WO2011062236A1 - 洗剤粒子群の製造方法 - Google Patents

洗剤粒子群の製造方法 Download PDF

Info

Publication number
WO2011062236A1
WO2011062236A1 PCT/JP2010/070595 JP2010070595W WO2011062236A1 WO 2011062236 A1 WO2011062236 A1 WO 2011062236A1 JP 2010070595 W JP2010070595 W JP 2010070595W WO 2011062236 A1 WO2011062236 A1 WO 2011062236A1
Authority
WO
WIPO (PCT)
Prior art keywords
detergent
weight
parts
particle group
raw material
Prior art date
Application number
PCT/JP2010/070595
Other languages
English (en)
French (fr)
Inventor
賢一郎 川元
今泉 義信
中山 高志
崇 亀井
浩章 割田
将寛 山口
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to EP10831629.0A priority Critical patent/EP2502981A4/en
Priority to AU2010320064A priority patent/AU2010320064B2/en
Priority to CN201080061447.XA priority patent/CN102712884B/zh
Priority to BR112012011975A priority patent/BR112012011975A2/pt
Publication of WO2011062236A1 publication Critical patent/WO2011062236A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • C11D11/0082Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets

Definitions

  • the present invention relates to a method for producing detergent particles using a container rotating granulator, a surfactant paste containing an anionic surfactant, and a multi-fluid nozzle. Furthermore, this invention relates to the detergent composition formed by containing this detergent particle group.
  • Patent Document 1 discloses a method of continuously producing a detergent composition using a surfactant paste and a dried detergent material in a high speed mixer / medium speed mixer / dryer.
  • Patent Document 2 discloses a method for continuously producing a detergent composition while recirculating fine particles of a surfactant paste and a dried detergent raw material with a high speed mixer / medium speed mixer / conditioning device.
  • Patent Document 1 it is difficult to adjust the particle size in the manufacturing method of Patent Document 1, and the manufacturing method of Patent Document 2 uses a manufacturing method in which fine particles are recirculated in order to adjust the particle size, which is a manufacturing method with low productivity. . Therefore, there is a demand for a production method that can easily obtain a detergent particle group having a required particle size with a high yield.
  • the gist of the present invention is that the powder a detergent powder contains the following components a) and b): a) The following formula (1): R—O—SO 3 M (1) (Wherein R represents an alkyl or alkenyl group having 10 to 18 carbon atoms, M represents an alkali metal atom or an amine), and b) 100 parts by weight of component a) above Production of detergent particles including a surfactant paste mixing step in which a surfactant paste containing 25 to 70 parts by weight of water is added using a multi-fluid nozzle and mixed by a container rotating granulator It is about the method.
  • the present invention relates to providing a method for producing a detergent particle group containing an anionic surfactant and having a good yield of detergent particles having a required particle size in a method not including spray drying. Furthermore, this invention relates to providing the detergent composition formed by containing this detergent particle group.
  • the method for producing detergent particles of the present invention is a method for producing detergent particles having a step of mixing powder of a powder detergent raw material and a surfactant paste containing an anionic surfactant represented by the formula (1).
  • granulation using a container rotating granulator makes it possible to uniformly flow the powder in the granulator, and further, because of the mixing mechanism that involves lifting of particles by rotation and sliding and dropping by its own weight, Since the shearing force applied to the powder is suppressed, this is a non-consolidated granulation method.
  • the paste containing the anionic surfactant represented by the formula (1) does not progress in granulation unless the adhesiveness when contacting with the powder is strong, it adheres when contacting with the powder. It is necessary to express sex.
  • the paste containing the anionic surfactant represented by the formula (1) is supplied to the container rotary granulator by a one-fluid nozzle or pipe which is a general supply method, the supplied liquid component It has been found that coarse particles are easily formed by a large liquid mass that is difficult to disperse uniformly in the mixer and is generated locally.
  • the container is rotated by spraying a paste containing an anionic surfactant represented by the formula (1) that develops adhesiveness when it comes into contact with the powder.
  • an anionic surfactant represented by the formula (1) that develops adhesiveness when it comes into contact with the powder.
  • a method of uniformly dispersing the liquid component by considering a liquid component supply method can be considered.
  • a method of uniformly dispersing the liquid component a method of miniaturizing the liquid component using a multi-fluid nozzle such as a two-fluid nozzle can be considered.
  • a multi-fluid nozzle such as a two-fluid nozzle
  • the idea of using a multi-fluid nozzle to refine a highly viscous surfactant paste is unlikely to occur even by those skilled in the art.
  • a container rotating granulator is used, and a surfactant paste containing an anionic surfactant represented by formula (1) is sprayed using a multi-fluid nozzle.
  • a surfactant paste containing an anionic surfactant represented by formula (1) is sprayed using a multi-fluid nozzle.
  • the detergent particles are particles containing a surfactant and a builder, and the detergent particle group means an aggregate thereof.
  • the detergent composition contains detergent particles and is optionally added separately from the detergent particles (for example, builder granules, fluorescent dyes, enzymes, fragrances, antifoams, bleaches, bleach activators) Etc.).
  • water-soluble means that the solubility in water at 25 ° C. is 0.5 g / 100 g or more, and water-insoluble means that the solubility in water at 25 ° C. is less than 0.5 g / 100 g. Means.
  • Powder detergent raw material An essential component in the present invention is a powder detergent raw material. Specific examples include 1) alkaline agents, 2) water-soluble substances, and 3) clay minerals. As the components 1) to 3), an alkali agent, a water-soluble substance, and a clay mineral may be used alone, or a plurality of components may be mixed and used. From the viewpoint of granulation, the average particle size of the powder detergent raw material is preferably 10 to 250 ⁇ m, more preferably 50 to 200 ⁇ m, still more preferably 80 to 200 ⁇ m.
  • the average particle size of the alkali agent, water-soluble substance, and clay mineral is not particularly limited.
  • the surfactant paste containing the anionic surfactant represented by the formula (1) is highly blended, From the viewpoint of improving the rate, it may be pulverized to 1 to 50 ⁇ m.
  • alkali agent examples include those used as an alkali agent in ordinary detergent compositions, and examples include sodium carbonate (for example, light ash or dense ash), sodium hydrogen carbonate, sodium silicate, potassium carbonate, calcium carbonate and the like. .
  • Light ash is preferable from the viewpoint of ease of handling and availability. These may be used alone or in combination of two or more.
  • the ability to carry a surfactant can be further improved by adjusting the temperature during baking soda baking.
  • the firing temperature is preferably 120 to 250 ° C, more preferably 150 to 220 ° C, and even more preferably 150 to 200 ° C.
  • water-soluble substances examples include powders used in ordinary detergent compositions such as sodium sulfate and sodium tripolyphosphate, and porous powders prepared by drying these hydrates.
  • the clay mineral examples include clay minerals used in ordinary detergent compositions.
  • a powder detergent raw material when using a clay mineral and the said other raw material together, those mixtures will be granulated.
  • the surfactant paste When mixed with the surfactant paste, a part of the powder detergent raw material is dissolved by the water contained in the paste, and the caking property produced thereby or the caking property of clay mineral is used for granulation.
  • a powder raw material other than the powder detergent raw material may be added as desired, and the addition amount is 100 parts by weight of the powder detergent raw material, 0 to 150 parts by weight is preferred, 0 to 100 parts by weight is more preferred, and 0 to 50 parts by weight is even more preferred.
  • the powder raw material include crystalline silicates such as aluminosilicate and prefeed (manufactured by Tokuyama Siltec Co., Ltd.).
  • the content of the powder raw material in the detergent particle group is preferably 0.1% by weight or more from the viewpoint of improving fluidity, suppressing smearing and caking, and improving cleaning power, 1% by weight or more is more preferable, 3% by weight or more is more preferable, 40% by weight or less is preferable from the viewpoint of rinsing properties and solubility, 30% by weight or less is more preferable, 20% by weight or less is further preferable, and 10% by weight. The following is even more preferable.
  • the powder detergent raw material include those containing light ash and / or sodium sulfate.
  • Surfactant paste An essential component in the present invention is a surfactant paste.
  • a surfactant paste by adding a surfactant paste to a powder detergent raw material and using a container rotating granulator, the powder detergent raw material is granulated to produce a detergent particle group.
  • composition of surfactant paste examples include an anionic surfactant represented by the formula (1): R—O—SO 3 M (wherein R represents a carbon number of 10 to 10). 18, preferably an alkyl or alkenyl group having 12 to 16 carbon atoms, and M is an alkali metal atom such as Na or K, or an amine such as monoethanolamine or di-ethanolamine, etc. Improving detergency of the detergent composition In view of the above, M is preferably Na or K.
  • the surfactant paste contains an anionic surfactant represented by the formula (1) (described as “component a” in this specification) and a predetermined amount of water.
  • the surfactant paste has a viscosity of preferably 10 Pa ⁇ s or less, more preferably 5 Pa ⁇ s or less, in the use temperature range of the surfactant composition, from the viewpoint of handleability in production. It has a temperature range. Such a use temperature range is preferably up to 70 ° C., more preferably up to 60 ° C., from the viewpoint of the stability of the surfactant paste.
  • the viscosity is determined by measuring at a shear rate of 50 [1 / s] with a coaxial double cylindrical rotational viscometer (manufactured by HAAKE, sensor: SV-DIN).
  • a surfactant paste can be prepared by neutralizing the acid precursor of component a) with an alkali compound, but at this time, the water content of the alkali compound used is adjusted to obtain a desired moisture content. It is preferable to prepare a surfactant paste having a desired viscosity.
  • the surfactant paste contains 25 to 70 parts by weight of water (the water content of the surfactant composition is about 20 to 40%) with respect to 100 parts by weight of component a), the viscosity decreases. It is generally known that it is easy to handle, and in the present invention, it is preferable to use a surfactant composition whose water content is adjusted within this range.
  • the range of the amount of water in the surfactant paste is 25 to 70 parts by weight, preferably 30 to 65 parts by weight, and more preferably 35 to 65 parts by weight with respect to 100 parts by weight of component a) from the viewpoint of handling. preferable.
  • the acid precursor of component a) is very unstable and easily decomposes, it is preferably prepared so that the decomposition can be suppressed.
  • the preparation method is not particularly limited, and a known method can be used. For example, using a loop reactor, the heat of neutralization is removed by a heat exchanger or the like, and the production may be performed while paying attention to the temperature control of the acid precursor and the surfactant paste.
  • the temperature range during production is preferably 30 to 60 ° C.
  • the storage temperature range after production is preferably 60 ° C. or less.
  • the surfactant composition may be used after raising the temperature as necessary.
  • the obtained anionic surfactant paste preferably has an excessive alkalinity from the viewpoint of suppressing decomposition.
  • a) unreacted alcohol and unreacted polyoxyethylene alkyl ether at the time of producing the acid precursor, sodium sulfate as a by-product during the neutralization reaction, added during the neutralization reaction PH buffering agents, depigmenting agents and the like that may be used may be contained.
  • the content of the component a) in the detergent particle group obtained in the present invention is preferably in the range of 10 to 55% by weight, more preferably 10 to 45% by weight, from the viewpoint of detergency and solubility. 40% by weight is more preferred, and 15-40% by weight is even more preferred.
  • the component a) can be used alone as the surfactant, but the following surfactant can also be used in combination.
  • the following surfactant is preferably 1 to 70 parts by weight, more preferably 2 to 50 parts by weight, still more preferably 3 to 30 parts per 100 parts by weight of component a). Part by weight, still more preferably 5 to 15 parts by weight.
  • the content of the component a) in the surfactant paste is preferably 40 to 80% by weight, more preferably 45 to 75% by weight, still more preferably 50 to 70% by weight. It is.
  • nonionic surfactants can be mixed or used separately.
  • a nonionic surfactant having a melting point of 30 ° C. or lower a water-soluble nonionic organic compound having a melting point of 45 to 100 ° C. and a molecular weight of 1,000 to 30,000 has an effect of increasing the melting point of the surfactant.
  • a melting point raising agent a water-soluble nonionic organic compound having a melting point of 45 to 100 ° C. and a molecular weight of 1,000 to 30,000 has an effect of increasing the melting point of the surfactant.
  • a melting point raising agent or an aqueous solution thereof is preferably used in combination.
  • the melting point raising agent that can be used in the present invention include polyethylene glycol, polypropylene glycol, polyoxyethylene alkyl ether, and pluronic-type nonionic surfactant.
  • amphoteric surfactants and cationic surfactants can be used in combination for the purpose.
  • anionic surfactants other than component a) can be mixed or used separately.
  • anionic surfactants include polyoxyethylene alkyl ether sulfates, alkylbenzene sulfonates, and ⁇ -sulfo fatty acids. Examples include ester salts and secondary alkane sulfonates.
  • an anionic surfactant such as polyoxyethylene alkyl ether sulfate and alkylbenzene sulfonate is preferably added in the detergent particles in an amount of 0 to 10 wt. %, More preferably 0 to 5% by weight, still more preferably 0 to 3% by weight.
  • it is preferably 0.1% by weight or more, more preferably 1% by weight or more, further preferably 3% by weight or more, and from the viewpoint of improving detergent yield, 10% by weight or less is preferable, and 8% by weight. % Or less is more preferable, and 5% by weight or less is more preferable.
  • a fatty acid salt can be used in combination.
  • the nonionic surfactant is not particularly limited, but from the viewpoint of detergency, for example, a polyoxyalkylene alkyl ether obtained by adding 6 to 22 moles of alkylene oxide to an alcohol having 10 to 14 carbon atoms is preferable.
  • the content of the nonionic surfactant in the detergent particle group is preferably 0 to 10% by weight in the detergent particle group from the viewpoints of improvement in detergency, improvement in caking resistance, and suppression of waste during powdering. %, More preferably 0 to 5% by weight, still more preferably 0 to 3% by weight. Further, from the viewpoint of improving detergency, it is preferably 0.1% by weight or more, more preferably 1% by weight or more, further preferably 3% by weight or more, and from the viewpoint of improving detergent yield, 10% by weight or less is preferable, and 8% by weight. % Or less is more preferable, and 5% by weight or less is more preferable.
  • the detergent particles in the present invention include a water-soluble cellulose derivative, a saccharide and carboxylic acid polymer, an inorganic polymer such as an amorphous silicate, etc. from the viewpoint of a detergency and a binder effect for granulation
  • a salt of acrylic acid-maleic acid copolymer and polyacrylate are more preferable.
  • the salt is preferably a sodium salt, potassium salt or ammonium salt.
  • the weight average molecular weight of the carboxylic acid polymer is preferably 1000 to 100,000, more preferably 2000 to 80000.
  • the water-soluble chelating agent is not particularly limited as long as it is a substance that retains sequestering ability, but crystalline silicate, tripolyphosphate, orthophosphate, pyrophosphate, and the like can be used.
  • the water-insoluble chelating agent preferably has an average particle diameter of 0.1 to 20 ⁇ m from the viewpoint of dispersibility in water, and examples thereof include crystalline aluminosilicates, such as A-type zeolite, P-type zeolite, X-type zeolite can be used.
  • the primary particles preferably have an average particle size of 0.1 to 20 ⁇ m.
  • Fluorescent dyes, pigments, dyes, etc. are listed.
  • the measurement of the average particle diameter of the said component can be measured by the method as described in the measuring method of the physical property mentioned later.
  • the detergent particle group production method of the present invention is a method including a step of adding and mixing a surfactant paste to a powder of powder detergent raw material in the following surfactant paste mixing step, and the detergent particle group is subjected to such a step. Is prepared.
  • Surfactant paste mixing step Add a surfactant paste containing an anionic surfactant represented by the formula (1) and water to the powder of the powder detergent raw material, and mix these with a container rotating granulator. This is a step of preparing a detergent particle group.
  • the amount of the surfactant paste mixed in this step is preferably 25 to 200 parts by weight, more preferably 25 to 180 parts by weight, still more preferably 25 to 160 parts by weight based on 100 parts by weight of the powder detergent raw material. 25 to 100 parts by weight is even more preferred, 30 to 90 parts by weight is particularly preferred, and 35 to 85 parts by weight is particularly preferred. From the viewpoint of detergency, it is preferably 25 parts by weight or more, and from the viewpoint of detergent yield and solubility, it is preferably 200 parts by weight or less, more preferably 180 parts by weight or less, and further 160 parts by weight or less. Preferably, 100 parts by weight or less is even more preferable.
  • the container rotating granulator used in this step may be an apparatus that gives strong shearing to the granules and does not cause large compaction.
  • the granule of the present invention can be controlled by setting the number of rotations and the fluid number described below to a low level to suppress compaction.
  • a pan granulator or a drum granulator in which granulation proceeds by rotation of the main body is preferable from the viewpoint of ease of granulation and improvement of supporting ability.
  • These apparatuses can be used in both batch and continuous processes. From the viewpoint of powder mixing property and solid-liquid mixing property, it is preferable to provide a baffle plate for assisting mixing in the pan or drum.
  • the powder in order to use as a container rotating granulator, the powder can be made to flow uniformly, and from the viewpoint of securing a mixing mechanism that involves lifting of particles by rotation and sliding / falling by its own weight,
  • the fluid number of the granulator defined by the formula is preferably set to 1.0 or less, more preferably 0.8 or less, still more preferably 0.6 or less, and even more preferably 0.4 or less.
  • Fr V 2 / (R ⁇ g)
  • V Circumferential speed [m / s]
  • R Radius from the center of rotation to the circumference of the rotating object [m]
  • g Gravity acceleration [m / s 2 ]
  • the fluid number of the granulator is 0.001 or more, more preferably 0.005 or more, still more preferably 0.01 or more, 0 .05 or more is even more preferable.
  • V and R use the value of the main shaft, and a bread granulator or a drum granulator in which granulation proceeds by rotation of the body barrel.
  • the values of the body trunk are used for V and R.
  • V and R use values of the crushing blade.
  • the rotation time of the granulator is not particularly limited, but is preferably 0 to 10 minutes after the addition of the surfactant paste, for example.
  • the surfactant paste it is preferable to add the surfactant paste by uniformly dispersing it.
  • a method therefor there is a method of miniaturization using a multi-fluid nozzle.
  • a multi-fluid nozzle is a nozzle that circulates a liquid component and atomizing gas (air, nitrogen, etc.) to the vicinity of the nozzle tip through an independent flow path, and mixes and atomizes it.
  • a liquid component and atomizing gas air, nitrogen, etc.
  • a four-fluid nozzle or the like can be used.
  • the mixing part of the liquid component and the atomizing gas may be either an internal mixing type that mixes within the nozzle tip or an external mixing type that mixes outside the nozzle tip.
  • a multi-fluid nozzle for example, an internal mixed type two-fluid nozzle such as manufactured by Spraying Systems Japan Co., Ltd., manufactured by Kyoritsu Alloy Manufacturing Co., Ltd., or manufactured by Ikeuchi Co., Ltd., Spraying Systems Japan Co., Ltd. , Manufactured by Kyoritsu Alloy Manufacturing Co., Ltd., manufactured by Atmax Co., Ltd., and the like, and external mixed type two fluid nozzles manufactured by Fujisaki Electric Co., Ltd. and the like.
