WO2011065296A1 - 駆動装置 - Google Patents

駆動装置 Download PDF

Info

Publication number
WO2011065296A1
WO2011065296A1 PCT/JP2010/070652 JP2010070652W WO2011065296A1 WO 2011065296 A1 WO2011065296 A1 WO 2011065296A1 JP 2010070652 W JP2010070652 W JP 2010070652W WO 2011065296 A1 WO2011065296 A1 WO 2011065296A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide
drive
driven body
corner
lever member
Prior art date
Application number
PCT/JP2010/070652
Other languages
English (en)
French (fr)
Inventor
岡本 泰弘
啓俊 小西
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to US13/508,463 priority Critical patent/US20120230665A1/en
Priority to EP10833142.2A priority patent/EP2506057A4/en
Priority to JP2011543227A priority patent/JPWO2011065296A1/ja
Publication of WO2011065296A1 publication Critical patent/WO2011065296A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/061Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element
    • F03G7/0614Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element using shape memory elements
    • F03G7/06143Wires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/065Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like using a shape memory element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/023Mountings, adjusting means, or light-tight connections, for optical elements for lenses permitting adjustment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/026Mountings, adjusting means, or light-tight connections, for optical elements for lenses using retaining rings or springs

Definitions

  • the present invention relates to a drive device that drives a small mechanical element using a shape memory alloy actuator, and in particular, a lens unit constituting an imaging optical system such as a camera-equipped mobile phone in the optical axis direction for zooming, focusing, and the like.
  • the present invention relates to a drive device suitable for moving to a position.
  • a lens driving device that moves the lens in the optical axis direction is necessary.
  • a lens driving device using a shape memory alloy (SMA) actuator has been applied.
  • SMA shape memory alloy
  • This device generates contraction force by energizing and heating the SMA, and uses the contraction force as a lens driving force. It is easy to reduce the size and weight and obtain a relatively large driving force. There is an advantage that can be.
  • a linear drive device using a wire-like SMA and utilizing a length variation of several percent (for example, 3 to 5%) of the total length of the wire. Further, a linear drive device in which the amount of displacement can be expanded by combining the wire-like SMA and a zoom mechanism (for example, a lever mechanism) can be configured.
  • a driving device disclosed in Patent Document 1 As a lens driving mechanism and a driving device to which an SMA actuator is applied, for example, a driving device disclosed in Patent Document 1 is known. This driving device is provided with a wire-like SMA and a lever mechanism that increases the amount of displacement, and is configured as shown in FIG.
  • This driving device is a lens driving device that displaces a lens unit P1 that is a driven body using a wire-like SMA and a lever mechanism that expands the amount of displacement, and the lens unit P1 is moved in the optical axis AX direction (first direction). (Axial direction) lever member P2, SMA actuator P3, base member P4, top plate P5, parallel plate springs P6a and P6b, bias spring P7, and the like.
  • the base member P4 is fixed to a member (for example, an image sensor substrate of a mobile phone) to which the lens driving device is attached, and is a non-moving member constituting the bottom side of the lens driving device.
  • the base member P4 is formed in a square plate shape in plan view, and is entirely made of a resin material or the like.
  • the lens unit P1 has a cylindrical shape, and includes a lens driving frame P1a that holds an imaging lens, and a lens barrel P1b that accommodates the lens driving frame P1a.
  • the imaging lens held inside the lens drive frame P1a includes an objective lens, a focus lens, a zoom lens, and the like, and constitutes an imaging optical system for a subject image with respect to an imaging element (not shown).
  • the lens driving frame P1a is a so-called ball frame, and moves in the optical axis AX direction together with the lens barrel P1b.
  • a pair of engaging protrusions P1c are provided projecting from the outer peripheral edge of the objective-side tip of the lens drive frame P1a with an angular difference of 180 ° in the circumferential direction.
  • the lens unit P1 is disposed on the base member P4 in a state of being inserted into an opening formed in the top plate P5. Further, the pair of engaging protrusions P1c are arranged so as to be located in the vicinity of the pair of diagonals of the base member P4. Parallel plate springs P6a and P6b are fixed to the base member P4 and the top plate P5, respectively, and the lens unit P1 is fixed to the parallel plate springs P6a and P6b. As a result, the lens unit P1 is supported so as to be displaceable with respect to the base member P4 and the like, and the degree of freedom of displacement is restricted in a direction along the optical axis AX.
  • the lens unit P1 is moved in the direction of the optical axis AX via the lever member P2 and the SMA actuator P3 which are swingable around a lever support portion P8a (corresponding to a driving fulcrum) provided on the support leg P8.
  • a bias spring P7 that urges the lens unit P1 with a force weaker than the driving force of the lever member P2 in the direction opposite to the displacement direction.
  • the bias spring P7 is a compression coil spring having a diameter substantially matching the peripheral size of the lens driving frame P1a, and one end side (lower end side) is in contact with the top surface of the lens driving frame P1a. Note that the other end side (upper end side) of the bias spring P7 is brought into contact with a non-moving portion N such as an inner surface of a housing of a mobile phone.
  • the lens unit P1 is supported by the fixed portion using the parallel leaf springs P6a and P6b so as to be displaceable in the optical axis AX direction, and the lens unit P1 is urged in the optical axis AX direction.
  • the lens unit P1 is displaced in the optical axis AX direction via the lever member P2 and the SMA actuator P3 against the biasing force of the bias spring P7.
  • Patent Document 2 in order to provide a small-sized imaging device despite having a driving unit, a driving unit having a size substantially the same as the width of the imaging unit is used to move the optical unit in the optical axis direction.
  • An imaging apparatus configured to slide and move with respect to a shaft that is movably supported is disclosed.
  • JP 2009-37059 A Japanese Patent Laid-Open No. 2005-77601
  • the diameter of the lens to be accommodated is as large as possible within a limited size. Furthermore, even if the imaging device is small, it is important to displace the lens unit smoothly and stably in the optical axis direction.
  • the conventional lens driving device is biased by attaching a bias spring comprising a compression coil spring to the periphery of the lens driving frame of the lens unit, the aperture of the imaging lens housed in the lens driving frame is limited. It is not preferable.
  • a method is provided in which a shaft hole is provided in a projecting portion projecting a part of the lens unit, and the shaft hole is slid with respect to a guide shaft provided in a fixed chassis.
  • the length of the shaft hole (fitting length) cannot be made sufficiently long, so tilting occurs when the lens unit is pushed up using the lever member, and the lens unit is sufficiently stable. It becomes difficult to displace.
  • the present invention has been made in view of the above circumstances, and in a driving apparatus to which an SMA actuator is applied, a driven body can be stably moved and a lens aperture attached to a lens unit can be increased.
  • An object is to provide a drive device.
  • a drive device that can suppress the tilt when the driven body is moved and can be stably displaced.
  • the present invention provides a fixed portion having a through-hole portion, a driven body supported so as to be reciprocally movable in the axial direction of the through-hole, a lever member that moves the driven body, A shape memory alloy actuator that generates a driving force for moving the lever member, wherein a driving fulcrum portion of the lever member is provided at one corner of the fixed portion, and the corner is opposed to the corner.
  • the guide body projecting from the main body of the driven body is slidably supported at the second position, and the guide body is urged in a direction against the driving force exerted by the lever member.
  • a drive guide portion including a bias spring is provided.
  • the fixing portion includes the base member having the through-hole portion and a square shape in plan view
  • the lever member includes a displacement input portion that engages with the shape memory alloy actuator.
  • a displacement output portion that contacts and displaces the driven body, the drive fulcrum portion and the displacement input portion are provided on the first corner portion side of the base member, and the drive guide portion and the displacement output portion Is provided at a second corner portion diagonally opposite to the first corner portion.
  • the guide body is integrally provided with a guide shaft extending in the axial direction, and the drive guide portion holds the guide shaft slidably up and down.
  • the bias spring is a coil spring that is fitted to the guide shaft and is mounted between the guide body and the guide sleeve.
  • a holding portion for the shape memory alloy actuator is provided in a third triangular portion and a fourth corner portion other than the first corner portion and the second corner portion, and the shape memory alloy actuator is provided.
  • the displacement input unit is mounted so as to be stretched in a U-shape so as to sandwich the outside of the driven body.
  • a support leg that supports the driving fulcrum portion is provided at a first corner portion of the base member, and the lever member is mounted, and the lever member is provided on the driven body.
  • the present invention is characterized in that, in the drive device having the above-described configuration, the driven body is a lens unit, the axis is an optical axis, and the shape memory alloy actuator is a shape memory alloy wire.
  • a fixed portion having a through-hole portion, a driven body supported so as to be reciprocally movable in the axial direction of the through-hole, a lever member that moves the driven body, and the lever member is moved.
  • a shape memory alloy actuator for generating a driving force wherein the fixed portion is provided with a driving fulcrum portion of the lever member and protrudes from a main body portion of the driven body, and the guide An upper guide sleeve that slidably supports an upper end portion of a guide shaft that extends in an axial direction from the body, a lower guide sleeve that slidably supports a lower end portion of the guide shaft, and the guide body that moves the lever A drive guide portion including a bias spring that biases the member in a direction against the driving force exerted by the member is provided.
  • the fixing portion includes the base member having the through-hole portion and a square shape in plan view
  • the lever member includes a displacement input portion that engages with the shape memory alloy actuator.
  • a displacement output portion that contacts and displaces the driven body, the drive fulcrum portion and the displacement input portion are provided on the first corner portion side of the base member, and the drive guide portion and the displacement output portion Is provided at a second corner portion diagonally opposite to the first corner portion.
  • the present invention is characterized in that, in the drive device configured as described above, the guide shaft is fixed to the guide body so as to penetrate the guide body.
  • the present invention is characterized in that, in the drive device configured as described above, the guide body and the guide sleeve are made of resin, and the guide body is a metal member.
  • the present invention is characterized in that, in the drive device configured as described above, the bias spring is a coil spring fitted to the guide shaft and mounted between the upper surface of the guide body and the upper guide sleeve.
  • the present invention is characterized in that, in the drive device having the above-described configuration, the displacement output section is provided close to the drive guide section.
  • the driving device when the driven body is moved via the lever member, either the outer side or the inner side of the upper guide sleeve with which the upper end portion of the guide shaft abuts is slid.
  • the moving portion is provided with a V-groove portion that comes into contact with and supports the guide shaft, and comes into contact with either the inner or outer sliding portion of the lower guide sleeve with which the lower end portion of the guide shaft contacts.
  • a V-groove portion to be supported is provided, and the upper end portion and the lower end portion of the guide are configured to slide in contact with the V-groove portion when moved through the lever member.
  • the present invention is characterized in that, in the drive device having the above-described configuration, an R-plane protrusion that contacts the guide shaft is provided in the V groove.
  • the driven body is a lens unit
  • the axis is an optical axis
  • the shape memory alloy actuator is a shape memory alloy wire
  • the first corner portion and the A holding portion for the shape memory alloy wire is provided in the third triangular portion and the fourth corner portion other than the second corner portion
  • the shape memory alloy wire is sandwiched between the displacement input portion and the outside of the driven body. It is characterized by the fact that it is mounted in the shape of a letter.
  • the lever member engages with an engaging portion provided on the driven body to move the driven body in the axial direction, and swings the driving arm.
  • a supporting fulcrum portion that is movably supported; and an extending arm that is bent from the driving fulcrum portion to bend the driving arm, and the driving arm is disposed along an outer peripheral portion of the driven body.
  • the displacement output part is provided at the second corner part.
  • the present invention may further include an engagement protrusion that defines a first stop position on at least one of the lower end portion of the guide body and the upper end portion of the lower guide sleeve, or both inside the guide shaft.
  • An engagement protrusion that defines a second stop position is provided on at least one of the upper end portion of the guide body and the lower end portion of the upper guide sleeve, or both outside the guide shaft. Yes.
  • the driven body when the driven body is reciprocated in the axial direction, the driven body can be stably moved, and the tilt at the start can be obtained.
  • a drive mechanism capable of suppressing the occurrence of the above can be obtained, a lens aperture attached to the lens unit can be increased, and a drive device that can smoothly displace the lens unit in the optical axis direction can be obtained.
  • FIG. 5 is a schematic diagram showing a contact state between a guide shaft and a guide sleeve constituting the drive guide portion according to the present invention, wherein (a) shows a schematic side view, (b) shows a V-groove portion of the guide sleeve, (C) shows the R-shaped projection. It is a schematic explanatory drawing of the drive mechanism of 2nd Embodiment which concerns on this invention.
  • the drive mechanism of the present embodiment is a drive mechanism that moves the driven body 1 (for example, a lens unit including an imaging lens) in the axial direction (for example, the optical axis AX direction), and is a fixed portion having a through-hole portion 4a.
  • Base member 4 driven body 1 supported so as to be reciprocally movable in the axial direction in the through-hole portion via a support member attached to the fixed portion, and driving force for moving the driven body 1
  • the shape memory alloy actuator (SMA actuator) 3 for imparting the pressure and the lever member 2 that receives the driving force from the SMA actuator 3 and moves the driven body 1 are provided.
  • the drive mechanism includes a bias spring 7 that urges the driven body 1 in a direction against a driving force caused by contraction of the SMA actuator 3.
  • the driving fulcrum portion 8a of the lever member 2 is provided at one corner of the fixed portion (base member 4), and the driving guide portion 10 including the bias spring 7 is provided at a second position facing the corner with the axis line interposed therebetween.
  • the drive guide unit 10 slidably supports a guide body 11 projecting from the main body of the driven body 1 and a driving force exerted by the lever member 2 on the guide body 11 via a bias spring 7. It is comprised so that it may urge in the direction which resists.
  • the lever member 2 includes, for example, a drive arm 21 that moves the driven body 1 in the axial direction thereof, a drive fulcrum portion 8a that supports the drive arm 21 so as to be swingable, and a suspension member that hangs down from the drive fulcrum portion 8a.
  • the drive arm 21 and the extended arm 22 bent and provided have a reverse L-shape when viewed from the side.
  • the displacement input part 2a and the displacement output part 2b which suspend the SMA actuator 3 and receive a driving force are provided.
  • the SMA actuator 3 has an intermediate portion suspended from the displacement input portion 2a, and both ends are held by the holding portions 30 (30A, 30B). 2 is driven to displace. That is, the shape memory alloy actuator is mounted on the displacement input portion 2a so as to span a dogleg shape (L shape) so as to sandwich the outside of the driven body 1.
  • the lever member is used. Since the bias spring 7 for biasing the driven body 1 in a direction against the driving force 2 is provided at a portion provided from the main body portion of the driven body 1, the bias spring is provided on the upper surface of the main body portion of the driven body. It becomes a structure which does not engage, It does not restrict
  • the shape of the base member 4 serving as the fixed portion in a plan view may be circular or polygonal, and the drive fulcrum portion 8a provided on the base member 4 and the position (one corner) of the displacement input portion 2a facing each other across the axis (first position)
  • the drive guide portion 10 having the bias spring 7 may be provided at the second position.
  • the outer shape is a base member 4 having a square shape in plan view, and a plurality of circular lenses are mounted in a circular through hole provided in the center of the member.
  • the driving fulcrum portion 8a of the lever member 2 is provided at one corner of the base member 4 having the through-hole portion 4a and having a rectangular shape in plan view.
  • a driving guide portion 10 including a bias spring 7 that biases the guide body 11 protruding from the main body portion is provided.
  • the base member 4 is fixed to a member (for example, an image pickup device substrate of a mobile phone) in which the driving mechanism is employed, and is, for example, an immovable member constituting the bottom side of the lens driving device.
  • the base member 4 is entirely made of a resin material or the like.
  • the bias spring 7 according to the present embodiment is configured so that the size of the components housed in the driven body 1 having a circular shape in plan view is as large as possible, and the driven body 1 can be moved stably. It is provided not at the main body but at a position for biasing the guide body 11 protruding from the main body.
  • the drive mechanism according to the present embodiment is configured to include the drive guide portion 10 that attaches the bias spring 7 to a position that protrudes away from the main body of the driven body 1 that is circular in plan view.
  • the guide body 11 includes a guide body 12 and a guide shaft 13.
  • the guide shaft 13 extends in the direction of the optical axis AX, which is an axis, and its upper end portion 13a is slidably supported by the upper guide sleeve 14a, and its lower end portion 13b is slidably supported by the lower guide sleeve 14b.
  • AX optical axis
  • the upper guide sleeve 14 a and the lower guide sleeve 14 b are one member constituting the drive guide unit 10.
  • a bias spring 7 is mounted between the upper surface of the guide body 12 and the upper guide sleeve 14a so as to surround the guide shaft 13. That is, the bias spring 7 is fitted on the guide shaft 13.
  • the bias spring 7 for example, a compression coil spring that can be easily attached to the outer peripheral portion of the guide shaft 13 and can easily obtain a predetermined urging force can be suitably used.
  • the bias spring 7 formed of this coil spring has a function of urging the guide body 11 in a direction against the driving force exerted by the lever member 2.
  • the biasing force of the bias spring 7 is weaker than the driving force of the lever member 2, and exhibits the effect of stabilizing the movement of the driven body 1 driven by the lever member 2.
  • the guide shaft 13 protruding from the main body of the driven body 1 is slidably supported by the upper and lower guide sleeves 14 a and 14 b, and the bias spring 7 is mounted so as to be fitted to the guide shaft 13. Therefore, the sliding resistance and the urging force during the movement of the driven body 1 are configured to act on the same axis, so that the driving mechanism capable of stably and smoothly moving the driven body 1 is obtained. .
  • the guide shaft 13 is provided on the driven body 1 side, the bearing interval can be increased in a limited space, and the tilt accuracy of the driven body can be ensured. Therefore, the driven body can be stably moved without causing the shaft to shake.
  • the guide barrel 13 and the guide shaft 13 are fixed to the guide sleeves 14a and 14b. May be slid. Also in this case, the bias spring 7 is fitted on the guide shaft.
  • the above embodiment in which the sliding interval (bearing interval) is long is preferable because the tilt error of the driven body 1 is small.
  • the guide body 11 is the guide body portion 12, and the guide shaft 13 forms the drive guide portion 10.
  • FIG. 2A is a schematic plan view showing a first example of the driving device A1 employing the driving mechanism according to the present invention, and a driving arm curved in a circle along the outer periphery of the driven body 1 as a lever member. It is an example provided with 2 A of lever members provided with 21A.
  • FIG. 2B is a schematic plan view showing a driving device A2 of the second example, which is an example provided with a driving arm 21B bent in a polygonal shape along the outer peripheral portion of the driven body 1 as a lever member. . Further, since the other configuration is the same, the arrangement state of the drive guide portion 10 will be described with reference to FIG.
  • the 2A includes a base member 4 having a square shape in plan view and a driven body 1 having a circular shape in plan view.
  • the base member 4 that movably supports the driven body 1 has corners of a first corner C1, a second corner C2, a third triangle C3, and a fourth corner C4.
  • the driving fulcrum portion 8a of the lever member 2A is provided in the first corner portion C1, and the driving guide portion 10 is provided in the second corner portion C2 diagonally positioned with respect to the first corner portion C1.
  • an energization support portion 30A is provided in the third triangular portion C3, and an energization support portion 30B is provided in the fourth square portion C4.
  • the drive guide portion 10 disposed in the second corner portion C2 slidably supports the guide shaft 13 included in the guide body 11 protruding in the radial direction from the driven body 1 and via the bias spring 7.
