WO2011064834A1 - 永久磁石型回転電機及びこれを用いた電動パワーステアリング装置 - Google Patents

永久磁石型回転電機及びこれを用いた電動パワーステアリング装置 Download PDF

Info

Publication number
WO2011064834A1
WO2011064834A1 PCT/JP2009/069781 JP2009069781W WO2011064834A1 WO 2011064834 A1 WO2011064834 A1 WO 2011064834A1 JP 2009069781 W JP2009069781 W JP 2009069781W WO 2011064834 A1 WO2011064834 A1 WO 2011064834A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
magnet type
auxiliary groove
type rotating
rotor
Prior art date
Application number
PCT/JP2009/069781
Other languages
English (en)
French (fr)
Inventor
正嗣 中野
俊宏 松永
和久 高島
悟 阿久津
友輔 森田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US13/390,305 priority Critical patent/US9350204B2/en
Priority to EP09851626.3A priority patent/EP2506398B1/en
Priority to CN200980162467.3A priority patent/CN102687373B/zh
Priority to PCT/JP2009/069781 priority patent/WO2011064834A1/ja
Priority to JP2011543001A priority patent/JP5518092B2/ja
Priority to KR1020127004571A priority patent/KR101285529B1/ko
Publication of WO2011064834A1 publication Critical patent/WO2011064834A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a permanent magnet type rotating electric machine having a rotor with a permanent magnet, and an electric power steering apparatus using the same.
  • Patent Document 1 Since the auxiliary grooves are provided in all the axial directions of the motor, there is a problem that the equivalent air gap length increases and the torque decreases.
  • Patent Documents 1, 2 and 3 are effective in reducing the pulsation number of the least common multiple of the number of poles and the number of slots and cogging torque that is an integral multiple thereof, there is an effect of permanent magnet sticking position error, shape error, and variation in magnetic characteristics.
  • the cogging torque component (component that pulsates by the number of times corresponding to the number of slots in one rotation of the rotor) cannot be sufficiently suppressed.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a permanent magnet type rotating electric machine that achieves both cogging torque reduction and small high torque.
  • the present invention relates to a rotor having a rotor core and a plurality of magnetic poles provided on the rotor core and made of permanent magnets, a plurality of teeth facing the plurality of magnetic poles, and windings around these teeth.
  • a stator core formed with a slot for accommodating the armature winding, and a stator provided with an auxiliary groove in the axial direction of the stator core at a portion of the teeth facing the rotor.
  • the stator has the auxiliary groove provided in a part of the stator core in the axial direction, the number of the magnetic poles (number of magnetic poles) is P, and the number of slots (slots) When (number) is S, 0.75 ⁇ S / P ⁇ 1.5 The relationship is established.
  • a cogging torque caused by variations on the rotor side such as a permanent magnet sticking position error and variations in magnet characteristics
  • a small and light permanent magnet rotating electrical machine with a small torque pulsation can be obtained.
  • FIG. 2 is a cross-sectional view showing an AA cross section of FIG. 1.
  • FIG. 2 is a cross-sectional view showing a BB cross section of FIG. 1.
  • FIG. 3 is a partial perspective view showing a stator core in the first embodiment.
  • FIG. 8 is a partial perspective view showing another example of the stator core in the first embodiment.
  • FIG. 3 is a cross-sectional view showing the rotor in the first embodiment.
  • FIG. 3 is an explanatory diagram showing a cogging torque waveform in the first embodiment.
  • FIG. 3 is an explanatory diagram showing a cogging torque waveform in the first embodiment.
  • FIG. 3 is an explanatory diagram showing a cogging torque waveform in the first embodiment.
  • FIG. 3 is an explanatory diagram showing an order component of cogging torque in the first embodiment.
  • FIG. 4 is an explanatory diagram showing a histogram of cogging torque in the first embodiment.
  • 6 is an explanatory diagram showing dimensions of auxiliary grooves and slot openings in Embodiment 1.
  • FIG. 6 is an explanatory diagram showing a relationship between the width of an auxiliary groove and cogging torque in the first embodiment.
  • 6 is an explanatory diagram showing a relationship between a ratio of a portion provided with an auxiliary groove and a cogging torque S-order component in Embodiment 1.
  • FIG. 6 is an explanatory diagram illustrating an example of a positional shift of a permanent magnet according to Embodiment 1.
  • FIG. 6 is an explanatory diagram showing another example of the positional deviation of the permanent magnet in the first embodiment. It is sectional drawing which shows the permanent magnet type rotary electric machine by Embodiment 2 of this invention. It is sectional drawing which shows the other example of the permanent magnet type rotary electric machine by Embodiment 2. FIG. It is sectional drawing which shows the other example of the permanent magnet type rotary electric machine by Embodiment 2. FIG. It is sectional drawing which shows the other example of the permanent magnet type rotary electric machine by Embodiment 2.
  • FIG. It is a fragmentary perspective view which shows the stator core of the permanent magnet type rotary electric machine by Embodiment 3 of this invention. It is a fragmentary perspective view which shows the stator core of the permanent magnet type rotary electric machine by Embodiment 4 of this invention.
  • FIG. 16 is a partial perspective view showing one tooth of the stator core in the fourth embodiment.
  • FIG. 10 is an explanatory diagram showing cogging torque in the fourth embodiment. It is sectional drawing which shows the permanent magnet type rotary electric machine by Embodiment 5 of this invention. It is explanatory drawing which shows the electric power steering apparatus by Embodiment 6 of this invention.
  • FIG. 1 is a cross-sectional view on a plane parallel to the rotation axis of the permanent magnet type rotating electric machine according to the first embodiment.
  • a permanent magnet 1 is provided on the surface of the rotor core 2.
  • a rotary shaft 10 is press-fitted into the rotor core 2, and the rotor is rotatable by bearings 11a and 11b.
  • the rotor is also provided with a rotation angle sensor 14 for detecting the rotation angle.
  • the rotation angle sensor 14 is composed of, for example, a resolver, a hall sensor, a magnet, or an encoder.
  • the stator core 3 is provided so as to face the permanent magnet 1, and the stator core may be configured by laminating electromagnetic steel plates or may be configured by a dust core.
  • An armature winding 4 is wound around the stator core 3.
  • the stator is fixed to the frame 13 by press fitting or shrink fitting, and the frame 13 is fixed to the housing 12.
  • An auxiliary groove 5 for reducing cogging torque is provided in a portion of the stator core 3 facing the permanent magnet 1. Further, the auxiliary groove 5 is provided in a part in the rotation axis direction. In FIG. 1, it is provided near the center of the stator core in the rotation axis direction, and no auxiliary groove 5 is provided at the axial end.
  • FIG. 2 is a cross-sectional view taken along a line AA perpendicular to the rotation shaft 10 of FIG. This is a cross-sectional view of a portion where the auxiliary groove 5 is provided.
  • the permanent magnet 1 is affixed to the surface of the rotor core 2, and the number of poles is 10 in this example. Further, the cross-sectional shape of the permanent magnet 1 is a kamaboko shape, reducing the harmonic component of the magnetic flux and reducing the torque pulsation by making the induced voltage sinusoidal.
  • a protrusion 8 is provided on the rotor iron core and serves to fix the permanent magnet 1 so as not to slip in the circumferential direction.
  • the stator is provided with a slot 6 for winding the armature winding 4 in the stator core 3.
  • the armature winding 4 is intensively wound around the teeth 7 extending in the radial direction of the stator core 3, and the number of slots is twelve. 4 is wound.
  • the winding arrangement is U1 +, U1-, V1-, V1 +, W1 + as shown in FIG. , W1-, U2-, U2 +, V2 +, V2-, W2-, W2 +.
  • + and ⁇ indicate the winding direction
  • + and ⁇ indicate that the winding directions are opposite to each other.
  • U1 + and U1- are connected in series
  • U2- and U2 + are also connected in series. These two series circuits may be connected in parallel or may be connected in series. The same applies to the V phase and the W phase. Further, the three phases may be Y-connected or delta-connected.
  • a cogging torque twelfth order component caused by variations on the rotor side such as a pasting position error, a shape error, and a magnetic characteristic variation of the permanent magnet 1 becomes apparent. Although details will be described later, the present invention has been made to solve this problem.
  • the teeth 7 of the stator have a shape in which the tip portion, that is, the portion facing the rotor extends in the circumferential direction, and the opening of the slot 6 is smaller than the portion in which the armature winding 4 is housed. It has become.
  • one auxiliary groove 5 is provided for one tooth 7 on the surface of the tooth 7 facing the rotor.
  • the circumferential position of the auxiliary groove 5 coincides with the circumferential center of the tooth 7.
  • 3 is a cross-sectional view taken along the line BB perpendicular to the rotating shaft 10 of FIG. This is a cross-sectional view of a portion where the auxiliary groove 5 is not provided. The configuration is different from that of FIG. 2 in that there is no auxiliary groove 5, but the other structure is the same.
  • FIG. 4 shows a partial perspective view for easy understanding of the configuration of the auxiliary groove 5.
  • the auxiliary groove 5 is provided in the vicinity of the central portion in the rotation axis direction, and is not provided at the end portion. Specifically, the auxiliary groove 5 is not provided in a portion having a length L1 from the end portion (upper portion in FIG. 4) in the rotation axis direction. An auxiliary groove 5 is provided over a portion of the length L2 below. Further, the auxiliary groove 5 is not provided in the portion of the length L3 below.
  • the cross-sectional shape is not an ideal left-right symmetric shape, and either the left or right thickness is increased and the other thickness is decreased.
  • An example is shown in FIG. In FIG. 6, it has shown that the sticking position of the permanent magnet 1 has shifted