  • an internal mixed type two-fluid nozzle such as manufactured by Spraying Systems Japan Co., Ltd., manufactured by Kyoritsu Alloy Manufacturing Co., Ltd., or manufactured by Ikeuchi Co., Ltd., Spraying Systems Japan Co., Ltd. , Manufactured by Kyoritsu Alloy Manufacturing Co., Ltd., manufactured by Atmax Co., Ltd., and the like, and external mixed type two fluid nozzles manufactured by Fujisaki Electric Co.,
  • the atomizing air spray pressure is preferably 0.05 to 0.7 MPa.
  • an external mixing type two-fluid nozzle from the viewpoint of miniaturizing droplets of the high-viscosity surfactant paste used in the present invention and preventing clogging of the nozzle tip.
  • the average droplet size of the paste is 1 to 300 ⁇ m. From 1 to 200 ⁇ m, more preferably from 1 to 150 ⁇ m.
  • the average particle diameter of the droplet diameter of the surfactant paste is calculated on a volume basis, and is a value measured using a laser diffraction particle size distribution analyzer: Spray Tech (manufactured by Malvern).
  • a detergent particle group having predetermined characteristics can be obtained by the production method of the present invention.
  • the detergent particle group obtained by the production method of the present invention is also included in the present invention.
  • Preferred physical properties of the detergent particles according to the present invention are as follows.
  • the bulk density is preferably 400 g / L or more, more preferably 450 to 1000 g / L, further preferably 450 to 950 g / L, and more preferably 500 to 900 g / L.
  • the average particle size is preferably 150 to 800 ⁇ m, more preferably 180 to 700 ⁇ m, and still more preferably 200 to 500 ⁇ m.
  • the said bulk density and an average particle diameter can be measured by the method as described in the measuring method of the below-mentioned physical property.
  • the Rosin-Rammler number (RR number in the table) can be used as an index of a preferable particle size distribution of the detergent particle group according to the present invention.
  • the following formula is used to calculate the Rosin-Rammler number.
  • n is preferably 1.5 or more, more preferably 1.7 or more, still more preferably 1.9 or more, and still more preferably 2.0 or more, from the viewpoint of the aesthetics of the detergent particle group.
  • the preferred particle size yield of the detergent particles according to the present invention is preferably 70% or more, more preferably 75% or more, still more preferably 80% or more, and still more preferably, as a proportion of particles having a sieve opening of 125 to 1000 ⁇ m. It is 85% or more, particularly preferably 87% or more, and particularly preferably 90% or more.
  • the water content of the detergent particles in the present invention is preferably smaller from the viewpoint of high blending of component a). Specifically, when the moisture content of the detergent particles is measured with an infrared moisture meter, the moisture content is preferably 20% by weight or less, more preferably 15% by weight or less, still more preferably 10% by weight or less, and more preferably 5% by weight. The following is more preferable.
  • the oil absorption capacity of the detergent particles according to the present invention is measured as the oil absorption capacity after removing granules having a sieve opening of 2000 ⁇ m or more.
  • the oil absorption capacity of the detergent particles according to the present invention is such that the smaller the amount of surfactant paste mixed in the surfactant paste mixing step, the higher the oil absorption capacity, and depending on the amount of liquid detergent raw material mixed in the liquid detergent raw material oil absorption step, It can be arbitrarily adjusted by adjusting the mixing amount of the surfactant paste in the surfactant paste mixing step.
  • a suitable production method for obtaining a detergent particle group may further include the following liquid detergent raw material oil absorption step, surface modification step or drying step, if necessary.
  • Liquid detergent raw material oil absorption process It is a process which mixes the detergent particle group obtained by the surfactant paste mixing process, and liquid detergent raw materials, such as the said nonionic surfactant and the said polymer.
  • Drying step A step of drying the detergent particles obtained in the surfactant paste mixing step, the liquid detergent raw material oil absorption step or the surface modification step.
  • Liquid detergent raw material oil absorption step In this step, the detergent particles can be supported on the detergent particles by mixing the detergent particles obtained in the surfactant paste mixing step with the liquid detergent raw material. It is this process.
  • liquid detergent raw material oil absorption step it is sufficient that at least the detergent particle group obtained by the surfactant paste mixing step is used. That is, in this step, other granule groups having the ability to carry a surfactant, for example, granule groups obtained by other methods such as spray drying may be used in combination.
  • the ratio of the detergent particle group in the liquid detergent raw material oil absorption step is preferably 50% by weight or more, more preferably 70% by weight or more in 100% by weight in the granule group to which the liquid detergent raw material is added, from the viewpoint of detergency and oil absorption ability. 90% by weight or more is more preferable.
  • Examples of such a method include a method of mixing in a container rotating granulator in which the detergent particle group is manufactured. Further, for example, a method of mixing the detergent particle group and the liquid detergent raw material using a batch type or continuous type mixer can be mentioned.
  • the charging method to the mixer is as follows: (1) First, the detergent particles are added to the mixer, and then the liquid detergent raw material is added. (2) The detergent is added to the mixer. Repeat the addition of the particle group and the liquid detergent raw material little by little. (3) After charging a part of the detergent particle group into the mixer, add the remaining detergent particle group and the liquid detergent raw material little by little. It is possible to take a method such as repeating the above.
  • the rate of addition becomes more important as the amount of liquid detergent raw material increases.
  • the addition rate of the liquid detergent raw material is preferably set to be equal to or lower than the oil absorption rate of the detergent particle group.
  • 35 parts by weight or less is preferable with respect to 100 parts by weight of the detergent particles, and 20 parts by weight or less is preferable. More preferably, it is 10 parts by weight / minute or less, more preferably 7.5 parts by weight / minute or less.
  • liquid detergent raw material for example, any liquid used in ordinary detergent compositions such as the above nonionic surfactants, water-soluble polymers (polyethylene glycol, sodium polyacrylate, maleic acrylate copolymer, etc.), fatty acids, etc.
  • the liquid component only one component may be used, or two or more components may be used in combination.
  • the component may be added as a liquid, or may be added in the form of an aqueous solution or a dispersion.
  • the amount of the liquid detergent raw material used is preferably 0.1 parts by weight or more, more preferably 1 part by weight or more, and still more preferably 3 parts by weight with respect to 100 parts by weight of the detergent particle group from the viewpoint of improving detergency.
  • the amount is preferably 30 parts by weight or less, more preferably 20 parts by weight or less, more preferably 10 parts by weight or less from the viewpoints of suppression of aggregation between detergent particles contained in the detergent particle group, high-speed dissolution, and suppression of stains and caking properties. Part or less is more preferable.
  • a preferable mixing apparatus include the following in addition to the container rotating granulator.
  • the following (1) to (3) are preferable.
  • Henschel mixer manufactured by Mitsui Miike Chemical Co., Ltd.
  • high speed mixer manufactured by Fukae Kogyo Co., Ltd.
  • vertical granulator manufactured by Paulek, Inc.
  • Redige mixer manufactured by Matsuzaka Giken Co., Ltd.
  • Proshear mixer manufactured by Taiheiyo Kiko Co., Ltd.
  • the mixing device described in JP-A-10-296064 and the mixing device described in JP-A-10-296065 are preferable because the moisture and temperature of the mixture can be adjusted by aeration to suppress the collapse of the detergent particles.
  • a mixing device such as a Nauter mixer, SV mixer, or ribbon mixer that can mix powder and liquid without giving a strong shearing force is preferable from the viewpoint of suppressing the collapse of the detergent particles.
  • the detergent particle group and the liquid detergent raw material may be mixed using a continuous apparatus.
  • the continuous apparatus include a flexographic type (manufactured by POWREC Co., Ltd.), a turbulator (manufactured by Hosokawa Micron Co., Ltd.), and the like.
  • the temperature in the mixer in this step is preferably adjusted so that the decomposition of the anionic surfactant in the detergent particles can be suppressed, and the temperature range during production is preferably 30 to 60 ° C.
  • the storage temperature range is preferably 60 ° C. or lower.
  • the batch mixing time for obtaining a suitable detergent particle group and the average residence time in continuous mixing are preferably 1 to 30 minutes, more preferably 2 to 25 minutes, and even more preferably 3 to 20 minutes.
  • the detergent particles may be mixed with the liquid detergent raw material under ventilation. More specifically, in the liquid detergent raw material oil absorption step, an operation of blowing a gas such as air into the mixing tank of the mixing device during the addition and / or mixing of the raw materials can be mentioned. By performing such an operation, the detergent particle group can further carry the liquid detergent raw material, and the obtained detergent particle group has a higher content of the liquid detergent raw material.
  • the reason why such an effect is achieved is that, by performing such an operation, the water of the anionic surfactant paste and other liquid detergent raw materials present on the surface of the detergent particles is removed. Presumed. As a result, the adhesiveness of the detergent particle group is reduced, aggregation of the detergent particle group is suppressed, and the particle size distribution of the resulting detergent particle group becomes sharp.
  • the temperature of the blown gas is preferably 10 to 65 ° C., more preferably 30 to 60 ° C., and further preferably 50 to 60 ° C.
  • the blown amount is preferably 1 to 15 parts by weight / minute, more preferably 2 to 10 parts by weight / minute, and further preferably 3 to 8 parts by weight / minute with respect to 100 parts by weight of the detergent particles.
  • powder builder means a powder detergency enhancer other than a surfactant.
  • a base that exhibits sequestering ability such as zeolite and citrate, and sodium carbonate.
  • a base having an alkaline ability such as potassium carbonate, a base having both a sequestering ability and an alkaline ability such as crystalline silicate, and a base for increasing ionic strength such as sodium sulfate.
  • the crystalline silicate JP-A-5-279013, column 3, line 17 (preferably crystallized by firing at 500 to 1000 ° C.), JP-A-7-89712, second.
  • Column, line 45, JP-A-60-227895, page 2, lower right column, line 18 (preferably silicates in Table 2) are preferably used as a preferred powder builder.
  • the alkali metal silicate having SiO 2 / M 2 O (where M represents an alkali metal) is 0.5 to 3.2, preferably 1.5 to 2.6. Used for.
  • the amount of the powder builder used is preferably 0 to 12 parts by weight, more preferably 0 to 6 parts by weight with respect to 100 parts by weight of the detergent particle group. Such components have good solubility in this range.
  • This step is an optional step of modifying the particle surface of the detergent particle group obtained in the surfactant paste mixing step or the liquid detergent raw material oil absorption step.
  • a surface modification step is performed in which various surface coating agents such as the following (1) fine powder and (2) liquid material are added.
  • the number of surface modification steps may be one or more.
  • the surface of the detergent particles is modified with a surface coating agent
  • the fluidity and caking resistance of the detergent particles tend to be improved. Therefore, it is preferable to provide a surface modification step in the production method of the present invention.
  • a surface modification step for example, among the mixers exemplified in the liquid detergent raw material oil absorption step, a device equipped with both a stirring blade and a crushing blade is preferable. Each surface coating agent will be described below.
  • Fine powder preferably has an average primary particle size of 10 ⁇ m or less, more preferably 0.1 to 10 ⁇ m. When the average particle size is within this range, the coverage of the detergent particle group on the particle surface is improved, which is preferable from the viewpoint of improving the fluidity and caking resistance of the detergent particle group.
  • the average particle diameter of the fine powder is measured by a method using light scattering, for example, a particle analyzer (manufactured by Horiba, Ltd.), or measurement by microscopic observation. Furthermore, it is preferable from the viewpoint of detergency that the fine powder has high ion exchange ability and high alkali ability.
  • Such fine powder may be composed of one component or a plurality of components.
  • the fine powder is preferably an aluminosilicate and may be crystalline or amorphous.
  • fine powders such as sodium sulfate, calcium silicate, silicon dioxide, bentonite, talc, clay, amorphous silica derivatives, and crystalline silicates are also preferable.
  • a metal soap having an average primary particle size of 0.1 to 10 ⁇ m, a powdered surfactant (such as an alkyl sulfate) and a water-soluble organic salt can be used in the same manner.
  • crystalline silicate it is preferable to use it by mixing with fine powders other than crystalline silicate for the purpose of preventing deterioration due to moisture absorption or aggregation of crystalline silicate by carbon dioxide.
  • the amount of the fine powder used is preferably 0 to 40 parts by weight, more preferably 0.5 to 40 parts by weight, still more preferably 1 to 30 parts by weight, with respect to 100 parts by weight of the detergent particles. Is even more preferable. When the amount of the fine powder used is within this range, the fluidity is improved and the consumer feels good. From the viewpoint of improvement of fluidity, suppression of smearing and caking properties, 0.1 part by weight or more is preferable, 0.5 part by weight or more is more preferable, 1 part by weight or more is further preferable, and 2 parts by weight or more is further more preferable.
  • 3 parts by weight is more preferable, 40 parts by weight or less is preferable from the viewpoint of improving rinsing properties and fluidity, 30 parts by weight or less is more preferable, 20 parts by weight or less is further preferable, and 10 parts by weight or less is more preferable. .
  • liquid material examples include water-soluble polymers and fatty acids, which can be added in an aqueous solution or in a molten state.
  • a liquid material may be composed of one component or may be composed of a plurality of components.
  • water-soluble polymer examples include carboxymethyl cellulose, polyethylene glycol, sodium polyacrylate, a polycarboxylic acid salt such as a copolymer of acrylic acid and maleic acid or a salt thereof, and the like.
  • the amount of the water-soluble polymer used is preferably 0 to 10 parts by weight, more preferably 0 to 8 parts by weight, and still more preferably 0 to 6 parts by weight with respect to 100 parts by weight of the detergent particles. When the amount of the water-soluble polymer used is within this range, a detergent particle group exhibiting good solubility, good fluidity, and caking resistance can be obtained.
  • (2-2) Fatty acid examples include fatty acids having 10 to 22 carbon atoms.
  • the amount of the fatty acid used is preferably 0 to 5 parts by weight, more preferably 0 to 3 parts by weight with respect to 100 parts by weight of the detergent particles. In the case of a solid at room temperature, it is preferable to spray and supply after heating to a temperature showing fluidity.
  • Drying step In this step, an operation of drying the obtained detergent particles may be further performed. By performing such an operation, water derived from the surfactant paste or the like can be removed from the detergent particle group.
  • This step is an arbitrary step of drying the detergent particle group obtained in the surfactant paste mixing step, the liquid detergent raw material oil absorption step or the surface modification step. By removing moisture, the content of the activator component in the detergent particle group can be improved.
  • a drying method that gives as little shearing force as possible is preferable.
  • a method of drying in an electric dryer or hot air dryer in a container a method of drying in a batch type fluidized bed, and the like are mentioned.
  • a continuous type a fluidized bed, a rotary dryer, a steam tube dryer, etc. Is mentioned.
  • the drying temperature is preferably 40 to 110 ° C., more preferably 50 to 100 ° C., and still more preferably 60 to 90 ° C. from the viewpoint of suppression of decomposition of the component a) and the drying speed.
  • the detergent composition of the present invention is a composition comprising the above-described detergent particle group, and further contains detergent components (for example, builder granules, fluorescent dyes, enzymes, perfumes, odorants, etc.) separately added to the detergent particle group.
  • detergent components for example, builder granules, fluorescent dyes, enzymes, perfumes, odorants, etc.
  • the content of the detergent particles in the detergent composition is preferably 50% by weight or more, more preferably 60% by weight or more, still more preferably 70% by weight or more, and more preferably 80 to 100% by weight from the viewpoint of detergency.
  • the content of detergent components other than the detergent particle group in the detergent composition is preferably 50% by weight or less, more preferably 40% by weight or less, still more preferably 30% by weight or less, and even more preferably 20% by weight or less.
  • the method for producing the detergent composition is not particularly limited, and examples thereof include a method of mixing the detergent particle group and a separately added detergent component. Since the detergent composition thus obtained contains detergent particles highly blended with the component a), a sufficient cleaning effect can be achieved even with a small amount.
  • the use of such a detergent composition is not particularly limited as long as it is a use using a powder detergent, and examples thereof include a powder detergent for clothing and a detergent for automatic tableware.
  • Bulk density The bulk density is measured by a method defined by JIS K 3362.
  • the bulk density of the detergent particles is the bulk density after removing granules of 2000 ⁇ m or more.
  • the average particle diameter is measured by the following method. (1) For those having an average particle size of 125 ⁇ m or more, after vibrating for 5 minutes using a standard sieve (mesh 2000 to 125 ⁇ m) of JIS Z8801-1, the median diameter is calculated from the weight fraction according to the size of the mesh. Is calculated. More specifically, using a 9-stage sieve and a tray with a mesh opening of 125 ⁇ m, 180 ⁇ m, 250 ⁇ m, 355 ⁇ m, 500 ⁇ m, 710 ⁇ m, 1000 ⁇ m, 1400 ⁇ m, and 2000 ⁇ m, the top of the top is stacked in order from the small sieve.
  • the average particle size of the detergent particles is the average particle size of all the particles.
  • Rosin-Rammler number is a number defined as described above. Specifically in this specification, it calculates
  • Moisture Moisture measurement is performed by infrared moisture meter method. That is, 3 g of a sample is put on a sample pan having a known weight, heated at 105 ° C. using an infrared moisture meter (FD-240 manufactured by Kett Science Laboratory Co., Ltd.), and drying is finished when the weight does not change for 30 seconds. And Then, the water content is calculated from the weight after drying and the weight before drying.
  • infrared moisture meter FD-240 manufactured by Kett Science Laboratory Co., Ltd.
  • the flow time is defined as the time required for 100 mL of powder to flow out from the bulk density measurement hopper defined by JIS K 3362.
  • the flow time is preferably 10 seconds or less, more preferably 8 seconds or less, and even more preferably 7 seconds or less.
  • the fluidity of the detergent particles is the fluidity after removing granules of 2000 ⁇ m or more.
  • Oil absorption capacity 30 to 35 g of powder is put into an absorption measuring device (S410, manufactured by Asahi Research Institute), and rotated with a driving blade of 200 r / m.
  • a liquid nonionic surfactant (Emulgen 108 manufactured by Kao Co., Ltd.) is dropped at a liquid supply rate of 4 mL / min to determine the point at which the maximum torque is obtained.
  • the liquid addition amount at the point where the torque becomes 70% of the point where the maximum torque is reached is divided by the powder input amount to obtain the oil absorption capacity.
  • the oil absorption capacity of the detergent particles is the oil absorption capacity after removing granules of 2000 ⁇ m or more.
  • the detergent yield in the present invention indicates the weight ratio of the detergent particle group between 125 and 1000 ⁇ m in the obtained detergent particle group.
  • a 75 L drum granulator ( ⁇ 40 cm ⁇ L60 cm) having a baffle plate was used as a container rotating granulator.
  • a two-fluid nozzle manufactured by Atmax Co., Ltd .: model number BN90 was used.