  • the driven member 1 has a function of urging the driven member 1 in a direction against the driving force exerted by the lever member 2A. Therefore, other members are not buffered by the circular main body of the driven body 1 that is displaceably mounted in the through hole 4 a of the base member 4, and the size of the components stored in the driven body 1 can be reduced. It becomes possible to make it as large as possible.
  • the driven body 1 can be driven stably.
  • the fixed portion having a through-hole portion and having a quadrangular base member in plan view and the driven portion that is supported so as to be reciprocally movable in the axial direction in the through-hole portion via the support member attached to the base member.
  • a drive mechanism and a drive device comprising: a body, an SMA actuator that applies a driving force for moving the driven body, and a lever member that receives the driving force from the SMA actuator and moves the driven body Is provided with a driving fulcrum part, a displacement input part, and a displacement output part, and the driving fulcrum part and the displacement input part are provided at the first corner of the base member having a rectangular shape in plan view, and are positioned diagonally to the first corner.
  • a drive guide provided with a bias spring at a corner for supporting a guide body projecting from a driven body so as to be inserted therethrough and biasing the guide body in a direction against a driving force exerted by the lever member.
  • Parts In the structure provided with a can be obtained as large as possible to stably drive mechanism capable of moving in and drive the driven body size of the components to be accommodated in the driven member.
  • the driven body 1 is a lens unit
  • the axial direction is an optical axis direction
  • the SMA actuator is an SMA wire
  • the lens aperture attached to the lens unit can be increased, and the lens unit can be displaced smoothly.
  • a mechanism and drive can be obtained.
  • a lens unit driving apparatus employing the driving mechanism according to this embodiment will be described with reference to FIGS.
  • a driving device 100 shown in FIG. 6 has a carrier frame 102 mounted on a lens frame 101 having a plurality of lenses, for example, a first lens L1 and a second lens L2, on a base member 4 and an outer cylinder 14 serving as a fixing portion.
  • the lens unit 1 ′ is configured to be movable in the optical axis AX direction.
  • the base member 4 and the outer cylinder 14 are quadrangular in plan view, and include a through hole portion 4a.
  • the base member 4 and the outer cylinder 14 are reciprocally movable in the axial direction (optical axis AX direction) in the through hole portion 4a.
  • the lens unit 1 ' is supported on the surface.
  • a shape memory alloy wire (SMA wire) 3 for applying a driving force for moving the lens unit 1 ′ as a driven body, and the lens unit 1 receive the driving force from the wire 3 suspended.
  • a lever member 2 for moving ' is provided.
  • the lever member 2 (2A, 2B) includes an extending arm 22 having a displacement input portion 2a on which the SMA wire 3 is suspended and receiving a driving force, and a driving arm 21 for moving the lens unit 1 'in the axial direction thereof (FIG. 1). Reference) is provided. Moreover, the support leg 8 provided with the drive fulcrum 8a which the lever member 2 rock
  • the drive arm 21 may be the drive arm 21A curved in the above-described circle or the drive arm 21B bent in a polygonal shape.
  • These drive arms 21 are composed of two arms arranged along the outer periphery of the lens unit 1 ′ so as to surround the lens unit 1 ′ as a driven body.
  • the drive arm 21 may have a shape integrated by being connected at the tip ends of the two arms.
  • the drive arm 21 is, for example, a lens unit 1 ′ via a displacement output part that engages a tip or a protrusion with an engaging part provided on a carrier frame 102 that is an outer frame of the lens unit 1 ′. Can be moved.
  • the displacement output unit is positioned at an appropriate position in consideration of the size of the lens unit, the magnitude of the driving force, and the balance of the force (for example, the displacement output unit 23 contacting the center portion of the carrier frame 102 or the driving guide unit 10).
  • the displacement output portion 24) provided at the position can be provided with a displacement output portion, but is preferably provided at a position close to the drive guide portion 10 on the opposite side to the drive fulcrum 8a.
  • the displacement output unit 24 is provided at a position close to the drive guide unit 10, the moment generated according to the inter-axis distance between the drive guide unit 10 and the displacement output unit 24 is suppressed, and the guide shaft 13 and the guide sleeve 14 are not affected. Straining can be suppressed and the driven body can be moved stably and smoothly.
  • the amount of movement of the lens unit 1 ′ corresponding to the contraction of the SMA wire 3 is the distance between the driving fulcrum part 8 a and the displacement input part 2 a of the lever member 2, and the distance between the driving fulcrum part 8 a and the displacement output part 24 of the lever member 2. Determined by distance ratio.
  • the displacement amount can be stably expanded in the SMA wire having a small displacement rate (shrinkage rate). .
  • the enlargement ratio can be increased, the amount of displacement of the SMA can be reduced, and deterioration due to the expansion and contraction of the SMA is suppressed.
  • the rotation angle of the lever member 2 is small, the change in the pressure angle to the engaging portion provided in the carrier frame 102 is small, and the linearity of the movement amount can be ensured. Further, since the friction length with the engaging portion of the carrier frame 102 is shortened, the amount of friction is stabilized and the driving stability of the carrier frame 102 can be ensured.
  • the drive guide part 10 is provided in the 1st corner
  • the drive guide portion 10 includes a guide body 11 provided by projecting a part of the carrier frame 102 in the radial direction, a guide shaft 13 provided on the guide body 11, and a guide provided on the outer cylinder 14 and the base member 4.
  • the sleeve 14 (14a, 14b) slidably supports the upper end portion and the lower end portion thereof.
  • a guide body 12A for mounting and holding the guide shaft 13 is provided, and a bias spring 7 is mounted so as to surround the outer periphery of the guide body 12A and the upper guide sleeve 14a.
  • the bias spring 7 is, for example, a compression coil spring, and biases the guide body 11 in a direction against the driving force exerted by the lever member 2. That is, the lens unit 1 ′ is biased in a direction in which the guide body 11 is pressed toward the lower guide sleeve 14 b.
  • a state in which the protrusion 11a is provided at the lower end of the guide body 11 and is in contact with the lower guide sleeve 14b can be set as a standby position of the lens unit 1 ′, and the inner diameter of the bias spring 7 can be set.
  • the guide body 12A and the upper guide sleeve 14a can guide and stabilize the expansion and contraction of the spring.
  • K is a substrate, which is electrically connected to the above-described energization holding portions 30A and 30B, and applies a predetermined current to the SMA wire 3 so as to generate a contraction force to exert a lens driving force. It is configured.
  • the biasing force of the bias spring 7 is weaker than the driving force applied to the lever member 2 by the SMA wire 3, when the SMA wire 3 is not operating, the lens unit 1 'is on the base member 4 side. It is energized towards. On the other hand, when the SMA wire 3 operates, the lens unit 1 ′ moves in the opposite direction (object side) against the biasing force of the bias spring 7. That is, the bias spring 7 gives a bias load for returning the lens unit 1 ′ to the home position when the SMA wire 3 is not energized.
  • the wire length is set so that the SMA wire 3 is tensioned by the biasing force of the bias spring 7 acting via the lens unit 1 ′ and the lever member 2. That is, the line length is set so that the lever member 2 is always brought into contact with the lens unit 1 ′ (carrier frame 102) regardless of the operating state. With this configuration, when the SMA wire 3 is operated, the displacement is promptly transmitted to swing the lever member 2.
  • the driving device 100 configured as described above is provided with the driving fulcrum portion 8 a of the lever member 2 (2 ⁇ / b> A, 2 ⁇ / b> B) at the first corner C ⁇ b> 1 of the base member 4 having a square shape in plan view.
  • a drive guide portion 10 having a bias spring 7 for biasing a guide body protruding from the main body portion of the lens unit 1 ′ is provided at the second corner portion C 2 diagonally opposite to the first corner portion C 1. Therefore, the inside size of the carrier frame 102 can be used as a component mounting portion, and the lens apertures of a plurality of lenses constituting the imaging lens group can be increased.
  • the configuration is effective for downsizing the imaging device.
  • the driving device 100 can be used for an imaging device having a small lens unit that moves straight in the optical axis direction of the lens.
  • a support leg 8 for supporting the lever member 2 (2A, 2B) and winding the SMA wire 3 is provided at the first corner C1 of the quadrangle in plan view, and the first corner C1 facing the first corner C1 is provided.
  • the drive guide part 10 provided with the bias spring 7 can be provided in the square part C2, and the energization support parts 30A and 30B of the SMA wire can be provided in the first triangular part C3 and the fourth corner part C4 between them.
  • the guide shaft 13 is fixed to the guide body 12, and the upper end portion 13a of the guide shaft 13 is slidably supported by the upper guide sleeve 14a.
  • a lower end portion 13b of the shaft 13 is slidably supported by the lower guide sleeve 14b.
  • the distance L is short, and the displacement output portion 2b is provided close to the drive guide portion 10.
  • the driven body 1 when the driven body 1 is moved via the lever member 2, either the outer or inner sliding portion of the upper guide sleeve 14 a against which the upper end portion 13 a of the guide shaft 13 abuts against the guide shaft 13.
  • a V-groove portion 15 is provided to be in contact with and supported, and a V-groove portion 15 to be in contact with and supported by the guide shaft 13 on either the inner or outer sliding portion of the lower guide sleeve 14b with which the lower end portion 13b of the guide shaft 13 abuts.
  • the driven body 1 can be moved more stably and smoothly without causing shaft shake.
  • the upper guide sleeve 14a of 14a is provided with a V-groove portion 15 that contacts and supports the guide shaft 13
  • the inner sliding portion 14bb of the lower guide sleeve 14b is provided with a V-groove portion 15 that contacts and supports the guide shaft 13.
  • a V-groove portion that contacts and supports the guide shaft 13 may be provided in the inner sliding portion of 14a, and a V-groove portion that contacts and supports the guide shaft 13 may be provided in the outer sliding portion of the lower guide sleeve 14b. That is, a V-groove portion may be provided in the sliding portion of the guide sleeve inner surface where the guide shaft 13 comes into contact with the moment M generated when the driven member 1 is moved by the lever member 2.
  • a V-groove portion 15 having an opening angle ⁇ of substantially right angle (90 °) is formed, and a guide shaft 13 is brought into contact with the V-groove for guidance.
  • the guide sleeve 14 (14a, 14b) is a resin product
  • the material of the guide shaft 13 is selected to have a small friction coefficient and good slidability with respect to the resin guide sleeve 14 (14a, 14b). can do.
  • the guide shaft 13 and the guide body 12 (driven body 1) may be integrally formed of the same material, but if the guide shaft 13 is configured to be fixed through the guide body 12,
  • the material can be made of a material different from that of the guide body 12, and for example, a material having good slidability can be selected.
  • the metal guide shaft 13 is suitable because it is easy to surface-treat the surface so that the slidability is good.
  • the opening angle ⁇ is not limited to 90 °, and can be appropriately selected depending on the diameter of the guide shaft 13, the size of the drive guide portion 10, the size of the entire apparatus, and the like. For example, in the range of 60 ° to 120 °. An appropriate opening angle ⁇ can be selected.
  • the V-groove portion 15 is provided with the R-shaped protrusion 16 that contacts the guide shaft 13, the contact portion of the guide shaft 13 with respect to the guide sleeve 14 (14a, 14b) can be stabilized. It is preferable that the movement of 1 can be performed more stably and smoothly.
  • the R-plane protrusion 16 can be, for example, a kamaboko-shaped R-plane protrusion 16 as shown in FIG. With this configuration, the arc-shaped R surface 16a of the R-shaped protrusion 16 is always in contact with the guide shaft 13, so that the guide shaft 13 can be stably supported and slid.
  • the drive mechanism that can stably move the driven body when the driven body is reciprocated in the axial direction. Obtainable.
  • the driving fulcrum portion of the lever member is provided at one corner of the fixed portion, and protrudes from the main body portion of the driven body at the second position facing this corner. Since the drive guide portion is provided with a bias spring that biases the provided guide body, the bias spring is not engaged with the main body portion of the driven body, and the size of the components stored in the main body portion of the driven body is large. Therefore, it is possible to store a component having a size as large as possible. In addition, since the bias spring attached to the drive guide portion applies an urging force that opposes the drive direction of the lever member, the drive mechanism that can stably move the driven body using the shape memory alloy actuator; Become.
  • the drive fulcrum portion of the lever member and the displacement input portion are provided at the first corner portion of the square base member separated from the body of the driven body. Since the drive guide portion having a bias spring is provided at the second corner portion diagonally opposite to the first corner portion, for example, the size of the component housed in the main body portion of the driven body that is circular in plan view is limited. There is no configuration. In addition, since the bias spring attached to the second corner portion applies a biasing force that opposes the driving direction by the lever member, the driving device that can stably move the driven body using the shape memory alloy wire Can be obtained.
  • the upper end and the lower end of the guide shaft that urges the guide body protruding from the driven body via the bias spring and extends to the guide body. Since the drive guide portion that slidably holds the portion using the upper and lower guide sleeves is provided, the bearing interval can be increased in a limited space, and the tilt accuracy of the driven body can be ensured. Therefore, it becomes a drive mechanism that can move the driven body stably without moving the shaft when moving in the axial direction.
  • the drive guide portion 10A is an engagement protrusion that defines a first stop position on the inside of the guide shaft 13 of at least one of the lower end portion of the guide body 11 and the upper end portion of the lower guide sleeve 14b, or both. 18 (18A, 18B), and at least one of the upper end portion of the guide body 11 and the lower end portion of the upper guide sleeve 14a, or both, the engaging projection 17 (which defines the second stop position outside the guide shaft 13) 17A, 17B).
  • the engagement state is a stopped state in which the engagement protrusions 18A and 18B are in contact.
  • This first stop position is an initial state. From this initial state, the SMA actuator 3 is energized and contracted, and the lever member 2 is driven to swing to move the driven body 1 in the axial direction (optical axis AX direction). To do.
  • FIG. 5A is a schematic diagram showing a second stop position in a state in which the driven body 1 has moved to the upper end position.
  • the driven body 1 is a lens unit
  • the state where the driven body 1 is in the close position is shown. Show.
  • the upper end portion of the guide body 11 for example, the upper surface of the guide body portion 12 constituting the guide body 11 and the lower end portion of the upper guide sleeve 14 a are in contact with each other via the engagement protrusion 17. It becomes.
  • the upper end portion 13a of the guide shaft 13 is in contact with and guided by the inner surface of the upper guide sleeve 14a.
  • an engagement protrusion 17 serving as a contact portion is provided on the inclined side of the guide shaft 13.
  • the engagement protrusion 17 can be constituted by the engagement protrusions 17A and 17B provided on at least one or both of the upper end portion of the guide body 11 and the lower end portion of the upper guide sleeve 14a.
  • FIG. 5B is a schematic diagram showing the first stop position in a state where the driven body 1 has moved to the lower end position.
  • the driven body 1 is a lens unit
  • the state at the infinity position is shown. Show.
  • the lower end portion of the guide body 11 for example, the lower surface of the guide body portion 12 constituting the guide body 11 and the upper end portion of the lower guide sleeve 14b are in contact with each other via the engagement protrusion 18. It becomes. Further, in this state, the lower end portion 13b of the guide shaft 13 is guided in contact with the inner surface of the lower guide sleeve 14b.
  • a moment M is generated at the start of applying a driving force to the displacement input portion 2a using the SMA actuator 3, swinging the lever member 2, and moving the driven body 1 via the displacement output portion 2b.
  • the lower end portion 13b of the guide shaft 13 is already in contact with and guided by the inner surface of the lower guide sleeve 14b, and the occurrence of tilt at the time of starting can be suppressed.
  • the drive mechanism when the driven body 1 is displaced, the drive mechanism according to the present embodiment has a configuration in which the engagement protrusions 17 and 18 that are contact portions are provided on the inclined side of the guide shaft 13.
  • the drive mechanism is capable of stably and smoothly moving the driven body 1 without causing the shaft shake of the guide shaft 13.
  • the drive device provided with the above drive mechanism has a configuration in which the engagement protrusions 17 and 18 are provided on the guide body 11 provided in the drive device 100 shown in FIG. That is, the engaging protrusion 17 (17A, 17B) is provided between the upper end of the guide body 11 and the upper guide sleeve 14a, and the engaging protrusion 18 (between the lower end of the guide body 11 and the lower guide sleeve 14b. 18A and 18B) is a driving device that can stably and smoothly move the driven body 1 without causing the shaft shake of the guide shaft 13.
  • engagement protrusions 18 are engagement protrusions that define the first stop position described above, and the guide shafts 13 at the lower end portion of the guide body 11 and the upper end portion of the lower guide sleeve 14b. Provided on at least one or both of the inside.
  • the engagement protrusions 17 (17A, 17B) are engagement protrusions that define the second stop position described above, and are located outside the guide shaft 13 at the upper end of the guide body 11 and the lower end of the upper guide sleeve 14a. Provide at least one or both.
  • the upper and lower ends of the guide shaft are guided using the upper and lower guide sleeves, and are slidably held and the guide shaft is Since the engagement protrusions that define the first stop position and the second stop position of the guide body to be mounted are provided, it is possible to suppress the shaft runout of the guide shaft and stably move the driven body, and Thus, the driving mechanism and the driving device can suppress the occurrence of tilt at the start.
  • the present invention relates to a fixed portion having a through-hole portion, a driven body supported so as to be reciprocally movable in the axial direction of the through-hole, a lever member that moves the driven body, and a drive that moves the lever member
  • a shape memory alloy actuator that generates a force, wherein a driving fulcrum portion of the lever member is provided at one corner of the fixed portion, and the second position is opposed to the corner across the axis
  • a drive guide unit including a bias spring that slidably supports a guide body protruding from a main body of the driven body and biases the guide body in a direction against a driving force exerted by the lever member. It is characterized by providing.
  • the driving fulcrum portion of the lever member is provided at one corner of the fixed portion, and the bias spring that urges the guide body protruding from the main body portion of the driven body at the second position facing the corner. Since the drive spring is provided, the bias spring is not engaged with the upper surface of the main body of the driven body, and the size of the components housed in the main body of the driven body is not limited. As large as possible components can be stored. In addition, since the bias spring attached to the drive guide portion applies a biasing force that opposes the drive direction of the lever member to the driven body, it is possible to stably move the driven body using the shape memory alloy actuator. Drive mechanism.
  • the fixed portion is a square in plan view, includes the through-hole portion, and includes a base member having a square shape in plan view, and the drive fulcrum is provided at a first corner of the base member.
  • the lever member is mounted by providing a support leg that supports the portion, and the lever member includes a displacement input portion that engages with the shape memory alloy actuator, and a displacement output portion that contacts and displaces the driven body.
  • the drive fulcrum part and the displacement input part are provided on the first corner part side, and the drive guide part is provided on a second corner part diagonally opposite to the first corner part. .
  • a drive mechanism having a bias spring includes a drive mechanism that can increase the size of the components housed in the body of the driven body and can stably move the driven body using the shape memory alloy actuator. Become.
  • the guide body is integrally provided with a guide shaft extending in the axial direction, and the drive guide portion includes upper and lower guides that slidably hold the guide shaft.
  • the bias spring is a coil spring that is fitted to the guide shaft and is mounted between the upper surface of the guide body and the upper guide sleeve.
  • a holding portion for the shape memory alloy actuator is provided in a third triangular portion and a fourth angular portion other than the first corner portion and the second corner portion, and the shape memory alloy actuator is provided.
  • the displacement input unit is mounted so as to be stretched in a U-shape so as to sandwich the outside of the driven body. According to this configuration, the displacement input portion can be formed by being locked to the lever member in a state where the shape memory alloy actuator is bent by approximately 90 °.
  • all the related parts that drive the driven body are mounted on the corners of the quadrangle in a plan view, so that the components stored in the main body of the driven body can be made as large as possible.
  • the present invention is characterized in that, in the drive mechanism having the above configuration, the driven body is a lens unit, the axis is an optical axis, and the shape memory alloy actuator is a shape memory alloy wire. According to this configuration, it is possible to obtain a drive mechanism that can increase the lens diameter attached to the lens unit and can smoothly displace the lens unit.