  • the cogging torque mainly includes a component that pulsates the same number of times as the least common multiple of the number of poles and the number of slots per rotation of the rotor. However, due to manufacturing variations, when the rotor is in the state shown in FIG. 6, the cogging torque increases, and a component that pulsates as many times as the number of slots per rotation of the rotor appears.
  • FIG. 7 is a diagram showing a waveform of cogging torque for 30 degrees (mechanical angle).
  • the auxiliary groove 5 When the auxiliary groove 5 is not provided, it becomes a cogging torque waveform indicated by a dotted line, and it can be seen that a cogging torque having a cycle of 30 degrees appears greatly.
  • the cogging torque having a period of 30 degrees appears greatly in the cogging torque waveform when one auxiliary groove 5 is provided in the entire axial direction.
  • the phase is reversed from the case where the auxiliary groove 5 is not provided.
  • the cogging torque can be reduced by combining both. Therefore, if the stator core 3 has a configuration in which one auxiliary groove 5 is provided for each tooth in a part in the rotation axis direction, the cogging torque generated in the portion without the auxiliary groove 5 and the portion having the auxiliary groove 5 are generated. Since the total cogging torque to be used is the cogging torque of the permanent magnet type rotating electrical machine, the cogging torque having a period of 30 degrees has a canceling effect, and it is predicted that this can be significantly reduced. Therefore, a cogging torque waveform in the case where the auxiliary groove 5 is provided in a part of the rotation axis direction as shown in FIG. 4 is shown as a solid line waveform (present invention) in FIG. Thus, it can be seen that the cogging torque with a period of 30 degrees is greatly reduced, and as a result, the pp value of the cogging torque is greatly reduced.
  • FIG. 8 shows a comparison of the cogging torque waveform for one rotation of the rotor (for a mechanical angle of 360 degrees) with that of the conventional example.
  • the conventional cogging torque is standardized with a maximum value of 100%.
  • a component that pulsates 12 times with one rotation of the rotor is greatly generated, but it can be seen that the component is greatly reduced in the configuration of the present invention.
  • the pp value is only 1/10 of the conventional example.
  • FIG. 9 shows frequency components of the cogging torque of FIG. The order is the first rotation of the rotor. It can be confirmed that the twelfth-order component, that is, the component having the same number of pulsations as the number of slots is greatly reduced. Accordingly, it can be seen that the cogging torque caused by the variation on the rotor side can be significantly reduced by adopting the configuration of the present embodiment.
  • FIG. 10A shows a histogram of the conventional example
  • FIG. 10B shows a histogram of the configuration of FIG. 4 (the present invention). Comparison is made assuming that the variation conditions on the rotor side are the same.
  • the cogging torque is widely distributed, and there is a problem that the cogging torque becomes large depending on a variation pattern.
  • the cogging torque is small regardless of the variation pattern of the permanent magnet 1 on the rotor side. That is, a permanent magnet type rotating electrical machine having high robustness against manufacturing variations on the rotor side can be obtained.
  • a reduction effect is aimed at a component in which the number of pulsations per rotation of the rotor matches the least common multiple of the number of poles and the number of slots. It is not possible to obtain a sufficient reduction effect for a component whose number matches the number of slots.
  • FIG. 5 shows a different structure from FIG. However, for the sake of simplicity, only the stator core 3 is shown, and other components are omitted. Further, only half of the 12 teeth 7 are shown to make it easy to see the portion facing the rotor.
  • the auxiliary groove 5 is provided in the upper part in the rotation axis direction, and is not provided in the lower part. Specifically, an auxiliary groove 5 is provided in a portion having a length L4 from the end portion (upper portion in FIG. 5) in the rotation axis direction. The auxiliary groove 5 is not provided in the portion of the length L5 below it. In such a configuration as well, as in the configuration of FIG.
  • the cogging torque having a period of 30 degrees generated by the variation of the rotor is the cogging torque generated in the length L4 portion and the cogging torque generated in the length L5 portion.
  • the effect of canceling each other is obtained.
  • FIG. 11 illustrates the width Wd of the auxiliary groove 5, the depth Hd of the auxiliary groove 5, the slot opening width Ws, and the height Hs of the tooth tip.
  • the canceling effect is obtained by inverting the phase of the component in which the pulsation number of the cogging torque matches the slot number in the portion where the auxiliary groove 5 is provided and the portion where the auxiliary groove 5 is not provided.
  • the selection of the shape of the auxiliary groove 5 affects the magnitude of the effect.
  • the ratio of the width Wd of the auxiliary groove 5 to the slot opening width Ws is plotted on the horizontal axis, and the cogging torque O.V. A.
  • the cogging torque is 1 ⁇ 2 or less that when the auxiliary groove 5 is not provided. Further, when Wd / Ws ⁇ 1.25, the cogging torque is as small as 0.001 Nm. If the cogging torque due to the rotor variation is suppressed to this level, for example, when a rotating electric machine is incorporated in an electric power steering device described later, the driver does not feel the cogging torque and a good steering feeling is obtained. The effect that it can be obtained is acquired.
  • the pulsation component of the permeance due to the slots of the stator core can be changed, and the phase of the component whose cogging torque pulsation matches the number of slots can be reversed.
  • the cogging torque in the part can be canceled with each other.
  • Wd / Ws ⁇ 1.0 may be satisfied.
  • the total width of all the auxiliary grooves 5 provided in the teeth is defined as Wd. The same effect can be obtained if Wd / Ws ⁇ 1.0.
  • the depth Hd of the auxiliary groove 5 is desirably larger than the thickness Hs of the tooth tip.
  • This also changes the pulsation component of the permeance due to the slots of the stator core, and can reverse the phase of the cogging torque component whose pulsation number matches the slot number.
  • the canceling effect with the cogging torque in the portion without the auxiliary groove 5 described above can be sufficiently exhibited.
  • FIG. 13 shows a result of simulating how the cogging torque S-order component changes depending on the range in which the auxiliary groove 5 is provided in the rotation axis direction.
  • the vertical axis represents the cogging torque S-order component, and the case where the auxiliary groove 5 is not provided is standardized as 100%.
  • the auxiliary groove 5 is provided in the vicinity of the center of the stator core 3 in the rotation axis direction. A special effect obtained by this structure will be described.
  • the auxiliary groove 5 is not provided at the axial end of the stator core 3, but when the auxiliary groove 5 is provided at the axial end, the rotor at the axial end is provided. The part where the gap is large will increase. This indicates that there is a large gap for foreign matter to enter, and if the foreign matter enters, the rotor may be locked. In the locked state, the rotor is fixed, and particularly in such an electric power steering apparatus, the driver cannot steer, which is not preferable.
  • the structure in which the auxiliary groove 5 is provided in the vicinity of the center in the rotational axis direction has a greater effect of preventing the entry of foreign matter compared to the case where the auxiliary groove 5 is provided at the end in the axial direction in FIG.
  • FIG. 14 shows a positional relationship between the position of the permanent magnet 1 and the auxiliary groove 5.
  • 14A, 14B, and 14C show one permanent magnet 1 and projections 8 provided on both sides thereof.
  • the magnetic pole of the rotor is composed of one segment type magnet for one magnetic pole. The upper and lower sides are the direction of the axis of rotation and the left and right sides are the circumferential direction.
  • FIG. 14 (d) is a view of the teeth tip portion of the stator core 3 as seen from the rotor side, and there are a portion where the auxiliary groove 5 is provided and a portion where the auxiliary groove 5 is not provided, corresponding to the configuration of FIG. ing.
  • the permanent magnet 1 has an ideal arrangement, so that the cogging torque S-order component does not appear.
  • a cogging torque S-order component is generated.
  • Cogging torque S-order components cancel each other, so that almost no S-order component appears in the total cogging torque.
  • FIG. 15 shows the positional relationship between the position of the permanent magnet 1 and the auxiliary groove 5 corresponding to FIG. Similarly, in FIG. 15A, the cogging torque S-order component does not occur. In FIG. ) Cogging torque S-order components cancel each other, so the S-order component hardly appears in the total cogging torque. This is a case where the positional deviation is uniform in the axial direction.
  • the S-order component hardly appears in the total cogging torque.
  • the direction of displacement is opposite to that of the region of length L5, and the canceling effect of the cogging torque S-order component is compared to the case of FIG. It gets smaller. Therefore, the S-order component also becomes larger in the total cogging torque than in the case of FIG.
  • the configuration shown in FIG. 4 has an effect that the effect of reducing the cogging torque S-order component can be sufficiently exhibited even when the positional deviation of the permanent magnet 1 is not uniform in the axial direction.
  • the positional deviation of the permanent magnet 1 has been described here, the same effect can be obtained even when the shape variation is non-uniform in the axial direction or the magnetic characteristics are non-uniform in the axial direction. Needless to say.
  • step skew configuration As a conventional cogging torque reduction measure, there is a so-called step skew configuration in which one magnetic pole is aligned with two or more segment-type permanent magnets in the axial direction and further skewed stepwise.
  • the configuration of the stage skew is more disadvantageous than the case of one segment type permanent magnet for one magnetic pole in terms of a decrease in torque due to skew and an increase in the number of parts.
