WO2011058816A1 - Cmp研磨液、並びに、これを用いた研磨方法及び半導体基板の製造方法 - Google Patents

Cmp研磨液、並びに、これを用いた研磨方法及び半導体基板の製造方法 Download PDF

Info

Publication number
WO2011058816A1
WO2011058816A1 PCT/JP2010/065863 JP2010065863W WO2011058816A1 WO 2011058816 A1 WO2011058816 A1 WO 2011058816A1 JP 2010065863 W JP2010065863 W JP 2010065863W WO 2011058816 A1 WO2011058816 A1 WO 2011058816A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
polishing liquid
cmp polishing
cerium oxide
mass
Prior art date
Application number
PCT/JP2010/065863
Other languages
English (en)
French (fr)
Inventor
吉川 茂
利明 阿久津
深沢 正人
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Priority to CN2010800512917A priority Critical patent/CN102686360A/zh
Priority to EP10829776.3A priority patent/EP2500928A4/en
Priority to JP2011540440A priority patent/JP5516594B2/ja
Priority to US13/504,738 priority patent/US20120214307A1/en
Priority to KR1020127012168A priority patent/KR101357328B1/ko
Publication of WO2011058816A1 publication Critical patent/WO2011058816A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step

Definitions

  • the present invention relates to a CMP polishing liquid, a polishing method using the same, and a method for manufacturing a semiconductor substrate.
  • the present invention is used in a flattening process of a substrate surface in an electronic component manufacturing technology such as a semiconductor element, for example, a flattening process of an interlayer insulating film, a forming process of STI (Shallow Trench Isolation), etc.
  • the present invention relates to a CMP polishing liquid, a polishing method using the same, and a method for manufacturing a semiconductor substrate.
  • a CMP (chemical mechanical polishing) technique is an example of a technique that satisfies such a demand for strict miniaturization.
  • the CMP technique can flatten the surface of a layer to be exposed in the manufacturing process of an electronic component such as a semiconductor device, reduce the technical burden in the exposure process, and stabilize the yield. Therefore, the CMP technique is an essential technique when, for example, planarizing an interlayer insulating film, forming an STI, or the like.
  • a silica-based CMP polishing liquid containing fumed silica has been studied.
  • the silica-based CMP polishing liquid is produced by growing particles by a method such as thermally decomposing silica particles into tetrachlorosilicic acid and adjusting the pH.
  • such a CMP polishing liquid has a technical problem that the polishing rate of the inorganic insulating film as the film to be polished is lowered.
  • a CMP polishing liquid containing cerium oxide particles is used as a CMP polishing liquid for glass surfaces such as photomasks and lenses. Since cerium oxide particles have a lower hardness than silica particles and alumina particles, even if used for polishing, the surface to be polished is less likely to be damaged. Accordingly, the cerium oxide particles are useful for finish mirror polishing. Further, the CMP polishing liquid containing cerium oxide particles has an advantage that the polishing rate is superior to the CMP polishing liquid containing silica particles. In recent years, a CMP polishing liquid for semiconductors using high-purity cerium oxide particles is known (see, for example, Patent Document 1).
  • cerium oxide particles have a higher density than silica particles, they tend to settle, and the polishing rate may decrease. Therefore, from the viewpoint of improving the polishing rate, a CMP polishing liquid in which dispersibility of cerium oxide particles is improved by using an appropriate dispersant is known (see, for example, Patent Document 2).
  • the mounting density of integrated circuits tends to be further increased.
  • the CMP polishing liquid containing cerium oxide particles has the advantage that there are fewer polishing flaws than the CMP polishing liquid containing silica particles as described above, the conventional level of polishing flaw reduction is not sufficient. The demand for reducing polishing flaws is becoming more severe.
  • a technique for reducing polishing scratches as a technique for reducing polishing scratches, a technique for removing impurities in cerium oxide particles, a technique for reducing the particle diameter of cerium oxide particles, and a method for removing large particles.
  • Methods are being studied.
  • problems such as a decrease in flatness of the surface to be polished and a polishing rate occur, and it may be difficult to suppress the generation of polishing flaws and other characteristics.
  • a decrease in the polishing rate causes a decrease in throughput, it is desired to suppress the decrease in the polishing rate and suppress the generation of polishing flaws.
  • the present invention has been made to solve the above-described problem, and a CMP polishing liquid capable of suppressing a decrease in polishing rate and suppressing generation of polishing flaws, a polishing method using the same, and a semiconductor substrate It aims at providing the manufacturing method of.
  • the inventors of the present invention have intensively studied.
  • the CMP polishing liquid containing cerium oxide particles contains a trace amount of an organic compound having an acetylene bond. It has been found that the reduction of the polishing rate can be suppressed and the generation of polishing flaws can be suppressed.
  • the first aspect of the CMP polishing liquid according to the present invention includes cerium oxide particles, an organic compound having an acetylene bond, and water, and the content of the organic compound having an acetylene bond is such that the total mass of the CMP polishing liquid is It is 0.00001 mass% (0.1 ppm) or more and 0.01 mass% (100 ppm) or less on the basis.
  • the CMP polishing liquid contains a very small amount of an organic compound having an acetylene bond as described above, thereby suppressing a decrease in polishing speed and suppressing generation of polishing flaws. Can do. Further, in the first aspect of the CMP polishing liquid, the flatness improving effect (the effect of preferentially polishing the convex portion) is promoted in polishing of the surface to be polished with less unevenness and polishing for roughing the surface to be polished. You can also.
  • Patent Document 4 discloses that the flatness of the polished surface after polishing is improved by adding an organic compound having an acetylene bond.
  • the present inventors presume that, based on the difference in the content of the organic compound having an acetylene bond, the present invention and the technique of Patent Document 4 are essentially different in the action that occurs during polishing.
  • the content of the organic compound having an acetylene bond is high, whereas in the first aspect of the CMP polishing liquid according to the present invention, the content of the organic compound having an acetylene bond is high. Trace amount (ppm order). Therefore, in the CMP polishing liquid of Patent Document 4, there is a limit to highly satisfying both the effect of improving the polishing rate by the organic compound having an acetylene bond and the effect of reducing polishing scratches, whereas the CMP according to the present invention is limited. In the first aspect of the polishing liquid, both the effect of improving the polishing rate and the effect of reducing polishing flaws can be achieved at a high level.
  • the first aspect of the CMP polishing liquid can be obtained by mixing a first liquid containing cerium oxide particles and water and a second liquid containing an organic compound having an acetylene bond and water.
  • the present inventors can also polish by adding a trace amount of an organic compound having an acetylene bond to a CMP polishing liquid containing cerium oxide particles and a predetermined anionic polymer compound or a salt thereof. It has been found that the decrease in speed can be suppressed and the generation of polishing flaws can be suppressed.
  • a composition containing cerium oxide particles, an organic compound having an acetylene bond, and a vinyl compound having an anionic substituent as monomer components is polymerized.
  • the content of the organic compound containing an anionic polymer compound or a salt thereof obtained and water and having an acetylene bond is 0.000001 mass% (0.01 ppm) or more and 0.05 mass based on the total mass of the CMP polishing liquid. % (500 ppm).
  • the CMP polishing liquid contains a trace amount of the organic compound having an acetylene bond as described above, and also contains a predetermined anionic polymer compound or a salt thereof. It is possible to suppress a decrease in the polishing rate and suppress the generation of polishing flaws. Further, in the second aspect of the CMP polishing liquid, it is possible to polish a surface to be polished with many irregularities with good flatness.
  • the second aspect of the CMP polishing liquid includes a third liquid containing cerium oxide particles and water, and a fourth liquid containing an organic compound having an acetylene bond, an anionic polymer compound or a salt thereof, and water. It can also be obtained by mixing.
  • the vinyl compound having an anionic substituent is preferably at least one selected from acrylic acid and methacrylic acid. In this case, it is possible to suppress the decrease in the polishing rate and further suppress the generation of polishing flaws.
  • the content of the anionic polymer compound or a salt thereof is preferably larger than the content of the organic compound having an acetylene bond. In this case, it is possible to suppress the decrease in the polishing rate and further suppress the generation of polishing flaws.
  • the content of the anionic polymer compound or a salt thereof is preferably 0.01 to 2.00% by mass based on the total mass of the CMP polishing liquid. In this case, it is possible to suppress the decrease in the polishing rate and further suppress the generation of polishing flaws.
  • the organic compound having an acetylene bond is preferably acetylene glycols.
  • the acetylene glycol is more preferably a compound represented by the following general formula (1), more preferably 2,4,7,9-tetramethyl-5-decyne-4,7-diol.
  • R 1 to R 4 each independently represents a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms
  • R 5 and R 6 each independently represents 1 to 5 carbon atoms.
  • 5 represents a substituted or unsubstituted alkylene group
  • m and n each independently represents 0 or a positive number.
  • the polishing method according to the present invention includes a step of polishing a film to be polished formed on a substrate using the CMP polishing liquid.
  • the polishing method according to the present invention since the CMP polishing liquid is used, it is possible to suppress a decrease in the polishing rate and to suppress generation of polishing flaws.
  • a method for manufacturing a semiconductor substrate according to the present invention includes a step of polishing an inorganic insulating film formed on a semiconductor substrate using the CMP polishing liquid.
  • a CMP polishing liquid capable of suppressing a decrease in polishing rate and suppressing generation of polishing flaws, a polishing method using the same, and a method for manufacturing a semiconductor substrate.
  • the CMP polishing liquid according to the first embodiment includes cerium oxide particles, an organic compound having an acetylene bond (hereinafter referred to as “acetylene compound”), and water.
  • the CMP polishing liquid according to the second embodiment includes an anionic polymer compound obtained by polymerizing a composition containing cerium oxide particles, an acetylene compound, and a vinyl compound having an anionic substituent as a monomer component, or a composition thereof. Contains salt and water.
  • each component contained in the CMP polishing liquid will be described.