  • the present invention also provides a fixed portion having a base member having a through-hole portion having a square shape in plan view and a support member that is reciprocally supported in the axial direction in the through-hole portion via a support member attached to the base member.
  • a driving fulcrum portion to be supported, and an extending arm that is bent from the driving fulcrum portion and bent to the driving arm, and the driving fulcrum portion of the lever member and the shape memory alloy wire are suspended.
  • a displacement input portion for receiving a driving force is provided at the first corner portion of the quadrangle, and a guide body projecting from the driven body can be inserted into a second corner portion diagonally opposed to the first corner portion.
  • a drive guide portion is provided that includes a bias spring that supports and biases the guide body in a direction against a driving force exerted by the lever member.
  • the driving fulcrum portion and the displacement input portion of the lever member are provided at the first corner portion of the square base member separated from the main body of the driven body, and the first corner portion is diagonally opposed to the first corner portion. Since the driving guide portion including the bias spring is provided at the two corners, the size of the component stored in the main body portion of the driven body is not limited. In addition, since the bias spring attached to the second corner portion applies a biasing force that opposes the driving direction by the lever member, the driving device that can stably move the driven body using the shape memory alloy wire Can be obtained.
  • the guide body is provided so as to protrude in a radial direction from the driven body having a circular shape in a plan view, and extends in the axial direction.
  • the guide shaft on the driven body side is slidably supported by the upper and lower guide sleeves, and the bias spring formed of the coil spring is fitted to the guide body portion and the guide sleeve that support the guide shaft.
  • the driven body is a lens unit
  • the axis is an optical axis
  • An energization holding portion for holding and energizing the shape memory alloy wire at the corner is provided, and the shape memory alloy wire is stretched over the displacement input portion in a U-shape so as to sandwich the outside of the lens unit. It is characterized by wearing.
  • the lever member can be driven by engaging the lever member in a state where the shape memory alloy wire is bent by approximately 90 °, and energizing and contracting the lever member.
  • all the related parts that drive the lens unit are mounted on the corners of the square in plan view, and the components such as the lens housed in the lens unit can be made as large as possible. That is, the aperture of the lens mounted on the lens unit can be made as large as possible.
  • a fixed portion having a through-hole portion, a driven body supported so as to be reciprocally movable in the axial direction of the through-hole, a lever member that moves the driven body, and the lever member is moved.
  • a shape memory alloy actuator that generates a driving force, wherein the fixed portion is provided with a driving fulcrum portion of the lever member, and the guide body projects from the body portion of the driven body, and the guide An upper guide sleeve that slidably supports an upper end portion of a guide shaft that extends in an axial direction from the body, a lower guide sleeve that slidably supports a lower end portion of the guide shaft, and the guide body that moves the lever
  • a drive guide portion including a bias spring that biases the member in a direction against the driving force exerted by the member is provided.
  • the guide body protruding from the driven body is urged and the upper and lower ends of the guide shaft extending from the guide body are slidably held using the upper and lower guide sleeves. Since the drive guide portion is provided, the bearing interval can be increased in a limited space, and the tilt accuracy of the driven body can be ensured. Therefore, it becomes a drive mechanism that can move the driven body stably without moving the shaft when moving in the axial direction.
  • the fixed portion is a quadrangle in a plan view, and includes a base member having the through-hole portion and a quadrangle in a plan view.
  • the lever member is mounted by providing a support leg that supports the portion, and the lever member includes a displacement input portion that engages with the shape memory alloy actuator, and a displacement output portion that contacts and displaces the driven body.
  • the drive fulcrum part and the displacement input part are provided on the first corner part side, and the drive guide part is provided on a second corner part diagonally opposite to the first corner part. .
  • a drive mechanism having a bias spring includes a drive mechanism that can increase the size of the components housed in the body of the driven body and can stably move the driven body using the shape memory alloy actuator. Become.
  • the present invention is characterized in that, in the drive mechanism having the above configuration, the guide shaft is fixed to the guide body so as to penetrate the guide body.
  • the material of the guide shaft can be a material having good sliding property with respect to the guide sleeve, and the driven body can be moved smoothly and stably.
  • the present invention is characterized in that, in the drive mechanism configured as described above, the guide body and the guide sleeve are made of resin, and the guide body is a metal member. According to this configuration, the resin guide sleeve can be smoothly moved using the metal guide shaft having a small friction coefficient and good slidability. Moreover, if it is metal, it will become easy to surface-treat the surface so that sliding property may become favorable, and it is preferable.
  • the present invention is characterized in that, in the drive mechanism configured as described above, the bias spring is a coil spring that is fitted to the guide shaft and is mounted between the upper surface of the guide body and the upper guide sleeve.
  • the bias spring composed of the coil spring is mounted so as to be fitted to the guide shaft fixed to the guide body, the sliding resistance and the urging force when the driven body is moved act on the same axis.
  • the driven body can be moved stably and smoothly without causing shaft runout.
  • the present invention is characterized in that, in the drive mechanism having the above-described configuration, the displacement output portion is provided close to the drive guide portion. According to this configuration, when the driven member is slid by swinging the lever member, the moment generated according to the separation distance between the displacement output portion and the drive guide portion can be suppressed, and the guide shaft and the guide The driven body can be moved stably and smoothly while suppressing twisting with the sleeve.
  • the driving mechanism configured as described above, when the driven body is moved via the lever member, either the outer side or the inner side of the upper guide sleeve with which the upper end portion of the guide shaft abuts is slid.
  • the moving portion is provided with a V-groove portion that comes into contact with and supports the guide shaft, and comes into contact with either the inner or outer sliding portion of the lower guide sleeve with which the lower end portion of the guide shaft contacts.
  • a V-groove portion to be supported is provided, and the upper end portion and the lower end portion of the guide are configured to slide in contact with the V-groove portion when moved through the lever member.
  • the driven body when the driven body is moved using the lever member, the upper end portion of the guide shaft is brought into contact with the V groove portion of the upper guide sleeve, and the lower end portion of the guide shaft is brought into contact with the V groove portion of the lower guide sleeve. Therefore, the driven body can be slid while maintaining this state, and the driven body can be moved stably and smoothly without causing shaft runout.
  • the present invention is characterized in that, in the drive mechanism having the above-described configuration, an R-plane protrusion that contacts the guide shaft is provided in the V groove. According to this configuration, the contact portion of the guide shaft with respect to the guide sleeve can be stabilized, and the driven body can be moved more stably and smoothly.
  • the driven body is a lens unit
  • the axis is an optical axis
  • the shape memory alloy actuator is a shape memory alloy wire
  • the first corner portion and the A holding portion for the shape memory alloy wire is provided in the third triangular portion and the fourth corner portion other than the second corner portion
  • the shape memory alloy wire is sandwiched between the displacement input portion and the outside of the driven body. It is characterized by the fact that it is mounted in the shape of a letter. According to this configuration, the displacement input portion can be formed by being locked to the lever member in a state where the shape memory alloy wire is bent by approximately 90 °.
  • all the related parts that drive the lens unit are mounted at the corners of the square in plan view, the lens aperture stored in the lens unit can be increased, and the lens unit can be displaced smoothly in the optical axis direction. A possible drive mechanism can be obtained.
  • the present invention also provides a fixed portion having a base member having a through-hole portion having a square shape in plan view and a support member that is reciprocally supported in the axial direction in the through-hole portion via a support member attached to the base member.
  • a displacement input portion is provided at the first corner portion of the quadrangle, and a guide body projecting from the main body portion of the driven body on the second corner portion diagonally opposed to the first corner portion, and the guide body
  • An upper guide sleeve that slidably supports an upper end portion of a guide shaft that extends in the axial direction, a lower guide sleeve that slidably supports a lower end portion of the guide shaft, and the lever member that holds the guide body.
  • the present invention is characterized in that a drive guide portion including a bias spring that biases in a direction against the driving force to be exerted is provided.
  • the driving fulcrum portion and the displacement input portion of the lever member are provided at the first corner portion of the quadrangle in a plan view away from the body of the driven body, and the second corner portion diagonally opposing the first corner portion.
  • the drive guide portion including the bias spring is provided in the main body portion, the size of the components housed in the main body portion of the driven body is not limited.
  • the upper and lower ends of the guide shaft extending from the guide body are guided using upper and lower guide sleeves, and the biasing spring is used to slide while applying a biasing force against the driving direction exhibited by the lever member. Since it is held freely, the bearing interval can be increased in a limited space, and the tilt accuracy of the driven body can be ensured. Therefore, it is possible to obtain a driving device that can stably move the driven body while suppressing the shaft shake when moving in the axial direction.
  • the guide body includes a guide body portion that is provided so as to protrude in a radial direction from the driven body having a circular shape in plan view and that extends in the axial direction.
  • the guide shaft is mounted through the guide body, the bias spring is fitted to the upper guide sleeve and the guide body, and the upper surface of the guide body and the upper guide sleeve are provided. It is characterized by a coil spring mounted between them.
  • the upper and lower ends of the guide shaft on the driven body side are slidably supported by the upper and lower guide sleeves, and the bias spring composed of the coil spring is fitted to the guide body portion and the guide sleeve that support the guide shaft. Since it is mounted so as to be mounted, the driven spring can be stably and smoothly moved by holding the bias spring in a stable position.
  • the present invention is characterized in that, in the drive device having the above-described configuration, a displacement output unit in which the drive arm abuts on the driven body and applies a drive force is provided close to the drive guide unit.
  • a displacement output unit in which the drive arm abuts on the driven body and applies a drive force is provided close to the drive guide unit.
  • the driving device when the driven body is moved via the lever member, either the outer side or the inner side of the upper guide sleeve with which the upper end portion of the guide shaft abuts is provided.
  • the sliding portion is provided with a V-groove portion that contacts and supports the guide shaft, and contacts either the inner or outer sliding portion of the lower guide sleeve with which the lower end portion of the guide shaft contacts.
  • a V-groove part to be supported is provided, and when moving through the lever member, the upper end part and the lower end part of the guide are in contact with the V-groove part to slide.
  • the driven body when the driven body is moved using the lever member, the upper end portion of the guide shaft is brought into contact with the V groove portion of the upper guide sleeve, and the lower end portion of the guide shaft is brought into contact with the V groove portion of the lower guide sleeve. Therefore, the driven body can be slid while maintaining this state, and the driven body can be moved stably and smoothly without causing shaft runout.
  • the present invention is characterized in that, in the drive device having the above-described configuration, an R-plane protrusion that contacts the guide shaft is provided in the V groove. According to this configuration, the contact portion of the guide shaft with respect to the guide sleeve can be stabilized, and the driven body can be moved more stably and smoothly.
  • the driven body is a lens unit
  • the axis is an optical axis
  • An energization holding portion for holding and energizing the shape memory alloy wire at the corner is provided, and the shape memory alloy wire is stretched over the displacement input portion in a U-shape so as to sandwich the outside of the lens unit. It is characterized by wearing.
  • the lever member can be driven by engaging the lever member in a state where the shape memory alloy wire is bent by approximately 90 °, and energizing and contracting the lever member.
  • all the related parts that drive the lens unit are mounted on the corners of the square in plan view, and the components such as the lens housed in the lens unit can be made as large as possible. That is, the aperture of the lens mounted on the lens unit can be made as large as possible.
  • a fixed portion having a through-hole portion, a driven body supported so as to be reciprocally movable in the axial direction of the through-hole, a lever member that moves the driven body, and the lever member is moved.
  • a shape memory alloy actuator for generating a driving force, wherein a driving fulcrum portion of the lever member is provided at one corner of the fixed portion, and the second position is opposed to the corner across the axis.
  • a drive guide portion is provided, and the drive guide portion includes a guide body projecting from a main body portion of the driven body and an upper end portion and a lower end portion of a guide shaft extending from the guide body in the axial direction, respectively.
  • An engagement protrusion for defining a first stop position is provided on at least one of the upper end portion of the lower guide sleeve inside the guide shaft, or both, and the upper end portion of the guide body and the lower end portion of the upper guide sleeve
  • An engagement protrusion for defining the second stop position is provided on at least one or both of the outer sides of the guide shaft.
  • the driving fulcrum portion of the lever member is provided at one corner of the fixed portion, and the bias spring that urges the guide body protruding from the main body portion of the driven body at the second position facing the corner. Since the drive spring is provided, the bias spring is not engaged with the upper surface of the main body of the driven body, and the size of the components housed in the main body of the driven body is not limited. As large as possible components can be stored.
  • the bias spring applies a biasing force that opposes the driving direction of the lever member, and the first stop position is defined with the lower end portion of the guide body abutting the lower guide sleeve, and the upper end portion of the guide body is moved upward.
  • the second stop position is defined while being in contact with the guide sleeve, when the driven body is reciprocated in the axial direction, axial movement of the guide shaft can be suppressed and the driven body can be moved stably.
  • This is a drive mechanism that can suppress the occurrence of tilt at the start.
  • the fixed portion is a quadrangle in a plan view, and includes a base member having the through-hole portion and a quadrangle in a plan view.
  • the lever member is mounted by providing a support leg that supports the portion, and the lever member includes a displacement input portion that engages with the shape memory alloy actuator, and a displacement output portion that contacts and displaces the driven body.
  • the drive fulcrum part and the displacement input part are provided on the first corner part side, and the drive guide part is provided on a second corner part diagonally opposite to the first corner part. .
  • a drive mechanism having a bias spring includes a drive mechanism that can increase the size of the components housed in the body of the driven body and can stably move the driven body using the shape memory alloy actuator. Become.
  • the present invention is characterized in that, in the drive mechanism configured as described above, the bias spring is a coil spring that is fitted to the guide shaft and is mounted between the upper surface of the guide body and the upper guide sleeve.
  • the bias spring made of the coil spring is mounted so as to be fitted to the guide shaft fixed to the guide body, the sliding resistance and the urging force when the driven body is moved are coaxial. By acting, the driven body can be moved stably and smoothly without causing shaft runout.
  • the present invention is characterized in that, in the drive mechanism having the above-described configuration, the displacement output portion is provided close to the drive guide portion. According to this configuration, when the driven member is slid by swinging the lever member, the moment generated according to the separation distance between the displacement output portion and the drive guide portion can be suppressed, and the guide shaft and the guide The driven body can be moved stably and smoothly while suppressing twisting with the sleeve.
  • the driven body is a lens unit
  • the axis is an optical axis
  • the shape memory alloy actuator is a shape memory alloy wire
  • the first corner portion and the A holding portion for the shape memory alloy wire is provided in the third triangular portion and the fourth corner portion other than the second corner portion
  • the shape memory alloy wire is sandwiched between the displacement input portion and the outside of the driven body. It is characterized by the fact that it is mounted in the shape of a letter. According to this configuration, the displacement input portion can be formed by being locked to the lever member in a state where the shape memory alloy wire is bent by approximately 90 °.
  • all the related parts that drive the lens unit are mounted at the corners of the square in plan view, the lens aperture stored in the lens unit can be increased, and the lens unit can be displaced smoothly in the optical axis direction. A possible drive mechanism can be obtained.
  • the present invention also provides a fixed portion having a base member having a through-hole portion having a square shape in plan view and a support member that is reciprocally supported in the axial direction in the through-hole portion via a support member attached to the base member.
  • a position input portion is provided at the first corner portion of the quadrangle
  • a drive guide portion is provided at a second corner portion diagonally opposed to the first corner portion
  • the drive guide portion is a main body portion of the driven body.
  • An engagement protrusion for defining a first stop position is provided on the upper end of the guide body and a lower end of the upper guide sleeve, and a second stop position is defined on at least one of the outer sides of the guide shaft. It is characterized in that is provided a projection.
  • the driving fulcrum portion and the displacement input portion of the lever member are provided at the first corner portion of the quadrangle in a plan view away from the body of the driven body, and the second corner portion diagonally opposing the first corner portion. Since the drive guide portion including the bias spring is provided in the main body portion, the size of the components housed in the main body portion of the driven body is not limited.
  • the bias spring attached to the second corner portion applies a biasing force that opposes the driving direction by the lever member, and the first stop position is defined in a state where the lower end portion of the guide body is in contact with the lower guide sleeve, Since the second stop position is defined with the upper end of the guide body in contact with the upper guide sleeve, the driven body can be moved stably when the driven body is reciprocated in the axial direction. In addition, it is possible to suppress the occurrence of tilt at start-up, and it is possible to obtain a drive device that can stably move the driven body using the shape memory alloy wire.
  • the guide body is provided so as to protrude in a radial direction from the driven body having a circular shape in a plan view, and extends in the axial direction.
  • the guide shaft on the driven body side is slidably supported by the upper and lower guide sleeves, and the bias spring formed by the coil spring is mounted so as to be fitted to the guide body portion and the guide sleeve that support the guide shaft. Therefore, the driven spring can be stably and smoothly moved by holding the bias spring in a stable position.
  • the present invention is characterized in that, in the drive device having the above-described configuration, a displacement output unit in which the drive arm abuts on the driven body and applies a drive force is provided close to the drive guide unit.
  • a displacement output unit in which the drive arm abuts on the driven body and applies a drive force is provided close to the drive guide unit.
  • the driven body is a lens unit
  • the axis is an optical axis
  • An energization holding portion for holding and energizing the shape memory alloy wire at the corner is provided, and the shape memory alloy wire is stretched over the displacement input portion in a U-shape so as to sandwich the outside of the lens unit. It is characterized by wearing.
  • the lever member can be driven by engaging the lever member in a state where the shape memory alloy wire is bent by approximately 90 °, and energizing and contracting the lever member.
  • all the related parts that drive the lens unit are mounted on the corners of the square in plan view, and the components such as the lens housed in the lens unit can be made as large as possible. That is, the aperture of the lens mounted on the lens unit can be made as large as possible.
  • the drive mechanism and drive device according to the present invention can be suitably applied to the drive mechanism and drive device of the lens unit of an image pickup device aimed at miniaturization.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lens Barrels (AREA)