  • the step skew structure that can cancel the influence of the permeance pulsation of the slot is more advantageous with respect to the cogging torque.
  • the positional deviation of the permanent magnet is not uniform in the axial direction,
  • the effect of reducing the cogging torque S-order component can be sufficiently exhibited even when the shape variation is non-uniform in the axial direction or the magnetic characteristics are non-uniform in the axial direction.
  • Patent Documents 1, 2, and 3 describe an example in which two or more auxiliary grooves 5 are provided in each tooth 7, but in the present embodiment, one auxiliary groove 5 is provided for each tooth.
  • the cogging torque S-order component generated by the variation on the rotor side is greatly related to the S-order component of the permeance pulsation due to the stator slot.
  • the S-order of the permeance pulsation is provided. There is an effect that it is easy to change the amplitude and phase of the next component.
  • the average gap length is smaller when the number of auxiliary grooves 5 is smaller, the number of auxiliary grooves 5 is one and only a part of the axial direction is provided. There is also an effect that it can be suppressed.
  • the auxiliary groove 5 has a shape obtained by cutting out the iron core into a square shape, but is not limited thereto.
  • the same effect can be obtained with a shape in which the iron core is cut out in an arc shape, a shape cut out in a triangular shape, or the like.
  • the present invention relates to a rotor having a rotor core, a plurality of magnetic poles provided on the rotor core and made of permanent magnets, a plurality of teeth facing the plurality of magnetic poles, and these
  • a stator having a stator core formed with a slot for accommodating an armature winding wound around a tooth, and having an auxiliary groove in the axial direction of the stator core at a portion of the tooth facing the rotor
  • the stator has the auxiliary groove provided in a part of the stator core in the axial direction, the number of the magnetic poles (the number of magnetic poles) is P, and the slot When the number of slots (number of slots) is S, 0.75 ⁇ S / P ⁇ 1.5
  • the cogging torque generated due to variations on the rotor side such as a permanent magnet sticking position error, shape error, and magnetic characteristic variation can be significantly reduced.
  • a permanent magnet type rotating electrical machine having 10 poles and 12 slots.
  • a permanent magnet type rotating electrical machine comprising a stator having a stator core having S slots and an auxiliary groove 5 provided in a portion of the stator core facing the rotor of the teeth.
  • a permanent magnet type rotating electrical machine comprising a stator having a stator core having S slots and an auxiliary groove 5 provided in a portion of the stator core facing the rotor of the teeth.
  • n portions provided in the circumferential direction per tooth.
  • the cogging torque S-order component of the portion provided in m locations is provided.
  • the phases of the cogging torque S-order components of the n portions are mutually inverted.
  • the cogging torque S-order component is a component that pulsates S times by one rotation of the rotor. With this configuration, it is possible to significantly reduce the cogging torque generated due to variations on the rotor side such as a permanent magnet sticking position error, shape error, and magnetic characteristic variation.
  • the cogging torque S-order component generated due to variations on the rotor side such as a permanent magnet sticking position error, shape error, and variations in magnetic characteristics is large, and the robustness is low with respect to variations on the rotor side. It is. Therefore, it is necessary to solve this problem in a permanent magnet type rotating electrical machine that is mass-produced as in an electric power steering device.
  • One auxiliary groove 5 is provided for each tooth.
  • 16, 17, and 18 are cross-sectional views, but are cross-sectional views of a portion where the auxiliary groove 5 is provided, and there are portions where the auxiliary groove 5 is not provided depending on the position in the axial direction as in the first embodiment. The figure is omitted. With such a configuration, since the winding coefficient is high, it is possible to realize both the effect of being small and high torque and the effect of increasing the robustness against variations on the rotor side.
  • FIG. FIG. 19 shows a partial perspective view in the case where the auxiliary groove 5 is provided at the axial end of the stator core 3 and the auxiliary groove 5 is not provided at the central portion in the axial direction.
  • the auxiliary grooves 5 In order to show the arrangement of the auxiliary grooves 5 in an easy-to-understand manner, only half of the 12 teeth 7 of the stator core 3 are shown, and the rest are omitted. In addition, components other than the stator core are omitted.
  • the auxiliary groove 5 is arranged such that the auxiliary groove 5 is provided from the end in the rotation axis direction (upper part of FIG. 19) to the length L6, and extends below the length L7. There is a range where the auxiliary groove 5 is not provided. Further, an auxiliary groove 5 is provided in a portion having a length L8 below. Even in this configuration, the same effect as in FIG. 4 of the first embodiment can be obtained. That is, the cogging torque S-order component generated when variations occur on the rotor side can be significantly suppressed as compared with the conventional example. In addition, there is an effect that the effect of reducing the cogging torque S-order component can be sufficiently exhibited even when the positional deviation of the permanent magnet 1 is not uniform in the axial direction. Although only the positional deviation of the permanent magnet 1 has been described here, the same effect can be obtained even when the shape variation is non-uniform in the axial direction or the magnetic characteristics are non-uniform in the axial direction. Needless to say.
  • FIG. 20 is a partial perspective view of the stator core 3 according to the fourth embodiment.
  • the portions where the auxiliary grooves 5 are provided and the portions where the auxiliary grooves 5 are not provided are alternately arranged.
  • the auxiliary groove 5 is provided with an axial length La, the lower part thereof is not provided with the auxiliary groove 5 in the axial direction length Lb, and the auxiliary groove 5 is provided with an axial length La in the lower part thereof.
  • FIG. 20 shows a four-layer configuration, but the present invention is not limited to this.
  • M is an integer of 2 or more.
  • FIG. 21 (a) shows an example in which the axial length of the stator core 3 is different. Is obtained.
  • FIG. 21 (c) shows a configuration in which the portions with and without the auxiliary grooves 5 are alternately arranged in the central portion of the stator core 3 in the axial direction, and the auxiliary grooves 5 are not provided at the axial ends. Similar effects can be obtained.
  • FIG. 22 is a graph in which the thickness of one layer is plotted on the horizontal axis and the cogging torque is plotted on the vertical axis when variations occur on the rotor side. From this figure, it can be seen that when the thickness of one layer exceeds 2 mm, a remarkable effect of reducing the cogging torque can be obtained. Therefore, when the axial length of the stator core 3 is Lc, and the total number of layers having the auxiliary grooves 5 and layers having no auxiliary grooves 5 is M. Lc / M ⁇ 2mm The cogging torque can be greatly reduced when variations occur on the rotor side. Furthermore, it is needless to say that the cogging torque S-order component can be reduced even when variations such as the positional deviation of the permanent magnet 1 are not uniform in the axial direction based on the same principle as described in detail in the first embodiment.
  • the permanent magnet 1 is an example of a surface magnet type provided on the surface of the rotor core 3, but the present invention is not limited to this and can be applied.
  • FIG. 23 shows a magnet-embedded structure in which the permanent magnet 1 is embedded in a window portion 9 provided inside the rotor core.
  • the gap 9a is formed on the left and right of the permanent magnet 1
  • the magnetic path portion of the rotor core 2 provided between the adjacent permanent magnets 1, that is, the iron core portion 3a between the magnetic poles can be made thin, the leakage magnetic flux can be reduced, and a small high torque rotating electrical machine can be obtained.
  • the gap 9a is present on the left and right sides of the permanent magnet 1, the position of the permanent magnet 1 is shifted, and the cogging torque S-order component is increased.
  • the configuration provided with the stator core of the present invention there is an effect that the robustness is high with respect to variations on the rotor side and the cogging torque S-order component can be reduced.
  • FIG. 24 is a conceptual diagram of an electric power steering apparatus for a vehicle using a permanent magnet type rotating electric machine according to the present invention showing Embodiment 6 of the present invention.
  • the electric power steering apparatus is provided with a column shaft 23 for transmitting a steering force from the steering wheel 22.
  • the column shaft 23 is connected to a worm gear 24 (details omitted, only the gear box is shown), and the output (torque, rotation speed) of the motor 20 driven by the controller 21 is perpendicular to the rotation direction. , And at the same time decelerate to increase the assist torque.
  • Reference numeral 25 denotes a handle joint which transmits a steering force and also changes the direction of rotation.
  • torque pulsation can be reduced by incorporating the permanent magnet type rotating electric machine according to the present invention as the motor 20 of the electric power steering apparatus of the present embodiment. For this reason, the steering feeling in the electric power steering apparatus can be improved. Further, since the motor for the electric power steering apparatus is mass-produced, there is a problem that the robustness of the cogging torque against the manufacturing variation must be improved. On the other hand, by installing the permanent magnet type rotating electrical machine described in the first to fifth embodiments, the cogging torque component due to the variation of the rotor can be greatly reduced, so that the robustness is improved. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Brushless Motors (AREA)