  • spraying systems Japan Co., Ltd. product: model number UNIJET8003 was used as 1 fluid nozzle, and the nozzle with a pipe diameter of 8.1 mm was used as a thin tube nozzle.
  • Composition A an anionic surfactant
  • composition A After stirring for 10 seconds, 25 parts by weight of the composition A is 6.5 parts by weight using a two-fluid nozzle (Air spray pressure for atomization of 0.3 MPa) with respect to 100 parts by weight of the light ash at a droplet diameter of about 130 ⁇ m. Added in minutes. After the addition, the mixture was further granulated by continuing mixing for 3 minutes, and then the detergent particle group 1 was discharged from the drum granulator.
  • the obtained detergent particle group 1 has a water content of 6.9%, an average particle size of 221 ⁇ m, a Rosin-Rammler number of 2.05, a detergent yield of 94.6%, a bulk density of 543 g / L, a fluidity of 6.4 s, and an oil absorption capacity. It was 0.40 mL / g.
  • Example 2 Composition A was brought to 60 ° C. Next, 4.9 kg of light ash was stirred in a drum granulator (rotation speed 30 r / m, fluid number 0.2) having a baffle plate. After stirring for 10 seconds, 43 parts by weight of the composition A was 9.8 parts per 100 parts by weight of the light ash using a two-fluid nozzle (Air spray pressure for atomization: 0.3 MPa) at a droplet diameter of about 130 ⁇ m. Added in minutes. After the addition, the mixture was further granulated by continuing mixing for 3 minutes, and then the detergent particle group 2 was discharged from the drum granulator.
  • the obtained detergent particle group 2 has a water content of 9.1%, an average particle size of 318 ⁇ m, a Rosin-Rammler number of 2.79, a detergent yield of 98.9%, a bulk density of 550 g / L, a fluidity of 6.1 s, and an oil absorption capacity. It was 0.36 mL / g.
  • Example 3 Composition A was brought to 60 ° C. Next, 4.2 kg of light ash was stirred in a drum granulator having a baffle plate (rotation speed 30 r / m, fluid number 0.2). After stirring for 10 seconds, 67 parts by weight of the composition A was added to 100 parts by weight of the light ash using a two-fluid nozzle (Air spray pressure for atomization of 0.3 MPa) at a droplet diameter of about 130 ⁇ m for 13 minutes. Added. After the addition, the mixture was further granulated by continuing mixing for 3 minutes, and then the detergent particle group 3 was discharged from the drum granulator.
  • the obtained detergent particle group 3 has a moisture content of 11.1%, an average particle size of 416 ⁇ m, a Rosin-Rammler number of 2.44, a detergent yield of 98.9%, a bulk density of 624 g / L, a fluidity of 5.8 s, and an oil absorption capacity. It was 0.26 mL / g.
  • Example 4 Composition A was brought to 60 ° C. Next, 3.5 kg of light ash was stirred in a drum granulator (rotation speed 30 r / m, fluid number 0.2) having a baffle plate. After stirring for 10 seconds, 100 parts by weight of the above-mentioned light ash was used to add 16.3 parts of the composition A at a droplet diameter of about 130 ⁇ m using a two-fluid nozzle (air spray pressure for atomization of 0.3 MPa). Added in minutes. After the addition, the mixture was further granulated by continuing mixing for 3 minutes, and then the detergent particle group 4 was discharged from the drum granulator.
  • the obtained detergent particle group 4 has a moisture content of 14.8%, an average particle size of 678 ⁇ m, a Rosin-Rammler number of 2.49, a detergent yield of 87.4%, a bulk density of 636 g / L, a fluidity of 6.9 s, and an oil absorption capacity. It was 0.13 mL / g.
  • Example 5 A detergent particle group was produced in the same manner as in Example 1, and the detergent particles were dried at 105 ° C. for 2 hours using an electric dryer, and the detergent particle group 5 was discharged.
  • the resulting detergent particle group 5 has a moisture content of 1.1%, an average particle size of 208 ⁇ m, a Rosin-Rammler number of 1.73, a detergent yield of 87.7%, a bulk density of 522 g / L, a fluidity of 7.1 s, and an oil absorption capacity. It was 0.43 mL / g.
  • Example 6 A detergent particle group was produced in the same manner as in Example 2. The detergent particles were dried at 105 ° C. for 2 hours using an electric dryer, and the detergent particle group 6 was discharged.
  • the obtained detergent particle group 6 has a water content of 1.4%, an average particle size of 272 ⁇ m, a Rosin-Rammler number of 1.98, a detergent yield of 90.9%, a bulk density of 519 g / L, a fluidity of 6.5 s, and an oil absorption capacity. It was 0.42 mL / g.
  • Example 7 A detergent particle group was produced in the same manner as in Example 3. The detergent particle was dried at 105 ° C. for 2 hours using an electric dryer, and the detergent particle group 7 was discharged.
  • the obtained detergent particle group 7 has a moisture content of 2.1%, an average particle size of 442 ⁇ m, a Rosin-Rammler number of 2.29, a detergent yield of 98.1%, a bulk density of 573 g / L, a fluidity of 6.1 s, and an oil absorption capacity. It was 0.33 mL / g.
  • Example 8 A detergent particle group was produced in the same manner as in Example 4, and the detergent particles were dried at 105 ° C. for 2 hours using an electric dryer, and the detergent particle group 8 was discharged.
  • the resulting detergent particle group 8 has a moisture content of 1.7%, an average particle size of 651 ⁇ m, a Rosin-Rammler number of 2.04, a detergent yield of 98.7%, a bulk density of 579 g / L, a fluidity of 6.6 s, and an oil absorption capacity. It was 0.15 mL / g.
  • Comparative Example 1 Composition A was brought to 60 ° C. Next, 26 kg of light ash was stirred in a Redige mixer FKM-130D (manufactured by Matsubo). In addition, 60 degreeC warm water was poured into the jacket. After stirring for 10 seconds under the conditions of a stirring blade rotation speed of 115 r / m, a fluid number of 3.7, and a shearing machine rotation speed of 3600 r / m, 25 parts by weight of the composition A was used with a thin tube nozzle for 100 parts by weight of the light ash. For 7 minutes. After the addition, the mixture was further granulated for 3 minutes, and then the detergent particle group 9 was discharged from the Redige mixer.
  • the obtained detergent particle group 9 had a moisture content of 6.6%, an average particle size of 128 ⁇ m, a Rosin-Rammler number of 0.85, a detergent yield of 50.3%, a bulk density of 739 g / L, and fluidity was not measurable. It was.
  • Comparative Example 2 Composition A was brought to 60 ° C. Next, 22.8 kg of light ash was stirred in a Redige mixer FKM-130D (manufactured by Matsubo). In addition, 60 degreeC warm water was poured into the jacket. After stirring for 10 seconds under the conditions of a stirring blade speed of 115 r / m, a fluid number of 3.7, and a shearing machine speed of 3600 r / m, 43 parts by weight of the composition A was used with a capillary tube for 100 parts by weight of the light ash. In 10.5 minutes. After the addition, the mixture was further granulated by continuing mixing for 3 minutes, and then the detergent particle group 10 was discharged from the Redige mixer.
  • the obtained detergent particle group 10 has a water content of 10.0%, an average particle size of 219 ⁇ m, a Rosin-Rammler number of 1.16, a detergent yield of 85.5%, a bulk density of 720 g / L, a fluidity of 6.1 s, and an oil absorption The capacity was 0.18 mL / g.
  • Comparative Example 3 Composition A was brought to 60 ° C. Next, 19.5 kg of light ash was stirred in a Redige mixer FKM-130D (manufactured by Matsubo). In addition, 60 degreeC warm water was poured into the jacket. After stirring for 10 seconds under the conditions of a stirring blade rotation speed of 115 r / m, a fluid number of 3.7, and a shearing machine rotation speed of 3600 r / m, 67 parts by weight of the composition A was used with a thin tube nozzle with respect to 100 parts by weight of the light ash. 14.1 minutes. After the addition, the mixture was further granulated for 3 minutes, and then the detergent particle group 11 was discharged from the Redige mixer.
  • the resulting detergent particle group 11 is 12.1% moisture, coarsened so that the average particle size cannot be measured, Rosin-Rammler number 1.65, detergent yield 4.8%, bulk density 798 g / L, The fluidity was 8.2 s.
  • Comparative Example 4 Composition A was brought to 60 ° C. Next, 5.6 kg of light ash was stirred in a drum granulator having a baffle plate (rotation speed 30 r / m, fluid number 0.2). After stirring for 10 seconds, 25 parts by weight of the above composition A was added to 100 parts by weight of the light ash in 2.2 minutes using a one-fluid nozzle. After the addition, the mixture was further granulated by continuing mixing for 3 minutes, and then the detergent particle group 12 was discharged from the drum granulator.
  • the resulting detergent particle group 12 had a moisture content of 5.1%, an average particle size of 148 ⁇ m, a Rosin-Rammler number of 0.77, a detergent yield of 55.9%, a bulk density of 656 g / L, and a fluidity of 9.5 s. .
  • Comparative Example 5 Composition A was brought to 60 ° C. Next, 4.9 kg of light ash was stirred in a drum granulator (rotation speed 30 r / m, fluid number 0.2) having a baffle plate. After stirring for 10 seconds, 43 parts by weight of the composition A was added to 3.3 parts by weight of 100 parts by weight of the light ash using a one-fluid nozzle. After the addition, the mixture was further mixed for 3 minutes for granulation, and then the detergent particle group 13 was discharged from the drum granulator.
  • the obtained detergent particle group 13 has a water content of 10.9%, an average particle diameter of 502 ⁇ m, a Rosin-Rammler number of 1.25, a detergent yield of 69.5%, a bulk density of 642 g / L, a fluidity of 6.4 s, and an oil absorption capacity. It was 0.33 mL / g.
  • Comparative Example 6 Composition A was brought to 60 ° C. Next, 4.2 kg of light ash was stirred in a drum granulator having a baffle plate (rotation speed 30 r / m, fluid number 0.2). After stirring for 10 seconds, 67 parts by weight of the composition A was added to 4.4 parts by weight of 100 parts by weight of the light ash using a one-fluid nozzle. After the addition, the mixture was further granulated by continuing mixing for 3 minutes, and then the detergent particle group 14 was discharged from the drum granulator.
  • the obtained detergent particle group 14 had a water content of 13.9%, an average particle size of 983 ⁇ m, a Rosin-Rammler number of 1.46, a detergent yield of 48.7%, a bulk density of 784 g / L, and a fluidity of 7.2 s. .
  • R-OSO 3 Na anionic surfactant
  • the resulting detergent particle group 15 has a moisture content of 11.0%, an average particle size of 406 ⁇ m, a Rosin-Rammler number of 2.05, a detergent yield of 93.9%, a bulk density of 712 g / L, a fluidity of 6.9 s, and an oil absorption capacity. It was 0.16 mL / g.
  • Example 10 Composition B was brought to 55 ° C. Next, 1.73 kg of light ash and 1.63 kg of pulverized sodium sulfate were stirred in a drum granulator (rotation speed 30 r / m, fluid number 0.2) having a baffle plate. After stirring for 10 seconds, 13.81 parts by weight of the above composition B is added to 100 parts by weight of the powder detergent raw material using a two-fluid nozzle (Air spray pressure for atomization: 0.3 MPa) at a droplet diameter of about 130 ⁇ m. Added in 3 minutes. After the addition, granulation was continued by further mixing for 1 minute. Thereafter, 15 parts by weight of zeolite was added to 100 parts by weight of the obtained detergent particle group, and further mixed for 1 minute, and the detergent particle group 16 was discharged from the drum granulator.
  • a drum granulator rotating speed 30 r / m, fluid number 0.2
  • the obtained detergent particle group 16 has a water content of 13.9%, an average particle size of 447 ⁇ m, a Rosin-Rammler number of 2.17, a detergent yield of 95.5%, a bulk density of 629 g / L, a fluidity of 6.9 s, and an oil absorption capacity. It was 0.18 mL / g.
  • Example 11 Composition B was brought to 60 ° C. Next, 2.8 kg of pulverized light ash was stirred in a drum type granulator (rotation speed 30 r / m, fluid number 0.2) having a baffle plate. After stirring for 10 seconds, 150 parts by weight of the above composition B is added to 100 parts by weight of the powder detergent raw material using a two-fluid nozzle (Air spray pressure for atomization of 0.3 MPa) at a droplet diameter of about 130 ⁇ m. Added in 6 minutes. After the addition, the mixture was further granulated by continuing mixing for 1 minute, and then the detergent particle group 17 was discharged from the drum granulator.
  • a drum type granulator rotating speed 30 r / m, fluid number 0.2
  • the resulting detergent particle group 17 has a moisture content of 16.1%, an average particle size of 395 ⁇ m, a Rosin-Rammler number of 1.76, a detergent yield of 92.8%, a bulk density of 555 g / L, a fluidity of 6.1 s, and an oil absorption capacity. It was 0.47 mL / g.
  • Example 12 92.4 parts by weight of Composition B and 7.6 parts by weight of polyoxyethylene lauryl ether (EO 21 mol adduct) were mixed (hereinafter referred to as “Composition C”) to 55 ° C.
  • Composition C polyoxyethylene lauryl ether
  • 4.2 kg of light ash was stirred in a drum granulator having a baffle plate (rotation speed 30 r / m, fluid number 0.2).
  • 67 parts by weight of the above composition C was added in 15.1 minutes using a two-fluid nozzle (Air spray pressure for atomization of 0.3 MPa) to 100 parts by weight of the powder detergent raw material.
  • the mixture was further granulated by continuing mixing for 1 minute, and then the detergent particle group 18 was discharged from the drum granulator.
  • the resulting detergent particle group 18 has a moisture content of 11.3%, an average particle size of 480 ⁇ m, a Rosin-Rammler number of 1.52, a detergent yield of 79.7%, a bulk density of 590 g / L, a fluidity of 6.3 s, and an oil absorption capacity. It was 0.29 mL / g.
  • Example 13 Composition C was brought to 55 ° C. Next, 3.15 kg of pulverized light ash was stirred in a drum type granulator having a baffle plate (rotation speed 30 r / m, fluid number 0.2). After stirring for 10 seconds, 122 parts by weight of the above composition C was added to 100 parts by weight of the powder detergent raw material using a two-fluid nozzle (Air spray pressure for atomization of 0.3 MPa) in 18.9 minutes. After the addition, the mixture was further granulated by continuing mixing for 1 minute, and then the detergent particle group 19 was discharged from the drum granulator.
  • the resulting detergent particle group 19 has a moisture content of 14.2%, an average particle size of 698 ⁇ m, a Rosin-Rammler number of 2.37, a detergent yield of 72.5%, a bulk density of 684 g / L, a fluidity of 6.6 s, and an oil absorption capacity. It was 0.17 mL / g.
  • Example 14 93 parts by weight of Composition B and 7 parts by weight of sodium polyoxyethylene lauryl ether sulfate (Emulgen 270J, manufactured by Kao Corporation) were mixed (hereinafter referred to as “Composition D”) to 55 ° C.
  • Composition D sodium polyoxyethylene lauryl ether sulfate
  • 4.2 kg of light ash was stirred in a drum granulator having a baffle plate (rotation speed 30 r / m, fluid number 0.2).
  • 67 parts by weight of the above composition D was added to 100 parts by weight of the powder detergent raw material using a two-fluid nozzle (Air spray pressure for atomization of 0.3 MPa) in 14.6 minutes.
  • the mixture was further granulated by continuing mixing for 1 minute, and then the detergent particle group 20 was discharged from the drum granulator.
  • the resulting detergent particle group 20 has a moisture content of 16.5%, an average particle size of 431 ⁇ m, a Rosin-Rammler number of 2.22, a detergent yield of 93.9%, a bulk density of 622 g / L, a fluidity of 6.4 s, and an oil absorption capacity. It was 0.56 mL / g.
  • Example 15 Composition D was brought to 55 ° C. Next, 3.5 kg of pulverized light ash was stirred in a drum granulator (rotation speed 30 r / m, fluid number 0.2) having a baffle plate. After stirring for 10 seconds, 100 parts by weight of the above composition D was added to 100 parts by weight of the powder detergent raw material using a two-fluid nozzle (Air spray pressure for atomization of 0.3 MPa) in 18.2 minutes. After the addition, the mixture was further granulated by continuing mixing for 1 minute, and then the detergent particle group 21 was discharged from the drum granulator.
  • the obtained detergent particle group 21 has a moisture content of 16.0%, an average particle size of 408 ⁇ m, a Rosin-Rammler number of 1.87, a detergent yield of 92.4%, a bulk density of 642 g / L, a fluidity of 6.1 s, and an oil absorption capacity. It was 0.24 mL / g.
  • Example 16 Composition B was brought to 60 ° C. Next, 4.2 kg of mirabilite was stirred in a drum granulator (rotation speed 30 r / m, fluid number 0.2) having a baffle plate. After stirring for 10 seconds, 67 parts by weight of the above composition B was added in 14.5 minutes using a two-fluid nozzle (Air spray pressure for atomization of 0.3 MPa) to 100 parts by weight of the powder detergent raw material. After the addition, the mixture was further granulated by continuing mixing for 1 minute, and then the detergent particle group 22 was discharged from the drum granulator.
  • the obtained detergent particle group 22 has a water content of 9.6%, an average particle size of 411 ⁇ m, a Rosin-Rammler number of 2.15, a detergent yield of 95.4%, a bulk density of 796 g / L, a fluidity of 6.2 s, and an oil absorption capacity. It was 0.25 mL / g.
  • Example 17 100 g of the detergent particle group 17 obtained in Example 11 was put into a 500 mL beaker. 5 parts by weight of polyoxyethylene lauryl ether (EO 21 mol adduct: hereinafter referred to as “composition E”) is added to 100 parts by weight of the detergent particles, and the detergent particles are mixed manually using a spatula. Was allowed to absorb oil. Thereafter, the obtained detergent particle group was put into a bag, 5 parts by weight of zeolite was added to 100 parts by weight of the detergent particle group, and mixed 20 times to obtain detergent particle group 23.
  • composition E polyoxyethylene lauryl ether
  • the resulting detergent particle group 23 had an average particle size of 440 ⁇ m, a Rosin-Rammler number of 1.88, a detergent yield of 86.2%, a bulk density of 515 g / L, and a fluidity of 6.4 s.
  • Example 18 100 g of the detergent particle group 17 obtained in Example 11 was put into a 500 mL beaker. 10 parts by weight of the composition E was added to 100 parts by weight of the detergent particle group, and was manually mixed using a stir bar to make the detergent particle group absorb oil. Thereafter, 10 parts by weight of zeolite was added to 100 parts by weight of the obtained detergent particle group, and further mixed to obtain detergent particle group 24.
  • the resulting detergent particle group 24 had an average particle size of 590 ⁇ m, a Rosin-Rammler number of 2.96, a detergent yield of 90.2%, a bulk density of 640 g / L, and a fluidity of 6.8 s.
  • the obtained detergent particle group 25 was coarse and could not be evaluated.
  • Comparative Example 8 Polyoxyethylene lauryl ether (Emulgen 106 manufactured by Kao Corporation: hereinafter referred to as “Composition G”) was set to 60 ° C. The state of the composition G at 60 ° C. was a liquid. Next, 4.93 kg of light ash was stirred in a drum granulator having a baffle plate (rotation speed 30 r / m, fluid number 0.2). After stirring for 10 seconds, 35 parts by weight of the above composition G was added in 9.4 minutes to 100 parts by weight of the powder detergent raw material using a two-fluid nozzle (Air spray pressure for atomization: 0.3 MPa). After the addition, granulation was continued by further mixing for 1 minute. Thereafter, 5 parts by weight of zeolite was added to 100 parts by weight of the obtained detergent particle group, and further mixed for 1 minute, and the detergent particle group 26 was discharged from the drum granulator.
  • Composition G Polyoxyethylene lauryl ether
  • the obtained detergent particle group 26 had high adhesion and could not be evaluated.
  • Comparative Example 9 Composition G was brought to 60 ° C. Next, 4.93 kg of light ash was stirred in a drum granulator having a baffle plate (rotation speed 30 r / m, fluid number 0.2). After stirring for 10 seconds, 35 parts by weight of the above composition G was added in 9.4 minutes to 100 parts by weight of the powder detergent raw material using a two-fluid nozzle (Air spray pressure for atomization: 0.3 MPa). After the addition, granulation was continued by further mixing for 1 minute. Thereafter, 30 parts by weight of zeolite was added to 100 parts by weight of the obtained detergent particle group, and further mixed for 1 minute, and the detergent particle group 27 was discharged from the drum granulator.
  • the obtained detergent particle group 27 had a water content of 2.8%, an average particle size of 138 ⁇ m, a Rosin-Rammler number of 1.0, a detergent yield of 59.4%, a bulk density of 698 g / L, and a fluidity of 12.1 s. .
  • a product of 1000 ⁇ m or more is a ratio (% by weight) of a particle group of 1000 ⁇ m or more in all detergent particle groups, and a product of less than 125 ⁇ m is a ratio of a particle group of less than 125 ⁇ m in all detergent particle groups. (% By weight).
  • the amount of zeolite is the amount when the detergent particle group after the surfactant paste mixing step is 100 parts by weight.
  • the nonionic surfactant or the formula ( It was found that even when a surfactant paste containing an anionic surfactant other than the anionic surfactant described in 1) is used, a detergent particle group having good properties can be produced.
  • a desired detergent particle group can be produced by mixing the detergent particle group obtained after the surfactant paste mixing step and the liquid detergent raw material.
  • a detergent particle group having a required particle size having a sharp particle size distribution can be produced with high yield using a surfactant paste containing an anionic surfactant.
  • a detergent particle group can be used as a constituent component of, for example, a powder detergent for clothing and a detergent for automatic tableware.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

 噴霧乾燥を含まない方法にて、陰イオン性界面活性剤を含有する、必要な粒度の洗剤粒子の収率が良好な洗剤粒子群を製造する方法を提供すること。本発明の製造方法を使用することにより、粒径分布がシャープな洗剤粒子群を収率よく製造することができるという効果が奏される。粒度分布をシャープにすることは、外観の向上だけでなく、流動性も良好であり、結果的に生産性に優れた洗剤を効率的に得ることができるという効果も奏される。

Description

洗剤粒子群の製造方法
 本発明は、容器回転型造粒機と、陰イオン性界面活性剤を含有する界面活性剤ペースト、多流体ノズルを用いた洗剤粒子群の製造法に関する。更に本発明は、該洗剤粒子群を含有してなる洗剤組成物に関する。
 近年、粉末洗剤組成物及びその製造法については、経済性、環境対応等が求められている。
 界面活性剤として式(1)で示される陰イオン性界面活性剤の化合物を配合した粉末洗剤に関しては、これまで、高い洗浄活性能、環境対応等の向上を目的に種々の開示がある。かかる陰イオン性界面活性剤は、一般に皮膚刺激性が少なく、生分解性が良好であることが知られている。
 例えば、経済性、環境対応の観点からは、噴霧乾燥を用いない製造方法として、非噴霧乾燥法による陰イオン性界面活性剤を用いた洗剤組成物の製造法が開示されている。特許文献1には、界面活性剤ペーストと乾燥した洗剤材料を高速ミキサー/中速ミキサー/乾燥機にて連続的に洗剤組成物を製造する方法が開示されている。特許文献2には、界面活性剤ペーストと乾燥した洗剤原料を高速ミキサー/中速ミキサー/コンディショニング装置にて微粒子を再循環させながら連続的に洗剤組成物を製造する方法が開示されている。
 しかしながら、特許文献1の製法では粒度の調整が困難であり、また、特許文献2の製法では粒度の調整を行う為、微粒子を再循環させる製法を用いており、生産性が低い製造法である。その為、より簡単に必要な粒度の洗剤粒子群を収率良く得られる製法が求められている。
特表平10-500716号公報 特表平10-506141号公報
 即ち、本発明の要旨は、粉末洗剤原料の粉末に、次のa)成分及びb)成分:
   a)下記式(1):
    R-O-SO3M   (1)
(式中、Rは炭素数10~18のアルキル基又はアルケニル基、Mはアルカリ金属原子又はアミンを示す。)で示される陰イオン性界面活性剤、及び
   b)上記a)成分100重量部に対して25~70重量部の水、を含有する界面活性剤ペーストを多流体ノズルを用いて添加し、容器回転型造粒機によって混合する、界面活性剤ペースト混合工程を含む洗剤粒子群の製造方法に関するものである。
 本発明は、噴霧乾燥を含まない方法にて、陰イオン性界面活性剤を含有する、必要な粒度の洗剤粒子の収率が良好な洗剤粒子群を製造する方法を提供することに関する。更に本発明は、該洗剤粒子群を含有してなる洗剤組成物を提供することに関する。
 本発明の製造方法を使用することにより、粒径分布がシャープな洗剤粒子群を収率よく製造することができるという効果が奏される。粒度分布をシャープにすることは、外観の向上だけでなく、流動性も良好であり、結果的に生産性に優れた洗剤を効率的に得ることができるという効果も奏される。
 本発明の洗剤粒子群の製造方法は、粉末洗剤原料の粉末と、式(1)で示される陰イオン性界面活性剤を含有する界面活性剤ペーストとを混合する工程を有する洗剤粒子群の製造方法であって、混合を行うにあたり、容器回転型造粒機を使用し、かつ式(1)で示される陰イオン性界面活性剤を含有する界面活性剤ペーストを2流体ノズル等の多流体ノズルを用いて添加することを、一つの特徴とする。
 一般に、容器回転型造粒機を用いた造粒は、造粒機内の粉末を均一に流動せしめることが可能となり、更に、回転による粒子の持ち上げ及び自重による滑り・落下を伴う混合機構の為、粉体に加えられるせん断力が抑制されるため、非圧密な造粒方法である。また、式(1)で示される陰イオン性界面活性剤を含有するペーストは、粉体と接触した際の粘着性が強くないと造粒が進行しないために、粉体と接触した際に粘着性が発現する必要がある。このような式(1)で示される陰イオン性界面活性剤を含有するペーストを容器回転型造粒機に一般的な供給方法である一流体ノズルや配管にて供給すると、供給される液体成分を混合機内で均一に分散させにくく、局在的に発生する大きな液塊により粗大粒子が形成されやすいことが分かった。
 そこで、2流体ノズル等の多流体ノズルを用いて、粉体と接触した際に粘着性を発現する式(1)で示される陰イオン性界面活性剤を含有するペーストを噴霧することによって容器回転型造粒機内に供給したところ、意外にも、粗大粒子の形成を抑制しつつ均一に造粒できることが分かった。これは、このような陰イオン性界面活性剤を含有するペーストを多流体ノズルを用いてあらかじめ微細な液滴とすることにより、容器回転型造粒機内であってもこのような陰イオン性界面活性剤を含有するペーストの高分散が達成でき、粗大粒子を形成する大きな液塊が発生しないためと考えられる。従って、粉体と接触した際に粘着性を発現するこのような陰イオン性界面活性剤を含有するペーストを多流体ノズルを用いて容器回転型造粒機内に添加することも、本発明の特徴の一つである。
 このように、本発明においては、 容器回転型造粒機と多流体ノズルを組み合わせて使用することで、それぞれ単独で使用する場合からは予期できない、粒径分布がシャープな洗剤粒子群を収率よく製造することができる効果が奏される。
 粒度分布がシャープな粒子が高収率で得られるメカニズムの仮説としては、容器回転型造粒機を用いることにより粉体に加えられるせん断力が抑制された均一な粒子が得られること、及び、多流体ノズルにより液滴を微細化して高分散させるため、式(1)で示される陰イオン性界面活性剤を含有する界面活性剤ペーストの粘着性に起因する凝集を抑制できること、の相乗効果によるものと考えられる。
 しかし、容器回転型造粒機を用いて撹拌又は混合を行う場合、液体成分(本明細書では界面活性剤ペースト)が造粒機内で均一に分散されにくいといった課題がある。その為、例えば、液体成分の供給方法を検討して、液体成分を均一分散させるという手段が考えられる。例えば、液体成分を均一に分散させる方法としては、2流体ノズル等の多流体ノズルを用いて液体成分の微細化を図る方法が考えられる。しかしながら、多流体ノズルを、粘度の高い界面活性剤ペーストを微細化するために用いるという発想は、当業者であっても生じにくい。
 本発明の製造方法における混合の態様としては、容器回転型造粒機を使用し、式(1)で示される陰イオン性界面活性剤を含有する界面活性剤ペーストを多流体ノズルを用いて噴霧する態様であれば特に限定されるものではないが、以下、本発明の製造方法の一例としての態様について、より詳細に説明する。
 本発明において、洗剤粒子とは界面活性剤及びビルダー等を含有する粒子であり、洗剤粒子群とはその集合体を意味する。洗剤組成物とは、洗剤粒子群を含有し、所望により洗剤粒子群以外に別途添加された洗剤成分(例えば、ビルダー顆粒、蛍光染料、酵素、香料、消泡剤、漂白剤、漂白活性化剤等)を含有する組成物を意味する。
 本明細書において、水溶性とは25℃の水に対する溶解度が0.5g/100g以上であることを意味し、水不溶性とは、25℃の水に対する溶解度が0.5g/100g未満であることを意味する。
1.粉末洗剤原料
 本発明における必須の成分として、粉末洗剤原料が挙げられる。具体的には、下記の、1)アルカリ剤、2)水溶性物質、3)粘土鉱物が挙げられる。これら1)~3)の成分は、アルカリ剤、水溶性物質、粘土鉱物を単独で用いても良いし、また複数の成分を混合して用いてもよい。顆粒化の観点から、該粉末洗剤原料の平均粒径としては10~250μmが好ましく、50~200μmがより好ましく、80~200μmが更に好ましい。
 また、アルカリ剤、水溶性物質、粘土鉱物の平均粒径は特に限定されないが、式(1)で示される陰イオン性界面活性剤を含有する界面活性剤ペーストを高配合する場合には、収率の向上の観点から1~50μmまで粉砕して用いてもよい。
 アルカリ剤としては、通常の洗剤組成物においてアルカリ剤として用いられるものが挙げられ、炭酸ナトリウム(例えばライト灰又はデンス灰)、炭酸水素ナトリウム、ケイ酸ナトリウム、炭酸カリウム、炭酸カルシウム等が例示される。ハンドリングの容易さ及び入手のし易さの観点から、ライト灰が好ましい。これらは単独で用いても良く、二種以上を混合して用いても良い。
 粉末洗剤原料としてライト灰を用いる場合、重曹焼成時の温度を調整することにより、界面活性剤を担持する能力をさらに向上させることができる。担持能の観点から、焼成温度は120~250℃が好ましく、150~220℃が好ましく、150~200℃が更に好ましい。
 水溶性物質としては、芒硝、トリポリリン酸Na等の通常の洗剤組成物に用いられる粉末やそれらの水和物を乾燥して作製した多孔質粉末等が挙げられる。
 粘土鉱物としては、通常の洗剤組成物において用いられる粘土鉱物が挙げられる。粉末洗剤原料として、粘土鉱物とそれ以外の上記原料とを併用する場合、それらの混合物が顆粒化されることとなる。界面活性剤ペーストと混合される場合は、ペーストに含まれる水によって粉末洗剤原料の一部が溶解し、それにより生じる粘結性、或いは粘土鉱物の粘結性を顆粒化に利用する。
 粉末洗剤原料の粉末と界面活性剤ペーストとを混合する際に、所望により前記粉末洗剤原料以外の粉体原料を添加してもよく、添加量としては、粉末洗剤原料100重量部に対して、0~150重量部が好ましく、0~100重量部がより好ましく、0~50重量部がさらに好ましい。該粉体原料としては、例えば、アルミノケイ酸塩、プリフィード(トクヤマシルテック社製)等の結晶性ケイ酸塩等が挙げられる。かかる粉体原料を用いる場合、洗剤粒子群中の当該粉体原料の含有量は、流動性の向上、シミ出しやケーキングの抑制、洗浄力の向上の観点から0.1重量%以上が好ましく、1重量%以上がより好ましく、3重量%以上がさらに好ましく、すすぎ性、溶解性の観点から40重量%以下が好ましく、30重量%以下がより好ましく、20重量%以下がさらに好ましく、10重量%以下がよりさらに好ましい。
 入手の容易性や得られる洗剤粒子群の性能の観点から、粉末洗剤原料の好ましい例としては、ライト灰及び/又は芒硝を含むものが挙げられる。
2.界面活性剤ペースト
 本発明における必須の成分として、界面活性剤ペーストが挙げられる。本発明においては、粉末洗剤原料に界面活性剤ペーストを添加し、容器回転型造粒機を用いることによって、粉末洗剤原料を顆粒化し、洗剤粒子群を製造する。
〔界面活性剤ペーストの組成〕
 本発明に用いる界面活性剤ペースト中の陰イオン性界面活性剤としては、式(1):R-O-SO3Mで示される陰イオン性界面活性剤(式中、Rは炭素数10~18、好ましくは炭素数12~16のアルキル基又はアルケニル基であり、MはNa、K等のアルカリ金属原子又はモノエタノールアミン、ジ-エタノールアミン等のアミンである。洗剤組成物の洗浄力向上の観点から、MとしてはNa、Kが好ましい。
〔界面活性剤ペーストの物性〕
 界面活性剤ペーストとは、式(1)で示される陰イオン性界面活性剤(本明細書において「a)成分」と記載する)と所定量の水を含有してなるものである。界面活性剤ペーストは、製造上のハンドリング性の観点から、該界面活性剤組成物の使用温度域において、該界面活性剤ペーストの粘度が好ましくは10Pa・s以下、より好ましくは5Pa・s以下となる温度域を有するものである。このような使用温度域としては、界面活性剤ペーストの安定性の観点から、好ましくは70℃まで、より好ましくは60℃までに存在するのが好ましい。ここで、粘度は、共軸二重円筒型の回転粘度計(HAAKE製、センサー:SV-DIN)により剪断速度50〔1/s〕で測定して求める。
 界面活性剤ペーストは、その含水率により粘度が大きく変化する。例えば、a)成分の酸前駆体をアルカリ化合物で中和して当該界面活性剤のペーストを調製することができるが、その際に、用いるアルカリ化合物の水分量を調節し、所望の含水率をもった、すなわち、所望の粘度を有する界面活性剤ペーストを調製することが好ましい。該界面活性剤ペーストは、a)成分100重量部に対して25~70重量部(該界面活性剤組成物の含水率が約20~40%)の水を含有する際に、粘度が低下し、ハンドリングしやすいことが一般的に知られており、本発明ではこの範囲に界面活性剤組成物の水分を調整したものを用いることが好ましい。界面活性剤ペーストにおける水の量の範囲としては、ハンドリングの観点から、a)成分100重量部に対して25~70重量部であり、30~65重量部が好ましく、35~65重量部がより好ましい。
 また、a)成分の酸前駆体は非常に不安定であり分解しやすいため、その分解を抑制できるように調製することが好ましい。調製法は、特に限定されず、公知の方法を用いることができる。たとえば、ループ反応器を用いて、中和熱を熱交換器などにより除去し、当該酸前駆体及び界面活性剤ペーストの温度管理に注意しながら製造を行なえばよい。製造時の温度域としては、30~60℃が好ましく、製造後の保存温度域としては60℃以下が好ましい。また、使用時、必要に応じて昇温し、該界面活性剤組成物を用いればよい。
 また、得られる該陰イオン性界面活性剤ペーストは、分解を抑制する観点から、過剰のアルカリ度を有することが好ましい。
 また、界面活性剤ペーストには、a)成分の酸前駆体を製造した際の未反応アルコールや未反応ポリオキシエチレンアルキルエーテル、中和反応時の副生成物である芒硝、中和反応時に添加され得るpH緩衝剤、脱色剤等が含有されていてもよい。
 なお、本発明で得られる洗剤粒子群中におけるa)成分の含有量は、洗浄力及び溶解性の観点から、10~55重量%の範囲が好ましく、10~45重量%がより好ましく、15~40重量%がさらに好ましく、15~40重量%がさらにより好ましい。
 界面活性剤ペーストにおいて、界面活性剤としてa)成分を単独で用いることもできるが、下記界面活性剤を併用して用いることもできる。併用する場合は、あらかじめa)成分含有の界面活性剤ペーストと混合して用いても良いし、それぞれ別々に添加しても良い。なお、下記界面活性剤を併用する場合、下記界面活性剤は、a)成分100重量部に対して、好ましくは1~70重量部、より好ましくは2~50重量部、更に好ましくは3~30重量部、更により好ましくは5~15重量部含有する。また、下記界面活性剤を併用する場合、界面活性剤ペースト中のa)成分の含有量は、好ましくは40~80重量%、より好ましくは45~75重量%、更に好ましくは50~70重量%である。
 例えば、非イオン性界面活性剤を混合又は別々に用いることもできる。30℃以下に融点を有する非イオン性界面活性剤を用いる場合は、界面活性剤の融点を上昇させる作用を有する、融点45~100℃、分子量1千~3万の水溶性非イオン性有機化合物(以下、融点上昇剤という)又はその水溶液を併用する事が好ましい。なお、本発明で用いることのできる融点上昇剤としては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリオキシエチレンアルキルエーテル、プルロニック型非イオン性界面活性剤等が挙げられる。又、両性界面活性剤や陽イオン性界面活性剤を目的に合わせ併用することもできる。
 例えば、a)成分以外の陰イオン性界面活性剤を混合又は別々に用いることもでき、かかる陰イオン性界面活性剤としては、ポリオキシエチレンアルキルエーテル硫酸塩やアルキルベンゼンスルホン酸塩、α-スルホ脂肪酸エステル塩や二級アルカンスルホン酸塩が挙げられる。また、低温の水中における洗剤粒子群の分散性を向上する観点から、ポリオキシエチレンアルキルエーテル硫酸塩やアルキルベンゼンスルホン酸塩等の陰イオン性界面活性剤が洗剤粒子群中に好ましくは0~10重量%で、より好ましくは0~5重量%、さらに好ましくは0~3重量%含有されていてもよい。また、洗浄力向上の観点からは0.1重量%以上が好ましく、1重量%以上がより好ましく、3重量%以上がさらに好ましく、洗剤収率向上の観点から10重量%以下が好ましく、8重量%以下がより好ましく、5重量%以下がさらに好ましい。
 更に、消泡効果を得るために脂肪酸塩を併用することができる。
 非イオン性界面活性剤としては、特に限定されるものではないが、洗浄力の観点から、例えば炭素数10~14のアルコールにアルキレンオキシドを6~22モル付加したポリオキシアルキレンアルキルエーテルが好ましい。
 洗剤粒子群中の非イオン性界面活性剤の含有量は、洗浄力の向上、耐ケーキング性の向上、及び粉立ち時のムセの抑制の観点から、洗剤粒子群中において好ましくは0~10重量%、より好ましくは0~5重量%、更に好ましくは0~3重量%である。また、洗浄力向上の観点からは0.1重量%以上が好ましく、1重量%以上がより好ましく、3重量%以上がさらに好ましく、洗剤収率向上の観点から10重量%以下が好ましく、8重量%以下がより好ましく、5重量%以下がさらに好ましい。