Abstract

 SMAアクチュエータを適用した駆動機構および駆動装置において、被駆動体に収納する構成部品を大きくでき、被駆動体を安定して移動させることが可能な駆動機構を提供し、レンズユニットに装着するレンズ口径を大きくでき、レンズユニットを光軸方向にスムーズに変位させることができる駆動装置を提供するために、固定部の一角(第一角部C1)にレバー部材2の駆動支点部2aを設け、前記一角と対向する第二の角(第二角部C2)に、被駆動体1の本体部からガイド体11を突設し、このガイド体11を摺動自在に支持すると共に、該ガイド体11を付勢するバイアスバネ7を備える駆動ガイド部10を設けた駆動機構および駆動装置とした。

Description

駆動装置
 本発明は、形状記憶合金アクチュエータを用いて小型の機械要素を駆動する駆動装置に関し、特に、カメラ付き携帯電話等の撮像光学系を構成するレンズユニットを、ズームやフォーカス等のために光軸方向に移動するのに好適な駆動装置に関する。
 近年、カメラ付き携帯電話機等に搭載される撮像素子の画素数が増大する等、高画質化が飛躍的に進んでおり、これに伴い、画像撮影という基本機能に加えて、フォーカス機能やズーム機能等を付加することが求められている。
 これらの機能を付加するには、レンズを光軸方向に移動させるレンズ駆動装置が必要であり、最近では、形状記憶合金(Shape Memory Alloy:SMAと称する)アクチュエータを用いたレンズ駆動装置の適用が種々検討されている。この装置は、SMAを通電加熱する等して収縮力を発生させ、該収縮力をレンズ駆動力として利用するもので、小型化、軽量化が容易で、且つ、比較的大きな駆動力を得ることができるという利点がある。
 また、ワイヤ状のSMAを用いてワイヤ全長の数%(例えば3~5%)の長さ変動を利用したリニア駆動装置を構成することができる。さらに、このワイヤ状のSMAと変倍機構(例えばレバー機構)を組み合わせて変位量を拡大したリニア駆動装置を構成することができる。
 SMAアクチュエータを適用したレンズ駆動機構および駆動装置としては、例えば、特許文献1に開示された駆動装置が知られている。この駆動装置は、ワイヤ状のSMAと変位量を拡大するレバー機構とを備えていて、図8に示すような構成とされている。
 この駆動装置は、被駆動体であるレンズユニットP1をワイヤ状のSMAと変位量を拡大するレバー機構とを用いて変位させるレンズ駆動装置であって、レンズユニットP1を光軸AX方向(第1軸方向)に移動させるレバー部材P2、SMAアクチュエータP3、ベース部材P4、天板P5、平行板バネP6a,P6b及びバイアスバネP7等とを備えた構成とされている。
 ベース部材P4は、当該レンズ駆動装置の取り付け対象となる部材(例えば携帯電話機の撮像素子基板等)に固定されるものであり、レンズ駆動装置の底辺を構成する不動の部材である。このベース部材P4は、平面視四角形の板状に形成され、全体が樹脂材料等により構成されている。
 レンズユニットP1は円筒形を有し、撮像レンズを保持するレンズ駆動枠P1aと、該レンズ駆動枠P1aが収納される鏡筒P1bとから構成されている。レンズ駆動枠P1aの内部に保持される撮像レンズは、対物レンズ、フォーカスレンズ、ズームレンズ等を有し、図外の撮像素子に対する被写体像の結像光学系を構成している。レンズ駆動枠P1aは、所謂玉枠であって、鏡筒P1bと共に光軸AX方向に移動する。レンズ駆動枠P1aの対物側先端の外周縁部には、周方向に180°の角度差を有して一対の係合突部P1cが突設されている。
 レンズユニットP1は、天板P5に形成される開口部分に挿入された状態でベース部材P4上に配置されている。また、一対の前記係合突部P1cが丁度ベース部材P4の一対の対角の近傍に位置するように配置されている。ベース部材P4及び天板P5には、それぞれ平行板バネP6a,P6bが固定されており、これら平行板バネP6a,P6bにレンズユニットP1が固定されている。これによってレンズユニットP1がベース部材P4等に対して変位可能に支持されると共に、その変位自由度が、光軸AXに沿った方向に規制されている。
 上記した構成において、支持脚P8に設けられるレバー支持部P8a(駆動支点部に相当)を回転中心として揺動自在とされるレバー部材P2とSMAアクチュエータP3を介してレンズユニットP1を光軸AX方向に変位させると共に、この変位方向と逆方向にレンズユニットP1を前記レバー部材P2の駆動力より弱い力で付勢するバイアスバネP7を用いている。このバイアスバネP7は、レンズ駆動枠P1aの周縁サイズと略合致した径の圧縮コイルバネからなり、レンズ駆動枠P1aの頂面に一端側(下端側)が当接している。なお、バイアスバネP7の他端側(上端側)は、例えば携帯電話機のハウジング内面等、不動部Nに当接される。
 上記したように、従来のレンズ駆動装置は、固定部にレンズユニットP1を平行板バネP6a,P6bを用いて光軸AX方向に変位自在に支持し、レンズユニットP1を光軸AX方向に付勢するバイアスバネP7の付勢力に抗して、レバー部材P2とSMAアクチュエータP3を介してレンズユニットP1を光軸AX方向に変位させる構成である。
 また、特許文献2には、駆動部を有するにも拘らず小型の撮像装置を提供するために、撮像ユニットの幅と略同一の大きさの駆動部を用いて、光学ユニットを光軸方向に移動可能に支持する軸に対して摺動移動する構成の撮像装置が開示されている。
特開2009-37059号公報 特開2005-77601号公報
 最近では撮像装置の小型化、特に低背化と、小型化に反するレンズの大口径化が求められている。そのため限られた大きさの中で、収納するレンズの口径は可能な限り大きいほうが好ましい。さらに、撮像装置が小型であっても、レンズユニットをその光軸方向にスムーズに、また安定して変位させることが肝要である。
 しかし、従来のレンズ駆動装置は、レンズユニットのレンズ駆動枠の周縁に圧縮コイルバネからなるバイアスバネを装着して付勢しているので、レンズ駆動枠に収納する撮像レンズの口径が制限される構成となって、好ましくない。
 また、特許文献2に記載されているように、レンズユニットの一部を突設した突部に軸孔を設け、この軸孔を固定シャーシに設けたガイド軸に対して摺動させる方法では、レンズユニットの小型化に伴い軸孔の長さ(嵌合長さ)を十分長くすることができないため、レバー部材を用いてレンズユニットを押し上げたときに傾きが生じてしまい、レンズユニットを十分安定して変位させることが困難となる。
 本発明は、上記の事情に鑑みてなされたものであって、SMAアクチュエータを適用した駆動装置において、被駆動体を安定して移動させることができるとともに、レンズユニットに装着するレンズ口径を大きくできる駆動装置を提供することを目的とする。また、SMAアクチュエータを適用した駆動装置において、被駆動体の移動時の傾きを抑え、安定して変位させることができる駆動装置を提供する。
 上記目的を達成するために本発明は、貫通孔部を有する固定部と、前記貫通孔の軸線方向に往復移動自在に支持される被駆動体と、該被駆動体を移動するレバー部材と、該レバー部材を移動させる駆動力を発生する形状記憶合金アクチュエータと、を有する駆動装置であって、前記固定部の一角に前記レバー部材の駆動支点部を設け、前記一角と前記軸線を挟んで対向する第二の位置に、前記被駆動体の本体部から突設されるガイド体を摺動自在に支持すると共に、前記ガイド体を前記レバー部材が発揮する駆動力に抗する方向に付勢するバイアスバネを備える駆動ガイド部を設けたことを特徴としている。
 また本発明は上記構成の駆動装置において、前記固定部が、前記貫通孔部を有し平面視四角形のベース部材を備え、前記レバー部材が、前記形状記憶合金アクチュエータが係合する変位入力部と、前記被駆動体と当接して変位させる変位出力部とを備え、前記駆動支点部および前記変位入力部を前記ベース部材の第一角部側に設け、前記駆動ガイド部と前記変位出力部とを、前記第一角部と対角線状に対向する第二角部に設けたことを特徴としている。
 また本発明は上記構成の駆動装置において、前記ガイド体が前記軸線方向に延設されるガイド軸を一体的に備え、前記駆動ガイド部が、前記ガイド軸を摺動自在に保持する上下のガイドスリーブを備え、前記バイアスバネが、前記ガイド軸に嵌装され前記ガイド体とガイドスリーブとの間に装着されるコイルバネであることを特徴としている。
 また本発明は上記構成の駆動装置において、前記第一角部と前記第二角部以外の第三角部と第四角部に前記形状記憶合金アクチュエータの保持部を設け、前記形状記憶合金アクチュエータを、前記変位入力部に、前記被駆動体の外側を挟むようにくの字状に掛け渡して装着したことを特徴としている。
 また本発明は上記構成の駆動装置において、前記ベース部材の第一角部に前記駆動支点部を支持する支持脚を設けて前記レバー部材を装着し、前記レバー部材は、前記被駆動体に設けられた係合部に係合して被駆動体を軸線方向に移動させる駆動アームと、該駆動アームを揺動自在に支持する支持支点部と、該駆動支点部から垂下して前記駆動アームを屈曲して設けられる延設アームを有し、前記駆動アームは、前記被駆動体の外周部に沿って配置されており、前記変位出力部が前記第二角部に設けられていることを特徴としている。
 また本発明は上記構成の駆動装置において、前記被駆動体がレンズユニットであり、前記軸線が光軸であり、前記形状記憶合金アクチュエータが形状記憶合金ワイヤであることを特徴としている。
 また本発明は、貫通孔部を有する固定部と、前記貫通孔の軸線方向に往復移動自在に支持される被駆動体と、該被駆動体を移動するレバー部材と、該レバー部材を移動させる駆動力を発生する形状記憶合金アクチュエータと、を有する駆動装置であって、前記固定部に前記レバー部材の駆動支点部を設け、前記被駆動体の本体部から突設されるガイド体と該ガイド体から軸線方向に延設されるガイド軸の上端部を摺動自在に支持する上ガイドスリーブと、前記ガイド軸の下端部を摺動自在に支持する下ガイドスリーブと、前記ガイド体を前記レバー部材が発揮する駆動力に抗する方向に付勢するバイアスバネを備える駆動ガイド部を設けたことを特徴としている。
 また本発明は上記構成の駆動装置において、前記固定部が、前記貫通孔部を有し平面視四角形のベース部材を備え、前記レバー部材が、前記形状記憶合金アクチュエータが係合する変位入力部と、前記被駆動体と当接して変位させる変位出力部とを備え、前記駆動支点部および前記変位入力部を前記ベース部材の第一角部側に設け、前記駆動ガイド部と前記変位出力部とを、前記第一角部と対角線状に対向する第二角部に設けたことを特徴としている。
 また本発明は上記構成の駆動装置において、前記ガイド軸は前記ガイド体を貫通するように、前記ガイド体に固着されていることを特徴としている。
 また本発明は上記構成の駆動装置において、前記ガイド体と前記ガイドスリーブとは樹脂製であり、前記ガイド体は金属部材であることを特徴としている。
 また本発明は上記構成の駆動装置において、前記バイアスバネが、前記ガイド軸に嵌装され前記ガイド体の上面と前記上ガイドスリーブとの間に装着されるコイルバネであることを特徴としている。
 また本発明は上記構成の駆動装置において、前記変位出力部を、前記駆動ガイド部に接近して設けたことを特徴としている。
 また本発明は上記構成の駆動装置において、前記レバー部材を介して前記被駆動体を移動させるときに、前記ガイド軸の上端部が当接する前記上ガイドスリーブの外側もしくは内側のいずれか一方の摺動部に前記ガイド軸に当接して支持するV溝部を設け、前記ガイド軸の下端部が当接する前記下ガイドスリーブの内側もしくは外側のいずれか一方の摺動部に前記ガイド軸に当接して支持するV溝部を設け、前記レバー部材を介して移動させるときに、前記ガイドの上端部および下端部がそれぞれ前記V溝部に当接して摺動する構成としたことを特徴としている。
 また本発明は上記構成の駆動装置において、前記V溝部に、前記ガイド軸に当接するR面状突部を設けたことを特徴としている。
 また本発明は上記構成の駆動装置において、前記被駆動体がレンズユニットであり、前記軸線が光軸であり、前記形状記憶合金アクチュエータが形状記憶合金ワイヤであって、前記第一角部と前記第二角部以外の第三角部と第四角部に前記形状記憶合金ワイヤの保持部を設け、前記形状記憶合金ワイヤを、前記変位入力部に、前記被駆動体の外側を挟むようにくの字状に掛け渡して装着したことを特徴としている。
 また本発明は上記構成の駆動装置において、前記レバー部材は、前記被駆動体に設けられた係合部に係合して被駆動体を軸線方向に移動させる駆動アームと、該駆動アームを揺動自在に支持する支持支点部と、該駆動支点部から垂下して前記駆動アームを屈曲して設けられる延設アームを有し、前記駆動アームは、前記被駆動体の外周部に沿って配置されており、前記変位出力部が前記第二角部に設けられていることを特徴としている。
 また本発明は上記構成の駆動装置において、前記ガイド体の下端部と前記下ガイドスリーブの上端部の前記ガイド軸の内側の少なくとも一方、もしくは両方に第一停止位置を規定する係合突部が設けられ、前記ガイド体の上端部と前記上ガイドスリーブの下端部の前記ガイド軸の外側の少なくとも一方、もしくは両方に第二停止位置を規定する係合突部が設けられていることを特徴としている。
 本発明によれば、SMAアクチュエータを適用した駆動機構および駆動装置において、被駆動体を軸線方向に往復移動させる際に、被駆動体を安定して移動させることが可能で、且つ、始動時チルトの発生も抑制可能な駆動機構を得ることができ、レンズユニットに装着するレンズ口径を大きくでき、レンズユニットを光軸方向にスムーズに変位させることができる駆動装置を得ることができる。
本発明に係る駆動機構の概略説明図である。 本発明に係る駆動機構および駆動装置の主要部を示す概略平面図であって、(a)に第一例を、(b)に第二例を示す。 本発明に係る駆動ガイド部を構成するガイド軸とガイドスリーブの当接状態を示す摸式図であって、(a)に概略側面図を示し、(b)にガイドスリーブのV溝部を示し、(c)にR面状突部を示す。 本発明に係る第2の実施形態の駆動機構の概略説明図である。 第2の実施形態における駆動ガイド部を構成するガイド軸とガイドスリーブの当接状態を示す摸式図であって、(a)に第二停止位置にある状態を示し、(b)に第一停止位置にある状態を示す。 本発明に係る駆動機構を備えた駆動装置の一例の構成を示す側部断面図である。 図6に示す駆動装置の平面図である。 従来のレンズ駆動装置の概略側面図である。
 以下に本発明の実施形態を図面を参照して説明する。また、同一構成部材については同一の符号を用い、詳細な説明は適宜省略する。
 先ず、本発明に係る駆動機構について図1を用いて説明する。本実施形態の駆動機構は、被駆動体1(例えば、撮像レンズを備えるレンズユニット)をその軸線方向(例えば光軸AX方向)に移動する駆動機構であって、貫通孔部4aを有する固定部(ベース部材4)と、固定部に装着する支持部材を介して貫通孔部内をその軸線方向に往復移動自在に支持される被駆動体1と、この被駆動体1を移動するための駆動力を付与する形状記憶合金アクチュエータ(SMAアクチュエータ)3と、該SMAアクチュエータ3から駆動力を受けて前記被駆動体1を移動させるレバー部材2と、を備えた構成とされている。
 また、駆動機構は、被駆動体1をSMAアクチュエータ3の収縮による駆動力に抗する方向に付勢するバイアスバネ7を備えている。
 また、固定部(ベース部材4)の一角にレバー部材2の駆動支点部8aを設け、前記一角と軸線を挟んで対向する第二の位置にバイアスバネ7を備える駆動ガイド部10を設ける構成としている。駆動ガイド部10は、被駆動体1の本体部から突設されるガイド体11を摺動自在に支持すると共に、バイアスバネ7を介して前記ガイド体11を前記レバー部材2が発揮する駆動力に抗する方向に付勢するように構成されている。
 レバー部材2は、例えば、被駆動体1をその軸線方向に移動する駆動アーム21と、該駆動アーム21を揺動自在に支持する駆動支点部8aと、該駆動支点部8aから垂下して前記駆動アーム21と屈曲して設けられる延設アーム22を有して、側面視逆L字型の形状をしている。また、SMAアクチュエータ3が懸架されて駆動力を受ける変位入力部2aと変位出力部2bとを備えている。
 SMAアクチュエータ3は、その中間部が変位入力部2aに懸架され、両端部が保持部30(30A、30B)に保持されていて、所定の電流が通電されて収縮力を発生して、レバー部材2を変位駆動する。すなわち、形状記憶合金アクチュエータを、変位入力部2aに、被駆動体1の外側を挟むようにくの字状(L字状)に架け渡して装着している。
 上記したように、駆動支点部8aと変位入力部2aを固定部(ベース部材4)の一角に設け、この一角と対向する第二の位置に駆動ガイド部10を設ける構成であれば、レバー部材2の駆動力に抗する方向に被駆動体1を付勢するバイアスバネ7を被駆動体1の本体部から備える部位に設けた構成となるので、被駆動体の本体部上面にバイアスバネが係合しない構成となって、被駆動体の本体部に収納する構成部品の大きさに制限を受けず、可能な限り大きなサイズの構成部品を収納可能となる。また、第二の位置に装着するバイアスバネ7がレバー部材2による駆動方向に対向する付勢力を付与するので、SMAアクチュエータ3を用いた被駆動体1の移動を安定して行うことが可能な駆動機構となって好ましい。
 固定部となるベース部材4の平面視の形状は円形でも多角形でもよく、ベース部材4に設ける駆動支点部8aと変位入力部2aの設置位置(一角)に軸線を挟んで対向する位置(第二の位置)にバイアスバネ7を備える駆動ガイド部10を設ければよい。また、矩形の撮像装置に収納するレンズ駆動装置に用いる駆動機構の場合は、平面視四角形のベース部材4とし、部材の中央部に設ける円形の貫通孔に、複数の円形のレンズを装着した外形が円形のレンズユニットを往復移動自在に支持して、周囲四方の角部に駆動装置関連部材を装着することができる。
 例えば、貫通孔部4aを有し平面視四角形のベース部材4の一角にレバー部材2の駆動支点部8aを設け、この一角と軸線を挟んで対向する第二の角に、被駆動体1の本体部から突設されるガイド体11を付勢するバイアスバネ7を備える駆動ガイド部10を設ける構成とする。