  • cerium oxide particles may be any particles as long as they have a particle shape.
  • the production method of the cerium oxide particles is not limited, but conventionally known cerium oxide particles can be widely used in general.
  • Examples of the method for producing cerium oxide particles include a firing method, an oxidation method using hydrogen peroxide, and the like.
  • a firing method it is preferable to obtain a fired powder by firing the cerium compound at 350 to 900 ° C. for 1 hour or longer in the firing step.
  • the firing temperature is more preferably 500 to 900 ° C, and still more preferably 600 to 900 ° C.
  • the upper limit of the firing time can be about 3 hours.
  • the half-value width of the diffraction peak due to the (111) plane of the cerium oxide crystal is preferably 0.20 to 0.50 °, and preferably 0.20 to 0.40. ° is more preferred.
  • cerium oxide particles having an appropriate degree of crystallization and an appropriate crystallite size (minimum crystal unit) can be obtained.
  • the half width of the diffraction peak can be appropriately adjusted depending on the firing temperature and firing time in the firing step.
  • the pulverization method for example, dry pulverization using a jet mill or the like, or wet pulverization using a planetary bead mill or the like is preferable.
  • the jet mill for example, a method described in “Chemical Engineering Journal”, Vol. 6, No. 5, (1980), pages 527 to 532 can be used.
  • the cerium oxide particles used as the abrasive grains preferably include polycrystalline cerium oxide particles having crystal grain boundaries.
  • the pulverization step it is preferable to pulverize the fired powder so that polycrystalline cerium oxide particles composed of a plurality of crystallites and having crystal grain boundaries are formed. Polycrystalline cerium oxide particles with grain boundaries become fine during polishing, and at the same time, new surfaces (active surfaces) that do not touch the medium appear before each other, so that a high polishing rate for silicon oxide films is achieved at a high level. Can be maintained.
  • Such cerium oxide particles are described, for example, in a republished patent WO99 / 31195 pamphlet.
  • the average particle size of the cerium oxide particles is not particularly limited, but generally, the smaller the average particle size, the lower the polishing rate, and the larger the average particle size, the more likely to cause polishing flaws. From the viewpoint of further improving the polishing rate, the average particle size is preferably 0.05 ⁇ m or more, and more preferably 0.07 ⁇ m or more. From the viewpoint of further suppressing the generation of polishing flaws, the average particle size is preferably 1.00 ⁇ m or less, and more preferably 0.40 ⁇ m or less.
  • the average particle diameter of the cerium oxide particles refers to an average value of volume distribution measured by a laser diffraction / scattering particle size distribution meter with a liquid containing cerium oxide particles as a measurement target.
  • the measurement object is the final CMP polishing liquid when the CMP polishing liquid is stored as one liquid, and the slurry containing cerium oxide particles before mixing when the two polishing liquids are stored.
  • the average particle size of the cerium oxide particles is obtained by diluting the CMP polishing liquid or slurry to be measured to a concentration suitable for measurement, and supplying this measurement sample to a laser diffraction / scattering particle size distribution analyzer. Can be measured. More specifically, the average particle diameter of the cerium oxide particles can be measured as follows using LA-920 (light source: He—Ne laser and W laser) manufactured by HORIBA, Ltd. First, a measurement polishing sample or a slurry is diluted to a concentration suitable for measurement so that a measurement transmittance (H) with respect to a He—Ne laser is 60 to 70% to obtain a measurement sample. Then, this measurement sample is put into LA-920, and the average particle diameter is obtained as the arithmetic average diameter (mean size) obtained at that time.
  • LA-920 light source: He—Ne laser and W laser
  • the content of the cerium oxide particles in the CMP polishing liquid is not particularly limited, but the lower limit of the content of the cerium oxide particles is 0.00 on the basis of the total mass of the CMP polishing liquid from the viewpoint of obtaining a better polishing rate. 10 mass% or more is preferable, 0.20 mass% or more is more preferable, and 0.30 mass% or more is still more preferable.
  • the upper limit of the content of the cerium oxide particles is preferably 20% by mass or less, more preferably 10% by mass or less, more preferably 5% by mass or less based on the total mass of the CMP polishing liquid from the viewpoint of improving the dispersibility of the particles and further reducing polishing scratches. A mass% or less is more preferable.
  • acetylene compound examples include at least one selected from alkynes, acetylene alcohols, and acetylene glycols.
  • alkynes examples include 1-decyne and 5-decyne.
  • acetylene alcohols examples include 3,5-dimethyl-1-hexyn-3-ol, 2,4-dimethyl-5-hexyn-3-ol, and the like.
  • acetylene glycols include compounds represented by the following general formula (1). These acetylene compounds can be used alone or in combination of two or more.
  • R 1 to R 4 each independently represents a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms
  • R 5 and R 6 each independently represents 1 to 5 carbon atoms
  • 5 represents a substituted or unsubstituted alkylene group
  • m and n each independently represents 0 or a positive number.
  • acetylene glycols are preferable, and a compound represented by the above general formula (1) is more preferable in that an effect of reducing polishing scratches is easily obtained.
  • m and n are 0. More preferred are compounds such as 2,4,7,9-tetramethyl-5-decyne-4,7-diol and 3,6-dimethyl-4-octyne-3,6-diol, which are readily available.
  • 2,4,7,9-tetramethyl-5-decyne-4,7-diol is very preferable in that it has an excellent polishing scratch reduction effect.
  • the lower limit of the content of the first additive is 0.00001% by mass (0.1 ppm) or more based on the total mass of the CMP polishing liquid, and the polishing scratch reduction effect is further improved. From the viewpoint of being efficiently obtained, 0.00002 mass% (0.2 ppm) or more is preferable, 0.00003 mass% (0.3 ppm) or more is more preferable, and 0.00005 mass% (0.5 ppm) or more is more preferable. preferable.
  • the upper limit of the content of the first additive is 0.01% by mass (100 ppm) or less based on the total mass of the CMP polishing liquid, and 0.008% by mass from the viewpoint of more efficiently obtaining a polishing scratch reduction effect.
  • the content of the first additive when the content of the first additive is 0.00001 mass% or more, it is compared with the case where the first additive is not added at all (content: 0 mass%). As a result, the number of polishing scratches rapidly decreases. In the CMP polishing liquid according to the first embodiment, when the content of the first additive is 0.01% by mass or less, an effect of reducing polishing scratches is easily obtained. Further, the content of the first additive is preferably 0.00001 to 10 parts by mass with respect to 100 parts by mass of the cerium oxide particles.
  • the lower limit of the content of the first additive is 0.000001% by mass (0.01 ppm) or more based on the total mass of the CMP polishing liquid, and the polishing scratch reduction effect is further improved.
  • 0.000003 mass% (0.03 ppm) or more is preferable, 0.000005 mass% (0.05 ppm) or more is more preferable, and 0.00001 mass% (0.1 ppm) or more is further more preferable.
  • 0.00005 mass% (0.5 ppm) or more is particularly preferable.
  • the upper limit of the content of the first additive is less than 0.05% by mass (500 ppm) on the basis of the total mass of the CMP polishing liquid, and 0.03% by mass from the viewpoint of more efficiently obtaining a polishing scratch reduction effect. (300 ppm) or less is preferred, 0.02 mass% (200 ppm) or less is more preferred, and 0.01 mass% (100 ppm) or less is even more preferred.
  • the content of the first additive is 0.000001% by mass or more, it is compared with the case where the first additive is not added at all (content: 0% by mass). As a result, the number of polishing scratches rapidly decreases.
  • the content of the first additive when the content of the first additive is less than 0.05% by mass, an effect of reducing polishing scratches is easily obtained. Further, the content of the first additive is preferably 0.00001 to 50 parts by mass with respect to 100 parts by mass of the cerium oxide particles.
  • the second additive forms a protective film by adsorbing to the surface to be polished when polishing the surface to be polished having unevenness, and suppresses the progress of polishing in the recessed portion where the polishing pad does not contact, Is a compound suitable for preferentially polishing.
  • the second additive is an anionic polymer compound or a salt thereof obtained by polymerizing a composition containing a vinyl compound having an anionic substituent as a monomer component. is there.
  • the second additive adsorbs on the surface to be polished to form a protective film, the generation of polishing scratches tends to be somewhat suppressed, but the effect is not sufficient when used alone.
  • a remarkable polishing flaw reduction effect can be obtained by using the first additive and the second additive in combination.
  • Examples of the anionic substituent of the vinyl compound having an anionic substituent include a carboxyl group, a hydroxyl group, an amino group, an oxirane ring, and an acid anhydride.
  • Examples of the vinyl compound having an anionic substituent include acrylic acid, methacrylic acid, and methyl acrylate. These vinyl compounds can be used alone or in combination of two or more.
  • As the anionic polymer compound or a salt thereof a polymer obtained by polymerizing a composition containing at least one selected from acrylic acid and methacrylic acid as a monomer component or a salt thereof is preferable.
  • Examples of the salt of the anionic polymer compound include ammonium salt, potassium salt, sodium salt and the like, and among them, ammonium salt is preferable.
  • the weight average molecular weight of the second additive is preferably 100 to 150,000, and more preferably 1000 to 20000.
  • the weight average molecular weight of the second additive is a value measured by GPC and converted to standard polystyrene, and specifically includes the following conditions.
  • the lower limit of the content of the second additive is preferably 0.01% by mass or more, more preferably 0.05% by mass or more based on the total mass of the CMP polishing liquid, from the viewpoint of further improving the planarization characteristics. 08 mass% or more is still more preferable, and 0.10 mass% or more is especially preferable.
  • the upper limit of the content of the second additive is preferably 2.00% by mass or less, more preferably 1.00% by mass or less, from the viewpoint of further improving the polishing rate and suppressing the occurrence of aggregation of abrasive grains. 0.50 mass% or less is still more preferable. Further, the content of the second additive is preferably larger than the content of the first additive.