Abstract

 永久磁石の貼付位置誤差や磁石特性のばらつき等,回転子側のばらつきに起因するコギングトルクを低減し,トルク脈動が小さく,小型軽量の永久磁石型モータを得る。  回転子鉄心,及びこの回転子鉄心に設けられ永久磁石により構成された複数の磁極とを有する回転子と,複数の磁極と対向する複数のティース,及びこれらのティースに巻回された電機子巻線を収めるスロットを形成した固定子鉄心を有し,ティースの回転子に対向する部分において固定子鉄心の軸方向に補助溝が設けられた固定子とを具備する永久磁石型回転電機において,固定子は,補助溝が固定子鉄心の軸方向の一部に設けられており,かつ,磁極の数(磁極数)をP,スロットの数(スロット数)をSとしたとき, 0.75<S/P<1.5 なる関係が成り立つようにしたものである。

Description

永久磁石型回転電機及びこれを用いた電動パワーステアリング装置
 この発明は,回転子に永久磁石を備えた永久磁石型回転電機,及びこれを用いた電動パワーステアリング装置に関するものである。
 近年,様々な用途にコギングトルクの小さいモータが要求されている。例えば,産業用のサーボモータや,エレベータ用巻き上げ機等がある。車両用に着目すると,燃費向上,操舵性の向上のために電動パワーステアリング装置が普及している。電動パワーステアリング装置に用いられるモータには,そのコギングトルクがギヤを介して運転者に伝わるので,滑らかな操舵感覚を得るためには,モータのコギングトルク低減に対する強い要求がある。これに対し,コギングトルクを低減する手法として,固定子の鉄心に補助溝を設ける手法がある。例えば特許文献1,2,3がある。
特開2001-25182号公報 特表2006-230116号公報 WO2009/84151
 特許文献1の永久磁石型回転電機にあっては,補助溝がモータの軸方向全部に設けられているため,等価的なエアギャップ長が大きくなりトルクが低下するという問題点があった。また,特許文献1,2,3ともに極数とスロット数の最小公倍数の脈動数とその整数倍のコギングトルク低減には効果を奏するが,永久磁石の貼付位置誤差や形状誤差,磁気特性のばらつき等の回転子側のばらつきによって発生するコギングトルク成分(回転子1回転でスロット数に一致する回数だけ脈動する成分)を十分抑制することはできないという課題があった。
 この発明は,上記のような問題点を解決するためになされたものであり,コギングトルク低減と小型高トルクを両立した永久磁石型回転電機を得ることを目的としている。
 この発明は,回転子鉄心,及びこの回転子鉄心に設けられ永久磁石により構成された複数の磁極とを有する回転子と,上記複数の磁極と対向する複数のティース,及びこれらのティースに巻回された電機子巻線を収めるスロットを形成した固定子鉄心を有し,上記ティースの上記回転子に対向する部分において上記固定子鉄心の軸方向に補助溝が設けられた固定子とを具備する永久磁石型回転電機において,上記固定子は,上記補助溝が上記固定子鉄心の軸方向の一部に設けられており,かつ,上記磁極の数(磁極数)をP,スロットの数(スロット数)をSとしたとき,
0.75<S/P<1.5
なる関係が成り立つようにしたものである。
 この発明によれば,永久磁石の貼付位置誤差や磁石特性のばらつき等,回転子側のばらつきに起因するコギングトルクを低減し,トルク脈動が小さく,小型軽量の永久磁石回転電機を得られる顕著な効果を奏する。
本発明の実施の形態1による永久磁石型回転電機を示す断面図である。 図1のA-A断面を示す断面図である。 図1のB-B断面を示す断面図である。 実施の形態1における固定子鉄心を示す部分斜視図である。 実施の形態1における固定子鉄心の他の例を示す部分斜視図である。 実施の形態1における回転子を示す断面図である。 実施の形態1におけるコギングトルク波形を示す説明図である。 実施の形態1におけるコギングトルク波形を示す説明図である。 実施の形態1におけるコギングトルクの次数成分を示す説明図である。 実施の形態1におけるコギングトルクのヒストグラムを示す説明図である。 実施の形態1における補助溝とスロット開口部の寸法を示す説明図である。 実施の形態1における補助溝の幅とコギングトルクの関係を示す説明図である。 実施の形態1における補助溝を設けた部分の割合とコギングトルクS次成分の関係を示す説明図である。 実施の形態1における永久磁石の位置ずれの一例を示す説明図である。 実施の形態1における永久磁石の位置ずれの他の例を示す説明図である。 本発明の実施の形態2による永久磁石型回転電機を示す断面図である。 実施の形態2による永久磁石型回転電機の他の例を示す断面図である。 実施の形態2による永久磁石型回転電機の他の例を示す断面図である。 本発明の実施の形態3による永久磁石型回転電機の固定子鉄心を示す部分斜視図である。 本発明の実施の形態4による永久磁石型回転電機の固定子鉄心を示す部分斜視図である。 実施の形態4における固定子鉄心の1つのティースを示す部分斜視図である。 実施の形態4におけるコギングトルクを示す説明図である。 本発明の実施の形態5による永久磁石型回転電機を示す断面図である。 本発明の実施の形態6による電動パワーステアリング装置を示す説明図である。
 以下,本発明の永久磁石型回転電機の好適な実施の形態につき図面を用いて説明する。
実施の形態1.
 図1は本実施の形態1の永久磁石型回転電機について,回転軸に平行な平面上の断面図を示す。永久磁石1が回転子鉄心2の表面に備え付けられている。回転子鉄心2に回転軸10が圧入されており,軸受け11a,11bによって回転子が回転自在となるような構成となっている。回転子には回転角度を検出するための回転角度センサ14も設けられている。回転角度センサ14は例えばレゾルバやホールセンサとマグネットあるいはエンコーダで構成される。
固定子鉄心3は永久磁石1に対向するように設けられ,固定子鉄心は例えば電磁鋼板を積層して構成されたり,圧粉鉄心によって構成されていてもよい。固定子鉄心3には電機子巻線4が巻回されている。固定子はフレーム13に圧入や焼き嵌め等によって固定され,さらにフレーム13はハウジング12に固定されている。
 固定子鉄心3の永久磁石1に対向する部分にコギングトルク低減用の補助溝5が設けられている。さらにこの補助溝5は回転軸方向の一部分に設けられている。図1では固定子鉄心の回転軸方向の中心付近に設けられており,軸方向端部には補助溝5は設けられていない。
 この構成をより詳細に説明するために,図2と図3を示す。図2は図1の回転軸10に垂直なA-A断面での断面図である。これは補助溝5が設けられている部分の断面図である。永久磁石1は回転子鉄心2の表面に貼付けられていて,この例では極数は10となっている。さらに,永久磁石1の断面形状はかまぼこ形となっており,磁束の高調波成分を低減し,誘起電圧を正弦波状にすることでトルク脈動を低減している。回転子鉄心には突起部8が設けられていて,永久磁石1が周方向に滑らないように固定する役割を果たしている。
 一方,固定子は固定子鉄心3には電機子巻線4を巻回するためのスロット6が設けられている。図2の例では電機子巻線4は固定子鉄心3の径方向に伸びたティース7に集中的に巻き回されていて,スロット数は12であり12個あるティース7全てに電機子巻線4が巻回されている。さらに,本永久磁石型回転電機の相数は3であり,それらをU相,V相,W相とすると巻線の配置は図2に示すようにU1+,U1-,V1-,V1+,W1+,W1-,U2-,U2+,V2+,V2-,W2-,W2+のように配置されている。ここで+と-は巻き方向を示していて,+と-では巻き方向は互いに逆方向であることを示している。さらにU1+とU1-は直列接続され,U2-とU2+も直列接続されている。これらの2つの直列回路は並列接続されていてもよいし,直列接続されていてもよい。V相,W相も同様である。さらに,三相はY結線でもデルタ結線でもよい。
 この10極12スロットの永久磁石型回転電機は,極数:スロット数=2:3や4:3の組み合わせの永久磁石型回転電機と比べて,巻線係数が大きく小型高トルクの回転電機となり,さらに極数とスロット数の最小公倍数が大きく,コギングトルクのうち回転子1回転あたり最小公倍数と一致する回数脈動する成分が小さい傾向にある。しかしながら,永久磁石1の貼付位置誤差や形状誤差,磁気特性のばらつき等の回転子側のばらつきによって発生するコギングトルク12次成分が顕在するという課題がある。詳細は後述するが,本発明はこの課題を解決するために発案された。
 図2において,固定子のティース7はその先端部分すなわち回転子に対向する部分が周方向に伸びた形状をしており,スロット6の開口部は電機子巻線4が納まっている部分より小さくなっている。さらに,ティース7の回転子に対向する面には,補助溝5が1個のティース7について1個設けられている。また,補助溝5の周方向の位置はティース7の周方向中心に一致している。
 図3は図1の回転軸10に垂直なB-B断面での断面図である。これは補助溝5が設けられていない部分の断面図である。構成は図2と比較して補助溝5がないという点で異なるが,その他は同じ構造である。
 補助溝5の構成を理解しやすくするため部分斜視図で示したのが図4である。ただし,簡単のため固定子鉄心3のみを示し他の構成部品は省略している。さらに,回転子と対向する部分を見やすくするため,12個のティースのうち,半数の6個のみ示している。補助溝5は回転軸方向の中央部付近に設けられており,端部には設けられていない。詳細には回転軸方向の端部(図4の上部)から長さL1の部分においては補助溝5が設けられていない。その下の長さL2の部分に渡って補助溝5が設けられている。さらに,その下の長さL3の部分には補助溝5が設けられていない。
 このような構成にすることで,永久磁石1の貼付位置誤差や形状誤差,磁気特性のばら等の回転子側のばらつきによって発生するコギングトルク成分を抑制できるがその原理について説明する。
 図2の回転子における10個の永久磁石1は,その貼付位置は等間隔であり,断面形状も10個とも同一な例を示している。しかしながら,実機においては製造ばらつきが発生する。例えば,精度よく貼り付けても永久磁石1の貼付位置は等間隔にならず,周方向に数μm~100μm程度ずれることがある。一方,断面形状も理想的な左右対称な形状とならず,左右のいずれかの厚みが増し,もう一方の厚みが小さくなる場合が想定される。その一例を示したのが図6である。図6においては,永久磁石1の貼付位置が理想的な等間隔の位置から矢印で示す方向にずれていることを示している。さらに断面形状も左右対称とはならず矢印の方向にかまぼこ形の頂点の部分が移動して,左右対称とならないことを示している。製造ばらつきがない理想的な状態であればコギングトルクは回転子1回転あたり極数とスロット数の最小公倍数と同じ回数脈動する成分が主に発生する。しかしながら,製造ばらつきによって,回転子が図6ような状態になるとコギングトルクが増大し,回転子1回転あたりスロット数と同じ回数だけ脈動する成分が現れる。
 本実施の形態の例ではスロット数が12であるので,回転子1回転で12回すなわち機械角で360度/12=30度周期のコギングトルクが現れる。図7は30度(機械角)分のコギングトルクの波形を示した図である。補助溝5が設けられていない場合は点線で示したコギングトルク波形となり,30度周期のコギングトルクが大きく現れていることがわかる。一方,軸方向全部に補助溝5を1個設けた場合のコギングトルク波形においても30度周期のコギングトルクが大きく現れていることがわかる。ただし,その位相は補助溝5が設けられていない場合と反転している。これにより両者を合成するとコギングトルクが低減できることが理解できる。したがって,固定子鉄心3において回転軸方向の一部に補助溝5を1つのティースあたりに1個設けた構成にすると補助溝5のない部分で発生するコギングトルクと補助溝5のある部分で発生するコギングトルクの合計が永久磁石型回転電機のコギングトルクとなるため,30度周期のコギングトルクについてはキャンセルする効果が現れ、これを大幅に低減できると予測される。