 ベース部材4は、当該駆動機構が採用される部材(例えば、携帯電話機の撮像素子基板等)に固定されるものであり、例えばレンズ駆動装置の底辺を構成する不動の部材である。このベース部材4は、全体が樹脂材料等により構成されている。
 本実施形態のバイアスバネ7は、平面視円形の被駆動体1に収納する構成部品のサイズをできるだけ大きくし被駆動体1を安定して移動させることを可能とするために、被駆動体1の本体部ではなく、本体部から突設されるガイド体11を付勢する位置に設けられている。このように、本実施形態に係る駆動機構は、平面視円形の被駆動体1の本体から突出して離れた位置にバイアスバネ7を装着する駆動ガイド部10を備えた構成とされている。
 ガイド体11は、ガイド胴部12とガイド軸13を備えている。ガイド軸13は、軸線である光軸AX方向に延設されており、その上端部13aが上ガイドスリーブ14aにより摺動自在に支持され、下端部13bが下ガイドスリーブ14bにより摺動自在に支持されている。この上ガイドスリーブ14aと下ガイドスリーブ14bは、駆動ガイド部10を構成する一部材である。
 また、前記ガイド胴部12の上面と上ガイドスリーブ14aとの間に、ガイド軸13を囲むようにバイアスバネ7が装着されている。つまり、バイアスバネ7はガイド軸13に嵌装されている。このバイアスバネ7は、例えば、ガイド軸13の外周部に装着し易く所定の付勢力が得やすい圧縮コイルバネを好適に用いることができる。このコイルバネからなるバイアスバネ7は、ガイド体11を前記レバー部材2が発揮する駆動力に抗する方向に付勢する機能を有する。また、バイアスバネ7の付勢力は、レバー部材2の駆動力より弱い力とされ、レバー部材2によって駆動される被駆動体1の移動を安定させる効果を発揮する。
 このように、被駆動体1の本体部から突設したガイド軸13を上下のガイドスリーブ14a、14bで摺動自在に支持し、ガイド軸13に嵌装されるようにバイアスバネ7を装着しているので、被駆動体1の移動時の摺動抵抗と付勢力が同軸上に作用する構成となって、被駆動体1の移動を安定してスムーズに行うことが可能な駆動機構となる。また、被駆動体1側にガイド軸13を設ける構成としているので、限られた空間の中で軸受け間隔を長くすることができ、被駆動体の傾き精度を確保できる構成となって、軸線方向に移動する際に軸振れせず、被駆動体を安定して移動させることが可能となる。
 なお、ガイド胴部12の光軸AX方向の長さ(摺動間隔)が充分に取れる場合には、ガイド軸13をガイドスリーブ14a、14bに固定して、ガイド胴部12とガイド軸13とを摺動させてもよい。この場合にもバイアスバネ7はガイド軸に嵌挿されている。ただし、摺動間隔(軸受け間隔)が長く取れる上記実施形態のほうが、被駆動体1の傾き誤差が少なくて好ましい。なお、この場合には、ガイド体11はガイド胴部12であり、ガイド軸13は駆動ガイド部10を形成する。
 次に、平面視四角形のベース部材4の対角線状に対向する角部に配設したレバー部材2の駆動支点部8aと駆動ガイド部10の配設状態について図2を用いて説明する。
 図2(a)は、本発明に係る駆動機構を採用した第一例の駆動装置A1を示す概略平面図であり、レバー部材として被駆動体1の外周部に沿って円形に湾曲した駆動アーム21Aを備えるレバー部材2Aを備えた例である。また、図2(b)は第二例の駆動装置A2を示す概略平面図であり、レバー部材として被駆動体1の外周部に沿って多角形状に屈曲した駆動アーム21Bを備えた例である。また、その他の構成は同じであるので、駆動ガイド部10の配設状態について図2(a)を用いて説明する。
 図2(a)に示す駆動装置A1は、平面視四角形のベース部材4と、平面視円形の被駆動体1を備えている。そのために、被駆動体1を移動自在に支持するベース部材4は、第一角部C1、第二角部C2、第三角部C3、第四角部C4の角部を有している。
 そこで、レバー部材2Aの駆動支点部8aを第一角部C1に設け、この第一角部C1と対角線状に位置する第二角部C2に駆動ガイド部10を設けた構成としている。また、形状記憶合金アクチュエータ3を通電可能に保持する支持部として通電支持部30Aを第三角部C3に設け、通電支持部30Bを第四角部C4に設けた構成としている。
 第二角部C2に配設される駆動ガイド部10は、被駆動体1から半径方向に突設されるガイド体11が有するガイド軸13を摺動自在に支持すると共に、バイアスバネ7を介して、レバー部材2Aが発揮する駆動力に抗する方向に被駆動体1を付勢する機能を有する。そのために、ベース部材4の貫通孔部4aに変位自在に装着している被駆動体1の円形の本体部に他の部材が緩衝しない構成となり、被駆動体1に収納する構成部品のサイズをできるだけ大きくすることが可能となる。
 また、レバー部材2の駆動支点部8aと駆動ガイド部10を、平面視四角形のベース部材4の対角線状に位置する角部に対向して配設する構成であっても、ガイド軸13の上端部と下端部をそれぞれガイドスリーブを介して摺動自在に支持する構成としているので、被駆動体1を安定して移動させることが可能な駆動装置となる。
 上記したように、貫通孔部を有し平面視四角形のベース部材を備える固定部と、ベース部材に装着する支持部材を介して貫通孔部内をその軸線方向に往復移動自在に支持される被駆動体と、被駆動体を移動するための駆動力を付与するSMAアクチュエータと、該SMAアクチュエータから駆動力を受けて被駆動体を移動させるレバー部材と、を備える駆動機構および駆動装置において、レバー部材が駆動支点部と変位入力部と変位出力部とを備え、駆動支点部および変位入力部を平面視四角形のベース部材の第一角部に設け、第一角部と対角線状に位置する第二角部に、被駆動体から突設されるガイド体を挿通自在に支持すると共に、該ガイド体を前記レバー部材が発揮する駆動力に抗する方向に付勢するバイアスバネを備える駆動ガイド部を設ける構成とすることで、被駆動体に収納する構成部品のサイズをできるだけ大きくし被駆動体を安定して移動させることが可能な駆動機構および駆動装置を得ることができる。
 また、被駆動体1をレンズユニットとし、軸線方向を光軸方向とし、SMAアクチュエータをSMAワイヤとすると、レンズユニットに装着するレンズ口径を大きくでき、レンズユニットをスムーズに変位させることが可能な駆動機構および駆動装置を得ることができる。そのために、本実施形態に係る駆動機構が採用されたレンズユニットの駆動装置について図6および図7を用いて説明する。
 図6に示す駆動装置100は、固定部となるベース部材4と外筒14に、例えば、第一レンズL1、第二レンズL2の複数のレンズを備えたレンズ枠101にキャリア枠102を装着して構成されるレンズユニット1´を、光軸AX方向に移動自在に備えている。
 ベース部材4および外筒14は、例えば図7に示すように平面視四角形であって、貫通孔部4aを備え、この貫通孔部4a内をその軸線方向(光軸AX方向)に往復移動自在にレンズユニット1´が支持されている。また、被駆動体であるレンズユニット1´を移動するための駆動力を付与する形状記憶合金ワイヤ(SMAワイヤ)3と、該ワイヤ3が懸架され該ワイヤから駆動力を受けて前記レンズユニット1´を移動させるレバー部材2を備えている。
 レバー部材2(2A、2B)は、SMAワイヤ3が懸架されて駆動力を受ける変位入力部2aを備える延設アーム22と、レンズユニット1´をその軸線方向に移動させる駆動アーム21(図1参照)を備えた構成とされている。また、レバー部材2が揺動する駆動支点8aを備える支持脚8を平面視四角形の角部(第一角部)に設けている。この駆動アーム21は前述した円形に湾曲した駆動アーム21Aでも、多角形状に屈曲した駆動アーム21Bでもよい。また、これらの駆動アーム21(21A、21B)は、被駆動体であるレンズユニット1´を取り囲むように、レンズユニット1´の外周部に沿って配置される二本のアームから構成される。なお、駆動アーム21は二本のアームの先端部で連結されて一体化された形状でもよい。
 駆動アーム21(21A、21B)は、例えば、レンズユニット1´の外枠であるキャリア枠102に設ける係合部にその先端あるいは突部を係合させる変位出力部を介して、レンズユニット1´を移動させることができる。変位出力部は、レンズユニットのサイズや駆動力の大きさや、力のバランスを考慮した適当な位置(例えば、キャリア枠102の中央部分に当接する変位出力部23、または、駆動ガイド部10に接近した位置に設ける変位出力部24)に変位出力部を設けることができるが、駆動支点8aと軸線に対して反対側の駆動ガイド部10に近接した位置に設けることが好ましい。
 駆動ガイド部10に近接した位置に変位出力部24を設けると、駆動ガイド部10と変位出力部24との軸間距離に応じて発生するモーメントを抑制し、ガイド軸13とガイドスリーブ14とのこじれを抑制して、被駆動体の移動を安定してスムーズに行うことができる。
 SMAワイヤ3の収縮に対応するレンズユニット1´の移動量は、駆動支点部8aとレバー部材2の変位入力部2aとの距離と、駆動支点部8aとレバー部材2の変位出力部24との距離の比で決まる。駆動アーム長さを最大限にできる駆動ガイド部10に接近した位置に変位出力部24を設けることで、変位率(収縮率)の小さなSMAワイヤにおいて、安定して変位量を拡大することができる。また逆に、拡大率を大きくとることができるため、SMAの変位量を小さくすることができ、SMAの伸縮による劣化が抑制される。また、レバー部材2の回転角度が小さいので、キャリア枠102に設けた係合部への圧力角の変化が小さく、移動量のリニアリティが確保できる。さらに、キャリア枠102の係合部との摩擦長さが短くすむため、摩擦量が安定し、キャリア枠102の駆動の安定性が確保できる。
 また、支持脚8が設けられている第一角部C1と対角線状の第二角部C2に駆動ガイド部10を設けている。この駆動ガイド部10は、例えば、キャリア枠102の一部を半径方向に突設してガイド体11を設け、このガイド体11にガイド軸13を設け、外筒14およびベース部材4に設けるガイドスリーブ14(14a、14b)により、その上端部と下端部を摺動自在に支持している。また、ガイド軸13を装着して保持するガイド胴部12Aを備えており、このガイド胴部12Aと上ガイドスリーブ14aの外周を囲むようにバイアスバネ7が装着されている。
 バイアスバネ7は、例えば圧縮コイルバネであって、ガイド体11を前記レバー部材2が発揮する駆動力に抗する方向に付勢する。つまり、ガイド体11を下ガイドスリーブ14bに向けて押さえ付ける方向にレンズユニット1´を付勢している。
 そのために、ガイド体11の下端部に突部11aを設けて、下ガイドスリーブ14bに当接させた状態を、レンズユニット1´の待機位置として設定することができると共に、バイアスバネ7の内径をガイド胴部12Aと上ガイドスリーブ14aがガイドしてバネの伸縮を安定させることができる。
 Kは基板であって、前述した通電保持部30A、30Bに電気的に接続されており、SMAワイヤ3に所定の電流を通電して、収縮力を発生させてレンズ駆動力を発揮させるように構成されている。
 上記のような構成の駆動装置100の作動動作について説明する。変位入力部2aに、被駆動体であるレンズユニット1´の外側を挟むようにくの字状(L字状)に、架け渡して装着しているSMAワイヤ3が通電され収縮すると、変位入力部2aが光軸AXに近づく方向に付勢され、レバー部材2が駆動支点部8aを中心として揺動し、駆動アーム21がキャリア枠102の係合部に当接してレンズユニット1´を光軸AX方向に押し上げる。
 バイアスばね7の付勢力は、SMAワイヤ3によってレバー部材2に付与される駆動力より弱いものとされているので、SMAワイヤ3が作動していないときは、レンズユニット1´がベース部材4側に向けて付勢される。一方、SMAワイヤ3が作動するとバイアスばね7の付勢力に抗してレンズユニット1´が反対方向(対物側)に移動する。つまり、バイアスばね7は、SMAワイヤ3に通電が行われていない時に、レンズユニット1´をホームポジションに復帰させるバイアス荷重を与えるものである。
 なお、SMAワイヤ3は、作動していない状態では、レンズユニット1´およびレバー部材2を介して作用するバイアスばね7の付勢力を受けて緊張するようにその線長が設定されている。つまり、その作動状態に拘らず、常に前記レバー部材2をレンズユニット1´(キャリア枠102)に当接させるようにその線長が設定されている。この構成により、SMAワイヤ3の作動時には、その変位を速やかに伝えて当該レバー部材2を揺動させる構成となっている。
 通電加熱が行われていないSMAワイヤ3の停止(伸長)時には、バイアスばね7の付勢力によりレンズユニット1´がベース部材4側に押圧されホームポジション(原点位置)に保持される。このとき、レンズユニット1´のガイド体11の下端部に突部11aがベース部材4に当接してその位置が決定されている。一方、SMAワイヤ3が作動(収縮)すると、この作動によりレバー部材2の変位入力部2aに駆動力が付与されてレバー部材2が揺動し、この揺動により変位出力部2b(図1参照)が光軸AX方向に移動する。その結果、レンズユニット1´に対物側への駆動力が付与され、レンズユニット1´がバイアスばね7の付勢力に抗して移動する。また、この際に、SMAワイヤ3への通電電流を制御して、前記駆動方向の力を調整し、レバー部材2を揺動する駆動力を加減して、レンズユニット1´の変位量を調整することができる。
 上記のような構成とされる駆動装置100は、図7に示すように、平面視四角形のベース部材4の第一角部C1にレバー部材2(2A、2B)の駆動支点部8aを設け、この第一角部C1と対角線状に対向する第二角部C2に、レンズユニット1´の本体部から突設されるガイド体を付勢するバイアスバネ7を備える駆動ガイド部10を設けているので、キャリア枠102の内寸一杯を構成部品装着部として用いることができ、撮像レンズ群を構成する複数のレンズのレンズ口径を大きくすることが可能となる。また、同一サイズの駆動装置に大きな口径のレンズを装着可能であるので、撮像装置の小型化にとって有効な構成となる。
 そのために、この駆動装置100は、レンズの光軸方向の直進移動を行う小型のレンズユニットを有する撮影装置に用いることができる。また、平面視四角形の第一角部C1に、レバー部材2(2A、2B)を軸支しSMAワイヤ3を巻回するための支持脚8を設け、この第一角部C1に対向する第二角部C2にバイアスバネ7を備える駆動ガイド部10を設け、これらの間の第三角部C3と第四角部C4にSMAワイヤの通電支持部30A、30Bを設けることができる。この構成であれば、小型のレンズユニットにも搭載可能な駆動装置となって、レンズの光軸方向の直進移動を行うことが容易となり、携帯電話等にも搭載可能なレンズの駆動装置となる。
 次に図3を用いてガイド軸とガイドスリーブの構成について説明する。
 図3(a)に示すように、本実施形態では、ガイド軸13がガイド胴部12に固着されていて、ガイド軸13の上端部13aが上ガイドスリーブ14aにより摺動自在に支持され、ガイド軸13の下端部13bが下ガイドスリーブ14bにより摺動自在に支持されている。
 SMAアクチュエータ3を用いて変位入力部2aに駆動力を付与し、レバー部材2を揺動し、変位出力部2bを介して被駆動体1を移動させると、変位出力部2bとガイド軸13との離間距離Lに応じたモーメントMが発生する。このモーメントMは、ガイド軸の上端部13aの外側13aaを上ガイドスリーブ14aの外側摺動部14aaに押付けるように作用し、ガイド軸の下端部13bの内側13bbを下ガイドスリーブ14bの内側摺動部14bbに押し付けるように作用する。
 また、このモーメントMは、その大きさが前記距離Lに応じて増減するので、この距離Lは短い方が好ましく、変位出力部2bを、駆動ガイド部10に接近して設ける構成にすることで、レバー部材2を揺動して被駆動体1を移動させる際に、変位出力部2bと駆動ガイド部10との離間距離Lに応じて発生するモーメントMを抑制可能となって、ガイド軸13とガイドスリーブ14とのこじれを抑制しながら被駆動体1の移動を安定してスムーズに行うことができる。
 また、レバー部材2を介して被駆動体1を移動させるときに、ガイド軸13の上端部13aが当接する上ガイドスリーブ14aの外側もしくは内側のいずれか一方の摺動部にガイド軸13に当接して支持するV溝部15を設け、ガイド軸13の下端部13bが当接する下ガイドスリーブ14bの内側もしくは外側のいずれか一方の摺動部にガイド軸13に当接して支持するV溝部15を設ける構成として、被駆動体1の移動を軸振れを生じずにさらに安定してスムーズに行うことができる。
 そのために、図示するようなモーメントMが作用してガイド軸13の上端部13aが上ガイドスリーブ14aの外側に当接し、下端部13bが下ガイドスリーブ14bの内側に当接する状態では、上ガイドスリーブ14aの外側摺動部14aaに前記ガイド軸13に当接して支持するV溝部15を設け、下ガイドスリーブ14bの内側摺動部14bbに前記ガイド軸13に当接して支持するV溝部15を設けることで、レバー部材2を介して移動させるときに、ガイド軸13の上端部および下端部がそれぞれV溝部15に当接して摺動する構成とすることができる。この構成であれば、レバー部材2を用いて被駆動体1を移動させるときに、ガイド軸13の上端部13aを上ガイドスリーブ14aのV溝部15に当接し、ガイド軸13の下端部13bを下ガイドスリーブ14bのV溝部15に当接して、その状態を維持しながら摺動移動させることができ、軸振れを生じずに被駆動体1の移動を安定してスムーズに行うことができる。
 なお、レバー部材2の変位出力部2bがガイド軸13の外側にある場合、つまり、レバー部材2で被駆動体1を移動させる場合に発生するモーメントMが逆向きの場合には、上ガイドスリーブ14aの内側摺動部に前記ガイド軸13に当接して支持するV溝部を設け、下ガイドスリーブ14bの外側摺動部に前記ガイド軸13に当接して支持するV溝部を設ければよい。すなわち、レバー部材2で被駆動体1を移動させる場合に発生するモーメントMによってガイド軸13が当接するガイドスリーブ内面の摺動部にV溝部を設ければよい。
