角θs2が90度の場合は、電源電圧Vsがピークの値となることを示す。
 図6に示す時間t2の時点では、電源電圧Vsがピーク値を示す位相の状態で、残存電圧Vcが充電されている。時間t3の時点では、リレー5bがオンの状態に切り替わり、電源1の電源電圧Vsと、コンデンサ8bの残存電圧Vcとを足し合わせた電圧がリレー5bの接点間に印加される。具体的には、最大で電源1の2倍の電圧がリレー5bの接点間に印加され、その後、リレー5bの接点間に過電流が流れることとなる。その結果、リレー5bの溶着が発生する可能性がある。そこで、実施の形態1では、無効電力削減モード中にコンデンサ8bの残存電圧Vcを低下させる放電時間を設けることで、リレーの溶着を抑制する。
 図7は、残存電圧を低下させる時間を設けた場合における、残存電圧の低下を示す図である。図7に示す時間t1から時間t2’の間の、リレー5bの動作および残存電圧Vcの変化は、図6に示す時間t1から時間t2の間の、リレー5bの動作、および残存電圧Vcの変化と同様である。図7では、時間t2’から時間t3’まで放電時間tcを設けることで、残存電圧Vcを低下させる。
実施の形態2.
 実施の形態2に係る電力変換装置100では、コンデンサ8bの残存電圧Vcの電圧値を検出するために、検出部200Dを用いる。実施の形態2に係る電力変換装置100の構成は、図1に示される電力変換装置100の構成と同様である。図8は、実施の形態2に係る電力変換装置がリレー制御を実行する際の処理の一例を示すフローチャートである。ステップS101において、電力変換装置100は無効電力削減モードに移行し、リレー5bをオフの状態にする。次に、ステップS102において、図1に示されるリレー制御装置200が備える検出部200Dは、コンデンサ8bの残存電圧Vcの電圧値を検出する。ステップS103において、処理部200Pは、検出部200Dで検出されたコンデンサ8bの残存電圧Vcの電圧値を取得する。リレー5bはオフの状態を維持している。処理部200Pは、電圧値と閾値とを比較する。電圧値が閾値以上である場合(ステップS103、no)、リレー制御装置200は、電圧値が閾値を下回るまで待機する。電圧値が閾値を下回った場合(ステップS103、yes)、ステップS104において、処理部200Pは、無効電力削減モードの電力変換装置100の復帰を許可する。なお、電力変換装置100は、放電時間tcが終了してから、所定時間経過したタイミングで復帰することとしてもよい。
 図1から図5に示すように、電力変換装置100は、PFC51を含む。PFC51は、電子回路に不具合を与える可能性がある高調波電流を抑制するために、電源位相検出回路(不図示)で検出した電源1の電圧波形の位相と電流波形の位相とが、同じ位相となるように制御する。電源位相検出回路はコンデンサ8bと接続されている。このため、コンデンサ8bの残存電圧Vcは、電源位相検出回路に供給されることで、リレー5bのオフの期間、すなわち放電時間tcの期間で、コンデンサ8bの電圧を放電させることができる。放電時間tcは、以下の説明にしたがって導出される。電源位相検出回路と導通されたコンデンサ8bの残存電圧Vcは、検出部200Dによって検出され、放電開始時間から放電終了時間までの時間を放電時間tcとして用いる。より詳細には、図7の例では、コンデンサ8bの残存電圧Vcがピーク値に達した時点を放電開始時間とし、コンデンサ8bの残存電圧Vcが0Vに達した時点を放電終了時間とした。実施の形態1では、放電時間tcを設けることにより、コンデンサの電圧値を制御し、リレーの溶着を抑制することができる。実施の形態2では、コンデンサ8bの電圧値を検出し、検出した電圧値が予め定められた値以下になるまで放電時間tcを確保する。
実施の形態3.