  • the content of the second additive is 10 to 1000 with respect to 100 parts by mass of the cerium oxide particles from the viewpoint of improving dispersibility of the abrasive grains in the CMP polishing liquid, preventing sedimentation, and maintaining excellent flatness. Mass parts are preferred, and 20 to 200 parts by mass are more preferred.
  • the water that is the medium of the CMP polishing liquid is not particularly limited, but deionized water, ion exchange water, ultrapure water, and the like are preferable.
  • the content of water in the CMP polishing liquid may be the remainder of the content of the above-described components, and is not particularly limited as long as it is contained in the CMP polishing liquid.
  • the CMP polishing liquid may further contain a solvent other than water, for example, a polar solvent such as ethanol, acetic acid, and acetone, if necessary.
  • a dispersant may be added to the CMP polishing liquid in order to disperse the cerium oxide particles in water.
  • the dispersant known dispersants such as a water-soluble nonionic dispersant, a water-soluble cationic dispersant, and a water-soluble amphoteric dispersant can be used.
  • a dispersing agent both the same compound as the anionic polymer compound which is a 2nd additive, and a different compound can be used.
  • an anionic polymer compound is used as the dispersant, the content of the anionic polymer compound in the entire CMP polishing liquid is set within the range of the content of the second additive, and other components are added. Before mixing, it is preferable to mix a small amount of anionic polymer compound with cerium oxide particles in advance so as not to affect other components.
  • the content of the dispersing agent is preferably from 0.1 to 5.0 parts by weight, more preferably from 0.1 to 2.0 parts by weight, based on 100 parts by weight of the cerium oxide particles used as abrasive grains.
  • the content of the dispersant is 0.1 parts by mass or more, the stability of the abrasive grains can be improved, and when the content is 5.0 parts by mass or less, aggregation of the abrasive grains can be suppressed. It is.
  • the weight average molecular weight of the dispersing agent is preferably from 100 to 150,000, more preferably from 1,000 to 20,000.
  • the weight average molecular weight of the dispersant is a value measured by GPC and converted to standard polystyrene.
  • the CMP polishing liquid may contain, in addition to the above components, materials generally used for the CMP polishing liquid such as a pH adjuster and a colorant as long as the effects of the CMP polishing liquid are not impaired.
  • materials generally used for the CMP polishing liquid such as a pH adjuster and a colorant as long as the effects of the CMP polishing liquid are not impaired.
  • the pH adjuster include acid components such as nitric acid, sulfuric acid and acetic acid, and alkali components such as ammonia, potassium hydroxide and tetramethylammonium hydroxide.
  • the pH of the CMP polishing liquid is preferably in the range of 3 to 10 from the viewpoint of improving the storage stability of the CMP polishing liquid and further suppressing the generation of polishing flaws.
  • the pH of the CMP polishing liquid can be adjusted by the pH adjusting agent.
  • the pH of the CMP polishing liquid can be measured with a pH meter (for example, model number “PHL-40” manufactured by Electrochemical Instruments Co., Ltd.). More specifically, the pH is determined using a standard buffer (phthalate pH buffer solution pH: 4.01 (25 ° C.), neutral phosphate pH buffer solution pH: 6.86 (25 ° C.)). After calibrating two points, the value after the electrode is put into the polishing liquid and stabilized after 2 minutes or more can be measured as the pH value.
  • a pH meter for example, model number “PHL-40” manufactured by Electrochemical Instruments Co., Ltd.
  • the viscosity of the CMP polishing liquid is not particularly limited, but 0.5 to 5 mPa ⁇ s is preferable from the viewpoint of improving the storage stability of the CMP polishing liquid.
  • the viscosity of the CMP polishing liquid can be measured by, for example, an Ubbelohde viscometer.
  • the viscosity of the slurry containing cerium oxide is preferably 0.5 to 5 mPa ⁇ s from the viewpoint of obtaining excellent storage stability.
  • the CMP polishing liquid may be stored as a one-part type containing all necessary raw materials, or the components contained in the two-part liquid may be stored in a two-part type to obtain a CMP polishing liquid by mixing both liquids during use. Good.
  • the CMP polishing liquid according to the first embodiment includes, for example, a slurry containing cerium oxide particles and water (first liquid, hereinafter referred to as “cerium oxide slurry”), and an additive liquid containing first additive and water (first 2 liquids) and 2 liquids.
  • the CMP polishing liquid according to the second embodiment includes, for example, a slurry containing cerium oxide particles and water (third liquid, hereinafter referred to as “cerium oxide slurry”), a first additive, a second additive, and water. It is divided into two liquids including an additive liquid (fourth liquid).
  • a dispersing agent is contained in a cerium oxide slurry as needed.
  • the cerium oxide slurry can be stored in a concentrated state and diluted with a diluent such as water for polishing.
  • the CMP polishing liquid according to the first embodiment is a total of three liquids, that is, a cerium oxide slurry, an additive liquid, and a diluting liquid.
  • the one-component CMP polishing liquid can also be stored in a concentrated state and diluted for use in polishing, and this form is also collectively referred to as one-component.
  • the planarization characteristics and the polishing rate can be adjusted by arbitrarily changing the composition of these two liquids.
  • the additive solution is sent through a pipe separate from the cerium oxide slurry pipe, and the slurry pipe and the additive pipe are merged just before the outlet of the supply pipe to mix the two liquids and CMP polishing.
  • a method of supplying a CMP polishing liquid onto the polishing surface plate or a method of mixing the cerium oxide slurry and the additive liquid immediately before polishing is taken.
  • the polishing method according to this embodiment includes a step of polishing a film to be polished formed on a substrate using the CMP polishing liquid.
  • the method for manufacturing a semiconductor substrate according to this embodiment includes a step of polishing a film to be polished formed on the semiconductor substrate using the CMP polishing liquid.
  • the film to be polished is, for example, an inorganic insulating film such as a silicon oxide film.
  • a polishing method using a CMP polishing liquid and a method for manufacturing a semiconductor substrate include a first step (roughing step) for polishing a film to be polished formed on a semiconductor substrate at a high speed, and a relatively low amount of the remaining film to be polished. And a second step (finishing step) for polishing so that the surface to be polished is finally flattened at a speed.
  • FIG. 1 is a schematic cross-sectional view showing a process in which an STI structure is formed on a semiconductor substrate by polishing a film to be polished.
  • FIG. 1A is a schematic cross-sectional view showing a substrate before polishing.
  • FIG. 1B is a schematic cross-sectional view showing the substrate after the first step.
  • FIG. 1C is a schematic cross-sectional view showing the substrate after the second step.
  • the process of forming the STI structure in order to eliminate the step D of the silicon oxide film (inorganic insulating film) 3 formed on the silicon substrate (semiconductor substrate) 1, it is unnecessary to protrude partially. These parts are removed preferentially by CMP. In order to stop the polishing appropriately when the surface is flattened, it is preferable to previously form a stopper film 2 having a low polishing rate under the silicon oxide film 3. A silicon nitride film is generally used as the stopper film, but a polysilicon film or the like is also used. By going through the first and second steps, the step D of the silicon oxide film 3 is eliminated, and an element isolation structure having a buried portion 5 is formed.
  • the silicon substrate 1 is disposed on the polishing pad so that the surface to be polished of the silicon oxide film 3 and the polishing pad are in contact with each other, and the surface to be polished of the silicon oxide film 3 is formed by the polishing pad. Grind. More specifically, while the polishing surface of the silicon oxide film 3 is pressed against the polishing pad of the polishing surface plate, the polishing liquid is supplied between the polishing surface and the polishing pad while the substrate and the polishing pad are relative to each other. The silicon oxide film 3 is polished by moving it.
  • the CMP polishing liquid can be suitably used for both the first step and the second step.
  • polishing apparatus used for polishing
  • an apparatus including a holder for holding a substrate, a polishing surface plate to which a polishing pad is attached, and means for supplying a polishing liquid onto the polishing pad
  • the polishing apparatus include a polishing apparatus (model number: EPO-111) manufactured by Ebara Manufacturing Co., Ltd., an AMAT polishing apparatus (trade name: Mira3400, Reflexion polishing machine), and the like.
  • the polishing pad is exemplified as the polishing member, the polishing member is not limited to this.
  • a polishing pad For example, a general nonwoven fabric, a polyurethane foam, a porous fluororesin, etc. can be used.
  • the polishing pad is preferably subjected to groove processing so that the polishing liquid is accumulated.
  • the polishing pad is preferably such that the surface tension of the CMP polishing liquid is smaller than the critical surface tension of the polishing pad surface. By using these polishing pads, the CMP polishing liquid can be uniformly dispersed on the polishing pad.
  • the polishing conditions are not particularly limited, but from the viewpoint of preventing the substrate from popping out, the rotation speed of the polishing platen is preferably 200 min ⁇ 1 or less. Further, the pressure (working load) applied to the substrate is preferably 100 kPa or less from the viewpoint of further suppressing an increase in scratches on the polished surface.
  • the processing load is more preferably 5 to 50 kPa in order to satisfy the uniformity of the polishing rate within the surface to be polished and the flatness of the pattern.
  • the supply amount of the polishing liquid is not limited, but it is preferable that the surface of the polishing pad is always covered with the polishing liquid. Specifically, it is preferable to supply 0.005 to 0.40 ml / min of polishing liquid per 1 cm 2 of area of the polishing pad.
  • the substrate is thoroughly washed in running water, and further, water droplets adhering to the substrate are removed using a spin dryer or the like and then dried.
  • a spin dryer or the like By such treatment, unevenness on the substrate surface can be eliminated, and a smooth surface can be obtained over the entire surface of the substrate.
  • a substrate having a desired number of layers can be manufactured by repeating the formation of the film and the step of polishing the film a predetermined number of times.
  • the substrate thus obtained can be used as various electronic components.
  • semiconductor elements include semiconductor elements, optical glasses such as photomasks, lenses, and prisms, inorganic conductive films such as ITO, optical integrated circuits / optical switching elements / optical waveguides composed of glass and crystalline materials, end faces of optical fibers, Examples thereof include optical single crystals such as scintillators, solid laser single crystals, sapphire substrates for blue laser LEDs, semiconductor single crystals such as SiC, GaP, and GaAs, glass substrates for magnetic disks, and magnetic heads.
  • optical single crystals such as scintillators, solid laser single crystals, sapphire substrates for blue laser LEDs, semiconductor single crystals such as SiC, GaP, and GaAs, glass substrates for magnetic disks, and magnetic heads.
  • Cerium oxide particles were prepared by a firing method. That is, about 6 kg of cerium carbonate was put in an alumina container and calcined in the air at 800 ° C. for 2 hours to obtain about 3 kg of yellowish white calcined powder. When the phase of this calcined powder was identified by an X-ray diffraction method using CuK ⁇ rays as a radiation source, it was confirmed that the powder was cerium oxide. Further, the half width of the diffraction peak of the (111) plane of the cerium oxide crystal determined from the powder X-ray diffraction pattern was 0.31 °.
  • 3 kg of the cerium oxide powder obtained as described above was dry-ground using a jet mill so that polycrystalline cerium oxide particles composed of a plurality of crystallites and having grain boundaries remain. Either or both of the grinding time and the grinding pressure were adjusted to obtain cerium oxide particles having average particle diameters of 0.18 ⁇ m and 0.20 ⁇ m, respectively.
  • the average particle size of the cerium oxide particles was measured using LA-920 (light source: He—Ne laser and W laser) manufactured by Horiba.
  • CMP polishing liquid (Preparation of CMP polishing liquid) As shown in Tables 1 and 2, cerium oxide particles having an average particle size of 0.18 ⁇ m or 0.20 ⁇ m were dispersed in water using a dispersant to obtain a dispersion.
  • the compounding quantity of the dispersing agent was made into the small quantity of the grade which does not affect the compounding quantity of the 1st, 2nd additive.
  • each CMP polishing liquid was measured using a pH meter (manufactured by Electrochemical Instruments, model number “PHL-40”). After calibrating two points using a standard buffer solution (phthalate pH buffer solution pH: 4.01 (25 ° C), neutral phosphate pH buffer solution pH: 6.86 (25 ° C)), the electrode was subjected to CMP. The value after putting it in polishing liquid and stabilizing for 2 minutes or more was made into pH.
  • a silicon oxide (SiO 2 ) film having a thickness of 1000 nm was formed on a ⁇ 200 mm silicon (Si) substrate by a plasma-CVD method to obtain a bare wafer having a flat silicon oxide film as a film to be polished.
  • a pattern wafer (trade name: SEMATECH864, manufactured by ADVANTECH) having an uneven silicon oxide film as a film to be polished was prepared.
  • a silicon nitride film is formed as a stopper film on a part of a ⁇ 200 mm silicon substrate, and a recess is formed by etching the silicon substrate without the silicon nitride film by 350 nm, and then by plasma-CVD. It is obtained by forming a 600 nm silicon oxide film on the stopper film and in the recess.
  • the silicon oxide films of the bare wafer and the pattern wafer were polished using the CMP polishing liquid. Further, using the polished wafer, the number of polishing flaws, the polishing rate, and the remaining step after polishing were measured under the following conditions. The polishing of the substrates and the respective measurements in Examples 1 to 6 and Comparative Examples 1 to 5 were performed on the same day.
  • Each wafer was polished as follows using a polishing apparatus (polishing apparatus manufactured by Ebara Corporation: model number EPO111).
  • a polishing apparatus manufactured by Ebara Corporation: model number EPO111.
  • the bare wafer or the pattern wafer was set in a holder to which a suction pad for attaching a substrate was attached.
  • a polishing pad made of a porous urethane resin (groove shape: perforate type, manufactured by Rohm and Haas, model number IC1000) was attached to a polishing surface plate of ⁇ 600 mm of the polishing apparatus.
  • the holder was installed so that the film to be polished was opposed to the polishing pad.
  • the processing load was set to 34.3 kPa.
  • the polishing surface plate and the bare wafer or the pattern wafer were each rotated at 50 min ⁇ 1 for 1 minute, and the film to be polished was polished with the polishing pad.
  • the polished wafer was thoroughly washed with pure water and then dried.
  • A Ammonium polyacrylate having a weight average molecular weight of 10,000 obtained by copolymerizing acrylic acid and methyl acrylate (product name A6114, manufactured by Toagosei Co., Ltd.).
  • B D: Polyacrylic acid potassium salt having a weight average molecular weight of 4000 obtained by polymerizing an acrylic acid monomer using potassium sulfite as an initiator.
  • C A polyacrylic acid ammonium salt having a weight average molecular weight of 4000 obtained by polymerizing an acrylic acid monomer using 2,2′-azobisisobutyronitrile as an initiator.
  • E Ammonium polyacrylate having a weight average molecular weight of 4000 obtained by polymerizing an acrylic acid monomer using ammonium sulfite as an initiator.
  • Example 9 to 14 and Comparative Examples 6 to 9 In Examples 9 to 14 and Comparative Examples 6 to 9, the average particle diameter of cerium oxide was fixed to 0.18 ⁇ m, and the influence of the concentration of the first additive on the polishing characteristics was observed. At the same time, in order to confirm the influence of the concentration of the cerium oxide particles on the polishing characteristics, the cerium oxide concentration was fixed at 0.50% by mass in Examples 13 and 14, and the cerium oxide in Examples 9 to 12 and Comparative Examples 6 to 9 The concentration was fixed at 1.00% by mass. In addition, the 2nd additive which mainly functions as a planarizing agent was not added.
  • Each component is contained in each compounding amount shown in Table 3 in the same manner as in Examples 1 to 8, except that an aqueous solution of the first additive shown in Table 3 was added to the dispersion to obtain a CMP polishing liquid.
  • a CMP polishing liquid was prepared, and the number of polishing flaws and the polishing rate after polishing the bare wafer were measured.
  • Each measurement in Examples 9 to 14 and Comparative Examples 6 to 9 was performed on the same day.
  • Table 3 shows the measurement results.
  • the measurement results of Examples 9 to 12 and Comparative Examples 6 to 9 are shown in FIG.
  • FIG. 2 is a diagram showing the relationship between the concentration of the first additive, the polishing rate, and the number of polishing flaws. In FIG. 2, the left axis shows the polishing rate, and the right axis shows the number of polishing flaws.
  • Example 15 to 19 and Comparative Examples 10 to 12 In Examples 15 to 19 and Comparative Examples 10 to 12, the influence of the concentration of the first additive on the polishing characteristics was observed.
  • CMP polishing liquids containing each component were prepared in the respective compounding amounts shown in Table 4. Using each CMP polishing liquid, the number of polishing flaws and the polishing rate were measured for the bare wafer, and the level difference remaining after polishing was measured for the pattern wafer. The measurements in Examples 15 to 19 and Comparative Examples 10 to 12 were performed on the same day. Table 4 shows the measurement results.
  • Example 20 a CMP polishing liquid (single liquid type) having the same blending amount as in Example 1 was prepared again.
  • Example 21 a cerium oxide slurry containing cerium oxide particles, a dispersing agent and water, and an additive liquid containing a first additive and a second additive are supplied by separate pipes, and the pipes are connected immediately before dropping. The resulting mixture was mixed so that a CMP polishing liquid having the same blending amount as in Example 1 was finally obtained.
  • Example 22 the same cerium oxide slurry and additive liquid as in Example 21 are supplied through separate pipes and mixed on the polishing pad, finally resulting in a CMP polishing liquid having the same blending amount as in Example 1. I did it.
  • SYMBOLS 1 Silicon substrate (semiconductor substrate), 2 ... Stopper film, 3 ... Silicon oxide film (inorganic insulating film), 5 ... Embedded part, D ... Elevation difference (step) of film thickness of silicon oxide film.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

 本発明に係るCMP研磨液の第1の態様は、酸化セリウム粒子と、アセチレン結合を有する有機化合物と、水とを含み、アセチレン結合を有する有機化合物の含有量が、CMP研磨液全質量基準で0.00001質量%以上0.01質量%以下である。本発明に係るCMP研磨液の第2の態様は、酸化セリウム粒子と、アセチレン結合を有する有機化合物と、アニオン性置換基を有するビニル化合物を単量体成分として含む組成物を重合させて得られるアニオン性高分子化合物又はその塩と、水とを含み、アセチレン結合を有する有機化合物の含有量が、CMP研磨液全質量基準で0.000001質量%以上0.05質量%未満である。

Description

CMP研磨液、並びに、これを用いた研磨方法及び半導体基板の製造方法
 本発明は、CMP研磨液、並びに、これを用いた研磨方法及び半導体基板の製造方法に関する。特に、本発明は、半導体素子等の電子部品製造技術における基体表面の平坦化工程、例えば、層間絶縁膜の平坦化工程、STI(Shallow Trench Isolation:浅溝素子分離)の形成工程等において使用されるCMP研磨液、並びに、これを用いた研磨方法及び半導体基板の製造方法に関する。
 半導体装置の超々大規模集積回路では、実装密度を高める傾向にあり、種々の微細加工技術が研究、開発されている。デザインルールは、既にサブハーフミクロンのオーダーになっている。このような厳しい微細化の要求を満足する技術として、CMP(ケミカルメカニカルポリッシング)技術が挙げられる。CMP技術は、半導体装置等の電子部品の製造工程において、露光が施される層の表面を平坦化し、露光工程における技術的負担を軽減し、歩留まりを安定させることができる。そのため、CMP技術は、例えば層間絶縁膜の平坦化、STIの形成等の際に必須となる技術である。
 従来、半導体装置の製造工程において、プラズマ-CVD(Chemical Vapor Deposition、化学的蒸着法)、低圧-CVD等の方法で形成される酸化ケイ素膜等の無機絶縁膜を平坦化するためのCMP研磨液として、フュームドシリカを含むシリカ系のCMP研磨液が検討されている。シリカ系のCMP研磨液は、シリカ粒子を四塩化珪酸に熱分解する等の方法で粒成長させ、pH調整を行って製造される。しかしながら、このようなCMP研磨液では、被研磨膜である無機絶縁膜の研磨速度が低下してしまうという技術課題がある。
 一方、フォトマスクやレンズ等のガラス表面に対するCMP研磨液として、酸化セリウム粒子を含有するCMP研磨液が用いられている。酸化セリウム粒子は、シリカ粒子やアルミナ粒子に比べ硬度が低いことから、研磨に用いても被研磨面に傷が入りにくい。したがって、酸化セリウム粒子は、仕上げ鏡面研磨に有用である。また、酸化セリウム粒子を含有するCMP研磨液は、シリカ粒子を含有するCMP研磨液に比べて研磨速度に優れるという利点がある。また、近年、高純度の酸化セリウム粒子を用いた半導体用CMP研磨液が知られている(例えば特許文献1参照)。
 酸化セリウム粒子は、シリカ粒子に比べ密度が高いため沈降しやすく、研磨速度が低下する場合がある。そのため、研磨速度を向上させる観点から、適当な分散剤を使用することにより酸化セリウム粒子の分散性を向上させたCMP研磨液が知られている(例えば特許文献2参照)。
 酸化セリウム粒子を含有するCMP研磨液に添加剤を加えることにより、研磨速度を制御し、グローバルな平坦性を向上させることが知られている(例えば特許文献3参照)。また、平坦性を向上させる観点から、アセチレン結合を有する有機化合物をCMP研磨液に添加することが知られている(例えば特許文献4参照)。
特開平10-106994号公報 特開平10-152673号公報 特開平8-22970号公報 特開2008-85058号公報
 ところで、近年、集積回路の実装密度は更に高くなる傾向にあり、例えばSTI工程が適用される基板のトレンチ幅においては、より一層の微細化が進んでいる。このような微細化レベルの向上に伴い、半導体基板の表面に生じた研磨傷が半導体基板の信頼性や歩留まりに与える影響が大きくなっている。したがって、酸化セリウム粒子を含有するCMP研磨液は、上述のようにシリカ粒子を含有するCMP研磨液と比較して研磨傷が少ないという利点があるものの、従来の研磨傷の低減レベルでは充分でなく、研磨傷を低減する要求は更に厳しくなっている。
 また、酸化セリウム粒子を含有するCMP研磨液において、研磨傷を低減する手法として、酸化セリウム粒子中の不純物を除去する手法や、酸化セリウム粒子の粒子径を微細化する手法、大粒子を除去する手法等が検討されている。しかし、これらの手法では、被研磨面の平坦性や研磨速度が低下する等の不具合が生じ、研磨傷の発生の抑制と他の特性との両立が難しい場合がある。特に、研磨速度の低下はスループットの低下を引き起こすため、研磨速度の低下を抑制すると共に、研磨傷の発生を抑制することが望まれている。
 本発明は上記課題を解決するためになされたものであり、研磨速度の低下を抑制すると共に研磨傷の発生を抑制することが可能なCMP研磨液、並びに、これを用いた研磨方法及び半導体基板の製造方法を提供することを目的とする。
 本発明者らは、砥粒として酸化セリウム粒子を使用したCMP研磨液において、鋭意検討した結果、酸化セリウム粒子を含有するCMP研磨液に、アセチレン結合を有する有機化合物を極微量含有させることによって、研磨速度の低下を抑制すると共に研磨傷の発生を抑制することができることを見出した。
 すなわち、本発明に係るCMP研磨液の第1の態様は、酸化セリウム粒子と、アセチレン結合を有する有機化合物と、水とを含み、アセチレン結合を有する有機化合物の含有量が、CMP研磨液全質量基準で0.00001質量%(0.1ppm)以上0.01質量%(100ppm)以下である。
 CMP研磨液の第1の態様では、CMP研磨液がアセチレン結合を有する有機化合物を上記含有量のように極微量含有することによって、研磨速度の低下を抑制すると共に研磨傷の発生を抑制することができる。また、CMP研磨液の第1の態様では、凹凸が少ない被研磨面の研磨や、被研磨面の荒削りを行う研磨において、平坦性向上効果(凸部を優先的に研磨する効果)を促進させることもできる。
 ところで、特許文献4には、アセチレン結合を有する有機化合物を添加することによって、研磨後の被研磨面の平坦性を向上させることが開示されている。しかし、本発明者らは、アセチレン結合を有する有機化合物の含有量の相違に基づき、本発明と特許文献4の技術とは、研磨時に生じる作用が本質的に異なると推測している。
 すなわち、特許文献4のCMP研磨液では、アセチレン結合を有する有機化合物の含有量が高いのに対し、本発明に係るCMP研磨液の第1の態様では、アセチレン結合を有する有機化合物の含有量が極微量(ppmオーダー)である。そのため、特許文献4のCMP研磨液では、アセチレン結合を有する有機化合物による研磨速度の向上効果、及び、研磨傷の低減効果を高度に両立するには限界があるのに対し、本発明に係るCMP研磨液の第1の態様では、研磨速度の向上効果、及び、研磨傷の低減効果を高度に両立することができる。
 また、CMP研磨液の第1の態様は、酸化セリウム粒子及び水を含む第1の液と、アセチレン結合を有する有機化合物及び水を含む第2の液とを混合して得ることもできる。
 更に、本発明者らは、酸化セリウム粒子を含有するCMP研磨液に、アセチレン結合を有する有機化合物を極微量含有させると共に、所定のアニオン性高分子化合物又はその塩を含有させることによっても、研磨速度の低下を抑制すると共に研磨傷の発生を抑制することができることを見出した。
 すなわち、本発明に係るCMP研磨液の第2の態様は、酸化セリウム粒子と、アセチレン結合を有する有機化合物と、アニオン性置換基を有するビニル化合物を単量体成分として含む組成物を重合させて得られるアニオン性高分子化合物又はその塩と、水とを含み、アセチレン結合を有する有機化合物の含有量が、CMP研磨液全質量基準で0.000001質量%(0.01ppm)以上0.05質量%(500ppm)未満である。
 CMP研磨液の第2の態様では、CMP研磨液が、アセチレン結合を有する有機化合物を上記含有量のように極微量含有すると共に、所定のアニオン性高分子化合物又はその塩を含有することによって、研磨速度の低下を抑制すると共に研磨傷の発生を抑制することができる。また、CMP研磨液の第2の態様では、凹凸の多い被研磨面を平坦性よく研磨することもできる。
 また、CMP研磨液の第2の態様は、酸化セリウム粒子及び水を含む第3の液と、アセチレン結合を有する有機化合物、アニオン性高分子化合物又はその塩並びに水を含む第4の液とを混合して得ることもできる。
 また、アニオン性置換基を有するビニル化合物は、アクリル酸及びメタクリル酸から選ばれる少なくとも一種であることが好ましい。この場合、研磨速度の低下を抑制すると共に研磨傷の発生を更に抑制することができる。
 また、アニオン性高分子化合物又はその塩の含有量は、アセチレン結合を有する有機化合物の含有量より多いことが好ましい。この場合、研磨速度の低下を抑制すると共に研磨傷の発生を更に抑制することができる。
 また、アニオン性高分子化合物又はその塩の含有量は、CMP研磨液全質量基準で0.01~2.00質量%であることが好ましい。この場合、研磨速度の低下を抑制すると共に研磨傷の発生を更に抑制することができる。
 また、CMP研磨液の第1及び第2の態様において、アセチレン結合を有する有機化合物は、アセチレングリコール類であることが好ましい。アセチレングリコール類は、下記一般式(1)で表される化合物であることがより好ましく、2,4,7,9-テトラメチル-5-デシン-4,7-ジオールであることが更に好ましい。これらの場合、研磨傷の発生を更に抑制することができる。
Figure JPOXMLDOC01-appb-C000002
(一般式(1)中、R~Rはそれぞれ独立に水素原子又は炭素数が1~5の置換若しくは無置換アルキル基を表し、R、Rはそれぞれ独立に炭素数が1~5の置換又は無置換アルキレン基を表し、m、nはそれぞれ独立に0又は正数を表す。)
 本発明に係る研磨方法は、上記CMP研磨液を用いて、基体に形成された被研磨膜を研磨する工程を備える。
 本発明に係る研磨方法では、上記CMP研磨液を用いているため、研磨速度の低下を抑制すると共に研磨傷の発生を抑制することができる。
 本発明に係る半導体基板の製造方法は、上記CMP研磨液を用いて半導体基板に形成された無機絶縁膜を研磨する工程を備える。
 本発明に係る半導体基板の製造方法では、上記CMP研磨液を用いているため、研磨速度の低下を抑制すると共に研磨傷の発生を抑制することができる。
 本発明によれば、研磨速度の低下を抑制すると共に研磨傷の発生を抑制することができるCMP研磨液、並びに、これを用いた研磨方法及び半導体基板の製造方法を提供することができる。
酸化ケイ素膜が研磨されて半導体基板にSTI構造が形成される過程を示す模式断面図である。 添加剤の濃度と研磨速度及び研磨傷数との関係を示す図である。
 以下、必要に応じて図面を参照しつつ、本発明の好適な実施形態について詳細に説明する。
 第1実施形態に係るCMP研磨液は、酸化セリウム粒子と、アセチレン結合を有する有機化合物(以下、「アセチレン化合物」という)と、水とを含む。第2実施形態に係るCMP研磨液は、酸化セリウム粒子と、アセチレン化合物と、アニオン性置換基を有するビニル化合物を単量体成分として含む組成物を重合させて得られるアニオン性高分子化合物又はその塩と、水とを含む。以下、CMP研磨液の各含有成分について説明する。
(酸化セリウム粒子)
 酸化セリウム粒子は、粒子状を有するものであればどのようなものでもよい。酸化セリウム粒子は、その製造方法を限定するものではないが、従来公知の酸化セリウム粒子を広く一般的に使用することができる。
 酸化セリウム粒子の製造方法としては、例えば、焼成法、過酸化水素等による酸化法等が挙げられる。酸化セリウム粒子が焼成法により得られる場合、焼成工程では、セリウム化合物を350~900℃で1時間以上焼成して焼成粉を得ることが好ましい。焼成温度は500~900℃がより好ましく、600~900℃が更に好ましい。焼成時間の上限は3時間程度とすることができる。
 線源をCuKα線とする焼成粉の粉末X線回折パターンにおいて酸化セリウム結晶の(111)面による回折ピークの半値幅は、0.20~0.50°が好ましく、0.20~0.40°がより好ましい。この場合、結晶化の度合いが適度であり、且つ、適度な結晶子(最小の結晶単位)の大きさを有する酸化セリウム粒子を得ることができる。上記回折ピークの半値幅は、焼成工程における焼成温度、焼成時間により適宜調整することができる。
 製造された酸化セリウム粒子が凝集している場合は、粉砕工程において、凝集した粒子を機械的に粉砕することが好ましい。粉砕方法としては、例えば、ジェットミル等による乾式粉砕や遊星ビーズミル等による湿式粉砕方法が好ましい。ジェットミルとしては、例えば、「化学工学論文集」、第6巻第5号、(1980)、527~532頁に説明されている方法を使用することができる。
 砥粒として使用する酸化セリウム粒子は、結晶粒界を有する多結晶酸化セリウム粒子を含むことが好ましい。粉砕工程において、複数の結晶子で構成されると共に結晶粒界を有する多結晶酸化セリウム粒子が形成されるように焼成粉を粉砕することが好ましい。結晶粒界を有する多結晶酸化セリウム粒子は、研磨中に細かくなると同時に、細かくなる前は媒体に触れていない新面(活性面)が次々と現れるため、酸化ケイ素膜に対する高い研磨速度を高度に維持できる。このような酸化セリウム粒子は、例えば再公表特許WO99/31195号パンフレットに記載されている。
 酸化セリウム粒子の平均粒径は特に制限はないが、一般的に平均粒径が小さいほど研磨速度が低下する傾向があり、平均粒径が大きいほど研磨傷が発生しやすくなる傾向がある。研磨速度を更に向上させる観点から、平均粒径は0.05μm以上が好ましく、0.07μm以上がより好ましい。研磨傷の発生を更に抑制する観点から、平均粒径は1.00μm以下が好ましく、0.40μm以下がより好ましい。
 なお、酸化セリウム粒子の平均粒径は、酸化セリウム粒子を含む液を測定対象として、レーザー回折散乱式粒度分布計によって測定される体積分布の平均値をいう。測定対象は、CMP研磨液を一液で保存する場合は、最終的なCMP研磨液であり、二液で保存する場合は、混合前における酸化セリウム粒子を含有するスラリーである。
 酸化セリウム粒子の平均粒径は、具体的には、測定対象のCMP研磨液又はスラリーを、測定に適した濃度に希釈して測定サンプルとし、この測定サンプルをレーザー回折散乱式粒度分布計に投入することで測定できる。酸化セリウム粒子の平均粒径は、より具体的には、堀場製作所製のLA-920(光源:He-Neレーザー及びWレーザー)を用いて以下のようにして測定することができる。まず、He-Neレーザーに対する測定時透過率(H)が60~70%になるように、測定対象のCMP研磨液又はスラリーを、測定に適した濃度に希釈して測定サンプルを得る。そして、この測定サンプルをLA-920に投入し、その際に得られた算術平均径(meanサイズ)として平均粒径が得られる。
 CMP研磨液における酸化セリウム粒子の含有量は、特に制限されるものではないが、酸化セリウム粒子の含有量の下限は、更に良好な研磨速度を得る観点から、CMP研磨液全質量基準で0.10質量%以上が好ましく、0.20質量%以上がより好ましく、0.30質量%以上が更に好ましい。酸化セリウム粒子の含有量の上限は、粒子の分散性を向上させ、研磨傷を更に低減する観点から、CMP研磨液全質量基準で20質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下が更に好ましい。
(第1の添加剤:アセチレン化合物)
 アセチレン化合物としては、例えば、アルキン類、アセチレンアルコール類及びアセチレングリコール類から選ばれる少なくとも一種が挙げられる。アルキン類としては、1-デシン、5-デシン等が挙げられる。アセチレンアルコール類としては、3,5-ジメチル-1-ヘキシン-3-オール、2,4-ジメチル-5-ヘキシン-3-オール等が挙げられる。アセチレングリコール類としては、下記一般式(1)で表される化合物等が挙げられる。これらのアセチレン化合物は、単独で又は二種類以上を組み合わせて使用することができる。
Figure JPOXMLDOC01-appb-C000003
(一般式(1)中、R~Rはそれぞれ独立に水素原子又は炭素数が1~5の置換若しくは無置換アルキル基を表し、R、Rはそれぞれ独立に炭素数が1~5の置換又は無置換アルキレン基を表し、m、nはそれぞれ独立に0又は正数を表す。)
 アセチレン化合物としては、研磨傷の低減効果が得られやすい点で、アセチレングリコール類が好ましく、上記一般式(1)で表される化合物がより好ましく、上記一般式(1)においてm及びnが0である化合物が更に好ましく、2,4,7,9-テトラメチル-5-デシン-4,7-ジオール、3,6-ジメチル-4-オクチン-3,6-ジオールが特に好ましく、入手容易性や研磨傷低減効果に優れる点で、2,4,7,9-テトラメチル-5-デシン-4,7-ジオールが極めて好ましい。
 第1実施形態に係るCMP研磨液では、第1の添加剤の含有量の下限は、CMP研磨液全質量基準で0.00001質量%(0.1ppm)以上であり、研磨傷低減効果がより効率的に得られる観点から、0.00002質量%(0.2ppm)以上が好ましく、0.00003質量%(0.3ppm)以上がより好ましく、0.00005質量%(0.5ppm)以上が更に好ましい。第1の添加剤の含有量の上限は、CMP研磨液全質量基準で0.01質量%(100ppm)以下であり、研磨傷低減効果がより効率的に得られる観点から、0.008質量%(80ppm)以下が好ましく、0.005質量%(50ppm)以下がより好ましい。第1実施形態に係るCMP研磨液では、第1の添加剤の含有量が0.00001質量%以上であると、第1の添加剤を全く添加しない場合(含有量:0質量%)と比較して、急激に研磨傷の数が減少する。第1実施形態に係るCMP研磨液では、第1の添加剤の含有量が0.01質量%以下であると、研磨傷の低減効果が得られやすくなる。また、第1の添加剤の含有量は、酸化セリウム粒子100質量部に対して、0.00001~10質量部であることが好ましい。
 第2実施形態に係るCMP研磨液では、第1の添加剤の含有量の下限は、CMP研磨液全質量基準で0.000001質量%(0.01ppm)以上であり、研磨傷低減効果がより効率的に得られる観点から、0.000003質量%(0.03ppm)以上が好ましく、0.000005質量%(0.05ppm)以上がより好ましく、0.00001質量%(0.1ppm)以上が更に好ましく、0.00005質量%(0.5ppm)以上が特に好ましい。第1の添加剤の含有量の上限は、CMP研磨液全質量基準で0.05質量%(500ppm)未満であり、研磨傷低減効果がより効率的に得られる観点から、0.03質量%(300ppm)以下が好ましく、0.02質量%(200ppm)以下がより好ましく、0.01質量%(100ppm)以下が更に好ましい。第2実施形態に係るCMP研磨液では、第1の添加剤の含有量が0.000001質量%以上であると、第1の添加剤を全く添加しない場合(含有量:0質量%)と比較して、急激に研磨傷の数が減少する。第2実施形態に係るCMP研磨液では、第1の添加剤の含有量が0.05質量%未満であると、研磨傷の低減効果が得られやすくなる。また、第1の添加剤の含有量は、酸化セリウム粒子100質量部に対して、0.00001~50質量部であることが好ましい。
(第2の添加剤:アニオン性高分子化合物又はその塩)