 例えば、図3(b)に示すように、開き角度αがほぼ直角(90°)のV溝部15とし、このV溝にガイド軸13を当接してガイドするようにしている。この際に、ガイドスリーブ14(14a、14b)は樹脂製品なので、ガイド軸13の材質を当該樹脂製のガイドスリーブ14(14a、14b)に対して摩擦係数が小さく摺動性のよい材質を選択することができる。
 ガイド軸13とガイド胴部12(被駆動体1)とが同一材料で一体的に形成されていてもよいが、ガイド軸13がガイド胴部12を貫通して固着される構成であれば、ガイド胴部12と異なる材質製とすることができ、例えば、摺動性のよい材質を選択することができる。また、金属製のガイド軸13であれば、その表面を摺動性が良好となるように表面処理することが容易であり好適である。
 開き角度αは90°に限定されず、ガイド軸13の径や駆動ガイド部10の大きさ、および、装置全体の大きさ等により適宜選択可能であり、例えば、60°~120°の範囲で適当な開き角度αを選択することができる。
 また、V溝部15に、ガイド軸13に当接するR面状突部16を設けると、ガイド軸13のガイドスリーブ14(14a、14b)に対する当接部位を安定させることができるので、被駆動体1の移動をさらに安定してスムーズに行うことが可能な構成となって好ましい。
 R面状突部16は、例えば図3(c)に示すようなかまぼこ型のR面状突部16とすることができる。この構成であれば、R面状突部16の円弧状のR面16aがガイド軸13に常時当接して、ガイド軸13を安定して支持し、摺動させることが可能となる。
 上記したように、本実施形態によれば、SMAアクチュエータを適用した駆動機構において、被駆動体を軸線方向に往復移動させる際に、被駆動体を安定して移動させることが可能な駆動機構を得ることができる。
 以上説明したように、本発明に係る駆動機構によれば、固定部の一角にレバー部材の駆動支点部を設け、この一角と対向する第二の位置に、被駆動体の本体部から突出して設けられるガイド体を付勢するバイアスバネを備える駆動ガイド部を備えるので、被駆動体の本体部にバイアスバネが係合しない構成となって、被駆動体の本体部に収納する構成部品の大きさに制限を受けず、可能な限り大きなサイズの構成部品を収納可能となる。また、駆動ガイド部に装着するバイアスバネがレバー部材による駆動方向に対向する付勢力を付与するので、形状記憶合金アクチュエータを用いた被駆動体の移動を安定して行うことが可能な駆動機構となる。
 また、本発明に係る駆動機構を備えた駆動装置によれば、被駆動体の本体から離れた平面視四角形のベース部材の第一角部にレバー部材の駆動支点部と変位入力部を設け、第一角部と対角線状に対向する第二角部にバイアスバネを備える駆動ガイド部を備えるので、例えば、平面視円形の被駆動体の本体部に収納する構成部品の大きさに制限を受けない構成となる。また、第二角部に装着するバイアスバネがレバー部材による駆動方向に対向する付勢力を付与するので、形状記憶合金ワイヤを用いた被駆動体の移動を安定して行うことが可能な駆動装置を得ることができる。
 以上説明したように、本発明に係る駆動機構によれば、バイアスバネを介して被駆動体に突設されるガイド体を付勢すると共にガイド体に延設されるガイド軸の上端部と下端部を上下のガイドスリーブを用いて摺動自在に保持する駆動ガイド部を備えているので、限られた空間の中で軸受け間隔を長くすることができ、被駆動体の傾き精度を確保できる。そのために、軸線方向に移動する際に軸振れせず、被駆動体を安定して移動させることが可能な駆動機構となる。
〈第2の実施形態〉
 次に、図4を用いて第2の実施形態について説明する。本実施形態に係る駆動ガイド部10Aは、ガイド体11の下端部と下ガイドスリーブ14bの上端部の少なくとも一方、もしくは両方の前記ガイド軸13の内側に第一停止位置を規定する係合突部18(18A、18B)を設け、ガイド体11の上端部と上ガイドスリーブ14aの下端部の少なくとも一方、もしくは両方の前記ガイド軸13の外側に第二停止位置を規定する係合突部17(17A、17B)を設けた構成としている。
 そのために、図に示すSMAアクチュエータ3が作用していない状態では、例えば係合突部18A、18Bが当接した停止状態となる。この第一停止位置が初期状態であり、この初期状態からSMAアクチュエータ3に通電して収縮させて、レバー部材2を揺動駆動して被駆動体1を軸線方向(光軸AX方向)に移動する。
 次に図5を用いてガイド体が上下のガイドスリーブに当接する第一停止位置と第二停止位置について説明する。
 図5(a)は、被駆動体1が上端位置まで移動した状態の第二停止位置を示す摸式図であって、被駆動体1がレンズユニットの場合には、近接位置にある状態を示す。
 この第二停止位置では、係合突部17を介して、ガイド体11の上端部、例えばガイド体11を構成するガイド胴部12の上面と上ガイドスリーブ14aの下端部とが当接した状態となる。また、この状態で、ガイド軸13の上端部13aが上ガイドスリーブ14aの内面に当接してガイドされている。
 これは、SMAアクチュエータ3を用いて変位入力部2aに駆動力を付与し、レバー部材2を揺動し、変位出力部2bを介して被駆動体1を移動させると、変位出力部2bとガイド軸13との離間距離Lに応じたモーメントMが発生するためである。
 そのために、本実施形態は、被駆動体1を変位させる際に、ガイド軸13の傾き側に当接部となる係合突部17を設けた構成となる。また、この係合突部17は、前述したように、ガイド体11の上端部と上ガイドスリーブ14aの下端部の少なくとも一方、もしくは両方に設ける係合突部17A、17Bによって構成できる。
 図5(b)は、被駆動体1が下端位置に移動した状態の第一停止位置を示す模式図であって、被駆動体1がレンズユニットの場合には、無限遠位置にある状態を示す。
 この第一停止位置では、係合突部18を介して、ガイド体11の下端部、例えばガイド体11を構成するガイド胴部12の下面と下ガイドスリーブ14bの上端部とが当接した状態となる。また、この状態で、ガイド軸13の下端部13bが下ガイドスリーブ14bの内面に当接してガイドされている。
 そのために、SMAアクチュエータ3を用いて変位入力部2aに駆動力を付与し、レバー部材2を揺動し、変位出力部2bを介して被駆動体1を移動させる始動時にモーメントMが発生しても、すでに、ガイド軸13の下端部13bが下ガイドスリーブ14bの内面に当接してガイドされた状態となり、始動時チルトの発生を抑制可能となる。
 上記したように、本実施形態に係る駆動機構は、被駆動体1を変位させる際に、ガイド軸13の傾き側に当接部となる係合突部17、18を設けた構成となって、ガイド軸13の軸振れを生じずに被駆動体1の移動を安定してスムーズに行うことが可能な駆動機構となる。
 また、上記の駆動機構を備える駆動装置は、前述した図6に示す駆動装置100が備えるガイド体11に係合突部17、18を設けた構成とされる。すなわち、ガイド体11の上端と上ガイドスリーブ14aとの間に係合突部17(17A、17B)を設け、ガイド体11の下端部と下ガイドスリーブ14bとの間に係合突部18(18A、18B)を設ける構成とすることで、ガイド軸13の軸振れを生じずに被駆動体1の移動を安定してスムーズに行うことが可能な駆動装置となる。
 また、係合突部18(18A、18B)は、前述した第一停止位置を規定する係合突部であって、ガイド体11の下端部と下ガイドスリーブ14bの上端部のガイド軸13の内側の少なくとも一方、もしくは両方に設ける。係合突部17(17A、17B)は、前述した第二停止位置を規定する係合突部であって、ガイド体11の上端部と上ガイドスリーブ14aの下端部のガイド軸13の外側の少なくとも一方、もしくは両方に設ける。
 以上説明したように、第2の実施形態の駆動機構および駆動装置によれば、ガイド軸の上端部と下端部を上下のガイドスリーブを用いてガイドし、摺動自在に保持すると共にガイド軸が装着されるガイド体の第一停止位置と第二停止位置を規定する係合突部を設けたので、ガイド軸の軸振れを抑制し被駆動体を安定して移動させることが可能で、且つ、始動時チルトの発生も抑制可能な駆動機構および駆動装置となる。
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下にまとめる。
 本発明は、貫通孔部を有する固定部と、前記貫通孔の軸線方向に往復移動自在に支持される被駆動体と、該被駆動体を移動するレバー部材と、該レバー部材を移動させる駆動力を発生する形状記憶合金アクチュエータと、を有する駆動機構であって、前記固定部の一角に前記レバー部材の駆動支点部を設け、前記一角と前記軸線を挟んで対向する第二の位置に、前記被駆動体の本体部から突設されるガイド体を摺動自在に支持すると共に、前記ガイド体を前記レバー部材が発揮する駆動力に抗する方向に付勢するバイアスバネを備える駆動ガイド部を設けたことを特徴としている。
 上記の構成によると、固定部の一角にレバー部材の駆動支点部を設け、この一角と対向する第二の位置に、被駆動体の本体部から突設されるガイド体を付勢するバイアスバネを備える駆動ガイド部を備えるので、被駆動体の本体部上面にバイアスバネが係合しない構成となって、被駆動体の本体部に収納する構成部品の大きさに制限を受けず、可能な限り大きなサイズの構成部品を収納可能となる。また、駆動ガイド部に装着するバイアスバネがレバー部材による駆動方向に対向する付勢力を被駆動体に付与するので、形状記憶合金アクチュエータを用いた被駆動体の移動を安定して行うことが可能な駆動機構となる。
 また本発明は上記構成の駆動機構において、前記固定部が平面視四角形であって、前記貫通孔部を有し平面視四角形のベース部材を備え、前記ベース部材の第一角部に前記駆動支点部を支持する支持脚を設けて前記レバー部材を装着し、前記レバー部材が、前記形状記憶合金アクチュエータが係合する変位入力部と、前記被駆動体と当接して変位させる変位出力部とを備え、前記駆動支点部および前記変位入力部を前記第一角部側に設け、前記駆動ガイド部を、前記第一角部と対角線状に対向する第二角部に設けたことを特徴としている。この構成によると、被駆動体の本体から離れた平面視四角形の第一角部にレバー部材の駆動支点部と変位入力部を設け、第一角部と対角線状に対向する第二角部にバイアスバネを備える駆動ガイド部を備えるので、被駆動体の本体部に収納する構成部品を大きくでき、形状記憶合金アクチュエータを用いた被駆動体の移動を安定して行うことが可能な駆動機構となる。
 また本発明は上記構成の駆動機構において、前記ガイド体が前記軸線方向に延設されるガイド軸を一体的に備え、前記駆動ガイド部が、前記ガイド軸を摺動自在に保持する上下のガイドスリーブを備え、前記バイアスバネが、前記ガイド軸に嵌装され前記ガイド体の上面と上ガイドスリーブとの間に装着されるコイルバネであることを特徴としている。この構成によると、被駆動体側のガイド軸を上下のガイドスリーブで摺動自在に支持し、ガイド軸に嵌装されるバイアスバネを装着しているので、被駆動体の移動を安定してスムーズに行うことができる。
 また本発明は上記構成の駆動機構において、前記第一角部と前記第二角部以外の第三角部と第四角部に前記形状記憶合金アクチュエータの保持部を設け、前記形状記憶合金アクチュエータを、前記変位入力部に、前記被駆動体の外側を挟むようにくの字状に掛け渡して装着したことを特徴としている。この構成によると、形状記憶合金アクチュエータをほぼ90°屈曲させた状態でレバー部材に係止して変位入力部を形成することができる。また、被駆動体を駆動する関連部品を全て、平面視四角形の角部に装着する構成となって、被駆動体の本体部に収納する構成部品をできるだけ大きくすることが可能となる。
 また本発明は上記構成の駆動機構において、前記被駆動体がレンズユニットであり、前記軸線が光軸であり、前記形状記憶合金アクチュエータが形状記憶合金ワイヤであることを特徴としている。この構成によると、レンズユニットに装着するレンズ口径を大きくでき、レンズユニットをスムーズに変位させることが可能な駆動機構を得ることができる。
 また本発明は、平面視四角形で貫通孔部を有するベース部材を備える固定部と、前記ベース部材に装着する支持部材を介して前記貫通孔部内をその軸線方向に往復移動自在に支持される被駆動体と、前記被駆動体を移動するための駆動力を付与する形状記憶合金ワイヤと、該形状記憶合金ワイヤが懸架され該ワイヤから駆動力を受けて前記被駆動体を移動させるレバー部材と、を備える駆動装置であって、前記レバー部材が、前記被駆動体に設ける係合部に係合して被駆動体をその軸線方向に移動させる駆動アームと、該駆動アームを揺動自在に支持する駆動支点部と、該駆動支点部から垂下して前記駆動アームと屈曲して設けられる延設アームを有すると共に、前記レバー部材の前記駆動支点部および前記形状記憶合金ワイヤが懸架されて駆動力を受ける変位入力部を前記四角形の第一角部に設け、前記第一角部と対角線状に対向する第二角部に、前記被駆動体から突設されるガイド体を挿通自在に支持すると共に、該ガイド体を前記レバー部材が発揮する駆動力に抗する方向に付勢するバイアスバネを備える駆動ガイド部を設けたことを特徴としている。
 上記の構成によると、被駆動体の本体から離れた平面視四角形のベース部材の第一角部にレバー部材の駆動支点部と変位入力部を設け、第一角部と対角線状に対向する第二角部にバイアスバネを備える駆動ガイド部を備えるので、被駆動体の本体部に収納する構成部品の大きさに制限を受けない構成となる。また、第二角部に装着するバイアスバネがレバー部材による駆動方向に対向する付勢力を付与するので、形状記憶合金ワイヤを用いた被駆動体の移動を安定して行うことが可能な駆動装置を得ることができる。
 また本発明は上記の構成の駆動装置において、前記ガイド体が、平面視円形とされる前記被駆動体本体から半径方向に突出して設けられると共に前記軸線方向に延設されるガイド胴部と、該ガイド胴部を貫通して装着されるガイド軸とを備え、前記駆動ガイド部が、前記ガイド軸を摺動自在に支持する上下のガイドスリーブを備え、前記バイアスバネが、上ガイドスリーブと前記ガイド胴部に嵌装され前記ガイド体の上面と上ガイドスリーブが設けられるフレームの間に装着されるコイルバネであることを特徴としている。この構成によると、被駆動体側のガイド軸を上下のガイドスリーブで摺動自在に支持し、コイルバネからなるバイアスバネが、ガイド軸を支持するガイド胴部とガイドスリーブに嵌装されているので、バイアスバネを安定した位置に保持して被駆動体の移動を安定してスムーズに行うことができる。
 また本発明は上記の構成の駆動装置において、前記被駆動体がレンズユニットであり、前記軸線が光軸であって、前記第一角部と前記第二角部以外の第三角部と第四角部に前記形状記憶合金ワイヤを保持して通電する通電保持部を設け、前記形状記憶合金ワイヤを、前記変位入力部に、前記レンズユニットの外側を挟むようにくの字状に掛け渡して装着したことを特徴としている。この構成によると、形状記憶合金ワイヤをほぼ90°屈曲させた状態でレバー部材に係止し通電して伸縮させて、レバー部材を駆動することができる。また、レンズユニットを駆動する関連部品を全て、平面視四角形の角部に装着する構成となって、レンズユニットに収納するレンズなどの構成部品をできるだけ大きくすることが可能となる。つまり、レンズユニットに搭載するレンズの口径を可能な限り大きくすることができる。
 また本発明は、貫通孔部を有する固定部と、前記貫通孔の軸線方向に往復移動自在に支持される被駆動体と、該被駆動体を移動するレバー部材と、該レバー部材を移動させる駆動力を発生する形状記憶合金アクチュエータと、を有する駆動機構であって、前記固定部に前記レバー部材の駆動支点部を設け、前記被駆動体の本体部から突設されるガイド体と該ガイド体から軸線方向に延設されるガイド軸の上端部を摺動自在に支持する上ガイドスリーブと、前記ガイド軸の下端部を摺動自在に支持する下ガイドスリーブと、前記ガイド体を前記レバー部材が発揮する駆動力に抗する方向に付勢するバイアスバネを備える駆動ガイド部を設けたことを特徴としている。
 上記の構成によると、被駆動体に突設されるガイド体を付勢すると共にガイド体に延設されるガイド軸の上端部と下端部を上下のガイドスリーブを用いて摺動自在に保持する駆動ガイド部を備えているので、限られた空間の中で軸受け間隔を長くすることができ、被駆動体の傾き精度を確保できる。そのために、軸線方向に移動する際に軸振れせず、被駆動体を安定して移動させることが可能な駆動機構となる。
 また本発明は上記構成の駆動機構において、前記固定部が平面視四角形であって、前記貫通孔部を有し平面視四角形のベース部材を備え、前記ベース部材の第一角部に前記駆動支点部を支持する支持脚を設けて前記レバー部材を装着し、前記レバー部材が、前記形状記憶合金アクチュエータが係合する変位入力部と、前記被駆動体と当接して変位させる変位出力部とを備え、前記駆動支点部および前記変位入力部を前記第一角部側に設け、前記駆動ガイド部を、前記第一角部と対角線状に対向する第二角部に設けたことを特徴としている。この構成によると、被駆動体の本体から離れた平面視四角形の第一角部にレバー部材の駆動支点部と変位入力部を設け、第一角部と対角線状に対向する第二角部にバイアスバネを備える駆動ガイド部を備えるので、被駆動体の本体部に収納する構成部品を大きくでき、形状記憶合金アクチュエータを用いた被駆動体の移動を安定して行うことが可能な駆動機構となる。
 また本発明は上記構成の駆動機構において、前記ガイド軸は前記ガイド体を貫通するように、前記ガイド体に固着されていることを特徴としている。この構成によると、ガイド軸の材料をガイドスリーブに対して摺動性の良い材料とすることができ、被駆動体の移動を滑らかに安定して行うことができる。
 また本発明は上記構成の駆動機構において、前記ガイド体と前記ガイドスリーブとは樹脂製であり、前記ガイド体は金属部材であることを特徴としている。この構成によると、樹脂製のガイドスリーブに対して摩擦係数が小さく摺動性のよい金属製のガイド軸を用いて滑らかに移動可能となる。また、金属製であれば、その表面を摺動性が良好となるように表面処理することが容易となって好ましい。