 そこで,回転軸方向の一部に補助溝5を設けた図4のような構成した場合のコギングトルク波形を図7の実線の波形(本発明)に示す。このように30度周期のコギングトルクが大幅に低減され,結果としてコギングトルクのp-p値が大幅に小さくなっていることがわかる。
 回転子1回転分(機械角360度分)のコギングトルク波形を従来例と比較したのが図8である。従来例のコギングトルクの最大値を100%として規格化している。回転子に製造ばらつきが発生すると,従来例では回転子1回転で12回脈動する成分が大きく発生しているが,本発明の構成にするとその成分は大幅に低減されていることがわかる。そのp-p値は従来例のわずか1/10となっている。
 図9には図8のコギングトルクの周波数成分を示す。次数は回転子1回転を1次としている。12次成分すなわち脈動数がスロット数と同じ成分が大幅に小さくなっていることが確認できる。したがって,本実施の形態の構成にすることで回転子側のばらつきに起因するコギングトルクを大幅に低減できることがわかる。
 上記は回転子側のばらつきのパターンが図6に示した場合であったが,本発明の効果を実証するため10個の永久磁石1にそれぞれランダムなばらつきが発生するとして,合計10000台の回転電機のコギングトルクについてヒストグラムを作成した。その結果が図10である。図10(a)には従来例のヒストグラム,図10(b)には図4の構成(本発明)のヒストグラムである。回転子側のばらつき条件は同じとして比較している。図10(a)ではコギングトルクは広く分布しており,ばらつきのパターンによってはコギングトルクが大きくなってしまうという課題があった。しかしながら,本発明の構成になると回転子側の永久磁石1のばらつきのパターンにかかわらずコギングトルクは小さいことがわかる。
すなわち,回転子側の製造ばらつきに対してロバスト性の高い永久磁石型回転電機を得ることができたことになる。従来の補助溝の構成では回転子1回転あたりの脈動数が極数とスロット数の最小公倍数に一致する成分について低減効果を狙ったものであり,回転子側のばらつきによって発生する成分(脈動数がスロット数と一致する成分)に対しては低減効果を十分得ることはできない。
 図5には図4とは異なる構造を示す。ただし,簡単のため固定子鉄心3のみを示し,他の構成部品は省略している。さらに,回転子と対向する部分を見やすくするため,12個のティース7のうち,半数の6個のみ示している。補助溝5は回転軸方向の上部に設けられており,下部には設けられていない。詳細には回転軸方向の端部(図5の上部)から長さL4の部分においては補助溝5が設けられている。その下の長さL5の部分には補助溝5が設けられていない。このような構成としても図4の構成と同様に,回転子のばらつきによって発生する30度周期のコギングトルクは長さL4の部分で発生するコギングトルクと長さL5の部分で発生するコギングトルクが互いにキャンセルする効果が得られる。その結果,回転子側の製造ばらつきに対してロバスト性の高い永久磁石型回転電機を得ることができる。
 次に,補助溝5の形状について述べる。図11は補助溝5の幅Wdと補助溝5の深さHdとスロット開口幅Wsとティース先端部の高さHsについて説明した図である。本発明の構造では,補助溝5を設けた部分と補助溝5を設けない部分で,コギングトルクの脈動数がスロット数と一致する成分の位相を反転させてキャンセル効果を得るものであるから,補助溝5の形状の選定がその効果の大きさに影響を及ぼす。補助溝5の幅Wdとスロット開口幅Wsの比を横軸に,回転子にばらつきが生じたときのコギングトルクのO.A.値を縦軸にとったグラフが図12である。Wd/Ws=0すなわち補助溝5を設けない場合に対して,Wd/Ws≧1.0とするとコギングトルクが補助溝5を設けない場合の1/2以下となっている。さらにWd/Ws≧1.25とするとコギングトルクが0.001Nmと非常に小さい値となる。回転子のばらつきによるコギングトルクがこの程度まで抑制されていると,例えば後述する電動パワーステアリング装置に回転電機が組み込まれた場合に,運転者がコギングトルクを感じることがなく良好な操舵フィーリングを得ることができるという効果が得られる。
 Wd/Ws≧1.0とすると,固定子鉄心のスロットによるパーミアンスの脈動成分を変化させコギングトルクの脈動数がスロット数と一致する成分の位相を反転させることができるため,補助溝5のない部分でのコギングトルクと互いにキャンセルすることができる。補助溝5を1つ設ける場合にはWd/Ws≧1.0とすればよく,2個以上設ける場合には該ティースに設けられた全ての補助溝5の幅の合計をWdと定義してWd/Ws≧1.0となるようにすれば同様の効果が得られる。
 さらに,補助溝5の深さHdはティース先端部の厚みHsよりも大きいことが望ましい。これも固定子鉄心のスロットによるパーミアンスの脈動成分を変化させ,脈動数がスロット数と一致するコギングトルクの成分の位相を反転させることができる。上述した補助溝5のない部分でのコギングトルクとのキャンセル効果を十分に発揮することができる。
 次に,補助溝5を設ける範囲について検討する。固定子鉄心3のスロット数をS(S:整数,本実施の形態ではS=12)とし,回転子1回転での脈動数がスロット数と一致するコギングトルクの成分をコギングトルクS次成分と呼ぶことにする。このコギングトルクS次成分が回転軸方向に補助溝5を設ける範囲によってどのように変化するのかをシミュレーションした結果が図13である。縦軸はコギングトルクS次成分であり,補助溝5を設けない場合を100%として規格化して示している。横軸は固定子鉄心の回転軸方向の長さLcに対する補助溝5を設けた部分の回転軸方向の長さの合計Ldの割合を示したものである。すなわちLd/Lcであり,図4の場合ではLd/Lc=L2/(L1+L2+L3)であり,図5の場合ではLd/Lc=L4/(L4+L5)である。
Ld/Lc=0.5で最小値となり,0.4≦Ld/Lc≦0.6で補助溝5がない構成のとき(Ld/Lc=0のとき)あるいは,回転軸方向に全て補助溝5が設けられている場合(Ld/Lc=1のとき)の約1/5までコギングトルクS次成分を低減できていることがわかる。
 以上により,固定子鉄心の軸方向長さをLcとし,補助溝5を設けた部分の軸方向の長さをLdとしたとき,LcとLdは0.4≦Ld/Lc≦0.6なる関係式を満たし,望ましくはLd/Lc=0.5としたことを特徴とすれば,補助溝5のある部分とない部分のコギングトルクのキャンセル効果が十分に発揮されて,回転子側のばらつきによって発生するコギングトルク成分を大幅に低減する効果が得られることがわかる。
 図4の例では,補助溝5を固定子鉄心3の回転軸方向中心付近に設けた構造としているが,この構造によって得られる特別な効果について説明する。図4の構成では固定子鉄心3の軸方向端部には補助溝5が設けられていないが,軸方向端部に補助溝5が設けられている場合には,軸方向端部において回転子とのギャップが大きい部分が増加することになる。これは異物が侵入する隙間が大きいことを示し,異物が侵入すると回転子がロックされた状態になる可能性がある。ロック状態になると回転子が固定されてしまい,特に電動パワーステアリング装置においてこのような状態になると運転者が操舵できなくなるため好ましくない。したがって補助溝5を回転軸方向中心付近に設けた構造とすることで図5等軸方向端部に補助溝5が設けられている場合と比較して異物侵入を防止する効果が大きくなる。
 また,上記の異物侵入防止効果以外に以下に述べるような磁気回路上有利な効果がある。永久磁石1の貼付位置誤差が発生し,その誤差すなわちずれ方が回転子の回転軸方向に一様である場合と一様でない場合が想定される。図14に永久磁石1の位置ずれの状態と補助溝5の位置関係について示す。図14(a),(b),(c)は1つの永久磁石1とその両側に設けられた突起部8を示す。この場合回転子の磁極は1つの磁極について1つのセグメント型磁石で構成している。紙面に向って上下が回転軸方向,左右が周方向となる。
図14(d)は固定子鉄心3のティース先端部を回転子側から見た図であり,補助溝5が設けられている部分と設けられてない部分があり,図4の構成に対応している。図14(a)の場合,永久磁石1は理想的な配置となっているのでコギングトルクS次成分が現れない。しかし,図14(b)のように位置がずれるとコギングトルクS次成分が発生する。しかしながら,図14(d)に示した長さL1の領域と長さL3の領域(補助溝5のない領域)と長さL2(=L2/2+L2/2)の領域(補助溝5のある領域)のコギングトルクS次成分は互いにキャンセルするため合計のコギングトルクにはS次成分はほとんど現れない。
 図15には,図5に対応して,永久磁石1の位置ずれの状態と補助溝5の位置関係について示す。図15(a)も同様にコギングトルクS次成分が発生せず,図15(b)では長さL4の領域(補助溝5のある領域)と長さL5の領域(補助溝5のない領域)のコギングトルクS次成分が互いにキャンセルするため合計のコギングトルクにはS次成分はほとんど現れない。これは位置のずれ方が軸方向に一様であった場合である。
 しかしながら,図14(c),図15(c)のように回転軸方向に一様でない位置ずれが生じた場合は少し異なる。図14(d)の長さL1の領域と長さL3の領域(補助溝5のない領域)において,矢印で示した位置ずれの方向が互いに逆方向であるため,平均化すると位置ずれが生じていない場合とほぼ同じとなる。一方,長さL2(=L2/2+L2/2)の領域(補助溝5のある領域)についても上半分のL2/2の領域と下半分のL2/2の領域では矢印で示した位置ずれの方向が互いに逆方向であるため平均化すると位置ずれが生じていない場合とほぼ同じとなる。したがって,コギングトルクS次成分のキャンセル効果が十分得られるため,合計のコギングトルクにはS次成分はほとんど現れない。
一方,図15(d)の長さL4の領域では位置ずれの方向が,長さL5の領域とは逆方向となっており,コギングトルクS次成分のキャンセル効果が図14の場合に比べて小さくなってしまう。したがって合計のコギングトルクにも図14の場合と比べてS次成分が大きくなってしまう。
 以上により,図4の構成とする方が,永久磁石1の位置ずれが軸方向で一様でない場合でもコギングトルクS次成分の低減効果を十分に発揮することができるという効果がある。なお,ここでは永久磁石1の位置ずれについてのみ述べたが,形状のばらつきが軸方向で不均一な場合や,磁気特性が軸方向で不均一な場合であっても同様の効果が得られることは言うまでもない。
 従来のコギングトルク低減対策として1つの磁極を軸方向に2つ以上セグメント型永久磁石を並べてさらに階段状にスキューする,いわゆる段スキューの構成がある。段スキューの構成は,スキューによるトルクの低下や部品点数の増加といった点で1つの磁極について1つのセグメント型永久磁石で構成される場合より不利である。一方,従来の永久磁石型回転電機の構成ではコギングトルクに関しては,スロットのパーミアンス脈動の影響をキャンセルできる段スキュー構造の方が有利であった。
しかしながら,本発明の構成によれば,すでに説明したように1つの磁極について1つのセグメント型永久磁石で構成された回転子の構成において,永久磁石の位置ずれが軸方向で一様でない場合や,形状のばらつきが軸方向で不均一な場合や,磁気特性が軸方向で不均一な場合でもコギングトルクS次成分の低減効果を十分に発揮することができるという効果がある。 また,スキューによるトルクの低下や部品点数の増加といった点も解消できるという効果がある。
 特許文献1,2,3では補助溝5は各ティース7に2個あるいは2個以上設けた例が記載されているが,本実施の形態では補助溝5は各ティースに1個としている。回転子側のばらつきによって発生するコギングトルクS次成分は,固定子のスロットによるパーミアンスの脈動のS次成分が大きく関与しているが,補助溝5を1個設けることでそのパーミアンスの脈動のS次成分の振幅や位相を変化させるのが容易であるという効果がある。
また,補助溝5は少ない方が,平均的なギャップ長が小さくなるため,補助溝5を1個とし,さらに軸方向の一部にしか設けないということで負荷時のトルクの低下を最小限度に抑えることができるという効果もある。
 本実施の形態では補助溝5は鉄心を四角形状に切り抜いた形状としているが,これに限らない。例えば円弧状に鉄心を切り抜いた形状や,三角形に切り抜いた形状等でも同様の効果が得られることは言うまでもない。
 以上のようにこの発明は,回転子鉄心,及びこの回転子鉄心に設けられ永久磁石により構成された複数の磁極とを有する回転子と,上記複数の磁極と対向する複数のティース,及びこれらのティースに巻回された電機子巻線を収めるスロットを形成した固定子鉄心を有し,上記ティースの上記回転子に対向する部分において上記固定子鉄心の軸方向に補助溝が設けられた固定子とを具備する永久磁石型回転電機において,上記固定子は,上記補助溝が上記固定子鉄心の軸方向の一部に設けられており,かつ,上記磁極の数(磁極数)をP,スロットの数(スロット数)をSとしたとき,
0.75<S/P<1.5
なる関係が成り立つようにしたことにより,永久磁石の貼付位置誤差や形状誤差,磁気特性のばらつき等の回転子側のばらつきによって発生するコギングトルクを大幅に低減できるという顕著な効果を奏する。
 以上は10極12スロットの永久磁石型回転電機において,補助溝5を各ティースに1個設けた例を示した。これを一般化すると以下のようになる。スロット数がSである固定子鉄心を有する固定子と固定子鉄心のティースの回転子に対向する部分に設けられた補助溝5とを具備する永久磁石型回転電機において,補助溝5を1つのティースあたり周方向にm箇所設けられている部分と1つのティースあたり周方向にn箇所設けられている部分が軸方向に存在させて,さらに,m箇所設けられている部分のコギングトルクS次成分と,n箇所設けられている部分のコギングトルクS次成分の位相を互いに反転させる。ただし,m,nは互いに異なる整数,m≧0,n≧0である。また,コギングトルクS次成分とは回転子1回転でS回脈動する成分のことである。
この構成により,永久磁石の貼付位置誤差,や形状誤差,磁気特性のばらつき等の回転子側のばらつきによって発生するコギングトルクを大幅に低減できる効果を得る。
実施の形態2.
 実施の形態1では極数10,スロット数12の永久磁石型回転電機の例について述べたが,本発明はそれに限らない。
永久磁石型回転電機の極数をP,スロット数をSとすると,
0.75<S/P<1.5
なる関係がある組み合わせの場合,特許文献1,2,3で述べられているS/P=0.75,S/P=1.5の場合に比べて巻線係数が高く永久磁石の磁束を効率的に利用し小型で高トルクの永久磁石型回転電機が得られることが知られている。さらに,極数とスロット数の最小公倍数が大きいため,回転子1回転で極数とスロット数の最小公倍数と一致する回数だけ脈動するコギングトルク成分がS/P=0.75,S/P=1.5の場合に比べて小さいことも知られている。
一方で,永久磁石の貼付位置誤差や形状誤差,磁気特性のばらつき等の回転子側のばらつきによって発生するコギングトルクS次成分が大きく,回転子側のばらつきに対してロバスト性が低いことが課題である。したがって,電動パワーステアリング装置に搭載される場合のように大量生産される永久磁石型回転電機においてはこの課題を解決する必要があった。
0.75<S/P<1.5
を満たす永久磁石型回転電機のうち,図16にはP=14,S=12の例,図17にはP=8,S=9の例,図18にはP=10,S=9を示した。それぞれ各ティースに補助溝5を1個設けてある。
図16,17,18は断面図であるが,補助溝5を設けた部分の断面図であり,実施の形態1と同様に軸方向の位置によっては補助溝5を設けていない部分があるが,その図は省略している。
このような構成にすると,巻線係数が高いので小型で高トルクとなる効果と回転子側のばらつきに対してロバスト性の高くなる効果の両立が実現できる。
また,これらの極数とスロット数の整数倍の組み合わせでも同じ効果が得られるので極数P=10,スロット数S=12も含めて一般化すると,
Nを自然数とし,
極数P=12N±2N,スロット数S=12N
極数P=9N±N,スロット数S=9N
であれば同じ効果が得られる。
実施の形態3.
 図19には固定子鉄心3の軸方向端部に補助溝5を設け,軸方向中央部分には補助溝5を設けない場合の部分斜視図を示す。補助溝5の配置をわかりやすく示すため固定子鉄心3の12個あるティース7のうち半分の6個のみを示し,残りは省略している。また,固定子鉄心以外の構成部は省略している。
 補助溝5の配置は,詳細には回転軸方向の端部(図19の上部)から長さL6の部分においては補助溝5が設けられていて,その下の長さL7の部分に渡って補助溝5が設けられていない範囲がある。さらに,その下の長さL8の部分には補助溝5が設けられている。この構成においても実施の形態1の図4と同じような効果が得られる。
すなわち,回転子側にばらつきが発生したときに生じるコギングトルクS次成分を従来例に比べて大幅に抑制することができる。また,永久磁石1の位置ずれが軸方向で一様でない場合でもコギングトルクS次成分の低減効果を十分に発揮することができるという効果がある。
なお,ここでは永久磁石1の位置ずれについてのみ述べたが,形状のばらつきが軸方向で不均一な場合や,磁気特性が軸方向で不均一な場合であっても同様の効果が得られることは言うまでもない。
実施の形態4.
 図20には本実施の形態4の固定子鉄心3の部分斜視図を示す。補助溝5の設けた部分と補助溝5を設けない部分が交互に配置されている。軸方向長さLaで補助溝5が設けられ,その下部は軸方向長さLbの部分には補助溝5がなく,さらにその下部には軸方向長さLaで補助溝5が設けられ,さらにその下部では軸方向長さLbの部分には補助溝5がない。すなわち軸方向に補助溝5の有無が合計4層となった構成である。
 このような構成としても,実施の形態1で述べたように,永久磁石1の位置のずれ方が軸方向に不均一となった場合や形状のばらつきが軸方向で不均一な場合や,磁気特性が軸方向で不均一な場合であっても,補助溝5の設けられた層と補助溝5のない層でのコギングトルクS次成分のキャンセル効果が十分に発揮されるという効果が得られる。
 図20は4層の構成について示したが,これに限らず,一般にM層構造(Mは2以上の整数)とした場合でも同様の効果が得られる。例えば,図21(a)のように8層とした場合でも良いし,図21(b)は固定子鉄心3の軸方向長さが異なる例であるが,35層とした場合でも同様の効果が得られる。図21(c)は固定子鉄心3の軸方向の中央部に補助溝5のある部分とない部分を交互に配置し,軸方向端部には補助溝5を設けない構成であるがこれも同様の効果が得られる。
 1層の厚みを横軸に,縦軸に回転子側にばらつきが生じたときのコギングトルクをプロットした図を図22に示す。この図から1層の厚みが2mmを超えると,コギングトルク低減の顕著な効果が得られることがわかる。したがって,固定子鉄心3の軸方向長さをLcとし,補助溝5のある層と補助溝5のない層の数の合計をMとしたとき。
Lc/M≧2mm
としたときに回転子側にばらつきが生じたときのコギングトルクを大幅に低減できる効果がある。さらに,実施の形態1で詳述した原理と同様の原理で永久磁石1の貼付位置ずれ等のばらつきが軸方向で一様でない場合でもコギングトルクS次成分の低減効果があることは言うまでもない。
実施の形態5.
 これまでの実施の形態では永久磁石1が回転子鉄心3の表面に設けられた表面磁石型の例であったが,本発明はこれに限らず適用できる。
図23には永久磁石1が回転子鉄心内部に設けられた窓部9に埋め込まれた,磁石埋め込み型構造である。このような構成にすると回転子鉄心2に設けられた窓部9において永久磁石1の位置がずれてもコギングトルクが大幅に増加しない。すなわち,回転子側のばらつきに対してロバスト性が高く,コギングトルクS次成分を小さくすることができる。
 さらに,回転子鉄心2の窓部9の形状が,永久磁石1の左右方向に大きく設計されていて,永久磁石1を挿入したときに永久磁石1の左右に空隙部9aができる場合には,隣り合う永久磁石1間に設けられた回転子鉄心2の磁路部分すなわち磁極間の鉄心部3aを細くできるため,漏れ磁束が小さくでき,小型高トルクの回転電機を得ることができる。
しかしながら,永久磁石1の左右に空隙部9aがあるために永久磁石1の位置ずれが生じ,コギングトルクS次成分が増大するという課題があった。しかしながら,本発明の固定子鉄心を設けた構成にすれば,回転子側のばらつきに対してロバスト性が高く,コギングトルクS次成分を小さくすることができるという効果を奏する。
実施の形態6.
 図24は,この発明の実施の形態6を示す本発明の永久磁石型回転電機を用いた車両用の電動パワーステアリング装置の概念図である。
図24において,電動パワーステアリング装置には,ステアリングホイール22から操舵力を伝えるためのコラムシャフト23が設けられている。コラムシャフト23にはウォームギヤ24(図では詳細は省略し,ギヤボックスのみ示している)が接続されており,コントローラ21によって駆動されるモータ20の出力(トルク,回転数)を,回転方向を直角に変えながら伝達し,同時に減速し,アシストトルクを増加させる。25はハンドルジョイントであり,操舵力を伝えると共に,回転方向も変える。26はステアリングギヤ(図では詳細は省略し,ギヤボックスのみ示している)であり,コラムシャフト23の回転を減速し,同時にラック27の直線運動に変換し,所要の変位を得る。このラック27の直線運動により車輪を動かし,車両の方向転換等を可能とする。
 このような電動パワーステアリング装置では,モータ20にて発生するトルクの脈動がウォームギヤ24とコラムシャフト23を介して,ステアリングホイール22に伝達される。したがって,モータ20が大きなトルク脈動を発生する場合,滑らかな操舵感覚を得ることが出来ない。
 しかしながら,本発明に係る永久磁石型回転電機を本実施の形態の電動パワーステアリング装置のモータ20として組み込むことによって,トルク脈動が低減できる。このため,電動パワーステアリング装置における操舵感覚を向上できる。また,電動パワーステアリング装置用のモータは大量生産されるため,製造ばらつきに対するコギングトルクのロバスト性を向上しなければならないという課題がある。これに対して実施の形態1~5で記載した永久磁石型回転電機を搭載することで,回転子のばらつきに起因するコギングトルク成分を大幅に低減できるため,ロバスト性が向上するという効果を奏する。
 1 永久磁石,2 回転子鉄心,3 固定子鉄心,3a 磁極間の鉄心部,4 電機子巻線,5 補助溝,6 スロット,7 ティース,8 突起部,9 窓部,9a 空隙部,10 回転軸,11a 軸受け,11b 軸受け,12 ハウジング,13 フレーム,14 回転角度センサ,20 モータ,21 コントローラ,22 ステアリングホイール,23 コラムシャフト,24 ウォームギヤ,25 ハンドルジョイント,26 ステアリングギヤ,27 ラック