 図9は、実施の形態3に係る電力変換装置を示す図である。電力変換装置100は、放電回路20を備える点で、実施の形態1と異なる。放電回路20は、コンデンサ8bと接続されている。放電回路20は、抵抗またはフォトカプラといった半導体素子が適用されてもよい。無効電力削減モードでは、過電流の流入を抑制するため、コンデンサ8bの残存電圧が放電される放電時間が終了するまで、運転モードに移行することはできない。このため、放電時間が大きい場合、無効電力削減モードから運転モードに移行する時間も大きくなる。
 実施の形態1に係る電力変換装置100では、コンデンサ8bの残存電圧が放電されるまで放電時間tcを確保する制御とした。そこで、実施の形態3に係る電力変換装置100では、放電回路20を設けることによって、コンデンサ8bの残存電圧の放電時間をより短くすることができる。
実施の形態4.
 図10は、リレーの切り替え動作の遅延時間と、電圧の位相との関係を示す図である。実施の形態4に係る電力変換装置100は、電源1およびコンデンサ8bの間に、位相検出回路(不図示)が配置されている。位相検出回路は、リレー制御装置200の処理部200Pと接続され電源1およびコンデンサ8bの電圧の位相を検出する。
 電力供給経路を切り替えるリレーには、制御信号が出力されてから、オンからオフまたはオフからオンに切り替えるまでに生じる動作の遅延時間が存在する。一般的には、電子回路に用いられるリレーは、制御信号が出力されてからオンするまでの時間が10ms生じ、制御信号が出力されてからオフするまでの時間が5ms生じる。また、電源周波数が50Hzまたは60Hzのいずれかの場合、最大で約60%のずれが生じ、この場合、遅延時間は、10msとなる。遅延時間は、リレーの切り替え動作を繰り返す度に、蓄積される。蓄積された遅延時間が大きくなるにしたがい、リレーが切り替えるタイミングのズレも大きくなる。
 図10に示すように、時間t2において、リレー制御装置200は、電源電圧Vcのゼロクロスポイントで、オンさせる制御信号をリレー5bに出力する。制御信号が入力されたリレー5bは、時間t2から時間t3までの遅延時間tdの経過後、オンの状態に切り替わる。コンデンサ8bは、遅延時間tdの経過後である時間t3のタイミングで、充電を開始する。実施の形態4において、リレー制御装置200は、算出した遅延時間tdに基づいて制御信号を出力する。遅延時間tdは、充電を開始する時間t3の残存電圧Vcの位相、および時間t2の電源電圧Vsの位相の位相差と、電源周波数を用いて算出することができる。実施の形態4に係る電力変換装置100では、遅延時間tdに基づいて制御信号を出力することによって、遅延時間に応じてリレーを切り替えることができ、コンデンサの電圧値を制御し、リレーの溶着を抑制することができる。
実施の形態5.
 図11は、リレーの切り替え動作と、電源およびコンデンサの電圧の変化を示す図である。図11に示すように、時間t3において、リレー制御装置200は、電源電圧Vsおよび残存電圧Vcが同電位となるタイミングで、リレー5bをオンの状態に切り替える。ここで、リレー5bは、実施の形態4で算出した遅延時間tdを用いたタイミングで切り替わることとする。上述した時間t3のタイミングでは、電源電圧Vsおよび残存電圧Vcの電位差がなくなることとなる。このため、実施の形態5に係る電力変換装置100では、コンデンサの電圧値を制御し、リレーの溶着を抑制することができる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
  1 電源、2 負荷、4a,4b PTCサーミスタ、5a,5b,5c リレー、6a,6b,6c,40a,40b,40c,40d ダイオード、7a,7b,8a,8b コンデンサ、9 コモンコイル、10 ノーマルコイル、11 抵抗、20 放電回路、30 ノイズフィルタ、35a,35b 保護回路、40 整流回路、50 コンバータ、51 PFC、52a,52b リアクタ、53a,53b シャント抵抗、60 インバータ回路、70 DCDCコンバータ、71 マイコン、72 DCDC回路、100 電力変換装置、200 リレー制御装置、200M 記憶部、200D 検出部、200P 処理部。

Claims (3)

  1.  電源から電圧が供給されることで、電荷を充電または放電するコンデンサと、
     前記電源と前記コンデンサとの間に配置され、オンまたはオフを切り替えることで、前記電源から前記コンデンサへの電圧の供給を制御するリレーと、
     オンまたはオフを切り替える制御信号を前記リレーに出力し、予め導出された放電時間に基づいて前記コンデンサの端子間電圧を低下させるリレー制御装置と、
    を含むことを特徴とする電力変換装置。
  2.  前記コンデンサと接続され、前記コンデンサが充電した電荷を放電させる放電回路を含むことを特徴とする請求項1に記載の電力変換装置。
  3.  前記制御信号が入力されてからオンまたはオフのいずれかに切り替わるまでのタイミング、かつ、前記電源の電圧値および前記コンデンサの電圧値が同電位となるタイミングで、前記リレーを制御する
    ことを特徴とする請求項1または2に記載の電力変換装置。
PCT/JP2016/079489 2016-10-04 2016-10-04 電力変換装置 WO2018066063A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/079489 WO2018066063A1 (ja) 2016-10-04 2016-10-04 電力変換装置
JP2018543510A JP6682003B2 (ja) 2016-10-04 2016-10-04 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/079489 WO2018066063A1 (ja) 2016-10-04 2016-10-04 電力変換装置

Publications (1)

Publication Number Publication Date
WO2018066063A1 true WO2018066063A1 (ja) 2018-04-12

Family

ID=61832139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079489 WO2018066063A1 (ja) 2016-10-04 2016-10-04 電力変換装置

Country Status (2)

Country Link
JP (1) JP6682003B2 (ja)
WO (1) WO2018066063A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310091A (ja) * 2005-04-28 2006-11-09 Toyota Motor Corp リレー制御装置
JP2012147672A (ja) * 2010-03-11 2012-08-02 Mitsubishi Electric Corp 電力変換装置
JP2013121300A (ja) * 2011-12-09 2013-06-17 Toyo Electric Mfg Co Ltd フィルタコンデンサの放電方法
JP2015050900A (ja) * 2013-09-04 2015-03-16 富士電機株式会社 電力変換装置及び点検台

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310091A (ja) * 2005-04-28 2006-11-09 Toyota Motor Corp リレー制御装置
JP2012147672A (ja) * 2010-03-11 2012-08-02 Mitsubishi Electric Corp 電力変換装置
JP2013121300A (ja) * 2011-12-09 2013-06-17 Toyo Electric Mfg Co Ltd フィルタコンデンサの放電方法
JP2015050900A (ja) * 2013-09-04 2015-03-16 富士電機株式会社 電力変換装置及び点検台

Also Published As

Publication number Publication date
JPWO2018066063A1 (ja) 2019-01-24
JP6682003B2 (ja) 2020-04-15

Similar Documents

Publication Publication Date Title
EP1835607B1 (en) Apparatus and method for supplying DC power source
US7613018B2 (en) Apparatus and method for supplying DC power source
JP5486604B2 (ja) 無停電電源装置
JP5538658B2 (ja) 電力変換装置
CN107155383B (zh) 不间断电源装置
JP5045687B2 (ja) 電源装置、空気調和機
JP2008289353A (ja) Ac/dc変換器及びこれを用いたac/dc変換方法
JP5668692B2 (ja) Pfcコンバータ
JP2014171313A (ja) Dc/dcコンバータ
WO2016157962A1 (ja) 電源装置
JP2011045153A (ja) 無停電電源装置
JP6268786B2 (ja) パワーコンディショナ、パワーコンディショナシステムおよびパワーコンディショナの制御方法
JP6178676B2 (ja) インバータ回路の制御回路、この制御回路を備えたインバータ装置、このインバータ装置を備えた誘導加熱装置、および、制御方法
WO2018066063A1 (ja) 電力変換装置
JP2020108246A (ja) 制御回路、および、dc/dcコンバータ装置
JP2008306889A (ja) 無停電電源装置
JP5509454B2 (ja) 電源装置とこれを利用する充電器
JP6371226B2 (ja) 逆電流保護付きスイッチング電源装置
JP2018187645A (ja) 溶接電源装置
KR20190019289A (ko) 전력 변환 장치와 그 제어방법 및 전력 변환 장치를 포함하는 공기 조화기
JP4821769B2 (ja) コンバータ用放電回路
WO2019077842A1 (ja) 電力変換装置、電動機駆動装置及び空気調和装置
JP6121919B6 (ja) 電力変換装置
JP6121919B2 (ja) 電力変換装置
JP2005224039A (ja) 電源装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018543510

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16918263

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16918263

Country of ref document: EP

Kind code of ref document: A1