 また本発明は上記構成の駆動機構において、前記バイアスバネが、前記ガイド軸に嵌装され前記ガイド体の上面と前記上ガイドスリーブとの間に装着されるコイルバネであることを特徴としている。この構成によると、コイルバネからなるバイアスバネがガイド体に固着されるガイド軸に嵌装されるように装着しているので、被駆動体の移動時の摺動抵抗と付勢力が同軸上に作用して、軸振れを生じずに被駆動体の移動を安定してスムーズに行うことができる。
 また本発明は上記構成の駆動機構において、前記変位出力部を、前記駆動ガイド部に接近して設けたことを特徴としている。この構成によると、レバー部材を揺動して被駆動体を摺動させる際に、変位出力部と駆動ガイド部との離間距離に応じて発生するモーメントを抑制可能となって、ガイド軸とガイドスリーブとのこじれを抑制しながら被駆動体の移動を安定してスムーズに行うことができる。
 また本発明は上記構成の駆動機構において、前記レバー部材を介して前記被駆動体を移動させるときに、前記ガイド軸の上端部が当接する前記上ガイドスリーブの外側もしくは内側のいずれか一方の摺動部に前記ガイド軸に当接して支持するV溝部を設け、前記ガイド軸の下端部が当接する前記下ガイドスリーブの内側もしくは外側のいずれか一方の摺動部に前記ガイド軸に当接して支持するV溝部を設け、前記レバー部材を介して移動させるときに、前記ガイドの上端部および下端部がそれぞれ前記V溝部に当接して摺動する構成としたことを特徴としている。この構成によると、レバー部材を用いて被駆動体を移動させるときに、ガイド軸の上端部を上ガイドスリーブのV溝部に当接し、ガイド軸の下端部を下ガイドスリーブのV溝部に当接して、その状態を維持しながら摺動させることができ、軸振れを生じずに被駆動体の移動を安定してスムーズに行うことができる。
 また本発明は上記構成の駆動機構において、前記V溝部に、前記ガイド軸に当接するR面状突部を設けたことを特徴としている。この構成によると、ガイド軸のガイドスリーブに対する当接部位を安定させることができ、被駆動体の移動をさらに安定してスムーズに行うことが可能な構成となる。
 また本発明は上記構成の駆動機構において、前記被駆動体がレンズユニットであり、前記軸線が光軸であり、前記形状記憶合金アクチュエータが形状記憶合金ワイヤであって、前記第一角部と前記第二角部以外の第三角部と第四角部に前記形状記憶合金ワイヤの保持部を設け、前記形状記憶合金ワイヤを、前記変位入力部に、前記被駆動体の外側を挟むようにくの字状に掛け渡して装着したことを特徴としている。この構成によると、形状記憶合金ワイヤをほぼ90°屈曲させた状態でレバー部材に係止して変位入力部を形成することができる。また、レンズユニットを駆動する関連部品を全て、平面視四角形の角部に装着する構成となって、レンズユニットに収納するレンズ口径を大きくでき、レンズユニットを光軸方向にスムーズに変位させることが可能な駆動機構を得ることができる。
 また本発明は、平面視四角形で貫通孔部を有するベース部材を備える固定部と、前記ベース部材に装着する支持部材を介して前記貫通孔部内をその軸線方向に往復移動自在に支持される被駆動体と、前記被駆動体を移動するための駆動力を付与する形状記憶合金ワイヤと、該形状記憶合金ワイヤが懸架され該ワイヤから駆動力を受けて前記被駆動体を移動させるレバー部材と、を備える駆動装置であって、前記レバー部材が、前記被駆動体に係合して被駆動体をその軸線方向に移動させる駆動アームと、該駆動アームを揺動自在に支持する駆動支点部と、該駆動支点部から垂下して前記駆動アームと屈曲して設けられる延設アームを有すると共に、前記レバー部材の前記駆動支点部および前記形状記憶合金ワイヤが懸架されて駆動力を受ける変位入力部を前記四角形の第一角部に設け、前記第一角部と対角線状に対向する第二角部に、前記被駆動体の本体部から突設されるガイド体と該ガイド体から軸線方向に延設されるガイド軸の上端部を摺動自在に支持する上ガイドスリーブと、前記ガイド軸の下端部を摺動自在に支持する下ガイドスリーブと、前記ガイド体を前記レバー部材が発揮する駆動力に抗する方向に付勢するバイアスバネを備える駆動ガイド部を設けたことを特徴としている。
 上記の構成によると、被駆動体の本体から離れた平面視四角形の第一角部にレバー部材の駆動支点部と変位入力部を設け、第一角部と対角線状に対向する第二角部にバイアスバネを備える駆動ガイド部を備えるので、被駆動体の本体部に収納する構成部品の大きさに制限を受けない構成となる。また、ガイド体に延設されるガイド軸の上端部と下端部を上下のガイドスリーブを用いてガイドし、バイアスバネを用いてレバー部材が発揮する駆動方向に抗する付勢力を付与しながら摺動自在に保持するので、限られた空間の中で軸受け間隔を長くすることができ、被駆動体の傾き精度を確保できる。そのために、軸線方向に移動する際に軸振れを抑制して、被駆動体を安定して移動させることが可能な駆動装置を得ることができる。
 また本発明は上記の構成の駆動装置において、前記ガイド体が、平面視円形とされる前記被駆動体本体から半径方向に突出して設けられると共に前記軸線方向に延設されるガイド胴部を備え、前記ガイド軸が前記ガイド胴部を貫通して装着されており、前記バイアスバネが、前記上ガイドスリーブと前記ガイド胴部に嵌装され前記ガイド体の上面と上ガイドスリーブが設けられるフレームの間に装着されるコイルバネであることを特徴としている。この構成によると、被駆動体側のガイド軸の上端部と下端部を上下のガイドスリーブで摺動自在に支持し、コイルバネからなるバイアスバネを、ガイド軸を支持するガイド胴部とガイドスリーブに嵌装されるように装着しているので、バイアスバネを安定した位置に保持して被駆動体の移動を安定してスムーズに行うことができる。
 また本発明は上記の構成の駆動装置において、前記駆動アームが前記被駆動体に当接して駆動力を付与する変位出力部を、前記駆動ガイド部に接近して設けたことを特徴としている。この構成によると、レバー部材を揺動して被駆動体を摺動させる際に、変位出力部と駆動ガイド部との離間距離に応じて発生するモーメントを抑制可能となって、ガイド軸とガイドスリーブとのこじれを抑制しながら被駆動体の移動を安定してスムーズに行うことができる。
 また本発明は上記の構成の駆動装置において、前記レバー部材を介して前記被駆動体を移動させるときに、前記ガイド軸の上端部が当接する前記上ガイドスリーブの外側もしくは内側のいずれか一方の摺動部に前記ガイド軸に当接して支持するV溝部を設け、前記ガイド軸の下端部が当接する前記下ガイドスリーブの内側もしくは外側のいずれか一方の摺動部に前記ガイド軸に当接して支持するV溝部を設け、前記レバー部材を介して移動させるときに、前記ガイドの上端部および下端部がそれぞれ前記V溝部に当接して摺動する構成としたことを特徴としている。この構成によると、レバー部材を用いて被駆動体を移動させるときに、ガイド軸の上端部を上ガイドスリーブのV溝部に当接し、ガイド軸の下端部を下ガイドスリーブのV溝部に当接して、その状態を維持しながら摺動させることができ、軸振れを生じずに被駆動体の移動を安定してスムーズに行うことができる。
 また本発明は上記の構成の駆動装置において、前記V溝部に、前記ガイド軸に当接するR面状突部を設けたことを特徴としている。この構成によると、ガイド軸のガイドスリーブに対する当接部位を安定させることができ、被駆動体の移動をさらに安定してスムーズに行うことが可能な構成となる。
 また本発明は上記の構成の駆動装置において、前記被駆動体がレンズユニットであり、前記軸線が光軸であって、前記第一角部と前記第二角部以外の第三角部と第四角部に前記形状記憶合金ワイヤを保持して通電する通電保持部を設け、前記形状記憶合金ワイヤを、前記変位入力部に、前記レンズユニットの外側を挟むようにくの字状に掛け渡して装着したことを特徴としている。この構成によると、形状記憶合金ワイヤをほぼ90°屈曲させた状態でレバー部材に係止し通電して伸縮させて、レバー部材を駆動することができる。また、レンズユニットを駆動する関連部品を全て、平面視四角形の角部に装着する構成となって、レンズユニットに収納するレンズなどの構成部品をできるだけ大きくすることが可能となる。つまり、レンズユニットに搭載するレンズの口径を可能な限り大きくすることができる。
 また本発明は、貫通孔部を有する固定部と、前記貫通孔の軸線方向に往復移動自在に支持される被駆動体と、該被駆動体を移動するレバー部材と、該レバー部材を移動させる駆動力を発生する形状記憶合金アクチュエータと、を有する駆動機構であって、前記固定部の一角に前記レバー部材の駆動支点部を設け、前記一角と前記軸線を挟んで対向する第二の位置に駆動ガイド部を設けると共に、前記駆動ガイド部が、前記被駆動体の本体部から突設されるガイド体と該ガイド体から前記軸線方向に延設されるガイド軸の上端部と下端部をそれぞれ摺動自在に支持する上ガイドスリーブと下ガイドスリーブと、前記ガイド体を前記レバー部材が発揮する駆動力に抗する方向に付勢するバイアスバネと、を備え、さらに、前記ガイド体の下端部と前記下ガイドスリーブの上端部の前記ガイド軸の内側の少なくとも一方、もしくは両方に第一停止位置を規定する係合突部を設け、前記ガイド体の上端部と前記上ガイドスリーブの下端部の前記ガイド軸の外側の少なくとも一方、もしくは両方に第二停止位置を規定する係合突部を設けていることを特徴としている。
 上記の構成によると、固定部の一角にレバー部材の駆動支点部を設け、この一角と対向する第二の位置に、被駆動体の本体部から突設されるガイド体を付勢するバイアスバネを備える駆動ガイド部を備えるので、被駆動体の本体部上面にバイアスバネが係合しない構成となって、被駆動体の本体部に収納する構成部品の大きさに制限を受けず、可能な限り大きなサイズの構成部品を収納可能となる。また、バイアスバネがレバー部材による駆動方向に対向する付勢力を付与すると共に、ガイド体の下端部を下ガイドスリーブに当接した状態で第一停止位置が規定され、ガイド体の上端部を上ガイドスリーブに当接した状態で第二停止位置が規定されるので、被駆動体を軸線方向に往復移動させる際に、ガイド軸の軸振れを抑制し被駆動体を安定して移動させることが可能で、且つ、始動時チルトの発生も抑制可能な駆動機構となる。
 また本発明は上記構成の駆動機構において、前記固定部が平面視四角形であって、前記貫通孔部を有し平面視四角形のベース部材を備え、前記ベース部材の第一角部に前記駆動支点部を支持する支持脚を設けて前記レバー部材を装着し、前記レバー部材が、前記形状記憶合金アクチュエータが係合する変位入力部と、前記被駆動体と当接して変位させる変位出力部とを備え、前記駆動支点部および前記変位入力部を前記第一角部側に設け、前記駆動ガイド部を、前記第一角部と対角線状に対向する第二角部に設けたことを特徴としている。この構成によると、被駆動体の本体から離れた平面視四角形の第一角部にレバー部材の駆動支点部と変位入力部を設け、第一角部と対角線状に対向する第二角部にバイアスバネを備える駆動ガイド部を備えるので、被駆動体の本体部に収納する構成部品を大きくでき、形状記憶合金アクチュエータを用いた被駆動体の移動を安定して行うことが可能な駆動機構となる。
 また本発明は上記構成の駆動機構において、前記バイアスバネが、前記ガイド軸に嵌装され前記ガイド体の上面と前記上ガイドスリーブとの間に装着されるコイルバネであることを特徴としている。この構成によると、コイルバネからなるバイアスバネを、ガイド体に固着されるガイド軸に嵌装されるように装着しているので、被駆動体の移動時の摺動抵抗と付勢力が同軸上に作用して、軸振れを生じずに被駆動体の移動を安定してスムーズに行うことができる。
 また本発明は上記構成の駆動機構において、前記変位出力部を、前記駆動ガイド部に接近して設けたことを特徴としている。この構成によると、レバー部材を揺動して被駆動体を摺動させる際に、変位出力部と駆動ガイド部との離間距離に応じて発生するモーメントを抑制可能となって、ガイド軸とガイドスリーブとのこじれを抑制しながら被駆動体の移動を安定してスムーズに行うことができる。
 また本発明は上記構成の駆動機構において、前記被駆動体がレンズユニットであり、前記軸線が光軸であり、前記形状記憶合金アクチュエータが形状記憶合金ワイヤであって、前記第一角部と前記第二角部以外の第三角部と第四角部に前記形状記憶合金ワイヤの保持部を設け、前記形状記憶合金ワイヤを、前記変位入力部に、前記被駆動体の外側を挟むようにくの字状に掛け渡して装着したことを特徴としている。この構成によると、形状記憶合金ワイヤをほぼ90°屈曲させた状態でレバー部材に係止して変位入力部を形成することができる。また、レンズユニットを駆動する関連部品を全て、平面視四角形の角部に装着する構成となって、レンズユニットに収納するレンズ口径を大きくでき、レンズユニットを光軸方向にスムーズに変位させることが可能な駆動機構を得ることができる。
 また本発明は、平面視四角形で貫通孔部を有するベース部材を備える固定部と、前記ベース部材に装着する支持部材を介して前記貫通孔部内をその軸線方向に往復移動自在に支持される被駆動体と、前記被駆動体を移動するための駆動力を付与する形状記憶合金ワイヤと、該形状記憶合金ワイヤが懸架され該ワイヤから駆動力を受けて前記被駆動体を移動させるレバー部材と、を備える駆動装置であって、前記レバー部材が、前記被駆動体に係合して被駆動体をその軸線方向に移動させる駆動アームと、該駆動アームを揺動自在に支持する駆動支点部と、該駆動支点部から垂下して前記駆動アームと屈曲して設けられる延設アームを有しており、前記レバー部材の前記駆動支点部および前記形状記憶合金ワイヤが懸架されて駆動力を受ける変位入力部を前記四角形の第一角部に設け、前記第一角部と対角線状に対向する第二角部に駆動ガイド部を設けると共に、前記駆動ガイド部が、前記被駆動体の本体部から突設されるガイド体と該ガイド体から前記軸線方向に延設されるガイド軸の上端部と下端部をそれぞれ摺動自在に支持する上ガイドスリーブと下ガイドスリーブと、前記ガイド体を前記レバー部材が発揮する駆動力に抗する方向に付勢するバイアスバネと、を備え、さらに、前記ガイド体の下端部と前記下ガイドスリーブの上端部の前記ガイド軸の内側の少なくとも一方、もしくは両方に第一停止位置を規定する係合突部を設け、前記ガイド体の上端部と前記上ガイドスリーブの下端部の前記ガイド軸の外側の少なくとも一方、もしくは両方に第二停止位置を規定する係合突部を設けていることを特徴としている。
 上記の構成によると、被駆動体の本体から離れた平面視四角形の第一角部にレバー部材の駆動支点部と変位入力部を設け、第一角部と対角線状に対向する第二角部にバイアスバネを備える駆動ガイド部を備えるので、被駆動体の本体部に収納する構成部品の大きさに制限を受けない構成となる。また、第二角部に装着するバイアスバネがレバー部材による駆動方向に対向する付勢力を付与すると共に、ガイド体の下端部を下ガイドスリーブに当接した状態で第一停止位置が規定され、ガイド体の上端部を上ガイドスリーブに当接した状態で第二停止位置が規定されるので、被駆動体を軸線方向に往復移動させる際に、被駆動体を安定して移動させることが可能で、且つ、始動時チルトの発生も抑制可能となって、形状記憶合金ワイヤを用いた被駆動体の移動を安定して行うことが可能な駆動装置を得ることができる。
 また本発明は上記の構成の駆動装置において、前記ガイド体が、平面視円形とされる前記被駆動体本体から半径方向に突出して設けられると共に前記軸線方向に延設されるガイド胴部と、該ガイド胴部を貫通して装着されるガイド軸とを備え、前記駆動ガイド部が、前記ガイド軸を摺動自在に支持する上下のガイドスリーブを備え、前記バイアスバネが、上ガイドスリーブと前記ガイド胴部に嵌装され前記ガイド体の上面と上ガイドスリーブが設けられるフレームの間に装着されるコイルバネであることを特徴としている。この構成によると、被駆動体側のガイド軸を上下のガイドスリーブで摺動自在に支持し、コイルバネからなるバイアスバネを、ガイド軸を支持するガイド胴部とガイドスリーブに嵌装されるように装着しているので、バイアスバネを安定した位置に保持して被駆動体の移動を安定してスムーズに行うことができる。
 また本発明は上記の構成の駆動装置において、前記駆動アームが前記被駆動体に当接して駆動力を付与する変位出力部を、前記駆動ガイド部に接近して設けたことを特徴としている。この構成によると、レバー部材を揺動して被駆動体を摺動させる際に、変位出力部と駆動ガイド部との離間距離に応じて発生するモーメントを抑制可能となって、ガイド軸とガイドスリーブとのこじれを抑制しながら被駆動体の移動を安定してスムーズに行うことができる。
 また本発明は上記の構成の駆動装置において、前記被駆動体がレンズユニットであり、前記軸線が光軸であって、前記第一角部と前記第二角部以外の第三角部と第四角部に前記形状記憶合金ワイヤを保持して通電する通電保持部を設け、前記形状記憶合金ワイヤを、前記変位入力部に、前記レンズユニットの外側を挟むようにくの字状に掛け渡して装着したことを特徴としている。この構成によると、形状記憶合金ワイヤをほぼ90°屈曲させた状態でレバー部材に係止し通電して伸縮させて、レバー部材を駆動することができる。また、レンズユニットを駆動する関連部品を全て、平面視四角形の角部に装着する構成となって、レンズユニットに収納するレンズなどの構成部品をできるだけ大きくすることが可能となる。つまり、レンズユニットに搭載するレンズの口径を可能な限り大きくすることができる。
 本発明に係る駆動機構および駆動装置は、小型化を目指す撮像装置のレンズユニットの駆動機構および駆動装置に好適に適用することができる。
   1  被駆動体
   1´ レンズユニット
   2  レバー部材
   3  形状記憶合金ワイヤ(SMAアクチュエータ)
   4  ベース部材(固定部)
   7  バイアスバネ
  10、10A  駆動ガイド部
  11  ガイド体
  12  ガイド胴部
  13  ガイド軸
  14a 上ガイドスリーブ
  14b 下ガイドスリーブ
  15  V溝部
  16  R面状突部
  17  係合突部
  18  係合突部
 100  駆動装置
  A1  駆動装置
  A2  駆動装置
  AX  光軸(軸線)