 第2の添加剤は、凹凸を有する被研磨面を研磨する際に、被研磨面に吸着して保護膜を形成し、研磨パッドが接触しない凹部において研磨が進行することを抑制し、凸部を優先的に研磨することに好適な化合物である。第2実施形態に係るCMP研磨液において、第2の添加剤は、アニオン性置換基を有するビニル化合物を単量体成分として含む組成物を重合させて得られるアニオン性高分子化合物又はその塩である。なお、第2の添加剤が被研磨面に吸着して保護膜を形成することにより、研磨傷の発生が多少抑えられる傾向があるが、単独での使用では、その効果は充分ではない。第2の実施形態に係るCMP研磨液では、第1の添加剤と第2の添加剤とを併用することにより、顕著な研磨傷低減効果が得られる。
 アニオン性置換基を有するビニル化合物のアニオン性置換基としては、例えば、カルボキシル基、水酸基、アミノ基、オキシラン環、酸無水物が挙げられる。アニオン性置換基を有するビニル化合物としては、例えば、アクリル酸、メタクリル酸、アクリル酸メチル等が挙げられる。これらのビニル化合物は、単独で又は二種類以上を組み合わせて使用することができる。アニオン性高分子化合物又はその塩としては、アクリル酸及びメタクリル酸から選ばれる少なくとも一種を単量体成分として含む組成物を重合して得られる重合体又はその塩が好ましい。アニオン性高分子化合物の塩としては、アンモニウム塩、カリウム塩、ナトリウム塩等が挙げられ、中でもアンモニウム塩が好ましい。
 第2の添加剤の重量平均分子量は、100~150000が好ましく、1000~20000がより好ましい。なお、第2の添加剤の重量平均分子量は、GPCで測定し、標準ポリスチレン換算した値であり、具体的には、下記の条件が挙げられる。
(条件)
 試料:10μL
 標準ポリスチレン:東ソー株式会社製標準ポリスチレン(重量平均分子量:190000、17900、9100、2980、578、474、370、266)
 検出器:株式会社日立製作所社製、RI-モニター、商品名「L-3000」
 インテグレーター:株式会社日立製作所社製、GPCインテグレーター、商品名「D-2200」
 ポンプ:株式会社日立製作所社製、商品名「L-6000」
 デガス装置:昭和電工株式会社製、商品名「Shodex DEGAS」
 カラム:日立化成工業株式会社製、商品名「GL-R440」、「GL-R430」、「GL-R420」をこの順番で連結して使用
 溶離液:テトラヒドロフラン(THF)
 測定温度:23℃
 流速:1.75mL/分
 測定時間:45分
 第2の添加剤の含有量の下限は、平坦化特性を更に向上させる観点から、CMP研磨液全質量基準で0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.08質量%以上が更に好ましく、0.10質量%以上が特に好ましい。第2の添加剤の含有量の上限は、研磨速度を更に向上させると共に砥粒の凝集の発生を抑制する観点から、2.00質量%以下が好ましく、1.00質量%以下がより好ましく、0.50質量%以下が更に好ましい。また、第2の添加剤の含有量は、第1の添加剤の含有量より多いことが好ましい。
 第2の添加剤の含有量は、CMP研磨液中の砥粒の分散性の向上及び沈降防止、並びに優れた平坦性を維持する観点から、酸化セリウム粒子100質量部に対して、10~1000質量部が好ましく、20~200質量部がより好ましい。
(水)
 CMP研磨液の媒体である水としては、特に制限されないが、脱イオン水、イオン交換水、超純水等が好ましい。CMP研磨液における水の含有量は、上記含有成分の含有量の残部でよく、CMP研磨液中に含有されていれば特に限定されない。なお、CMP研磨液は、必要に応じて水以外の溶媒、例えばエタノール、酢酸、アセトン等の極性溶媒等を更に含有してもよい。
(その他の成分)
 CMP研磨液には、酸化セリウム粒子を水に分散させるために分散剤を添加することができる。分散剤としては、水溶性ノニオン性分散剤、水溶性カチオン性分散剤、水溶性両性分散剤等の公知の分散剤を使用することができる。また、分散剤としては、第2の添加剤であるアニオン性高分子化合物と同じ化合物及び異なる化合物のいずれも使用することができる。分散剤としてアニオン性高分子化合物を用いる場合には、CMP研磨液全体におけるアニオン性高分子化合物の含有量を上記第2の添加剤の含有量の範囲内とすることや、他の含有成分を混合する前に、他の含有成分に影響を与えない程度に少量のアニオン性高分子化合物を酸化セリウム粒子と予め混合することが好ましい。
 分散剤の含有量は、砥粒として用いる酸化セリウム粒子100質量部に対して0.1~5.0質量部が好ましく、0.1~2.0質量部がより好ましい。分散剤の含有量が0.1質量部以上であると、砥粒の安定性を向上させることが可能であり、5.0質量部以下であると、砥粒の凝集を抑制することが可能である。
 分散剤の重量平均分子量は、100~150000が好ましく、1000~20000がより好ましい。なお、分散剤の重量平均分子量は、GPCで測定し、標準ポリスチレン換算した値である。
 CMP研磨液は、上記成分の他に、pH調整剤、着色剤等のように一般にCMP研磨液に使用される材料を、CMP研磨液の作用効果を損なわない範囲で含有してもよい。pH調整剤としては、硝酸、硫酸、酢酸等の酸成分、アンモニア、水酸化カリウム、水酸化テトラメチルアンモニウム等のアルカリ成分などが挙げられる。
(CMP研磨液の特性)
 CMP研磨液のpHは、CMP研磨液の保存安定性を向上させ研磨傷の発生を更に抑制する観点から、3~10の範囲が好ましい。CMP研磨液のpHは、上記pH調整剤により調整可能である。
 CMP研磨液のpHは、pHメータ(例えば、電気化学計器社製、型番「PHL-40」)で測定することができる。より具体的には、pHは標準緩衝液(フタル酸塩pH緩衝液 pH:4.01(25℃)、中性リン酸塩pH緩衝液 pH:6.86(25℃))を用いて、2点校正した後、電極を研磨液に入れて、2分以上経過して安定した後の値をpHの値として測定することができる。
 CMP研磨液の粘度は特に制限されるものではないが、CMP研磨液の保存安定性を向上させる観点から、0.5~5mPa・sが好ましい。CMP研磨液の粘度は、例えばウベローデ粘度計により測定することができる。なお、二液式CMP研磨液の場合には、優れた保存安定性を得る観点から、酸化セリウムを含有するスラリーの粘度が0.5~5mPa・sであることが好ましい。
 CMP研磨液は、必要な原料を全て含む一液式で保存してもよく、含有成分を二液に分け、使用時に両液を混合してCMP研磨液を得る二液式で保存してもよい。第1実施形態に係るCMP研磨液は、例えば、酸化セリウム粒子及び水を含むスラリー(第1の液、以下「酸化セリウムスラリー」という)と、第1の添加剤及び水を含む添加液(第2の液)との二液に分けられる。第2実施形態に係るCMP研磨液は、例えば、酸化セリウム粒子及び水を含むスラリー(第3の液、以下「酸化セリウムスラリー」という)と、第1の添加剤、第2の添加剤及び水を含む添加液(第4の液)との二液に分けられる。なお、分散剤は、必要に応じて酸化セリウムスラリーに含まれることが好ましい。また、前記酸化セリウムスラリーは、濃縮状態として保存し、研磨に際して水等の希釈剤で希釈して使用することもできる。なお、この形態では、例えば、前記第1実施形態に係るCMP研磨液は、酸化セリウムスラリーと、添加液と、希釈液の合計三つの液となるが、本明細書ではこの形態も二液式と総称する。また、前記一液式のCMP研磨液も、濃縮状態として保存し、研磨に際して希釈して使用でき、この形態も一液式と総称する。
 酸化セリウムスラリーと添加液とに分けた二液式としてCMP研磨液を保存する場合、これら二液の配合を任意に変えることにより、平坦化特性及び研磨速度を調整することができる。二液式の場合、酸化セリウムスラリーの配管とは別の配管で添加液を送液し、供給配管出口の直前でスラリーの配管と添加液の配管とを合流させて両液を混合しCMP研磨液を得た後に、CMP研磨液を研磨定盤上に供給する方法や、研磨直前に酸化セリウムスラリーと添加液とを混合する方法がとられる。
(研磨方法及び半導体基板の製造方法)
 本実施形態に係る研磨方法は、上記CMP研磨液を用いて、基体に形成された被研磨膜を研磨する工程を備える。本実施形態に係る半導体基板の製造方法は、上記CMP研磨液を用いて半導体基板に形成された被研磨膜を研磨する工程を備える。被研磨膜は、例えば、酸化ケイ素膜等の無機絶縁膜である。
 以下、図1を参照しながら、上記CMP研磨液を用いてSTI構造を形成する研磨方法及び半導体基板の製造方法について具体的に説明する。CMP研磨液を用いた研磨方法及び半導体基板の製造方法は、半導体基板に形成された被研磨膜を高い速度で研磨する第1の工程(荒削り工程)と、残りの被研磨膜を比較的低い速度で研磨して被研磨面が最終的に平坦になるように研磨する第2の工程(仕上げ工程)とを有する。
 図1は、被研磨膜が研磨されて半導体基板にSTI構造が形成される過程を示す模式断面図である。図1(a)は、研磨前の基板を示す模式断面図である。図1(b)は、第1の工程後の基板を示す模式断面図である。図1(c)は、第2の工程後の基板を示す模式断面図である。
 図1に示すように、STI構造を形成する過程では、シリコン基板(半導体基板)1上に成膜した酸化ケイ素膜(無機絶縁膜)3の段差Dを解消するため、部分的に突出した不要な箇所をCMPによって優先的に除去する。なお、表面が平坦化した時点で適切に研磨を停止させるため、酸化ケイ素膜3の下には、研磨速度の遅いストッパ膜2を予め形成しておくことが好ましい。ストッパ膜としては、窒化ケイ素膜が一般的であるが、他にポリシリコン膜等も使用される。第1及び第2の工程を経ることによって酸化ケイ素膜3の段差Dが解消され、埋め込み部分5を有する素子分離構造が形成される。
 酸化ケイ素膜3を研磨するには、酸化ケイ素膜3の被研磨面と研磨パッドとが当接するように研磨パッド上にシリコン基板1を配置し、研磨パッドによって酸化ケイ素膜3の被研磨面を研磨する。より具体的には、酸化ケイ素膜3の被研磨面を研磨定盤の研磨パッドに押圧した状態で、被研磨面と研磨パッドとの間に研磨液を供給しながら、基板と研磨パッドを相対的に動かすことによって酸化ケイ素膜3を研磨する。
 上記CMP研磨液は、第1の工程及び第2の工程のいずれにも好適に使用することができる。中でも、第2の工程には、第2実施形態に係るCMP研磨液を使用することが好ましい。これにより、更に良好な研磨速度と、研磨傷の更なる低減とを両立することが可能となる上、凹凸を有する被研磨面を平坦性よく研磨することができる。