Claims (17)

  1.  回転子鉄心,及びこの回転子鉄心に設けられ永久磁石により構成された複数の磁極とを有する回転子と,
    上記複数の磁極と対向する複数のティース,及びこれらのティースに巻回された電機子巻線を収めるスロットを形成した固定子鉄心を有し,上記ティースの上記回転子に対向する部分において上記固定子鉄心の軸方向に補助溝が設けられた固定子とを具備する永久磁石型回転電機において,
    上記固定子は,上記補助溝が上記固定子鉄心の軸方向の一部に設けられており,
    かつ,上記磁極の数(磁極数)をP,スロットの数(スロット数)をSとしたとき,
    0.75<S/P<1.5
    なる関係が成り立つことを特徴とする永久磁石型回転電機。
  2.  上記補助溝は,上記固定子鉄心の軸方向端部には設けられていないことを特徴とする請求項1記載の永久磁石型回転電機。
  3.  上記補助溝が上記固定子鉄心の軸方向中央部分に設けられていることを特徴とする請求項2記載の永久磁石型回転電機。
  4.  上記補助溝が上記固定子鉄心の軸方向中央部分に設けられており,上記固定鉄心の軸方向端部には上記補助溝が設けられておらず,また,上記磁極は1つの磁極について1つのセグメント型永久磁石で構成されていることを特徴とする請求項1記載の永久磁石型回転電機。
  5.  上記補助溝の幅が上記スロットの開口幅よりも大きいことを特徴とする請求項1記載の永久磁石型回転電機。
  6.  上記補助溝の深さは、上記ティースの先端部の厚みよりも大きいことを特徴とする請求項1記載の永久磁石型回転電機。
  7.  上記補助溝は上記ティースの回転子に対向する部分において,上記固定子鉄心の周方向中央部に1箇所設けられていることを特徴とする請求項1記載の永久磁石型回転電機。
  8.  上記補助溝が上記固定鉄心の軸方向の複数の位置に配置されており,さらに上記補助溝の周方向位置は上記各ティースにおいて一致していることを特徴とする請求項1記載の永久磁石型回転電機。
  9.  上記固定子鉄心の軸方向長さをLcとし,上記補助溝を設けた部分の上記固定子鉄心の軸方向の長さをLdとしたとき,LcとLdは0.4≦Ld/Lc≦0.6なる関係式を満たし,望ましくはLd/Lc=0.5としたことを特徴とする請求項1記載の永久磁石型回転電機。
  10.  Nを自然数とし,上記極数Pが12N±2N,スロット数Sが12Nであることを特徴とする請求項1記載の永久磁石型回転電機。
  11.  Nを自然数とし,上記極数Pが9N±N,スロット数Sが9Nであることを特徴とする請求項1記載の永久磁石型回転電機。
  12.  上記固定子鉄心の軸方向端部に上記補助溝を設け,上記固定子鉄心の軸方向中央部には補助溝を設けないことを特徴とする請求項1記載の永久磁石型回転電機。
  13.  上記補助溝のある部分と上記補助溝のない部分が上記固定子鉄心の軸方向に交互にM層分(Mは2以上の整数)設けられていることを特徴とする請求項1記載の永久磁石型回転電機。
  14.  上記固定子鉄心の軸方向の長さをLcとし,Lc/M≧2mmであることを特徴とする請求項13記載の永久磁石型回転電機。
  15.  上記永久磁石は上記回転子鉄心の内部に設けられた窓部に埋め込んだ磁石埋め込み型構造であることを特徴とする請求項1記載の永久磁石型回転電機。
  16.  回転子鉄心,及びこの回転子鉄心に設けられ永久磁石により構成された複数の磁極とを有する回転子と,
    上記複数の磁極と対向する複数のティース,及びこれらのティースに巻回された電機子巻線を収めるスロットを形成した固定子鉄心を有し,上記ティースの上記回転子に対向する部分において上記固定子鉄心の軸方向に補助溝が設けられた固定子とを具備する永久磁石型回転電機において,
    m,nは互いに異なる整数であり,m≧0,n≧0とし,
    上記固定子鉄心のスロットの数(スロット数)をSとしたとき,
    上記補助溝は上記固定子鉄心の周方向にm箇所設けられている部分とn箇所設けられている部分が存在し,
    m箇所設けられている部分のコギングトルクS次成分と,n箇所設けられている部分のコギングトルクS次成分の位相が互いに反転していることを特徴とする永久磁石型回転電機。
  17.  請求項1~16に記載の永久磁石型回転電機とギヤを具備したことを特徴とする電動パワーステアリング装置
PCT/JP2009/069781 2009-11-24 2009-11-24 永久磁石型回転電機及びこれを用いた電動パワーステアリング装置 WO2011064834A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/390,305 US9350204B2 (en) 2009-11-24 2009-11-24 Permanent magnet rotating electrical machine and electric power steering apparatus having a stator core with supplemental grooves
EP09851626.3A EP2506398B1 (en) 2009-11-24 2009-11-24 Permanent magnet type rotating electrical machine and electrically operated power steering device using the same
CN200980162467.3A CN102687373B (zh) 2009-11-24 2009-11-24 永磁体型旋转电机及使用该永磁体型旋转电机的电动动力转向装置
PCT/JP2009/069781 WO2011064834A1 (ja) 2009-11-24 2009-11-24 永久磁石型回転電機及びこれを用いた電動パワーステアリング装置
JP2011543001A JP5518092B2 (ja) 2009-11-24 2009-11-24 永久磁石型回転電機及びこれを用いた電動パワーステアリング装置
KR1020127004571A KR101285529B1 (ko) 2009-11-24 2009-11-24 영구자석형 회전 전기기계 및 이것을 이용한 전동 파워 스티어링 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/069781 WO2011064834A1 (ja) 2009-11-24 2009-11-24 永久磁石型回転電機及びこれを用いた電動パワーステアリング装置

Publications (1)

Publication Number Publication Date
WO2011064834A1 true WO2011064834A1 (ja) 2011-06-03

Family

ID=44065958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069781 WO2011064834A1 (ja) 2009-11-24 2009-11-24 永久磁石型回転電機及びこれを用いた電動パワーステアリング装置

Country Status (6)

Country Link
US (1) US9350204B2 (ja)
EP (1) EP2506398B1 (ja)
JP (1) JP5518092B2 (ja)
KR (1) KR101285529B1 (ja)
CN (1) CN102687373B (ja)
WO (1) WO2011064834A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015039272A (ja) * 2013-08-19 2015-02-26 ファナック株式会社 コギングトルクを低減する電動機
WO2015102047A1 (ja) * 2014-01-06 2015-07-09 三菱電機株式会社 永久磁石型回転電機
JP2015153790A (ja) * 2014-02-11 2015-08-24 日東電工株式会社 永久磁石及び永久磁石の製造方法
EP2797208A4 (en) * 2011-12-23 2016-06-08 Mitsubishi Electric Corp PERMANENT MAGNET MOTOR
JP2020532263A (ja) * 2017-08-28 2020-11-05 エルジー イノテック カンパニー リミテッド ステータおよびこれを含むモータ
US20210281133A1 (en) * 2020-03-06 2021-09-09 Samsung Electronics Co., Ltd. Motor and washing machine having the same
CN113595276A (zh) * 2021-07-28 2021-11-02 华中科技大学 一种永磁电机齿槽转矩削减方法及装置