Claims (17)

  1.  貫通孔部を有する固定部と、前記貫通孔の軸線方向に往復移動自在に支持される被駆動体と、該被駆動体を移動するレバー部材と、該レバー部材を移動させる駆動力を発生する形状記憶合金アクチュエータと、を有する駆動装置であって、
     前記固定部の一角に前記レバー部材の駆動支点部を設け、前記一角と前記軸線を挟んで対向する第二の位置に、前記被駆動体の本体部から突設されるガイド体を摺動自在に支持すると共に、前記ガイド体を前記レバー部材が発揮する駆動力に抗する方向に付勢するバイアスバネを備える駆動ガイド部を設けたことを特徴とする駆動装置。
  2.  前記固定部が、前記貫通孔部を有し平面視四角形のベース部材を備え、
     前記レバー部材が、前記形状記憶合金アクチュエータが係合する変位入力部と、前記被駆動体と当接して変位させる変位出力部とを備え、前記駆動支点部および前記変位入力部を前記ベース部材の第一角部側に設け、
     前記駆動ガイド部と前記変位入力部とを、前記第一角部と対角線状に対向する第二角部に設けたことを特徴とする請求項1に記載の駆動装置。
  3.  前記ガイド体が前記軸線方向に延設されるガイド軸を一体的に備え、前記駆動ガイド部が、前記ガイド軸を摺動自在に保持する上下のガイドスリーブを備え、前記バイアスバネが、前記ガイド軸に嵌装され前記ガイド体とガイドスリーブとの間に装着されるコイルバネであることを特徴とする請求項1または2に記載の駆動装置。
  4.  前記第一角部と前記第二角部以外の第三角部と第四角部に前記形状記憶合金アクチュエータの保持部を設け、前記形状記憶合金アクチュエータを、前記変位入力部に、前記被駆動体の外側を挟むようにくの字状に掛け渡して装着したことを特徴とする請求項2または3に記載の駆動装置。
  5.  前記ベース部材の第一角部に前記駆動支点部を支持する支持脚を設けて前記レバー部材を装着し、
     前記レバー部材は、前記被駆動体に設けられた係合部に係合して被駆動体を軸線方向に移動させる駆動アームと、該駆動アームを揺動自在に支持する支持支点部と、該駆動支点部から垂下して前記駆動アームを屈曲して設けられる延設アームを有し、
     前記駆動アームは、前記被駆動体の外周部に沿って配置されており、
     前記変位出力部が前記第二角部に設けられていることを特徴とする請求項2に記載の駆動装置。
  6.  前記被駆動体がレンズユニットであり、
     前記軸線が光軸であり、
     前記形状記憶合金アクチュエータが形状記憶合金ワイヤであることを特徴とする請求項1から5のいずれかに記載の駆動装置。
  7.  貫通孔部を有する固定部と、前記貫通孔の軸線方向に往復移動自在に支持される被駆動体と、該被駆動体を移動するレバー部材と、該レバー部材を移動させる駆動力を発生する形状記憶合金アクチュエータと、を有する駆動装置であって、
     前記固定部に前記レバー部材の駆動支点部を設け、前記被駆動体の本体部から突設されるガイド体と該ガイド体から軸線方向に延設されるガイド軸の上端部を摺動自在に支持する上ガイドスリーブと、前記ガイド軸の下端部を摺動自在に支持する下ガイドスリーブと、前記ガイド体を前記レバー部材が発揮する駆動力に抗する方向に付勢するバイアスバネを備える駆動ガイド部を設けたことを特徴とする駆動装置。
  8.  前記固定部が、前記貫通孔部を有し平面視四角形のベース部材を備え、
     前記レバー部材が、前記形状記憶合金アクチュエータが係合する変位入力部と、前記被駆動体と当接して変位させる変位出力部とを備え、前記駆動支点部および前記変位入力部を前記ベース部材の第一角部側に設け、
     前記駆動ガイド部と前記変位入力部とを、前記第一角部と対角線状に対向する第二角部に設けたことを特徴とする請求項7に記載の駆動装置。
  9.  前記ガイド軸は前記ガイド体を貫通するように、前記ガイド体に固着されていることを特徴とする請求項7または8に記載の駆動機構。
  10.  前記ガイド体と前記ガイドスリーブとは樹脂製であり、前記ガイド体は金属部材であることを特徴とする請求項9に記載の駆動装置。
  11.  前記バイアスバネが、前記ガイド軸に嵌装され前記ガイド体の上面と前記上ガイドスリーブとの間に装着されるコイルバネであることを特徴とする請求項7から10のいずれかに記載の駆動装置。
  12.  前記変位出力部を、前記駆動ガイド部に接近して設けたことを特徴とする請求項8から11のいずれかに記載の駆動装置。
  13.  前記レバー部材を介して前記被駆動体を移動させるときに、前記ガイド軸の上端部が当接する前記上ガイドスリーブの外側もしくは内側のいずれか一方の摺動部に前記ガイド軸に当接して支持するV溝部を設け、前記ガイド軸の下端部が当接する前記下ガイドスリーブの内側もしくは外側のいずれか一方の摺動部に前記ガイド軸に当接して支持するV溝部を設け、前記レバー部材を介して移動させるときに、前記ガイドの上端部および下端部がそれぞれ前記V溝部に当接して摺動する構成としたことを特徴とする請求項7から12のいずれかに記載の駆動装置。
  14.  前記V溝部に、前記ガイド軸に当接するR面状突部を設けたことを特徴とする請求項13に記載の駆動装置。
  15.  前記被駆動体がレンズユニットであり、前記軸線が光軸であり、前記形状記憶合金アクチュエータが形状記憶合金ワイヤであって、
     前記第一角部と前記第二角部以外の第三角部と第四角部に前記形状記憶合金ワイヤの保持部を設け、前記形状記憶合金ワイヤを、前記変位入力部に、前記被駆動体の外側を挟むようにくの字状に掛け渡して装着したことを特徴とする請求項8から14のいずれかに記載の駆動装置。
  16.  前記ベース部材の第一角部に前記駆動支点部を支持する支持脚を設けて前記レバー部材を装着し、
     前記レバー部材は、前記被駆動体に設けられた係合部に係合して被駆動体を軸線方向に移動させる駆動アームと、該駆動アームを揺動自在に支持する支持支点部と、該駆動支点部から垂下して前記駆動アームを屈曲して設けられる延設アームを有し、
     前記駆動アームは、前記被駆動体の外周部に沿って配置されており、
     前記変位出力部が前記第二角部に設けられていることを特徴とする請求項8に記載の駆動装置。
  17.  前記ガイド体の下端部と前記下ガイドスリーブの上端部の前記ガイド軸の内側の少なくとも一方、もしくは両方に第一停止位置を規定する係合突部が設けられ、前記ガイド体の上端部と前記上ガイドスリーブの下端部の前記ガイド軸の外側の少なくとも一方、もしくは両方に第二停止位置を規定する係合突部が設けられていることを特徴とする請求項7から16のいずれかに記載の駆動装置。
PCT/JP2010/070652 2009-11-24 2010-11-19 駆動装置 WO2011065296A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/508,463 US20120230665A1 (en) 2009-11-24 2010-11-19 Drive device
EP10833142.2A EP2506057A4 (en) 2009-11-24 2010-11-19 TRAINING DEVICE
JP2011543227A JPWO2011065296A1 (ja) 2009-11-24 2010-11-19 駆動装置

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009266246 2009-11-24
JP2009266236 2009-11-24
JP2009-266246 2009-11-24
JP2009-266236 2009-11-24
JP2009-266242 2009-11-24
JP2009266242 2009-11-24

Publications (1)

Publication Number Publication Date
WO2011065296A1 true WO2011065296A1 (ja) 2011-06-03

Family

ID=44066400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070652 WO2011065296A1 (ja) 2009-11-24 2010-11-19 駆動装置

Country Status (5)

Country Link
US (1) US20120230665A1 (ja)
EP (1) EP2506057A4 (ja)
JP (1) JPWO2011065296A1 (ja)
KR (1) KR20120082460A (ja)
WO (1) WO2011065296A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014088818A (ja) * 2012-10-30 2014-05-15 Minebea Co Ltd アクチュエータ

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5773762B2 (ja) * 2011-06-03 2015-09-02 キヤノン株式会社 電子機器
KR20160092341A (ko) * 2015-01-27 2016-08-04 삼성전자주식회사 오토 포커싱 모듈, 이를 포함하는 촬영 장치 및 오토 포커싱 모듈의 제조방법
EP3602499A1 (en) 2017-03-24 2020-02-05 Koninklijke Philips N.V. Methods for data driven respiratory motion estimation
CN107608050B (zh) * 2017-10-03 2024-02-02 惠州萨至德光电科技有限公司 一种透镜驱动装置
GB2574869B (en) * 2018-06-21 2020-11-04 Cambridge Mechatronics Ltd Shape memory alloy actuation apparatus
WO2021001010A1 (en) * 2019-07-01 2021-01-07 Huawei Technologies Co., Ltd. Linear actuator for a camera module

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60120413U (ja) * 1984-01-25 1985-08-14 株式会社日立製作所 変倍機構
JPS61176517U (ja) * 1985-04-11 1986-11-04
JPS6418114A (en) * 1987-07-13 1989-01-20 Copal Co Ltd Optical system support member
JPH049028U (ja) * 1990-05-10 1992-01-27
JPH08248289A (ja) * 1995-03-09 1996-09-27 Sony Corp レンズ鏡筒
JPH10123399A (ja) * 1996-10-16 1998-05-15 Nikon Corp レンズ駆動機構
JP2000180693A (ja) * 1998-12-18 2000-06-30 Canon Inc レンズ鏡筒およびこれを備えた光学機器
JP2003021779A (ja) * 2001-07-10 2003-01-24 Nidec Copal Corp カメラ装置
JP2007232889A (ja) * 2006-02-28 2007-09-13 Chinontec Kk レンズ鏡筒
JP2008040193A (ja) * 2006-08-08 2008-02-21 Nidec Copal Electronics Corp カメラレンズ
JP2008096566A (ja) * 2006-10-10 2008-04-24 Konica Minolta Opto Inc レンズ案内機構及びレンズ鏡胴並びに撮像装置
JP2009041545A (ja) * 2007-08-10 2009-02-26 Sharp Corp アクチュエータ装置、および当該装置を備えたカメラモジュール
JP2009122603A (ja) * 2007-11-19 2009-06-04 Konica Minolta Opto Inc 駆動装置
JP2009229781A (ja) * 2008-03-24 2009-10-08 Konica Minolta Opto Inc 駆動機構および駆動装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8175449B2 (en) * 2006-05-30 2012-05-08 Konica Minolta Opto, Inc. Driving device, driving mechanism, and image sensing apparatus
JP4852001B2 (ja) * 2007-07-10 2012-01-11 セイコーインスツル株式会社 駆動モジュールおよびその組立方法
JP5194622B2 (ja) * 2007-08-02 2013-05-08 コニカミノルタアドバンストレイヤー株式会社 駆動機構、駆動装置およびレンズ駆動装置
JP2009128423A (ja) * 2007-11-20 2009-06-11 Sharp Corp 駆動制御装置
EP2224131A1 (en) * 2007-11-30 2010-09-01 Konica Minolta Opto, Inc. Shape memory alloy driver
US8434303B2 (en) * 2008-01-15 2013-05-07 Konica Minolta Opto, Inc. Driving device made of shape-memory alloy
WO2010001716A1 (ja) * 2008-07-01 2010-01-07 コニカミノルタオプト株式会社 駆動機構、駆動装置およびレンズ駆動装置
EP2350456B1 (en) * 2008-11-20 2015-11-18 Cambridge Mechatronics Limited Shape memory alloy actuation apparatus
CN102265032B (zh) * 2008-12-24 2014-05-14 柯尼卡美能达精密光学株式会社 形状记忆合金致动器的驱动装置及其驱动方法以及使用该驱动装置的成像装置
WO2010089526A2 (en) * 2009-02-09 2010-08-12 Cambridge Mechatronics Limited Shape memory alloy actuation apparatus
JPWO2011111686A1 (ja) * 2010-03-10 2013-06-27 コニカミノルタ株式会社 駆動機構、駆動装置および駆動装置の製造方法
JP2012047906A (ja) * 2010-08-25 2012-03-08 Seiko Instruments Inc 駆動モジュール及び電子機器
JP5221615B2 (ja) * 2010-09-21 2013-06-26 株式会社東芝 撮像装置およびその製造方法
CN103327873A (zh) * 2011-02-28 2013-09-25 奥林巴斯医疗株式会社 带弯曲部的医疗装置和内窥镜
JP5067496B2 (ja) * 2011-09-16 2012-11-07 コニカミノルタアドバンストレイヤー株式会社 駆動機構および駆動装置
JP2013114028A (ja) * 2011-11-29 2013-06-10 Konica Minolta Advanced Layers Inc 駆動装置
JP2013120375A (ja) * 2011-12-09 2013-06-17 Konica Minolta Advanced Layers Inc 駆動装置
KR101354775B1 (ko) * 2011-12-23 2014-01-22 삼성전기주식회사 카메라 모듈
JP2013167755A (ja) * 2012-02-15 2013-08-29 Seiko Instruments Inc 駆動モジュール及び電子機器

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60120413U (ja) * 1984-01-25 1985-08-14 株式会社日立製作所 変倍機構
JPS61176517U (ja) * 1985-04-11 1986-11-04
JPS6418114A (en) * 1987-07-13 1989-01-20 Copal Co Ltd Optical system support member
JPH049028U (ja) * 1990-05-10 1992-01-27
JPH08248289A (ja) * 1995-03-09 1996-09-27 Sony Corp レンズ鏡筒
JPH10123399A (ja) * 1996-10-16 1998-05-15 Nikon Corp レンズ駆動機構
JP2000180693A (ja) * 1998-12-18 2000-06-30 Canon Inc レンズ鏡筒およびこれを備えた光学機器
JP2003021779A (ja) * 2001-07-10 2003-01-24 Nidec Copal Corp カメラ装置
JP2007232889A (ja) * 2006-02-28 2007-09-13 Chinontec Kk レンズ鏡筒
JP2008040193A (ja) * 2006-08-08 2008-02-21 Nidec Copal Electronics Corp カメラレンズ
JP2008096566A (ja) * 2006-10-10 2008-04-24 Konica Minolta Opto Inc レンズ案内機構及びレンズ鏡胴並びに撮像装置
JP2009041545A (ja) * 2007-08-10 2009-02-26 Sharp Corp アクチュエータ装置、および当該装置を備えたカメラモジュール
JP2009122603A (ja) * 2007-11-19 2009-06-04 Konica Minolta Opto Inc 駆動装置
JP2009229781A (ja) * 2008-03-24 2009-10-08 Konica Minolta Opto Inc 駆動機構および駆動装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014088818A (ja) * 2012-10-30 2014-05-15 Minebea Co Ltd アクチュエータ

Also Published As

Publication number Publication date
US20120230665A1 (en) 2012-09-13
KR20120082460A (ko) 2012-07-23
EP2506057A1 (en) 2012-10-03
JPWO2011065296A1 (ja) 2013-04-11
EP2506057A4 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
WO2011065296A1 (ja) 駆動装置
JP5194622B2 (ja) 駆動機構、駆動装置およびレンズ駆動装置
JP5126362B2 (ja) レンズ駆動装置
US20030227560A1 (en) Digital camera system with piezoelectric actuators
JP2009229781A (ja) 駆動機構および駆動装置
WO2011068115A1 (ja) レンズ駆動装置およびレンズ駆動装置を搭載したカメラモジュール、携帯電話
WO2009093681A1 (ja) 駆動機構および駆動装置
JP2009122602A (ja) 駆動装置
CN110543064A (zh) 光学元件驱动装置、照相机及便携式电子设备
JP5321132B2 (ja) 駆動装置及びレンズ駆動装置
WO2011111686A1 (ja) 駆動機構、駆動装置および駆動装置の製造方法
JP2012029495A (ja) 駆動装置
JP4558071B2 (ja) 駆動装置、およびこれを備えた撮像装置、電子機器
JP5067496B2 (ja) 駆動機構および駆動装置
JP4935641B2 (ja) 形状記憶合金を用いた駆動装置
JP2010072415A (ja) 駆動機構、駆動装置
JP5447501B2 (ja) 駆動装置及びレンズ駆動装置
JP5031621B2 (ja) アクチュエータ、撮像素子および電子機器
JP2013120375A (ja) 駆動装置
JP2009258299A (ja) 傾斜型変位拡大機構を用いたレンズアクチュエータ
KR101896991B1 (ko) 조립이 용이한 일체형 판스프링 구조를 갖는 카메라 장치
JP5403916B2 (ja) 駆動機構および駆動装置
CN114647134A (zh) 光学单元
JP2010183674A (ja) 駆動装置、これを備えた撮像装置、及び電子機器
JPH0456914A (ja) レンズ鏡筒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10833142

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011543227

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13508463

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127012857

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010833142

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE