WO2011065021A1 - 真空チャック - Google Patents

真空チャック Download PDF

Info

Publication number
WO2011065021A1
WO2011065021A1 PCT/JP2010/006942 JP2010006942W WO2011065021A1 WO 2011065021 A1 WO2011065021 A1 WO 2011065021A1 JP 2010006942 W JP2010006942 W JP 2010006942W WO 2011065021 A1 WO2011065021 A1 WO 2011065021A1
Authority
WO
WIPO (PCT)
Prior art keywords
suction pad
vacuum chuck
adsorbed
holes
suction
Prior art date
Application number
PCT/JP2010/006942
Other languages
English (en)
French (fr)
Inventor
高田篤
高津雅一
上段一樹
Original Assignee
株式会社ナノテム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナノテム filed Critical 株式会社ナノテム
Priority to CN201080054148.3A priority Critical patent/CN102668059B/zh
Publication of WO2011065021A1 publication Critical patent/WO2011065021A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices

Definitions

  • the present invention relates to a vacuum chuck that depressurizes a sealed back side with a vacuum pump and adsorbs and positions an object to be adsorbed placed on the surface of the adsorption pad through a number of through holes.
  • the present invention relates to a vacuum chuck capable of adsorbing an object to be adsorbed even when a part of the adsorption surface is not covered with the object to be adsorbed.
  • the back side is reduced by a vacuum pump with respect to the surface of the suction pad that sucks the object to be adsorbed. It is necessary to keep the back pressure on the back side close to vacuum with respect to the atmospheric pressure on the side.
  • a vacuum chuck if the object to be adsorbed does not cover the entire surface that is the adsorption surface, a part of the through hole opens to the surface, and outside air flows through the through hole, and the differential pressure between the front side and the back side As a result, there is a problem that a predetermined adsorption force cannot be obtained.
  • Patent Documents 1 and 2 disclose vacuum chucks in which a large number of through holes communicating with the front surface side and the back surface side of the suction pad have a small diameter to reduce the conductance of the entire through hole.
  • this conventional vacuum chuck even if some through-holes are opened on the surface without being covered with the object to be adsorbed, the flow rate flowing from the surface to the back side through the through-holes is limited, The differential pressure can be kept constant, and even an object to be adsorbed placed on a part of the surface can be positioned and held on the surface with a predetermined adsorbing force.
  • the above-mentioned conventional suction pad keeps the back pressure constant by paying attention to reducing the conductance of the suction pad by simply making a large number of through holes small in diameter. Cannot be obtained simply by reducing the conductance.
  • the object to be adsorbed is absorbed in the vertical direction of the bottom surface covering the opening of the through hole by the differential pressure between the atmospheric pressure acting downward (from the surface to the back) and the back pressure acting upward (from the back to the surface). It is adsorbed on the surface side, and its adsorbing force is obtained by multiplying the total area of the through-hole openings covered by the object to be adsorbed by the differential pressure.
  • the present invention has been made in consideration of such conventional problems, and is a vacuum chuck that reliably adsorbs an object to be adsorbed placed on a part of the adsorption surface with an adsorption force required for the vacuum chuck.
  • the purpose is to provide.
  • the vacuum chuck according to claim 1 is a porous substrate suction pad in which the entire side surface is hermetically sealed and communicated by a large number of through-holes formed on the front surface side and the back surface side at substantially equal density.
  • a vacuum chuck that depressurizes the sealed back side with a vacuum pump and sucks the object to be adsorbed placed on the surface through a plurality of through-holes covered with the object to be adsorbed.
  • P1 the suction force per unit area required to hold the object to be adsorbed is Fmin
  • the suction pressure Pu
  • the exhaust efficiency Se.
  • the opening ratio n which is the ratio of the total opening area of the through-holes exposed in the surface area, and the conductance C of the entire suction pad by a large number of through-holes
  • the adsorption force per unit area is a value obtained by multiplying the differential pressure between the atmospheric pressure P1 and the back pressure by the opening ratio n, and the differential pressure is expressed by (P1 ⁇ Pu) ⁇ Se / (Se + C). Therefore,
  • the suction force when sucked by a vacuum pump with an exhaust efficiency of Q in a state where the object to be adsorbed is not placed on the surface of the suction pad satisfying the condition is the minimum adsorption force Fmin per unit area required for holding the object to be adsorbed That's it.
  • Fmin the minimum adsorption force per unit area required for holding the object to be adsorbed That's it.
  • the conductance C of the adsorption pad decreases regardless of its size. Therefore, the adsorption force obtained from n ⁇ (P1 ⁇ Pu) ⁇ Se / (Se + C) is the minimum adsorption force. It is not less than Fmin. Therefore, even if a part of the surface of the suction pad is not covered with the object to be adsorbed, the object to be adsorbed is held with an adsorption force equal to or greater than the minimum adsorption force Fmin.
  • the vacuum chuck according to claim 2 is characterized in that the inner diameter of the through hole of the suction pad is 1 ⁇ m to 10 ⁇ m.
  • the vacuum chuck according to claim 3 is characterized in that the suction pad is a porous ceramic substrate having an aperture ratio n of 20% or more.
  • Fine through-holes can be formed at a high density with an opening ratio n of 20% or more by ceramic sintering.
  • a ceramic substrate having an aperture ratio n of less than 20% a part of the through hole is blocked and a portion where the front and back surfaces do not communicate with each other is generated.
  • the suction pad having the aperture ratio n and the conductance C satisfying the formula (1) is used according to the suction capacity of the vacuum pump, thereby reliably suctioning regardless of the size of the object to be sucked. Can hold.
  • a suction pad having a low conductance C and a high aperture ratio n can be obtained.
  • an adsorption pad having a low conductance C can be obtained by forming fine through holes at a high density with an aperture ratio n of 20% or more. Further, since the ceramic substrate is used, a predetermined strength for placing the object to be adsorbed on the surface can be obtained even if the substrate is relatively thin.
  • FIG. 1 is an explanatory view showing a vacuum chuck 1 according to an embodiment of the present invention.
  • FIG. 2 is an explanatory view showing the vacuum chuck 1 in a state where the object W is placed on the suction pad 2 and sucked.
  • the vacuum chuck 1 has a suction pad 2 that sucks W to hold an object to be sucked and holds it on the surface thereof, and seals all side surfaces of the suction pad 2 so that outside air is placed on the back side of the suction pad 2.
  • the chuck body 4 forming the shut-off decompression chamber 3, the vacuum pump 5 exhausting from the exhaust passage communicating with the decompression chamber 3, and the flow rate for detecting the exhaust amount per unit time for detecting the exhaust efficiency Se of the vacuum pump 5
  • the flow meter 6 may be removed after selecting a suitable suction pad 2 that satisfies the conditions described later.
  • the suction pad 2 is formed of a square porous ceramic substrate having a side of 60 cm.
  • through-holes having an average pore diameter of 10 ⁇ m are formed closely, and the suction pad 2 having a porosity n of 35%.
  • the porosity n means that the through holes communicating with the back side are formed in the plane of the suction pad 2 at an equal density, and the through holes that open within a unit area with respect to the unit area of the surface of the suction pad 2 The ratio of the total opening area.
  • a porous ceramic substrate can be formed with an average pore diameter in the range of 1 to 200 ⁇ m and a porosity n in the range of 10 to 60%.
  • the porosity n is less than 20%, In some cases, a part of the through-hole is blocked, and the calculated adsorption force may not be obtained. If it is 60% or more, the voids increase, the strength deteriorates, and there is a risk of breakage.
  • the pressure P2 in the decompression chamber 3 (hereinafter referred to as back pressure) P2 when evacuated from the decompression chamber 3 of the vacuum chuck 1 configured as described above by the vacuum pump 5 having the ultimate pressure Pu is large on the surface side of the suction pad 2.
  • the atmospheric pressure is P1
  • the conductance of the entire suction pad 2 is C
  • the exhaust efficiency of the vacuum pump 5 measured by the flow meter 6 is Se
  • P2 (Pu + C / Se ⁇ P1) / (1 + C / Se) (2)
  • the object to be adsorbed W is placed on the suction pad 2 whose back pressure is P2, as shown in FIG. 2, the atmospheric pressure in the vertical direction is opened at the opening of the through hole covered with the object to be adsorbed W.
  • Adsorbed by receiving the pressure difference P between the pressure P1 and the back pressure P2 the object to be adsorbed W is obtained by multiplying the sum S2 of the opening areas of all the through holes covered by the object to be adsorbed W by the difference pressure ⁇ P. Receive.
  • P1 is known as the atmospheric pressure
  • Pu is known as the ultimate pressure of the vacuum pump 5
  • Se is the flow meter 6 in the unit time without the object W shown in FIG. Can be measured as the exhaust efficiency of the vacuum pump 5
  • the minimum suction force F ′ by the suction pad 2 having an aperture ratio n and conductance C can be obtained from the equation (6).
  • the adsorption force F ′ per unit area does not fall below the adsorption force F ′ calculated from the equation (6) in the state shown in FIG. 'As the minimum adsorption force Fmin necessary to adsorb and hold the object to be adsorbed W of the vacuum chuck 1
  • the vacuum chuck 1 that can reliably attract the object W with an adsorption force equal to or greater than the minimum adsorption force Fmin regardless of the size of the object W to be adsorbed. It can be.
  • the conductance C of the suction pad 2 can be calculated from Q / ⁇ P by measuring a flow rate Q per unit time flowing between the surface and the back surface in a state where a known differential pressure ⁇ P is applied to the surface side and the back surface side.
  • a porous ceramic substrate referred to as B material
  • A porous substrate
  • a pressure difference 11 kPa
  • the flow rate Q (MPa * m3 / s) per unit time was 0.9133 * 10-3 for the A material and 0.0458 * 10-3 for the B material.
  • the conductance C of each test piece when a differential pressure of atmospheric pressure P1 is applied is 9.133 * 10-3 (MPa ⁇ m3 / s) for material A and 0.458 * 10-3 (MPa ⁇ m) for material B. m3 / s). From this, the conductance C (L / min) converted to the size of the suction pad 2 of 60 cm square is 197.4 for the A material and 9.9 for the B material.
  • the conductance c of each through-hole assuming that the through-hole is a cylindrical pipe has k as the Boltzmann constant and m as the molecular mass.
  • R is the radius of the pipe
  • L is the length of the pipe
  • T is the temperature
  • c 4/3 ⁇ r3 / L ⁇ (2 ⁇ ⁇ k ⁇ T / m) 1/2 (8)
  • the conductance c proportional to r3 can be reduced.
  • the porosity n is slightly lowered to 35% with respect to the A material having the porosity n of 45%.
  • the conductance C is reduced to about 1/20 of that of the A material simply by making them.
  • the conductance C of the B material according to the present embodiment is 9.9 (L / min) and the porosity n is 0.35.
  • the exhaust efficiency Se in the state of FIG. 1 in which the object to be adsorbed W is not placed is 59.4 (L / min) or more, the minimum adsorbing force regardless of the size of the object to be adsorbed W.
  • the object to be adsorbed W can be adsorbed and held with an adsorption force of Fmin or more.
  • the 60 cm square porous ceramic substrate has been described as the suction pad 2.
  • the substrate satisfies the aperture ratio n and the conductance C of Equation (1), substrates of various materials and structures can be used. It can be a suction pad.
  • the opening ratio n of the suction pad can be set to an arbitrary value as long as a large number of through holes can be formed structurally, but is required for the vacuum chuck 1 because the maximum value of the suction force is the atmospheric pressure P1.
  • the opening ratio n cannot be less than the ratio of the minimum adsorption force Fmin to the atmospheric pressure P1.
  • the present invention is suitable for a vacuum chuck that holds workpieces of various sizes without changing the suction pad in the work process of a manufacturing apparatus such as a semiconductor, a liquid crystal, or a printed wiring board, or a printing machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Manipulator (AREA)

Abstract

真空チャックに求められる吸着力で、吸着面の一部に載置される被吸着物を確実に吸着する真空チャックを提供する。大気圧を(P1)、真空チャックに求められる最小吸着力を(Fmin)とし、到達圧力が(Pu)、排気効率が(Se)の真空ポンプで背面側が吸引される吸着パッドが、吸着パッドの単位表面積と該単位表面積内に露出する貫通孔の総開口面積との比である開口率(n)と、多数の貫通孔による吸着パッド全体のコンダクタンス(C)が、下式を満たす真空チャックは、被吸着物に覆われない吸着パッドの一部から空気漏れがあっても、(Fmin)以上の吸着力で被吸着物を確実に吸着保持する。 Fmin ≦ n・(P1-Pu)・Se/(Se+C)

Description

真空チャック
 本発明は、密閉された背面側を真空ポンプで減圧し、多数の貫通孔を介して吸着パッドの表面上に載置される被吸着物を吸着して位置決めする真空チャックに関し、更に詳しくは、吸着面の一部が被吸着物で覆われない場合であっても、被吸着物を吸着可能な真空チャックに関するものである。
 被吸着物を吸引する吸着パッドの表面に対して背面側を真空ポンプで減圧し、表面と背面に連通する貫通孔を介して作業対象の被吸着物を吸引して保持する真空チャックでは、表面側の大気圧に対して背面側の背圧を真空に近い圧力に保つ必要がある。このような真空チャックは、被吸着物が吸着面である表面全体を覆わないと、貫通孔の一部が表面に開口し、貫通孔を通して外気が流入し、表面側と背面側との差圧が充分にとれないので、所定の吸着力が得られないという問題があった。
 そこで、吸着パッドの表面側と背面側に連通する多数の貫通孔を細径として、貫通孔全体のコンダクタンスを低下させた真空チャックが特許文献1、特許文献2で知られている。この従来の真空チャックによれば、一部の貫通孔が被吸着物に覆われずに表面に開口しても、貫通孔を通して表面から背面側に流れる流量が制限され、表面側と背面側との差圧を一定に保つことができ、表面の一部に載置される被吸着物であっても所定の吸着力で表面上に位置決め保持することができる。
実公昭43-16175号公報
特許第2693720号公報
 上述の従来の吸着パッドは、単に多数の貫通孔を細径として吸着パッドのコンダクタンスを低下させることに着目して背圧を一定に保つものであるが、被吸着物を吸着する所定の吸着力は、コンダクタンスを低下させるだけでは得られない。すなわち、被吸着物は、貫通孔の開口を覆う底面の鉛直方向で、下方(表面から背面方向)に働く大気圧と上方(背面から表面方向)に働く背圧との差圧によって吸着パッドの表面側に吸着されるもので、その吸着力は、被吸着物が覆う貫通孔の開口の総面積に差圧を乗じて得られる。
 従って、単に吸着パッド全体のコンダクタンスを低下させるために貫通孔を小径としたり、貫通孔密度を低下させるだけでは、被吸着物が覆う貫通孔の開口の総面積も減少するので、真空チャックに求められる所定の吸着力が得られないという従来の真空チャックでは解決されていない課題が残されていた。
 本発明は、このような従来の問題点を考慮してなされたものであり、真空チャックに求められる吸着力で、吸着面の一部に載置される被吸着物を確実に吸着する真空チャックを提供することを目的とする。
 上述の目的を達成するため、請求項1に記載の真空チャックは、側面の全体が密閉され、表面側と背面側が略等密度に形成された多数の貫通孔によって連通する多孔性基板の吸着パッドを備え、密閉された背面側を真空ポンプで減圧し、表面上に載置される被吸着物を被吸着物で覆われる複数の貫通孔を介して吸着する真空チャックであって、大気圧をP1、被吸着物の保持に要する単位面積あたりの最小吸着力をFminとし、到達圧力がPu、排気効率がSeの真空ポンプで背面側が吸引される吸着パッドは、吸着パッドの単位表面積と該単位表面積内に露出する貫通孔の総開口面積との比である開口率nと、多数の貫通孔による吸着パッド全体のコンダクタンスCが、
Figure JPOXMLDOC01-appb-M000001
を満たすことを特徴とする。
 単位面積あたりの吸着力は、大気圧P1と背圧との差圧に、開口率nを乗じた値であり、差圧は、(P1-Pu)・Se/(Se+C)で表される。従って、
Figure JPOXMLDOC01-appb-M000002
を満たす吸着パッドの表面上に被吸着物を載置しない状態で、排気効率がQである真空ポンプで吸引した際の吸着力は、被吸着物の保持に要する単位面積あたりの最小吸着力Fmin以上となる。表面上に被吸着物を載置するとその大きさにかかわらず、吸着パッドのコンダクタンスCが低下するので、n・(P1-Pu)・Se/(Se+C)から得られる吸着力は、最小吸着力Fmin以下とならない。従って、吸着パッドの表面の一部が被吸着物によって覆われなくても、被吸着物は最小吸着力Fmin以上の吸着力で保持される。
 また、請求項2に記載の真空チャックは、吸着パッドの貫通孔の内径が、1μm乃至10μmであることを特徴とする。
 (1)式から、開口率nはできるだけ大きく、吸着パッドのコンダクタンスCは、できるだけ小さい値とするほど大きな吸着力が得られる。真空に近い分子流領域で、円筒孔のコンダクタンスは、その半径の3乗に比例し、大気圧の粘性領域では4乗に比例する一方、開口率nを決定する貫通孔の総開口面積は、各貫通孔が円筒形であるとすると、開口面積はその半径の二乗に比例する。従って、貫通孔の内径を、1μm乃至20μmの微小径とすることにより、所定の開口率n以上としつつ、効率的に吸着パッド全体のコンダクタンスCを小さくすることできる。
 また、請求項3に記載の真空チャックは、吸着パッドが、開口率nが20%以上の多孔質セラミック基板であることを特徴とする。
 セラミック焼結により、微細な貫通孔を開口率nが20%以上となる高密度で形成することできる。開口率nが20%未満のセラミック基板では、貫通孔の一部が閉塞し、表裏面が連通しない部分が生じる。
 請求項1の発明によれば、真空ポンプの吸引能力に応じて、(1)式を満たす開口率nとコンダクタンスCの吸着パッドを用いることにより、確実に被吸着物の大きさにかかわらず吸着保持できる。
 請求項2の発明によれば、コンダクタンスCが低く、開口率nが高い吸着パッドが得られる。
 請求項3の発明によれば、開口率nを20%以上として微細な貫通孔を高密度で形成し、コンダクタンスCの低い吸着パッドが得られる。また、セラミック基板とするので、比較的薄肉としても被吸着物を表面上に載置する所定の強度が得られる。
図1は、本発明の一実施の形態に係る真空チャック1を示す説明図である。 図2は、吸着パッド2へ被吸着物Wを載置して吸引している状態の真空チャ  ック1を示す説明図である。
 以下、本発明の一実施の形態に係る真空チャック1を図1と図2を用いて説明する。図に示すように、真空チャック1は、被吸着物をWを吸着してその表面に保持する吸着パッド2と、吸着パッド2の全ての側面を密封し、吸着パッド2の背面側に外気と遮断した減圧室3を形成するチャック本体4と、減圧室3に連通する排気路から排気する真空ポンプ5と真空ポンプ5の排気効率Seを検出する為の単位時間あたりの排気量を検出する流量計6を備えているが、流量計6は、後述する条件を満たす好適な吸着パッド2を選定した後は、取り除いても良い。
 吸着パッド2は、一辺が60cmの正方形状の多孔質セラミック基板で形成され、本実施の形態では、平均孔径が10μmの貫通孔が密接して形成され、気孔率nが35%の吸着パッド2となっている。ここで、気孔率nとは、背面側と連通する貫通孔が吸着パッド2の平面に等密度で形成されているものとして、吸着パッド2表面の単位面積に対する単位面積内に開口する貫通孔の総開口面積の比率をいう。セラミック焼結技術を用いれば、平均孔径が1乃至200μmの範囲で、気孔率nを10乃至60%の範囲で多孔質セラミック基板を形成することができるが、気孔率nを20%未満とすると、貫通孔の一部が閉塞し、算定した吸着力が得られない場合があり、また、60%以上とすると、空隙が増加して強度が劣化し、破損する恐れがある。
 このように構成された真空チャック1の減圧室3から到達圧力Puの真空ポンプ5で排気したときの減圧室3内の圧力(以下、背圧という)P2は、吸着パッド2の表面側の大気圧をP1、吸着パッド2全体のコンダクタンスをC、流量計6で計測される真空ポンプ5の排気効率をSeとすると、一般に、
P2=(Pu+C/Se・P1)/(1+C/Se)・・・(2)式
で表される。
 (2)式を用いて、大気圧P1と背圧P2との差圧ΔPは、
ΔP=P1-P2=(P1-Pu)・Se/(Se+C)・・・(3)式
となる。
 一方、背圧がP2となっている吸着パッド2に、図2に示すように、被吸着物Wを載置すると、被吸着物Wにより覆われた貫通孔の開口において、鉛直方向に大気圧P1と背圧P2との差圧ΔPを受けて吸着され、被吸着物Wは、被吸着物Wにより覆われた全ての貫通孔の開口面積の総和S2に差圧ΔPを乗じた吸着力Fを受ける。
 被吸着物Wの吸着パッド2表面への投影面積をS1とすれば、開口率nから上記総和S2は、S1・nであり、被吸着物Wの吸着力Fは、
F=nS1・ΔP・・・(4)式
で表され、被吸着物Wの単位面積あたりの吸着力F’は、
F’=F/S1=n・ΔP・・・(5)式
となる。
 更に、(3)式と(5)式から、被吸着物Wの単位面積あたりの吸着力F’は、
F’=n・(P1-Pu)・Se/(Se+C)・・・(6)式が得られる。
(6)式において、P1は、大気圧、Puは、真空ポンプ5の到達圧力として既知であり、Seは、図1に示す被吸着物Wを載置しない状態で単位時間中に流量計6で計測される流量を真空ポンプ5の排気効率として計測できるので、(6)式から、開口率nとコンダクタンスCの吸着パッド2による最小の吸着力F’が得られる。
 すなわち、吸着パッド2の表面上に被吸着物Wを載置しない状態から、図2に示すように被吸着物Wを載置して貫通孔の一部を覆うと、吸着パッド2のコンダクタンスCが低下し、排気効率Seは、
Se=(P1-P2)/(P2-Pu)・C・・・(7)式
で得られるSeまで低下する。(7)式から算定されるSeの値に安定するまでの間、コンダクタンスCが排気効率Seに先行して低下するので、(6)式中のSe/(Se+C)は、少なくとも図1の状態より大きく、単位面積あたりの吸着力F’は上昇する。
 従って、被吸着物Wの有無に関わらず、単位面積あたりの吸着力F’は、図1に示す状態で(6)式から算定される吸着力F’を下回ることはなく、この吸着力F’を、真空チャック1の被吸着物Wを吸着保持するために必要な最小吸着力Fminとして、
Figure JPOXMLDOC01-appb-M000003
を満たす開口率nとコンダクタンスCの吸着パッド2を選定すれば、被吸着物Wの大きさにかかわらず、確実に最小吸着力Fmin以上の吸着力で被吸着物Wを吸着可能な真空チャック1とすることができる。
 吸着パッド2のコンダクタンスCは、その表面側と背面側に既知の差圧ΔPを加え状態での表面と背面間に流れる単位時間あたりの流量Qを計測し、Q/ΔPより算定できる。本実施の形態では、本実施の形態に係る発明に係る吸着パッド2と同材質の多孔性セラミック基板(B材という)と、比較する為従来の真空チャックに用いられている多孔性基板(A材という)とを、それぞれ直径10mmの円形に切断した試験片の表裏に大気圧P1の1/10の差圧(11kPa)を加えて、それぞれの単位時間あたりの流量Qを計測した。
 その結果、単位時間あたりの流量Q(MPa*m3/s)は、A材が0.9133*10-3、B材が0.0458*10-3であった。大気圧P1の差圧を加えた場合の各試験片のコンダクタンスCは、A材が9.133*10-3(MPa・m3/s)、B材が0.458*10-3(MPa・m3/s)であり、これより60cm平方の吸着パッド2の大きさに換算した各コンダクタンスC(L/min)は、A材が197.4、B材が9.9となる。
 真空に近く分子の平均自由行程が長く、貫通孔の内壁に衝突する分子流領域では、貫通孔が円筒形のパイプと仮定した各貫通孔のコンダクタンスcは、kをボルツマン定数、mを分子質量、rをパイプの半径、Lをパイプの長さ、Tを温度として、
c=4/3・r3/L・(2π・k・T/m)1/2・・・(8)式
で表され、半径rを小さい値とするほど、πr2で表される開口面積に対して、r3に比例するコンダクタンスcを低下させることができる。本実施の形態に係るB材による吸着パッド2は、貫通孔を10μmの微細孔で形成することによって、気孔率nが45%であるA材に対して気孔率nが35%とわずかに低下させるだけで、コンダクタンスCを、A材の約1/20まで低下させている。
 (1)式において、真空チャック1に求められる最小吸着力Fminを33kPa、すなわち大気圧P1の3/10とし、真空ポンプ5の到達圧力Puをほぼ真空圧とすると、(1)式は、
Figure JPOXMLDOC01-appb-M000004
に置き換えられる。
 A材のコンダクタンスCは、197.4(L/min)、気孔率nは0.45であるので、それぞれ(9)式に代入すると、
Figure JPOXMLDOC01-appb-M000005
となるが、被吸着物Wを載置しない吸着パッドが開放状態での排気効率Seは、394.8(L/min)未満であるので、33kPaの最小吸着力Fminが得られない。
 一方、本実施の形態に係るB材のコンダクタンスCは、9.9(L/min)、気孔率nが0.35であるので、それぞれ(9)式に代入すると、
Figure JPOXMLDOC01-appb-M000006
となるが、被吸着物Wを載置しない図1の状態での排気効率Seは、59.4(L/min)以上であるので、被吸着物Wの大きさにかかわらず、最小吸着力Fmin以上の吸着力で被吸着物Wを吸着保持できる。
 上述の実施の形態では、吸着パッド2として、60cm平方の多孔質セラミック基板で説明したが、(1)式の開口率nとコンダクタンスCを満たす基板であれば、種々の材質、構造の基板を吸着パッドとすることができる。
 また、吸着パッドの開口率nは、構造上多数の貫通孔を形成できれば、任意の値とすることができるが、吸着力の最大値が大気圧P1である関係から、真空チャック1に求められる最小吸着力Fminの大気圧P1に対する比以下の開口率nとすることはできない。
 本発明は、半導体、液晶、プリント配線基板などの製造装置や印刷機の作業工程で種々の大きさのワークを吸着パッドを変更せずに保持する真空チャックに適している。
 1  真空チャック
 2  吸着パッド
 3  減圧室
 5  真空ポンプ
 6  流量計

Claims (3)

  1. 側面の全体が密閉され、表面側と背面側が略等密度に形成された多数の貫通孔によって連通する多孔性基板の吸着パッドを備え、密閉された背面側を真空ポンプで減圧し、表面上に載置される被吸着物を被吸着物で覆われる複数の貫通孔を介して吸着する真空チャックであって、
     大気圧をP1、被吸着物の保持に要する単位面積あたりの最低吸着力をFminとし、
     到達圧力がPu、排気効率がSeの真空ポンプで背面側が吸引される吸着パッドは、
     吸着パッドの単位表面積と該単位表面積内に露出する貫通孔の総開口面積との比である開口率nと、多数の貫通孔による吸着パッド全体のコンダクタンスCが、
    Figure JPOXMLDOC01-appb-M000007

    を満たすことを特徴とする真空チャック。
  2. 吸着パッドの貫通孔の内径が、1μm乃至20μmであることを特徴とする請求項1に記載の真空チャック。
  3. 吸着パッドが、開口率nが20%以上の多孔質セラミック基板であることを特徴とする請求項1又は2に記載の真空チャック。
PCT/JP2010/006942 2009-11-30 2010-11-29 真空チャック WO2011065021A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201080054148.3A CN102668059B (zh) 2009-11-30 2010-11-29 真空卡盘

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009271134A JP2011114253A (ja) 2009-11-30 2009-11-30 真空チャック
JP2009-271134 2009-11-30

Publications (1)

Publication Number Publication Date
WO2011065021A1 true WO2011065021A1 (ja) 2011-06-03

Family

ID=44066126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006942 WO2011065021A1 (ja) 2009-11-30 2010-11-29 真空チャック

Country Status (4)

Country Link
JP (1) JP2011114253A (ja)
KR (1) KR20120116909A (ja)
CN (1) CN102668059B (ja)
WO (1) WO2011065021A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016103626A (ja) * 2014-11-13 2016-06-02 株式会社ナノテム 搬送用パッドおよびそれを用いる搬送装置、搬送方法
JPWO2017154085A1 (ja) * 2016-03-08 2018-11-22 株式会社ナノテム 搬送用パッドおよびそれを用いる搬送装置、搬送方法
JP6815138B2 (ja) * 2016-09-06 2021-01-20 株式会社ディスコ 吸引保持システム
CN110098143B (zh) * 2018-01-31 2021-06-04 上海微电子装备(集团)股份有限公司 一种芯片吸附装置及芯片键合系统
CN109051771B (zh) * 2018-07-05 2020-10-02 珠海格力电器股份有限公司 表针放料系统、方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4316175Y1 (ja) * 1965-07-21 1968-07-05
JP2693720B2 (ja) * 1994-05-25 1997-12-24 シーケーディ株式会社 真空チャックにおける被吸着物の吸着方法
JP2009246013A (ja) * 2008-03-28 2009-10-22 Taiheiyo Cement Corp 真空吸着装置及びその製造方法
JP2009253247A (ja) * 2008-04-11 2009-10-29 Ariake Materials Co Ltd 真空吸着装置用吸着体及び真空吸着装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2892771Y (zh) * 2005-12-29 2007-04-25 袁建中 排气吸盘

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4316175Y1 (ja) * 1965-07-21 1968-07-05
JP2693720B2 (ja) * 1994-05-25 1997-12-24 シーケーディ株式会社 真空チャックにおける被吸着物の吸着方法
JP2009246013A (ja) * 2008-03-28 2009-10-22 Taiheiyo Cement Corp 真空吸着装置及びその製造方法
JP2009253247A (ja) * 2008-04-11 2009-10-29 Ariake Materials Co Ltd 真空吸着装置用吸着体及び真空吸着装置

Also Published As

Publication number Publication date
KR20120116909A (ko) 2012-10-23
CN102668059A (zh) 2012-09-12
CN102668059B (zh) 2015-09-16
JP2011114253A (ja) 2011-06-09

Similar Documents

Publication Publication Date Title
JP5733700B2 (ja) 真空チャック
WO2011065021A1 (ja) 真空チャック
JP5291687B2 (ja) 吸着テーブル
WO2017154085A1 (ja) 搬送用パッドおよびそれを用いる搬送装置、搬送方法
KR101801994B1 (ko) 흡착 유닛에의 작업 대상물의 흡착 방법 및 세라믹 콘덴서의 제조 방법
KR101242420B1 (ko) 흡착 테이블
JP6010811B2 (ja) 吸着盤
KR20140016804A (ko) 흡착 테이블의 제조 방법 그리고 흡착 테이블
JP2010103332A (ja) 真空吸着装置
JP2014203904A (ja) 真空吸着装置及び吸着プレート
US10480873B2 (en) Flow path member, and adsorption device and cooling device using the same
US20200266092A1 (en) Apparatuses and methods for non-contact holding and measurement of thin substrates
JP2006027795A5 (ja)
JP5957330B2 (ja) ウェーハ貼着装置
JP2008227125A (ja) 真空吸着装置及びそれを用いた吸着方法
KR20070037831A (ko) 진공척
JP2016103626A (ja) 搬送用パッドおよびそれを用いる搬送装置、搬送方法
KR20090102568A (ko) 세라믹 볼 패널 타입 에어진공척
JP5316172B2 (ja) ウェハ吸引パッド及びそれを備えたプリアライナ
JP2010171172A (ja) 部品保持治具及び、該部品保持治具を用いた負圧吸着装置
KR20120045758A (ko) 비접촉식 이송장치
JP2006269989A (ja) 基板保持具
JP4678787B2 (ja) 薄厚ウエハ搬送用吸着ハンド
TWI769097B (zh) 層流裝置
CN217983304U (zh) 晶圆陶瓷真空吸附载盘

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080054148.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10832870

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127011341

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10832870

Country of ref document: EP

Kind code of ref document: A1