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI405386B (zh) * 2007-12-28 2013-08-11 Mitsubishi Electric Corp 旋轉電機
EP2768126B1 (en) * 2011-10-14 2018-06-27 Mitsubishi Electric Corporation Permanent magnet motor
EP3382867A1 (en) * 2013-04-09 2018-10-03 Mitsubishi Electric Corporation Permanent magnet type motor and electric power steering apparatus
US20150022044A1 (en) * 2013-07-22 2015-01-22 Steering Solutions Ip Holding Corporation System and method for reducing torque ripple in an interior permanent magnet motor
KR101587423B1 (ko) * 2013-08-23 2016-02-03 한국전기연구원 토크 맥동 저감을 위한 비대칭 자극 형상을 가지는 전기기기
BR112017006640A2 (pt) * 2014-10-20 2017-12-19 Mitsubishi Electric Corp detector de ângulo de rotação, máquina de içamento de elevador, e, máquina elétrica rotativa.
KR101633014B1 (ko) * 2016-01-14 2016-06-23 노순창 코깅 토르크를 최소화하는 영구자석 회전장치와 이를 이용한 영구자석발전기 및 영구자석전동기
JP6539594B2 (ja) * 2016-01-18 2019-07-03 株式会社神戸製鋼所 回転機異常検出装置および該方法ならびに回転機
US10348166B2 (en) 2016-03-31 2019-07-09 Steven W. David Motor with encoder for robotic camera systems
JP6900846B2 (ja) * 2017-09-05 2021-07-07 株式会社デンソー ステータコア
CN108011461B (zh) * 2017-12-27 2020-07-21 浙江伟康电机有限公司 一种用于伸缩门的低压直流电机
JP7080702B2 (ja) * 2018-04-12 2022-06-06 株式会社ミツバ モータ及びブラシレスワイパーモータ
GB201900537D0 (en) * 2019-01-15 2019-03-06 Rolls Royce Plc Electromechanical system
DE102019202732A1 (de) * 2019-02-28 2020-09-03 Robert Bosch Gmbh Stator einer elektrischen Maschine
DE102019122271A1 (de) * 2019-08-20 2021-02-25 Schaeffler Technologies AG & Co. KG Elektromotor mit einer Aussparung in einem radialen Polrandbereich
CN111478539A (zh) * 2020-05-26 2020-07-31 山东理工大学 混合动力汽车高磁阻转矩驱动电机
KR20230022603A (ko) * 2021-08-09 2023-02-16 엘지이노텍 주식회사 모터
KR20240019883A (ko) * 2022-08-05 2024-02-14 한온시스템 주식회사 브러쉬리스 모터
DE102022208377A1 (de) * 2022-08-11 2024-02-22 Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Würzburg Bürstenloser Elektromotor für einen Kühlerlüfter
CN115967200A (zh) * 2022-12-22 2023-04-14 佳木斯电机股份有限公司 一种降低永磁电机转矩脉动的磁路结构

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5751086U (ja) * 1980-09-09 1982-03-24
JPS6087639A (ja) * 1983-10-19 1985-05-17 Nippon Denso Co Ltd 車輌用交流発電機
JP2001025812A (ja) 1999-07-16 2001-01-30 Nkk Corp 冷間圧延鋼板の製造方法
JP2004135380A (ja) * 2002-10-08 2004-04-30 Daikin Ind Ltd 電動機及び回転式圧縮機
JP2006230116A (ja) 2005-02-18 2006-08-31 Mitsubishi Electric Corp 永久磁石型モータ及びその製造方法
WO2009084151A1 (ja) 2007-12-28 2009-07-09 Mitsubishi Electric Corporation 回転電機
JP2009177957A (ja) * 2008-01-24 2009-08-06 Hitachi Car Eng Co Ltd 永久磁石界磁型モータ
JP2009189163A (ja) * 2008-02-06 2009-08-20 Nippon Densan Corp モータ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE37576E1 (en) * 1993-02-22 2002-03-12 General Electric Company Single phase motor with positive torque parking positions
JP2000166135A (ja) * 1998-12-01 2000-06-16 Nippon Densan Corp ブラシレスモータ
JP2001025182A (ja) 1999-07-02 2001-01-26 Matsushita Electric Ind Co Ltd 永久磁石モータ
US6853105B2 (en) * 2000-05-25 2005-02-08 Mitsubishi Denki Kabushiki Kaisha Permanent magnet motor
EP1487089A3 (en) 2003-06-13 2005-04-27 Matsushita Electronics Corporation Permanent magnet motor
US20080024028A1 (en) * 2006-07-27 2008-01-31 Islam Mohammad S Permanent magnet electric motor
JP2008061407A (ja) * 2006-08-31 2008-03-13 Jtekt Corp 電動モータ
EP2211442B1 (en) * 2007-11-15 2020-04-29 Mitsubishi Electric Corporation Permanent magnet type rotating electrical machine and electric power steering device
US20090236920A1 (en) * 2008-03-18 2009-09-24 Delphi Technologies Inc. Systems and methods involving opitmized motors

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5751086U (ja) * 1980-09-09 1982-03-24
JPS6087639A (ja) * 1983-10-19 1985-05-17 Nippon Denso Co Ltd 車輌用交流発電機
JP2001025812A (ja) 1999-07-16 2001-01-30 Nkk Corp 冷間圧延鋼板の製造方法
JP2004135380A (ja) * 2002-10-08 2004-04-30 Daikin Ind Ltd 電動機及び回転式圧縮機
JP2006230116A (ja) 2005-02-18 2006-08-31 Mitsubishi Electric Corp 永久磁石型モータ及びその製造方法
WO2009084151A1 (ja) 2007-12-28 2009-07-09 Mitsubishi Electric Corporation 回転電機
JP2009177957A (ja) * 2008-01-24 2009-08-06 Hitachi Car Eng Co Ltd 永久磁石界磁型モータ
JP2009189163A (ja) * 2008-02-06 2009-08-20 Nippon Densan Corp モータ

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9627936B2 (en) 2011-12-23 2017-04-18 Mitsubishi Electric Corporation Permanent magnet motor
EP2797208A4 (en) * 2011-12-23 2016-06-08 Mitsubishi Electric Corp PERMANENT MAGNET MOTOR
US9397526B2 (en) 2013-08-19 2016-07-19 Fanuc Corporation Electric motor having structure for reducing cogging torque
JP2015039272A (ja) * 2013-08-19 2015-02-26 ファナック株式会社 コギングトルクを低減する電動機
US9515528B2 (en) 2014-01-06 2016-12-06 Mitsubishi Electric Corporation Permanent magnet rotary electric machine
WO2015102047A1 (ja) * 2014-01-06 2015-07-09 三菱電機株式会社 永久磁石型回転電機
JP2015153790A (ja) * 2014-02-11 2015-08-24 日東電工株式会社 永久磁石及び永久磁石の製造方法
JP7198807B2 (ja) 2017-08-28 2023-01-04 エルジー イノテック カンパニー リミテッド ステータおよびこれを含むモータ
JP2020532263A (ja) * 2017-08-28 2020-11-05 エルジー イノテック カンパニー リミテッド ステータおよびこれを含むモータ
US11876403B2 (en) 2017-08-28 2024-01-16 Lg Innotek Co., Ltd. Stator and motor including same
US11637462B2 (en) 2017-08-28 2023-04-25 Lg Innotek Co., Ltd. Stator and motor including same
US20210281133A1 (en) * 2020-03-06 2021-09-09 Samsung Electronics Co., Ltd. Motor and washing machine having the same
US11750050B2 (en) * 2020-03-06 2023-09-05 Samsung Electronics Co., Ltd. Motor and washing machine having the same
CN113595276B (zh) * 2021-07-28 2022-08-02 华中科技大学 一种永磁电机齿槽转矩削减方法及装置
CN113595276A (zh) * 2021-07-28 2021-11-02 华中科技大学 一种永磁电机齿槽转矩削减方法及装置

Also Published As

Publication number Publication date
US9350204B2 (en) 2016-05-24
US20120139372A1 (en) 2012-06-07
CN102687373A (zh) 2012-09-19
JPWO2011064834A1 (ja) 2013-04-11
EP2506398A1 (en) 2012-10-03
JP5518092B2 (ja) 2014-06-11
EP2506398B1 (en) 2020-03-18
KR20120047962A (ko) 2012-05-14
KR101285529B1 (ko) 2013-07-17
EP2506398A4 (en) 2016-12-21
CN102687373B (zh) 2015-07-08

Similar Documents

Publication Publication Date Title
JP5518092B2 (ja) 永久磁石型回転電機及びこれを用いた電動パワーステアリング装置
JP5645940B2 (ja) 永久磁石型回転電機及びそれを用いた電動パワーステアリング装置
JP6218997B1 (ja) 回転電機、電動パワーステアリング装置および回転電機の製造方法
US9490673B2 (en) Rotor of magnet-assisted reluctance motor and brushless motor
JP5657613B2 (ja) 永久磁石型回転電機及び電動パワーステアリング装置
JP3811426B2 (ja) 永久磁石式回転電機
US20080024028A1 (en) Permanent magnet electric motor
KR101092212B1 (ko) 이중돌극형 영구자석 전기기기
WO2014115436A1 (ja) 永久磁石式回転電機
JP2008301652A (ja) 永久磁石式回転電機およびそれを用いた電動パワーステアリング装置
JP4718580B2 (ja) 永久磁石型回転電機及び電動パワーステアリング装置
KR101313447B1 (ko) 스테이터 코어
JP2007336624A (ja) 多相クローティース型永久磁石モータ
JP5221895B2 (ja) シンクロナスリラクタンスモータ
JP5975786B2 (ja) マグネット補助型リラクタンスモータ用ロータ及びブラシレスモータ
JP5897073B2 (ja) 永久磁石型回転電機及びそれを用いた電動パワーステアリング装置
JP2011188685A (ja) 永久磁石型電動機
CN108781032B (zh) 旋转电机
JPH02246761A (ja) リニアモータ
KR20090132219A (ko) 브러시리스 모터
JP2019193427A (ja) 回転電機、回転電動機駆動システム、並びに電動車両
JP7190833B2 (ja) 回転電機、回転電動機駆動システム、並びに電動車両
JP2009189102A (ja) ブラシレス直流モータ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980162467.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851626

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011543001

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13390305

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127004571

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009851626

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 5414/CHENP/2012

Country of ref document: IN