3.ポリマー
 尚、本発明における洗剤粒子群には、洗浄力、顆粒化の為のバインダー効果の観点から、水溶性セルロース誘導体、糖類及びカルボン酸系ポリマー、非晶質のケイ酸塩等の無機ポリマー等を併用することができ、アクリル酸-マレイン酸コポリマーの塩、ポリアクリル酸塩がより好ましい。塩としてはナトリウム塩、カリウム塩、アンモニウム塩が好ましい。尚、カルボン酸系ポリマーの重量平均分子量としては、1000~100000が好ましく、2000~80000がより好ましい。
4.その他成分
 尚、本発明における洗剤粒子群には、上記1~3に挙げた以外の物質であっても、必要に応じて適宜配合することができる。かかるその他成分の添加時期は特に制限されない。
・キレート剤(金属封鎖剤)
 金属イオンによる洗浄作用阻害を抑制する為、配合することができる。水溶性キレート剤としては、金属イオン封鎖能を保持する物質であれば特に規定はされないが、結晶性ケイ酸塩、トリポリリン酸塩、オルトリン酸塩、ピロリン酸塩等が使用可能である。水不溶性キレート剤については、水中での分散性の観点から、粒子の平均粒径が0.1~20μmのものが好ましく、結晶性アルミノケイ酸塩が挙げられ、例えばA型ゼオライト、P型ゼオライト、X型ゼオライト等が使用可能である。
・水溶性無機塩
 洗濯液のイオン強度を高め、皮脂汚れ洗浄等の効果を向上させる為、水溶性無機塩を添加することが好ましい。
・水不溶性賦形剤
 水中での分散性良好で、洗浄力に悪影響を与えない物質であれば特に規定はされない。水中での分散性の観点から、一次粒子の平均粒径が0.1~20μmのものが好ましい。
・その他補助成分
 蛍光染料、顔料、染料等が挙げられる。
 尚、前記成分の平均粒径の測定は、後述の物性の測定方法に記載の方法で測定することができる。
<洗剤粒子群の製法>
 本発明の洗剤粒子群の製造方法は、以下の界面活性剤ペースト混合工程にて粉末洗剤原料の粉末に界面活性剤ペーストを添加、混合する工程を含む方法であり、かかる工程を経て洗剤粒子群が調製される。
1.界面活性剤ペースト混合工程
 粉末洗剤原料の粉末に、式(1)で示される陰イオン性界面活性剤及び水を含有する界面活性剤ペーストを添加し、容器回転型造粒機によってこれらを混合し、洗剤粒子群を調製する工程である。
 本工程において混合される界面活性剤ペーストの量としては、粉末洗剤原料100重量部に対して25~200重量部が好ましく、25~180重量部がより好ましく、25~160重量部が更に好ましく、25~100重量部が更により好ましく、30~90重量部が特に好ましく、35~85重量部が特により好ましい。洗浄力の観点から、25重量部以上であることが好ましく、洗剤収率、溶解性の観点から、200重量部以下であることが好ましく、180重量部以下がより好ましく、160重量部以下が更に好ましく、100重量部以下がより更に好ましい。
 この工程に用いられる容器回転型造粒機とは、顆粒に強い剪断を与えて大きく圧密することのない装置であれば良い。例えば、本来、高剪断力を与え得る主翼と解砕翼を備えた竪型或いは横型造粒機においても、回転数や以下に記載するフルード数を低く設定し圧密を抑制することで、本発明の顆粒製造に利用することができる。即ち、本明細書における容器回転型造粒機には、顆粒に高剪断力を与え得る造粒機であっても、操作条件の設定等により剪断力を低下させて操作することができる造粒機も包含される。
 容器回転型造粒機としては、顆粒化の容易さ及び担持能向上の観点から、本体胴部の回転によって顆粒化が進行するパン型造粒機或いはドラム型造粒機が好ましい。これらの装置はバッチ式、連続式いずれの方法においても用いることができる。尚、粉末混合性及び固液混合性の観点からは、パン或いはドラムに混合を補助する邪魔板を設けることが好ましい。
 又、容器回転型造粒機として使用するためには、粉末を均一に流動せしめることが可能となり、更に、回転による粒子の持ち上げ及び自重による滑り・落下を伴う混合機構の確保観点から、以下の式で定義される造粒機のフルード数を1.0以下に設定するのが好ましく、0.8以下がより好ましく、0.6以下が更に好ましく、0.4以下がより好ましい。
 フルード数:Fr=V2/(R×g)
  V:周速[m/s]
  R:回転中心から回転物の円周までの半径[m]
  g:重力加速度[m/s2]
 混合粉末に界面活性剤ペーストを均一に添加する観点から、造粒機のフルード数を0.001以上に設定するのが好ましく、0.005以上がより好ましく、0.01以上が更に好ましく、0.05以上が更により好ましい。
 尚、主翼や解砕翼を備えた竪型或いは横型造粒機においては、V及びRは主軸の値を用い、本体胴部の回転によって顆粒化が進行するパン型造粒機或いはドラム型造粒機においては、V及びRは本体胴部の値を用いることとする。また、解砕翼を備えたパン型造粒機においては、V及びRは解砕翼の値を用いることとする。
 造粒機の回転時間は特に限定されないが、例えば界面活性剤ペースト添加後から0~10分間が好ましい。
 本発明においては、界面活性剤ペーストを均一分散させて添加することが好ましい。そのための方法としては、多流体ノズルを用いて微細化する方法がある。
 多流体ノズルとは、液体成分と微粒化用気体(エアー、窒素等)を独立の流路を通してノズル先端部近傍まで流通させ、混合・微粒化するノズルであり、2流体ノズルや3流体ノズル、4流体ノズル等を用いることができる。また、液体成分と微粒化用気体の混合部は、ノズル先端部内で混合する内部混合型、或いはノズル先端部外で混合する外部混合型のいずれであっても良い。
 本発明においては、多流体ノズルを用いて液体成分を微細液滴化して添加することが好ましく、2流体ノズルを用いることがより好ましい。このような多流体ノズルとしては、例えば、スプレーイングシステムスジャパン(株)製、(株)共立合金製作所製、いけうち(株)製等の内部混合型2流体ノズル、スプレーイングシステムスジャパン(株)製、(株)共立合金製作所製、(株)アトマックス製等の外部混合型2流体ノズル、藤崎電機(株)製の外部混合型4流体ノズル等が挙げられる。
 2流体ノズルを用いる場合、例えば、次の条件で上記ペーストを供給することが好ましい。例えば、微粒化用Air噴霧圧としては0.05~0.7MPaが好ましい。
 本発明に用いる高粘度の界面活性剤ペーストの液滴の微細化、ノズル先端の詰まり防止の観点から、本発明においては、外部混合型2流体ノズルを用いることが好ましい。
 液滴径の違いが、得られる洗剤粒子群の収率や粗粒量に与える影響を鋭意検討した結果、上記ペーストの液滴径の平均粒径を1~300μmにすることが収率の観点から好ましく、1~200μmがより好ましく、1~150μmがより好ましい。
 また、上記ペーストの添加速度を上げたい場合には、これらの多流体ノズルを複数個使用し、液滴の微細化を維持しつつ添加速度を上げることも効果的である。
 このような方法を用いることで、高粘度の上記ペーストにおいても均一な分散が可能となり、収率が向上し粒度分布のシャープな洗剤粒子群が得られる。
 なお、界面活性剤ペーストの液滴径の平均粒径は体積基準で算出されるものであり、レーザー回折式粒度分布測定装置:スプレーテック(マルバーン社製)を用いて測定される値である。
<洗剤粒子群の物性>
 本発明の製造方法により、所定の特性を有する洗剤粒子群を得ることができる。かかる本発明の製造方法により得られた洗剤粒子群も、本発明に包含される。本発明による洗剤粒子群の好ましい物性は、以下の通りである。
 嵩密度としては、好ましくは400g/L以上であり、より好ましくは450~1000g/L、さらに好ましくは450~950g/L、より好ましくは500~900g/Lである。平均粒径としては、好ましくは150~800μm、より好ましくは180~700μm、更に好ましくは200~500μmである。
 尚、前記嵩密度、平均粒径は、後述の物性の測定方法に記載の方法で測定することができる。
 また、本発明による洗剤粒子群の好ましい粒度分布の指標として、Rosin-Rammler数(表中のR-R数)を用いることができる。Rosin-Rammler数の算出には以下の式を用いる。
 log(log(100/R(Dp)))=nlog(Dp)+log(β)
   R(Dp):粒径Dpμm以上の粉体の累積率〔%〕
   Dp:粒径〔μm〕
   n:Rosin-Rammler数
   β:粒度特性係数
 Rosin-Rammler数nが高い程、粒度分布がシャープであることを示す。nとしては洗剤粒子群の審美性の観点から好ましくは1.5以上、より好ましくは1.7以上、さらに好ましくは1.9以上、よりさらに好ましくは2.0以上である。
 本発明による洗剤粒子群の好ましい粒度の収率として、篩目開き125~1000μmの粒子の割合として、好ましくは70%以上、より好ましくは75%以上、さらに好ましくは80%以上、よりさらに好ましくは85%以上、特に好ましくは87%以上、より特に好ましくは90%以上である。
 本発明における洗剤粒子群の水分量としては、a)成分の高配合の観点から、より少ない方が好ましい。具体的には、洗剤粒子群の水分量を赤外線水分計で測定した場合、その水分量は20重量%以下が好ましく、15重量%以下がより好ましく、10重量%以下が更に好ましく、5重量%以下がより好ましい。
 本発明による洗剤粒子群の吸油能は、篩目開き2000μm以上の顆粒を除去した後の吸油能として測定される。好ましくは液体洗剤原料吸油工程における液体洗剤原料の混合量の許容範囲を大きくする観点から、好ましくは0.15mL/g以上、より好ましくは0.2mL/g以上、さらに好ましくは0.3mL/g以上、よりさらに好ましくは0.4mL/g以上である。本発明による洗剤粒子群の比較的高い吸油能は、前記する容器回転型造粒機によって顆粒化することで達成されると考えられる。
 また、本発明による洗剤粒子群の吸油能は、界面活性剤ペースト混合工程における界面活性剤ペーストの混合量が少ないほど吸油能は高くなり、液体洗剤原料吸油工程における液体洗剤原料の混合量により、界面活性剤ペースト混合工程における界面活性剤ペーストの混合量を調整することで任意に調整が可能である。
 洗剤粒子群を得る好適な製法は、更に必要に応じて以下の液体洗剤原料吸油工程又は表面改質工程又は乾燥工程を含んでもよい。
2.任意の製造工程
 液体洗剤原料吸油工程:界面活性剤ペースト混合工程により得られた洗剤粒子群と、上記非イオン性界面活性剤や上記ポリマー等の液体洗剤原料とを混合する工程である。
表面改質工程:界面活性剤ペースト混合工程又は液体洗剤原料吸油工程で得られた洗剤粒子群を表面被覆剤で表面改質する工程である。但し、表面改質工程においては解砕が同時に進行してもよい。
乾燥工程:界面活性剤ペースト混合工程、液体洗剤原料吸油工程又は表面改質工程で得られた洗剤粒子群を乾燥させる工程である。
2-1.液体洗剤原料吸油工程
 本工程において、界面活性剤ペースト混合工程にて得られた洗剤粒子群と液体洗剤原料とを混合することにより、該洗剤粒子群へ液体洗剤原料を担持させることができる、任意の工程である。
 液体洗剤原料吸油工程においては、界面活性剤ペースト混合工程により得られた洗剤粒子群が少なくとも用いられればよい。即ち、本工程においては、界面活性剤を担持する能力を有する他の顆粒群、例えば噴霧乾燥等の他の方法により得られた顆粒群を併用してもよい。
 液体洗剤原料吸油工程における当該洗剤粒子群の比率としては洗浄力、吸油能の観点から、液体洗剤原料を添加する顆粒群中100重量%中の50重量%以上が好ましく、70重量%以上がより好ましく、90重量%以上が更に好ましい。
 かかる方法としては、該洗剤粒子群を製造した容器回転型造粒機中にて混合する方法が挙げられる。また、例えば、回分式や連続式の混合機を用いて、該洗剤粒子群と液体洗剤原料とを混合する方法が挙げられる。ここで、回分式で行う場合に、混合機への仕込み方法としては、(1)混合機に先ず該洗剤粒子群を仕込んだ後、液体洗剤原料を添加する、(2)混合機に該洗剤粒子群と、液体洗剤原料を少量ずつ添加することを繰り返す、(3)該洗剤粒子群の一部を混合機に仕込んだ後、残りの該洗剤粒子群と液体洗剤原料とを少量ずつ添加することを繰り返す、等の方法をとることができる。
 当該洗剤粒子群への液体洗剤原料の添加においては、液体洗剤原料の配合量が多くなる程、添加速度が重要となる。具体的には、液体洗剤原料の添加速度を該洗剤粒子群の吸油速度以下にすることが好ましい。このような添加速度で添加を実施することにより、該洗剤粒子群のより内部まで液体潜在原料の吸油が可能となり、その結果として、液体洗剤原料の粘着性による洗剤粒子の凝集を抑制でき、得られる洗剤粒子群の粒度分布をシャープにすることができる。具体的な添加速度としては、例えば、本発明で用いる界面活性剤ペーストを添加する場合は、当該洗剤粒子群100重量部に対して35重量部/分以下が好ましく、20重量部/分以下がより好ましく、さらに好ましくは10重量部/分以下、よりさらに好ましくは7.5重量部/分以下である。
 また液体洗剤原料としては、例えば上記非イオン性界面活性剤、水溶性ポリマー(ポリエチレングリコール、ポリアクリル酸ナトリウム、アクリル酸マレイン酸コポリマー等)、脂肪酸等の通常の洗剤組成物に用いられる任意の液体成分が挙げられる。液体成分は一成分のみを用いてもよく、二成分以上を併用しても良い。液体成分としては、当該成分を液体で添加してもよく、又は水溶液若しくは分散液の形態で添加してもよい。液体洗剤原料の使用量としては、該洗剤粒子群100重量部に対して、洗浄力向上の観点から0.1重量部以上が好ましく、1重量部以上がより好ましく、3重量部がさらに好ましく、洗剤粒子群に含有される洗剤粒子の粒子間の凝集の抑制、高速溶解性、及びシミ出し性やケーキング性の抑制の点から30重量部以下が好ましく、20重量部以下がより好ましく、10重量部以下がさらに好ましい。
 好ましい混合装置として具体的には、上記の容器回転型造粒機に加えて、以下のものが挙げられる。回分式で行う場合は、以下の(1)~(3)のものが好ましい。(1)ヘンシェルミキサー(三井三池化工機(株)製)、ハイスピードミキサー(深江工業(株)製)、バーチカルグラニュレーター((株)パウレック製)、レディゲミキサー(松坂技研(株)製)、プロシェアミキサー(太平洋機工(株)製)、特開平10-296064号公報記載の混合装置、特開平10-296065号公報記載の混合装置等、(2)リボンミキサー(日和機械工業(株)製)、バッチニーダー(佐竹化学機械工業(株)製)、リボコーン((株)大川原製作所製)等、(3)ナウターミキサー(ホソカワミクロン(株)製)、SVミキサー(神鋼パンテック(株)製)等がある。上記の混合機の中でも好ましくは、上記の容器回転型造粒機に加えて、レディゲミキサー、プロシェアミキサー、特開平10-296064号公報記載の混合装置、特開平10-296065号公報記載の混合装置等であり、かかる装置を用いることによって、後述の表面改質工程を同一の装置で行うことができるので、設備の簡略化の点から好ましい。中でも、特開平10-296064号公報記載の混合装置、特開平10-296065号公報記載の混合装置は通気によって混合物の湿分や温度を調節し、洗剤粒子群の崩壊を抑制できることから好ましい。また、強い剪断力を与えることなく、粉体と液体の混合が可能なナウターミキサー、SVミキサー、リボンミキサー等の混合装置も、洗剤粒子群の崩壊を抑制できる点から好ましい。
 又、連続型の装置を用いて該洗剤粒子群と液体洗剤原料を混合させてもよい。又、連続型の装置としては、フレキソミックス型((株)パウレック製)、タービュライザー(ホソカワミクロン(株)製)等が挙げられる。
 本工程における混合機内の温度は、該洗剤粒子中の陰イオン性界面活性剤の分解を抑制できるように調整することが好ましく、製造時の温度域としては、30~60℃が好ましく、製造後の保存温度域としては60℃以下が好ましい。
 好適な洗剤粒子群を得るための回分式の混合時間、及び連続式の混合における平均滞留時間は、1~30分間が好ましく、2~25分間がより好ましく、3~20分間が更に好ましい。
 液体洗剤原料吸油工程において、該洗剤粒子群と液体洗剤原料との混合を通気下で行ってもよい。より具体的には、液体洗剤原料吸油工程において、各原料の添加中及び/又は混合中に、混合装置の混合槽内に空気等の気体を送風する操作が挙げられる。かかる操作を行うことによって、該洗剤粒子群が液体洗剤原料を更に担持することができ、得られた洗剤粒子群は液体洗剤原料がより高配合されたものとなる。
 このような効果が奏される理由としては、かかる操作を行うことにより、該洗剤粒子群の表面上に存在する陰イオン性界面活性剤ペーストやその他液体洗剤原料の水分が除去されることによると推定される。その結果、洗剤粒子群の粘着性が低減して洗剤粒子群の凝集が抑制され、得られる洗剤粒子群の粒度分布もシャープになる。
 送風の条件としては、例えば送風される気体の温度が好ましくは10~65℃、より好ましくは30~60℃、さらに好ましくは50~60℃である。
 送風量としては、好ましくは該洗剤粒子群100重量部に対して1~15重量部/分、より好ましくは2~10重量部/分、さらに好ましくは3~8重量部/分である。
 液体洗剤原料の添加前、その添加と同時、その添加途中又はその添加後に粉末ビルダーを添加することも可能である。かかる成分を添加することで、洗剤粒子群の粒子径をコントロールすることができ、又洗浄力の向上を図ることができる。尚、ここで言う粉末ビルダーとは、界面活性剤以外の、粉末の洗浄力強化剤を意味し、具体的には、ゼオライト、クエン酸塩等の金属イオン封鎖能を示す基剤や、炭酸ナトリウム、炭酸カリウム等のアルカリ能を示す基剤、結晶性ケイ酸塩等の金属イオン封鎖能・アルカリ能いずれも有する基剤、その他硫酸ナトリウム等のイオン強度を高める基剤等を指す。
 ここで結晶性ケイ酸塩として、特開平5-279013号公報第3欄第17行(500~1000℃で焼成して結晶化させたものが好ましい。)、特開平7-89712号公報第2欄第45行、特開昭60-227895号公報第2頁右下欄第18行(第2表のケイ酸塩が好ましい。)に記載の結晶性ケイ酸塩を好ましい粉末ビルダーとして用いることができる。ここで、アルカリ金属ケイ酸塩のSiO2/M2O(但しMはアルカリ金属を示す。)が0.5~3.2のもの、好ましくは1.5~2.6のものがより好適に用いられる。
 当該粉末ビルダーの使用量としては、該洗剤粒子群100重量部に対して0~12重量部が好ましく、0~6重量部が更に好ましい。かかる成分はこの範囲において、溶解性が良好である。
 更に、液体洗剤原料吸油工程の後に、洗剤粒子群を表面改質する表面改質工程を加えることが好ましい。
2-2.表面改質工程
 本工程においては、界面活性剤ペースト混合工程又は液体洗剤原料吸油工程で得られた洗剤粒子群の粒子表面を改質する、任意の工程である。そのために、添加時の形態として以下の(1)微粉体、(2)液状物のような種々の表面被覆剤を添加する表面改質工程を行う。表面改質工程の回数は1回以上であってもよい。
 洗剤粒子群の粒子表面を表面被覆剤により改質すると、洗剤粒子群の流動性と耐ケーキング性が向上する傾向がある。そのため、本発明の製造方法において、表面改質工程を設けることは好ましい。表面改質工程で使用される装置としては、例えば、液体洗剤原料吸油工程で例示された混合機のうち、攪拌翼と解砕翼を両方具備したものが好ましい装置として挙げられる。以下に表面被覆剤についてそれぞれ説明する。
(1)微粉体
 微粉体としては、その一次粒子の平均粒径が10μm以下であるものが好ましく、0.1~10μmであるものがより好ましい。平均粒径がこの範囲において、洗剤粒子群の粒子表面の被覆率が向上し、洗剤粒子群の流動性と耐ケーキング性の向上の観点から好適である。当該微粉体の平均粒径は、光散乱を利用した方法、例えばパーティクルアナライザー((株)堀場製作所製)、又は顕微鏡観察による測定等で測定される。更に、該微粉体が高いイオン交換能や高いアルカリ能を有していることが洗浄力の観点から好ましい。かかる微粉体は、一成分で構成されていてもよく、複数の成分で構成されていてもよい。
 該微粉体としては、アルミノケイ酸塩が望ましく、結晶性、非晶質の何れでも構わない。アルミノケイ酸塩以外では、硫酸ナトリウム、ケイ酸カルシウム、二酸化ケイ素、ベントナイト、タルク、クレイ、非晶質シリカ誘導体、結晶性ケイ酸塩のような微粉体も好ましい。又、一次粒子の平均粒径が0.1~10μmの金属石鹸、粉末の界面活性剤(例えばアルキル硫酸塩等)や水溶性有機塩も同様に用いることができる。結晶性ケイ酸塩を用いる場合、吸湿や吸炭酸ガスによる結晶性ケイ酸塩の凝集等による劣化を防ぐ目的から、結晶性ケイ酸塩以外の微粉体と混合して用いることが好ましい。
 微粉体の使用量としては、洗剤粒子群100重量部に対して0~40重量部が好ましく、0.5~40重量部がより好ましく、1~30重量部がさらに好ましく、2~20重量部がよりさらに好ましい。当該微粉体の使用量はこの範囲において、流動性が向上し、消費者に良好な使用感を与える。流動性の向上、シミ出し性やケーキング性の抑制の観点から0.1重量部以上が好ましく、0.5重量部以上がより好ましく、1重量部以上がさらに好ましく、2重量部以上がよりさらに好ましく、3重量部がなお好ましく、すすぎ性、流動性の向上の観点から40重量部以下が好ましく、30重量部以下がより好ましく、20重量部以下がさらに好ましく、10重量部以下がよりさらに好ましい。
(2)液状物
 液状物としては、水溶性ポリマーや脂肪酸等が挙げられ、水溶液や溶融状態で添加することができる。かかる液状物は、一成分で構成されていてもよく、複数の成分で構成されていてもよい。
(2-1)水溶性ポリマー
 水溶性ポリマーとしては、カルボキシメチルセルロース、ポリエチレングリコール、ポリアクリル酸ナトリウム、アクリル酸とマレイン酸の共重合体又はその塩等のポリカルボン酸塩等が挙げられる。当該水溶性ポリマーの使用量としては、洗剤粒子群100重量部に対して0~10重量部が好ましく、0~8重量部がより好ましく、0~6重量部がさらに好ましい。当該水溶性ポリマーの使用量はこの範囲において、良好な溶解性、良好な流動性、耐ケーキング性を示す洗剤粒子群を得ることができる。
(2-2)脂肪酸
 脂肪酸としては、例えば、炭素数10~22の脂肪酸等が挙げられる。当該脂肪酸の使用量としては、洗剤粒子群100重量部に対して0~5重量部が好ましく、0~3重量部がより好ましい。常温で固体のものの場合は、流動性を示す温度まで加温した後に、噴霧して供給することが好ましい。
2-3.乾燥工程
 本工程においては、得られた洗剤粒子群を乾燥させる操作を更に行ってもよい。かかる操作を行うことにより、界面活性剤ペースト等に由来する水分を、洗剤粒子群から除去することができる。
 本工程は、界面活性剤ペースト混合工程、液体洗剤原料吸油工程又は表面改質工程で得られた洗剤粒子群を乾燥する、任意の工程である。水分を除去することにより、洗剤粒子群中の活性剤成分の含有量を向上させることができる。
 洗剤粒子群の崩壊を抑制する観点から、強い剪断力をできるだけ与えない乾燥方式が好ましい。例えば、バッチ式では、容器に入れて電気乾燥機や熱風乾燥機で乾燥させる方法、バッチ式流動層で乾燥させる方法等が挙げられ、連続式では、流動層やロータリー乾燥機、スチームチューブドライヤー等が挙げられる。
 乾燥温度については、a)成分の分解の抑制と乾燥速度の観点から、好ましくは40~110℃、より好ましくは50~100℃、さらに好ましくは60~90℃である。
<洗剤組成物>
 本発明の洗剤組成物は、上述の洗剤粒子群を含有してなる組成物であり、更に該洗剤粒子群以外に別途添加された洗剤成分(例えば、ビルダー顆粒、蛍光染料、酵素、香料、消泡剤、漂白剤、漂白活性化剤等)を含有してなる組成物である。
 洗剤組成物中の洗剤粒子群の含有量は、洗浄力の点から50重量%以上が好ましく、60重量%以上がより好ましく、70重量%以上が更に好ましく、80~100重量%がより好ましい。
 洗剤粒子群以外の洗剤成分の洗剤組成物中における含有量は、50重量%以下が好ましく、40重量%以下がより好ましく、30重量%以下が更に好ましく、20重量%以下がより好ましい。
<洗剤組成物の製法>
 洗剤組成物の製法は、特に限定はなく、例えば、前記洗剤粒子群及び別途添加された洗剤成分を混合する方法が挙げられる。このようにして得られた洗剤組成物は、a)成分の高配合された洗剤粒子を含有しているため、少量でも十分な洗浄効果を発現し得るものである。かかる洗剤組成物の用途としては粉末洗剤を用いる用途であれば特に限定はないが、例えば、衣料用粉末洗剤、自動食器用洗剤等が挙げられる。
<物性の測定方法>
1.嵩密度
 嵩密度は、JIS K 3362により規定された方法で測定する。尚、本願においては洗剤粒子群の嵩密度は2000μm以上の顆粒を除去した後の嵩密度とする。
2.平均粒径
 平均粒径については、以下の方法により測定する。
 (1)平均粒径が125μm以上のものについては、JIS Z 8801-1の標準篩(目開き2000~125μm)を用いて5分間振動させた後、篩目のサイズによる重量分率からメジアン径を算出する。より詳細には、目開き125μm、180μm、250μm、355μm、500μm、710μm、1000μm、1400μm、2000μmの9段の篩と受け皿を用いて、受け皿上に目開きの小さな篩から順に積み重ね、最上部の2000μmの篩の上から100gの粒子を添加し、蓋をしてロータップ型ふるい振とう機(HEIKO製作所製、タッピング156回/分、ローリング:290回/分)に取り付け、5分間振動させたあと、それぞれの篩及び受け皿上に残留した該粒子の重量を測定し、各篩上の該粒子の重量割合(%)を算出する。受け皿から順に目開きの小さな篩上の該粒子の重量割合を積算していき、合計が50%となる粒径を平均粒径とする。
 (2)平均粒径が80μm以上125μm未満の物については、目開き45μm、63μm、90μm、125μm、180μm、250μm、355μm、500μm、710μm、1000μm、1400μm、2000μmの12段の篩と受け皿を用いて同様の測定を行い、平均粒径の算出を行う。
 (3)平均粒径が80μm未満のものについては、レーザー回折/散乱式粒度分布測定装置LA-920((株)堀場製作所製)を用い、該粒子を溶解させない溶媒に分散させて測定したメジアン径を平均粒径とする。
 尚、洗剤粒子群の平均粒径は全粒の平均粒径とする。
3.Rosin-Rammler数
 Rosin-Rammler数は上記のように規定される数である。本明細書においては、具体的には次のようにして求められる。上記平均粒径の測定と同様の方法により、それぞれの篩及び受け皿上に残留した該粒子の重量を測定し、各篩(目開きDp[μm])上の該粒子の重量割合(累積率R(Dp)[μm])を算出する。そして、各logDpに対するlog(log(100/R(Dp)))をプロットした時の最小2乗近似直線の傾きnを、Rosin-Rammler数とする。
4.水分
 水分測定は赤外線水分計法により行う。即ち、試料3gを重量既知の試料皿にはかり採り、赤外線水分計(ケット科学研究所(株)製FD-240)を用いて105℃で加熱し、30秒間重量変化がなくなった時点を乾燥終了とする。そして、乾燥後の重量と乾燥前重量から水分量を算出する。
5.流動性
 流動時間は、JIS K 3362により規定された嵩密度測定用のホッパーから、100mLの粉末が流出するのに要する時間とする。流動時間として10秒以下が好ましく、8秒以下がより好ましく、7秒以下が更に好ましい。
 尚、本願においては洗剤粒子群の流動性は2000μm以上の顆粒を除去した後の流動性とする。
<品質評価方法>
1.吸油能
 吸収量測定器((株)あさひ総研製S410)に粉末を30~35g投入し、駆動羽根200r/mで回転させる。ここに液状の非イオン性界面活性剤(花王(株)製エマルゲン108)を液供給速度4mL/minで滴下し、最大トルクとなる点を見極める。この最大トルクとなる点の70%のトルクとなる点での液添加量を粉末投入量で除算し、吸油能とする。
 尚、本願においては洗剤粒子群の吸油能は2000μm以上の顆粒を除去した後の吸油能とする。
2.洗剤収率
 本発明における洗剤収率とは、得られる洗剤粒子群における125~1000μmの間の洗剤粒子群の重量割合を示す。
 以下、本発明の態様を実施例によりさらに記載し、開示する。この実施例は単なる本発明の例示であり、何ら限定を意味するものではない。以下の実施例等では、特に記載のない限り下記の原料を用いた。
ライト灰:平均粒径100μm(セントラル硝子(株)製;吸油能0.45mL/g;水分量2重量%)
粉砕ライト灰:平均粒径8μm(上記ライト灰を粉砕したもの)
芒硝:平均粒径200μm、四国化成工業(株)製「中性無水芒硝」
粉砕芒硝:平均粒径10μm(上記芒硝を粉砕したもの)
ゼオライト:平均粒径3.5μm、ゼオビルダー社製
 以下の実施例等では、容器回転型造粒機として、邪魔板を有した75Lドラム型造粒機(φ40cm×L60cm)を使用した。2流体ノズルとして、(株)アトマックス製:型番BN90を使用した。また、1流体ノズルとして、スプレーイングシステムスジャパン(株)製:型番UNIJET8003を使用し、細管ノズルとして、管口径8.1mmのノズルを使用した。
 以下の実施例に基づいて本発明を更に説明する。
実施例1
 陰イオン性界面活性剤を含有する界面活性剤ペースト(R-OSO3Na;C12/C14/C16=64/24/12(重量比);水分量33重量%;60℃での粘度:約2Pa・s;以下、「組成物A」という)を60℃にした。次にライト灰5.6kgを邪魔板を有したドラム型造粒機(回転数30r/m、フルード数0.2)中で撹拌した。10秒間撹拌した後、上記ライト灰100重量部に対し、上記組成物A25重量部を2流体ノズル(微粒化用Air噴霧圧0.3MPa)を用いて、液滴径約130μmにて6.5分間で添加した。添加後、さらに混合を3分間続けて顆粒化を行った後、ドラム型造粒機から洗剤粒子群1を排出した。
 得られた洗剤粒子群1は、水分6.9%、平均粒径221μm、Rosin-Rammler数2.05、洗剤収率94.6%、嵩密度543g/L、流動性6.4s、吸油能0.40mL/gであった。
実施例2
 組成物Aを60℃にした。次にライト灰4.9kgを邪魔板を有したドラム型造粒機(回転数30r/m、フルード数0.2)中で撹拌した。10秒間撹拌した後、上記ライト灰100重量部に対し、上記組成物A43重量部を2流体ノズル(微粒化用Air噴霧圧0.3MPa)を用いて、液滴径約130μmにて9.8分間で添加した。添加後、さらに混合を3分間続けて顆粒化を行った後、ドラム型造粒機から洗剤粒子群2を排出した。
 得られた洗剤粒子群2は、水分9.1%、平均粒径318μm、Rosin-Rammler数2.79、洗剤収率98.9%、嵩密度550g/L、流動性6.1s、吸油能0.36mL/gであった。
実施例3
 組成物Aを60℃にした。次にライト灰4.2kgを邪魔板を有したドラム型造粒機(回転数30r/m、フルード数0.2)中で撹拌した。10秒間撹拌した後、上記ライト灰100重量部に対し、上記組成物A67重量部を2流体ノズル(微粒化用Air噴霧圧0.3MPa)を用いて、液滴径約130μmにて13分間で添加した。添加後、さらに混合を3分間続けて顆粒化を行った後、ドラム型造粒機から洗剤粒子群3を排出した。
 得られた洗剤粒子群3は、水分11.1%、平均粒径416μm、Rosin-Rammler数2.44、洗剤収率98.9%、嵩密度624g/L、流動性5.8s、吸油能0.26mL/gであった。
実施例4
 組成物Aを60℃にした。次にライト灰3.5kgを邪魔板を有したドラム型造粒機(回転数30r/m、フルード数0.2)中で撹拌した。10秒間撹拌した後、上記ライト灰100重量部に対し、上記組成物A100重量部を2流体ノズル(微粒化用Air噴霧圧0.3MPa)を用いて、液滴径約130μmにて16.3分間で添加した。添加後、さらに混合を3分間続けて顆粒化を行った後、ドラム型造粒機から洗剤粒子群4を排出した。
 得られた洗剤粒子群4は、水分14.8%、平均粒径678μm、Rosin-Rammler数2.49、洗剤収率87.4%、嵩密度636g/L、流動性6.9s、吸油能0.13mL/gであった。
実施例5
 実施例1と同様の方法で洗剤粒子群を製造し、その洗剤粒子を電気乾燥機を用いて105℃で2時間乾燥を行い、洗剤粒子群5を排出した。
 得られた洗剤粒子群5は、水分1.1%、平均粒径208μm、Rosin-Rammler数1.73、洗剤収率87.7%、嵩密度522g/L、流動性7.1s、吸油能0.43mL/gであった。
実施例6
 実施例2と同様の方法で洗剤粒子群を製造し、その洗剤粒子を電気乾燥機を用いて105℃で2時間乾燥を行い、洗剤粒子群6を排出した。
 得られた洗剤粒子群6は、水分1.4%、平均粒径272μm、Rosin-Rammler数1.98、洗剤収率90.9%、嵩密度519g/L、流動性6.5s、吸油能0.42mL/gであった。
実施例7
 実施例3と同様の方法で洗剤粒子群を製造し、その洗剤粒子を電気乾燥機を用いて105℃で2時間乾燥を行い、洗剤粒子群7を排出した。
 得られた洗剤粒子群7は、水分2.1%、平均粒径442μm、Rosin-Rammler数2.29、洗剤収率98.1%、嵩密度573g/L、流動性6.1s、吸油能0.33mL/gであった。
実施例8
 実施例4と同様の方法で洗剤粒子群を製造し、その洗剤粒子を電気乾燥機を用いて105℃で2時間乾燥を行い、洗剤粒子群8を排出した。
 得られた洗剤粒子群8は、水分1.7%、平均粒径651μm、Rosin-Rammler数2.04、洗剤収率98.7%、嵩密度579g/L、流動性6.6s、吸油能0.15mL/gであった。
比較例1
 組成物Aを60℃にした。次にライト灰26kgをレディゲミキサーFKM-130D((株)マツボー製)中で撹拌した。尚、ジャケットに60℃の温水を流した。攪拌羽根回転数115r/m、フルード数3.7、剪断機回転数3600r/mの条件で10秒間撹拌した後、上記ライト灰100重量部に対し、上記組成物A25重量部を細管ノズルを用いて7分間で添加した。添加後、さらに混合を3分間続けて顆粒化を行った後、レディゲミキサーから洗剤粒子群9を排出した。
 得られた洗剤粒子群9は、水分6.6%、平均粒径128μm、Rosin-Rammler数0.85、洗剤収率50.3%、嵩密度739g/L、流動性は測定不可能であった。
比較例2
 組成物Aを60℃にした。次にライト灰22.8kgをレディゲミキサーFKM-130D((株)マツボー製)中で撹拌した。尚、ジャケットに60℃の温水を流した。攪拌羽根回転数115r/m、フルード数3.7、剪断機回転数3600r/mの条件で10秒間撹拌した後、上記ライト灰100重量部に対し、上記組成物A43重量部を細管ノズルを用いて10.5分間で添加した。添加後、さらに混合を3分間続けて顆粒化を行った後、レディゲミキサーから洗剤粒子群10を排出した。
 得られた洗剤粒子群10は、水分10.0%、平均粒径219μm、Rosin-Rammler数1.16、洗剤収率85.5%、嵩密度720g/L、流動性は6.1s、吸油能0.18mL/gであった。
比較例3
 組成物Aを60℃にした。次にライト灰19.5kgをレディゲミキサーFKM-130D((株)マツボー製)中で撹拌した。尚、ジャケットに60℃の温水を流した。攪拌羽根回転数115r/m、フルード数3.7、剪断機回転数3600r/mの条件で10秒間撹拌した後、上記ライト灰100重量部に対し、上記組成物A67重量部を細管ノズルを用いて14.1分間で添加した。添加後、さらに混合を3分間続けて顆粒化を行った後、レディゲミキサーから洗剤粒子群11を排出した。
 得られた洗剤粒子群11は、水分12.1%、平均粒径が測定不可能な程粗粒化し、Rosin-Rammler数1.65、洗剤収率4.8%、嵩密度798g/L、流動性は8.2sであった。
比較例4
 組成物Aを60℃にした。次にライト灰5.6kgを邪魔板を有したドラム型造粒機(回転数30r/m、フルード数0.2)中で撹拌した。10秒間撹拌した後、上記ライト灰100重量部に対し、上記組成物A25重量部を1流体ノズルを用いて2.2分間で添加した。添加後、さらに混合を3分間続けて顆粒化を行った後、ドラム型造粒機から洗剤粒子群12を排出した。
 得られた洗剤粒子群12は、水分5.1%、平均粒径148μm、Rosin-Rammler数0.77、洗剤収率55.9%、嵩密度656g/L、流動性9.5sであった。
比較例5
 組成物Aを60℃にした。次にライト灰4.9kgを邪魔板を有したドラム型造粒機(回転数30r/m、フルード数0.2)中で撹拌した。10秒間撹拌した後、上記ライト灰100重量部に対し、上記組成物A43重量部を1流体ノズルを用いて3.3分間で添加した。添加後、さらに混合を3分間続けて顆粒化を行った後、ドラム型造粒機から洗剤粒子群13を排出した。
 得られた洗剤粒子群13は、水分10.9%、平均粒径502μm、Rosin-Rammler数1.25、洗剤収率69.5%、嵩密度642g/L、流動性6.4s、吸油能0.33mL/gであった。
比較例6
 組成物Aを60℃にした。次にライト灰4.2kgを邪魔板を有したドラム型造粒機(回転数30r/m、フルード数0.2)中で撹拌した。10秒間撹拌した後、上記ライト灰100重量部に対し、上記組成物A67重量部を1流体ノズルを用いて4.4分間で添加した。添加後、さらに混合を3分間続けて顆粒化を行った後、ドラム型造粒機から洗剤粒子群14を排出した。
 得られた洗剤粒子群14は、水分13.9%、平均粒径983μm、Rosin-Rammler数1.46、洗剤収率48.7%、嵩密度784g/L、流動性7.2sであった。
実施例9
 陰イオン性界面活性剤を含有する界面活性剤ペースト(R-OSO3Na;C12/C14/C16=64/24/12(重量比);水分量30重量%;60℃での粘度:約2Pa・s;以下、「組成物B」という)を55℃にした。次に粉砕ライト灰1.73kgと芒硝1.63kgを邪魔板を有したドラム型造粒機(回転数30r/m、フルード数0.2)中で撹拌した。10秒間撹拌した後、上記粉末洗剤原料100重量部に対し、上記組成物B81重量部を2流体ノズル(微粒化用Air噴霧圧0.3MPa)を用いて、液滴径約130μmにて13.3分間で添加した。添加後、さらに混合を1分間続けて顆粒化を行った。その後、得られた洗剤粒子群100重量部に対し、ゼオライト15重量部を添加し、さらに混合を1分間行い、ドラム型造粒機から洗剤粒子群15を排出した。
 得られた洗剤粒子群15は、水分11.0%、平均粒径406μm、Rosin-Rammler数2.05、洗剤収率93.9%、嵩密度712g/L、流動性6.9s、吸油能0.16mL/gであった。
実施例10
 組成物Bを55℃にした。次にライト灰1.73kgと粉砕芒硝1.63kgを邪魔板を有したドラム型造粒機(回転数30r/m、フルード数0.2)中で撹拌した。10秒間撹拌した後、上記粉末洗剤原料100重量部に対し、上記組成物B81重量部を2流体ノズル(微粒化用Air噴霧圧0.3MPa)を用いて、液滴径約130μmにて13.3分間で添加した。添加後、さらに混合を1分間続けて顆粒化を行った。その後、得られた洗剤粒子群100重量部に対し、ゼオライト15重量部を添加し、さらに混合を1分間行い、ドラム型造粒機から洗剤粒子群16を排出した。
 得られた洗剤粒子群16は、水分13.9%、平均粒径447μm、Rosin-Rammler数2.17、洗剤収率95.5%、嵩密度629g/L、流動性6.9s、吸油能0.18mL/gであった。
実施例11
 組成物Bを60℃にした。次に粉砕ライト灰2.8kgを邪魔板を有したドラム型造粒機(回転数30r/m、フルード数0.2)中で撹拌した。10秒間撹拌した後、上記粉末洗剤原料100重量部に対し、上記組成物B150重量部を2流体ノズル(微粒化用Air噴霧圧0.3MPa)を用いて、液滴径約130μmにて20.6分間で添加した。添加後、さらに混合を1分間続けて顆粒化を行った後、ドラム型造粒機から洗剤粒子群17を排出した。
 得られた洗剤粒子群17は、水分16.1%、平均粒径395μm、Rosin-Rammler数1.76、洗剤収率92.8%、嵩密度555g/L、流動性6.1s、吸油能0.47mL/gであった。
実施例12
 組成物B92.4重量部とポリオキシエチレンラウリルエーテル(EO21モル付加物)7.6重量部を混合し(以下、「組成物C」という)55℃にした。次にライト灰4.2kgを邪魔板を有したドラム型造粒機(回転数30r/m、フルード数0.2)中で撹拌した。10秒間撹拌した後、上記粉末洗剤原料100重量部に対し、上記組成物C67重量部を2流体ノズル(微粒化用Air噴霧圧0.3MPa)を用いて15.1分間で添加した。添加後、さらに混合を1分間続けて顆粒化を行った後、ドラム型造粒機から洗剤粒子群18を排出した。
 得られた洗剤粒子群18は、水分11.3%、平均粒径480μm、Rosin-Rammler数1.52、洗剤収率79.7%、嵩密度590g/L、流動性6.3s、吸油能0.29mL/gであった。
実施例13
 組成物Cを55℃にした。次に粉砕ライト灰3.15kgを邪魔板を有したドラム型造粒機(回転数30r/m、フルード数0.2)中で撹拌した。10秒間撹拌した後、上記粉末洗剤原料100重量部に対し、上記組成物C122重量部を2流体ノズル(微粒化用Air噴霧圧0.3MPa)を用いて18.9分間で添加した。添加後、さらに混合を1分間続けて顆粒化を行った後、ドラム型造粒機から洗剤粒子群19を排出した。
 得られた洗剤粒子群19は、水分14.2%、平均粒径698μm、Rosin-Rammler数2.37、洗剤収率72.5%、嵩密度684g/L、流動性6.6s、吸油能0.17mL/gであった。
実施例14
 組成物B93重量部とポリオキシエチレンラウリルエーテル硫酸ナトリウム(花王(株)製エマルゲン270J)7重量部を混合し(以下、「組成物D」という)55℃にした。次にライト灰4.2kgを邪魔板を有したドラム型造粒機(回転数30r/m、フルード数0.2)中で撹拌した。10秒間撹拌した後、上記粉末洗剤原料100重量部に対し、上記組成物D67重量部を2流体ノズル(微粒化用Air噴霧圧0.3MPa)を用いて14.6分間で添加した。添加後、さらに混合を1分間続けて顆粒化を行った後、ドラム型造粒機から洗剤粒子群20を排出した。
 得られた洗剤粒子群20は、水分16.5%、平均粒径431μm、Rosin-Rammler数2.22、洗剤収率93.9%、嵩密度622g/L、流動性6.4s、吸油能0.56mL/gであった。
実施例15
 組成物Dを55℃にした。次に粉砕ライト灰3.5kgを邪魔板を有したドラム型造粒機(回転数30r/m、フルード数0.2)中で撹拌した。10秒間撹拌した後、上記粉末洗剤原料100重量部に対し、上記組成物D100重量部を2流体ノズル(微粒化用Air噴霧圧0.3MPa)を用いて18.2分間で添加した。添加後、さらに混合を1分間続けて顆粒化を行った後、ドラム型造粒機から洗剤粒子群21を排出した。
 得られた洗剤粒子群21は、水分16.0%、平均粒径408μm、Rosin-Rammler数1.87、洗剤収率92.4%、嵩密度642g/L、流動性6.1s、吸油能0.24mL/gであった。
実施例16
 組成物Bを60℃にした。次に芒硝4.2kgを邪魔板を有したドラム型造粒機(回転数30r/m、フルード数0.2)中で撹拌した。10秒間撹拌した後、上記粉末洗剤原料100重量部に対し、上記組成物B67重量部を2流体ノズル(微粒化用Air噴霧圧0.3MPa)を用いて14.5分間で添加した。添加後、さらに混合を1分間続けて顆粒化を行った後、ドラム型造粒機から洗剤粒子群22を排出した。
 得られた洗剤粒子群22は、水分9.6%、平均粒径411μm、Rosin-Rammler数2.15、洗剤収率95.4%、嵩密度796g/L、流動性6.2s、吸油能0.25mL/gであった。
実施例17
 実施例11で得られた洗剤粒子群17を500mLビーカー中に100g投入した。上記洗剤粒子群100重量部に対し、ポリオキシエチレンラウリルエーテル(EO21モル付加物:以下、「組成物E」という)5重量部を添加し、スパチュラーを用いて手動にて混合し上記洗剤粒子群に吸油させた。その後、得られた洗剤粒子群を袋に投入し上記洗剤粒子群100重量部に対し、ゼオライト5重量部を添加し20回混合を行い洗剤粒子群23を得た。
 得られた洗剤粒子群23は、平均粒径440μm、Rosin-Rammler数1.88、洗剤収率86.2%、嵩密度515g/L、流動性6.4sであった。
実施例18
 実施例11で得られた洗剤粒子群17を500mLビーカー中に100g投入した。上記洗剤粒子群100重量部に対し、組成物E10重量部を添加し、攪拌棒を用いて手動にて混合し上記洗剤粒子群に吸油させた。その後、得られた洗剤粒子群100重量部に対し、ゼオライト10重量部を添加し、さらに混合を行い洗剤粒子群24を得た。
 得られた洗剤粒子群24は、平均粒径590μm、Rosin-Rammler数2.96、洗剤収率90.2%、嵩密度640g/L、流動性6.8sであった。
比較例7
 陰イオン性界面活性剤を含有する界面活性剤ペースト(R-OSO3Na;C12/C14/C16=64/24/12(重量比);水分量70重量%;以下「組成物F」という)を60℃にした。当該ペーストの60℃での状態は、非常に流動性が高いものであった。次にライト灰3.85kgを邪魔板を有したドラム型造粒機(回転数30r/m、フルード数0.2)中で撹拌した。10秒間撹拌した後、上記粉末洗剤原料100重量部に対し、上記組成物F82重量部を2流体ノズル(微粒化用Air噴霧圧0.3MPa)を用いて14.6分間で添加した。添加後、さらに混合を3分間続けて顆粒化を行った後、ドラム型造粒機から洗剤粒子群25を排出した。
 得られた洗剤粒子群25は、粗大化し評価不可能であった。
比較例8
 ポリオキシエチレンラウリルエーテル(花王(株)製エマルゲン106:以下、「組成物G」という)を60℃にした。組成物Gの60℃での状態は液体であった。次にライト灰4.93kgを邪魔板を有したドラム型造粒機(回転数30r/m、フルード数0.2)中で撹拌した。10秒間撹拌した後、上記粉末洗剤原料100重量部に対し、上記組成物G35重量部を2流体ノズル(微粒化用Air噴霧圧0.3MPa)を用いて、9.4分間で添加した。添加後、さらに混合を1分間続けて顆粒化を行った。その後、得られた洗剤粒子群100重量部に対し、ゼオライト5重量部を添加し、さらに混合を1分間行い、ドラム型造粒機から洗剤粒子群26を排出した。
 得られた洗剤粒子群26は、付着性が高く、評価不可能であった。
比較例9
 組成物Gを60℃にした。次にライト灰4.93kgを邪魔板を有したドラム型造粒機(回転数30r/m、フルード数0.2)中で撹拌した。10秒間撹拌した後、上記粉末洗剤原料100重量部に対し、上記組成物G35重量部を2流体ノズル(微粒化用Air噴霧圧0.3MPa)を用いて、9.4分間で添加した。添加後、さらに混合を1分間続けて顆粒化を行った。その後、得られた洗剤粒子群100重量部に対し、ゼオライト30重量部を添加し、さらに混合を1分間行い、ドラム型造粒機から洗剤粒子群27を排出した。
 得られた洗剤粒子群27は、水分2.8%、平均粒径138μm、Rosin-Rammler数1.0、洗剤収率59.4%、嵩密度698g/L、流動性12.1sであった。
 上記の実施例、比較例の条件、結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表中、1000μm以上品とは、全洗剤粒子群中の1000μm以上の粒子群が占める割合(重量%)であり、125μm未満品とは、全洗剤粒子群中の125μm未満の粒子群が占める割合(重量%)である。また、表3~表5において、ゼオライトの量は、界面活性剤ペースト混合工程後の洗剤粒子群を100重量部とした時の量である。
 実施例1~8より、本発明により得られた、粉末洗剤原料と、式(1)で示される陰イオン性界面活性剤を含有する界面活性剤ペーストとを混合することで、粒度分布のシャープな洗剤粒子を収率良く得られることが明らかになった。
 また、実施例1~4と比較例1~3との比較より、容器回転型造粒機以外の造粒機を用い、式(1)で示される陰イオン性界面活性剤を含有する界面活性剤ペーストを1流体ノズルで添加、混合することで、粒度分布がブロードで洗剤収率が低くなることが明らかになった。
 また、実施例1~4と比較例4~6との比較より、容器回転型造粒機を用いた場合においても、式(1)で示される陰イオン性界面活性剤を含有する界面活性剤ペーストを1流体ノズルで添加、混合することで、粒度分布がブロードで洗剤収率が低くなることが明らかになった。
 実施例9、10からは、粉末洗剤原料として複数の成分を用いた場合でも、良好な性質の洗剤粒子群を製造できることが分かった。実施例16のように、粉末洗剤原料がライト灰ではなく芒硝を用いた場合でも、良好な性質の洗剤粒子群を製造できることが分かった。実施例11及び13からは、界面活性剤ペーストの重量が粉末洗剤原料の重量を超えた場合であっても、良好な性質の洗剤粒子群を製造できることが分かった。さらに、界面活性剤組成物C又はDを用いた実施例12~15で示されるように、式(1)に規定の陰イオン性界面活性剤に加えて、非イオン性界面活性剤又は式(1)に記載の陰イオン性界面活性剤以外の陰イオン界面活性剤を含有する界面活性剤ペーストを用いた場合であっても、良好な性質の洗剤粒子群を製造できることが分かった。
 さらに、実施例17及び18に示されるように、界面活性剤ペースト混合工程後に得られた洗剤粒子群と、液体洗剤原料とを混合することで、所望の洗剤粒子群を製造できることが分かった。
 一方、ドラム型造粒機や2流体ノズルを用いた場合であっても、所望の洗剤粒子群を製造できない場合があることも分かった。比較例7のように界面活性剤ペースト中の水の量が多すぎる場合、比較例8のように界面活性剤ペースト中の界面活性剤が非イオン性界面活性剤であり、式(1)に規定の陰イオン性界面活性剤が該ペーストに含まれない場合、洗剤粒子群としての評価ができない程の劣悪な製造物しか得られなかった。比較例9のように、比較例8においてゼオライトを多量に添加したとしても、得られた洗剤粒子群の性質は所望の範囲を全く満たさないものであった。
 本発明によれば、陰イオン性界面活性剤を含有する界面活性剤ペーストを用いて、粒度分布がシャープな必要な粒度の洗剤粒子群を収率良く製造することができる。かかる洗剤粒子群を、例えば、衣料用粉末洗剤、自動食器用洗剤等の構成成分として用いることができる。

Claims (9)

  1.  粉末洗剤原料の粉末に、次のa)成分及びb)成分:
       a)下記式(1):
        R-O-SO3M   (1)
    (式中、Rは炭素数10~18のアルキル基又はアルケニル基、Mはアルカリ金属原子又はアミンを示す。)で示される陰イオン性界面活性剤、及び
       b)上記a)成分100重量部に対して25~70重量部の水、を含有する界面活性剤ペーストを多流体ノズルを用いて添加し、容器回転型造粒機によって混合する、界面活性剤ペースト混合工程を含む洗剤粒子群の製造方法。
  2.  多流体ノズルが2流体ノズルである、請求項1に記載の製造方法。
  3.  粉末洗剤原料の平均粒径が10~250μmである、請求項1又は2に記載の製造方法。
  4.  粉末洗剤原料がライト灰及び/又は芒硝を含む粉末洗剤原料である、請求項1~3いずれか1項に記載の製造方法。
  5.  粉末洗剤原料100重量部に対して25~200重量部の界面活性剤ペーストを混合する、請求項1~4いずれか1項に記載の製造方法。
  6.  界面活性剤ペースト混合工程により得られた洗剤粒子群と液体洗剤原料とを混合する工程を更に含む、請求項1~5いずれか1項に記載の製造方法。
  7.  該洗剤粒子群を乾燥する工程を更に含む1~6いずれか1項に記載の製造方法。
  8.  請求項1~7いずれか1項に記載の製造方法によって得られた洗剤粒子群。
  9.  請求項1~7いずれか1項に記載の製造方法によって得られた洗剤粒子群を含有してなる洗剤組成物。
PCT/JP2010/070595 2009-11-18 2010-11-18 洗剤粒子群の製造方法 WO2011062236A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10831629.0A EP2502981A4 (en) 2009-11-18 2010-11-18 METHOD FOR PRODUCING A CLEANING AGENT IN GRANULATE FORM
AU2010320064A AU2010320064B2 (en) 2009-11-18 2010-11-18 Method for producing detergent granules
CN201080061447.XA CN102712884B (zh) 2009-11-18 2010-11-18 洗涤剂颗粒群的制造方法
BR112012011975A BR112012011975A2 (pt) 2009-11-18 2010-11-18 método para produção de grânulos detergentes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009263327 2009-11-18
JP2009-263327 2009-11-18

Publications (1)

Publication Number Publication Date
WO2011062236A1 true WO2011062236A1 (ja) 2011-05-26

Family

ID=44059709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070595 WO2011062236A1 (ja) 2009-11-18 2010-11-18 洗剤粒子群の製造方法

Country Status (6)

Country Link
EP (1) EP2502981A4 (ja)
JP (1) JP2011127106A (ja)
CN (1) CN102712884B (ja)
AU (1) AU2010320064B2 (ja)
BR (1) BR112012011975A2 (ja)
WO (1) WO2011062236A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015105258A (ja) * 2013-12-02 2015-06-08 花王株式会社 歯磨剤用顆粒の製造方法
JP2015117204A (ja) * 2013-12-18 2015-06-25 花王株式会社 歯磨剤用顆粒の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI1015946A2 (pt) * 2009-06-30 2016-04-19 Kao Corp método para produção de grânulos detergentes de alta densidade aparente.
JP6417116B2 (ja) * 2013-05-31 2018-10-31 旭化成株式会社 高分子電解質組成物、及び、それを用いた、高分子電解質膜、電極触媒層、膜電極接合体、及び固体高分子型燃料電池

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6072999A (ja) * 1983-09-30 1985-04-25 花王株式会社 超濃縮粉末洗剤の製法
JPS60227895A (ja) 1984-04-11 1985-11-13 ヘキスト・アクチエンゲゼルシヤフト 結晶性層状ケイ酸ナトリウムを含有する水軟化剤
JPH0586400A (ja) * 1991-03-28 1993-04-06 Unilever Nv 洗剤組成物及びその製造方法
JPH05279013A (ja) 1991-12-29 1993-10-26 Kao Corp 合成無機ビルダー
JPH0789712A (ja) 1993-06-26 1995-04-04 Kao Corp 合成無機ビルダー及び洗浄剤組成物
JPH10500716A (ja) 1994-05-20 1998-01-20 ザ、プロクター、エンド、ギャンブル、カンパニー 出発洗剤成分からの高密度洗剤組成物の製造法
JPH10506141A (ja) 1994-09-20 1998-06-16 ザ、プロクター、エンド、ギャンブル、カンパニー 選択された再循環流を含む高密度洗剤組成物の製造方法
JPH10296064A (ja) 1997-04-28 1998-11-10 Kao Corp 混合装置
JPH10296065A (ja) 1997-04-28 1998-11-10 Kao Corp 混合方法および混合装置
JP2005054056A (ja) * 2003-08-04 2005-03-03 Kao Corp 界面活性剤担持用顆粒群
JP2006137925A (ja) * 2004-10-14 2006-06-01 Kao Corp 単核性洗剤粒子群の製造方法
JP2010138348A (ja) * 2008-12-15 2010-06-24 Kao Corp アニオン界面活性剤組成物
WO2011001966A1 (ja) * 2009-06-30 2011-01-06 花王株式会社 高嵩密度洗剤粒子群の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0870008B2 (en) * 1995-04-27 2014-07-02 The Procter & Gamble Company Process for producing granular detergent components or compositions
WO1999019455A1 (en) * 1997-10-10 1999-04-22 The Procter & Gamble Company Detergent-making process using a high active surfactant paste containing mid-chain branched surfactants
JP2001181691A (ja) * 1999-12-22 2001-07-03 Lion Corp 容器回転型混合機および粒状洗剤組成物の製造方法
JP4088793B2 (ja) * 2004-02-24 2008-05-21 ライオン株式会社 ノニオン界面活性剤含有粒子及びその製造方法並びに洗剤組成物
EP1788071B1 (en) * 2004-08-06 2013-06-12 Kao Corporation Process for production of uni-core detergent particles

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6072999A (ja) * 1983-09-30 1985-04-25 花王株式会社 超濃縮粉末洗剤の製法
JPS60227895A (ja) 1984-04-11 1985-11-13 ヘキスト・アクチエンゲゼルシヤフト 結晶性層状ケイ酸ナトリウムを含有する水軟化剤
JPH0586400A (ja) * 1991-03-28 1993-04-06 Unilever Nv 洗剤組成物及びその製造方法
JPH05279013A (ja) 1991-12-29 1993-10-26 Kao Corp 合成無機ビルダー
JPH0789712A (ja) 1993-06-26 1995-04-04 Kao Corp 合成無機ビルダー及び洗浄剤組成物
JPH10500716A (ja) 1994-05-20 1998-01-20 ザ、プロクター、エンド、ギャンブル、カンパニー 出発洗剤成分からの高密度洗剤組成物の製造法
JPH10506141A (ja) 1994-09-20 1998-06-16 ザ、プロクター、エンド、ギャンブル、カンパニー 選択された再循環流を含む高密度洗剤組成物の製造方法
JPH10296064A (ja) 1997-04-28 1998-11-10 Kao Corp 混合装置
JPH10296065A (ja) 1997-04-28 1998-11-10 Kao Corp 混合方法および混合装置
JP2005054056A (ja) * 2003-08-04 2005-03-03 Kao Corp 界面活性剤担持用顆粒群
JP2006137925A (ja) * 2004-10-14 2006-06-01 Kao Corp 単核性洗剤粒子群の製造方法
JP2010138348A (ja) * 2008-12-15 2010-06-24 Kao Corp アニオン界面活性剤組成物
WO2011001966A1 (ja) * 2009-06-30 2011-01-06 花王株式会社 高嵩密度洗剤粒子群の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2502981A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015105258A (ja) * 2013-12-02 2015-06-08 花王株式会社 歯磨剤用顆粒の製造方法
JP2015117204A (ja) * 2013-12-18 2015-06-25 花王株式会社 歯磨剤用顆粒の製造方法

Also Published As

Publication number Publication date
JP2011127106A (ja) 2011-06-30
AU2010320064B2 (en) 2014-04-24
EP2502981A1 (en) 2012-09-26
CN102712884B (zh) 2014-03-12
CN102712884A (zh) 2012-10-03
AU2010320064A1 (en) 2012-05-31
BR112012011975A2 (pt) 2016-05-10
EP2502981A4 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
JP5525755B2 (ja) 界面活性剤担持用顆粒群
JP5465872B2 (ja) アニオン界面活性剤組成物
WO2011062236A1 (ja) 洗剤粒子群の製造方法
JP5624811B2 (ja) 高嵩密度洗剤粒子群の製造方法
WO2012067227A1 (ja) 洗剤粒子群の製造方法
CN103221527B (zh) 洗涤剂颗粒群的制造方法
JP4799951B2 (ja) 単核性洗剤粒子群の製造方法
JP4083988B2 (ja) 界面活性剤担持用顆粒群及びその製法
JP2012255146A (ja) 洗剤粒子群の製造方法
WO2012157681A1 (ja) 洗剤粒子群の製造方法
WO2006013982A1 (ja) 単核性洗剤粒子群の製造方法
JP5713644B2 (ja) 界面活性剤担持用顆粒群の製造方法
JP4772415B2 (ja) 単核性洗剤粒子群の製造方法
WO2011062234A1 (ja) 洗剤粒子群の製造方法
JP3720632B2 (ja) ベース顆粒群
JP4237532B2 (ja) 界面活性剤担持用顆粒群
JPH0959699A (ja) ノニオン洗剤粒子の製造方法
JP5412138B2 (ja) 洗剤添加用粒子、洗剤組成物及び洗剤添加用粒子の製造方法
JP2007045865A (ja) 単核性洗剤粒子群の製造方法
JP5971753B2 (ja) 洗剤粒子の製造方法
JP2010144045A (ja) 単核性洗剤粒子群の製造方法
JP2014125622A (ja) 洗剤粒子群の製造方法
JP2006137832A (ja) 洗剤粒子の製造方法
MXPA98002733A (en) Procedure for manufacturing a low density detergent composition through agglomeration containing inorgan salt
JP2013147578A (ja) 洗剤添加用粒子群の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080061447.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831629

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010320064

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201002274

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 4416/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010831629

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2010320064

Country of ref document: AU

Date of ref document: 20101118

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012011975

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012011975

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120518