 また、第1の工程及び第2の工程を分けることなく、一段階で同一のCMP研磨液を用いて研磨することも可能である。この場合も、凹凸を解消し平坦な被研磨面を得る点で、第2実施形態に係るCMP研磨液を用いることが好ましい。
 研磨に用いる研磨装置としては、例えば、基板を保持するホルダーと、研磨パッドが貼り付けられる研磨定盤と、研磨パッド上に研磨液を供給する手段とを備える装置が好適である。研磨装置としては、例えば、荏原製作所株式会社製の研磨装置(型番:EPO-111)、AMAT製の研磨装置(商品名:Mirra3400、Reflexion研磨機)等が挙げられる。
 研磨部材として研磨パッドを例示したが、研磨部材はこれに限られるものではない。研磨パッドとしては、特に制限はなく、例えば、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂等を使用することができる。また、研磨パッドは、研磨液が溜まるような溝加工が施されたものが好ましい。また、研磨パッドは、CMP研磨液の表面張力が研磨パッド表面の臨界表面張力より小さくなるようなものが好ましい。これらの研磨パッドを用いることにより、CMP研磨液が研磨パッド上で均一に分散することができる。
 研磨条件としては、特に制限はないが、基板が飛び出さないようにする見地から、研磨定盤の回転速度は200min-1以下が好ましい。また、基板にかける圧力(加工荷重)は、研磨面の傷の増加を更に抑制するという見地から、100kPa以下が好ましい。加工荷重は、研磨速度の被研磨面内の均一性及びパターンの平坦性を満足するため、5~50kPaがより好ましい。研磨中は、ポンプ等によって研磨パッドに研磨液を連続的に供給することが好ましい。研磨液の供給量に制限はないが、研磨パッドの表面が常に研磨液で覆われるようにすることが好ましい。具体的には、研磨パッドの面積1cm当たり研磨液が0.005~0.40ml/min供給されることが好ましい。
 研磨終了後、流水中で基板を充分に洗浄し、更にスピンドライヤ等を用いて基板上に付着した水滴を払い落としてから乾燥させることが好ましい。このような処理により、基板表面の凹凸を解消し、基板全面にわたって平滑な面を得ることができる。また、膜の形成及びこれを研磨する工程を所定の回数繰り返すことによって、所望の層数を有する基板を製造することができる。
 このようにして得られた基板は、種々の電子部品として使用することができる。具体例としては、半導体素子、フォトマスク・レンズ・プリズム等の光学ガラス、ITO等の無機導電膜、ガラス及び結晶質材料で構成される光集積回路・光スイッチング素子・光導波路、光ファイバーの端面、シンチレータ等の光学用単結晶、固体レーザー単結晶、青色レーザーLED用サファイヤ基板、SiC、GaP、GaAs等の半導体単結晶、磁気ディスク用ガラス基板、磁気ヘッド等が挙げられる。
 以下、実施例により本発明を説明する。なお、本発明はこれらの実施例に制限されるものではない。
[実施例1~8、比較例1~5]
(酸化セリウム粒子の作製)
 酸化セリウム粒子を焼成法により作製した。すなわち、炭酸セリウム約6kgをアルミナ製容器に入れ、800℃で2時間空気中で焼成することにより黄白色の焼成粉末を約3kg得た。線源をCuKα線とするX線回折法でこの焼成粉末の相同定を行ったところ酸化セリウムであることを確認した。また、粉末X線回折パターンから求められる酸化セリウム結晶の(111)面による回折ピークの半値幅は0.31°であった。
 上記により得られた酸化セリウム粉末3kgをジェットミルを用いて、複数の結晶子で構成され、結晶粒界を有する多結晶の酸化セリウム粒子が残存するように乾式粉砕した。粉砕時間および粉砕圧力のいずれかまたは両方を調整し、平均粒径が0.18μm及び0.20μmの酸化セリウム粒子をそれぞれ得た。酸化セリウム粒子の平均粒径は、堀場製作所製のLA-920(光源:He-Neレーザー及びWレーザー)を用いて測定した。
(CMP研磨液の調製)
 表1,2に示すように、平均粒径が0.18μm又は0.20μmの酸化セリウム粒子を分散剤を使用して水に分散させ、分散液を得た。得られた分散液に表1,2に示す第2の添加剤の水溶液を添加し、更に第1の添加剤を加えて、表1,2に示す配合量で各成分を含有するCMP研磨液を得た。なお、分散剤の配合量は、第1,第2の添加剤の配合量に影響を与えない程度の少量とした。
 pHメータ(電気化学計器社製、型番「PHL-40」)を用いて、各CMP研磨液のpHを測定した。標準緩衝液(フタル酸塩pH緩衝液 pH:4.01(25℃)、中性リン酸塩pH緩衝液 pH:6.86(25℃))を用いて2点校正した後、電極をCMP研磨液に入れて、2分以上経過して安定した後の値をpHとした。
(ベアウエハ及びパターンウエハの準備)
 φ200mmのシリコン(Si)基板上に、プラズマ-CVD法で厚さ1000nmの酸化ケイ素(SiO)膜を成膜して、被研磨膜として平坦な酸化ケイ素膜を有するベアウエハを得た。
 また、凹凸のある酸化ケイ素膜を被研磨膜として有するパターンウエハ(ADVANTECH製、商品名:SEMATECH864)を準備した。このパターンウエハは、φ200mmのシリコン基板上の一部にストッパ膜として窒化ケイ素膜を形成させ、窒化ケイ素膜の無い部分のシリコン基板を350nmエッチングして凹部を形成し、次いで、プラズマ-CVD法で600nmの酸化ケイ素膜をストッパ膜上及び凹部内に成膜して得られたものである。パターンウエハは、線幅がLine/Spece=500/500μm、100/100μmのパターンをそれぞれ有している。
 上記CMP研磨液を用いてベアウエハ及びパターンウエハの酸化ケイ素膜をそれぞれ研磨した。また、研磨したウエハを用いて、研磨傷の数、研磨速度及び研磨後の残段差を下記の条件で測定した。なお、実施例1~6、比較例1~5における基板の研磨及び各測定は、同日に行った。
 研磨装置(荏原製作所株式会社製研磨装置:型番EPO111)を用いて各ウエハを以下のように研磨した。まず、基板取り付け用の吸着パッドを貼り付けたホルダーに、上記ベアウエハ又はパターンウエハをセットした。次に、上記研磨装置のφ600mmの研磨定盤に、多孔質ウレタン樹脂製の研磨パッド(溝形状:パーフォレートタイプ、Rohm and Haas社製、型番IC1000)を貼り付けた。更に、被研磨膜が研磨パッドと対向するように上記ホルダーを設置した。加工荷重は34.3kPaに設定した。
 CMP研磨液を研磨定盤上に200ml/minの速度で滴下しながら、研磨定盤と、ベアウエハ又はパターンウエハとをそれぞれ50min-1で1分間回転させ、研磨パッドにより被研磨膜を研磨した。研磨後のウエハを純水で良く洗浄後、乾燥した。
(研磨傷数の測定)
 研磨終了後のベアウエハについて、AMAT製Complusを用いて、検出異物サイズを0.2μmに設定して異物を検出した。検出される異物には、傷以外の付着物が含まれるため、SEMで各異物を観察し、凹みを研磨傷と判断し、研磨傷数をカウントした。なお、測定には、死角面積3000mmのφ200mmベアウエハを使用した。研磨傷数の測定結果を表1,2に示す。
(研磨速度の測定)
 SCREEN製のRE-3000を用いてベアウエハにおける酸化ケイ素膜の研磨前後の膜厚を測定し、1分当たりの研磨速度を算出した。研磨速度の測定結果を表1,2に示す。
(平坦性の評価:研磨後残段差の測定)
 パターンウエハ研磨後、Line/Spece=500/500μm、100/100μmの部分で、研磨後に残った段差(研磨後残段差)を測定した。結果を表1,2に示す。なお、表1,2では、Line/Spece=500/500μmの部分の段差を「段差500/500」として示し、Line/Spece=100/100μmの部分の段差を「段差100/100」として示した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 なお、表1,2中の分散剤及び添加剤において、「A」~「E」で表される化合物は、下記の通りである。
 A:アクリル酸とアクリル酸メチルとを共重合して得られた重量平均分子量10000のポリアクリル酸アンモニウム塩(東亞合成(株)製、製品名A6114)。
 B、D:亜硫酸カリウムを開始剤にアクリル酸モノマーを重合して得られた重量平均分子量4000のポリアクリル酸カリウム塩。
 C:2,2’-アゾビスイソブチロニトルを開始剤にアクリル酸モノマーを重合して得られた重量平均分子量4000のポリアクリル酸アンモニウム塩。
 E:亜硫酸アンモニウムを開始剤にアクリル酸モノマーを重合して得られた重量平均分子量4000のポリアクリル酸アンモニウム塩。
 各化合物の重量平均分子量は、下記の条件で求めた。
(条件)
 試料:10μL
 標準ポリスチレン:東ソー株式会社製標準ポリスチレン(重量平均分子量:190000、17900、9100、2980、578、474、370、266)
 検出器:株式会社日立製作所社製、RI-モニター、商品名「L-3000」
 インテグレーター:株式会社日立製作所社製、GPCインテグレーター、商品名「D-2200」
 ポンプ:株式会社日立製作所社製、商品名「L-6000」
 デガス装置:昭和電工株式会社製、商品名「Shodex DEGAS」
 カラム:日立化成工業株式会社製、商品名「GL-R440」、「GL-R430」、「GL-R420」をこの順番で連結して使用
 溶離液:テトラヒドロフラン(THF)
 測定温度:23℃
 流速:1.75mL/分
 測定時間:45分
 表1,2に示されるように、実施例1~8のCMP研磨液では、いずれも研磨速度と研磨後の表面の平坦性に優れる上、研磨傷数が少ないことが確認された。これに対し、比較例1~5では、実施例1~8よりも研磨傷数が増加することが確認された。
[実施例9~14、比較例6~9]
 実施例9~14及び比較例6~9では、酸化セリウムの平均粒径を0.18μmに固定して、研磨特性に対する第1の添加剤の濃度の影響を観察した。同時に、研磨特性に対する酸化セリウム粒子の濃度の影響を確認するため、実施例13及び14では酸化セリウム濃度を0.50質量%に固定し、実施例9~12、比較例6~9では酸化セリウム濃度を1.00質量%に固定した。なお、主に平坦化剤として機能する第2の添加剤は添加しなかった。
 表3に示す第1の添加剤の水溶液を分散液に添加してCMP研磨液を得たことを除き実施例1~8と同様にして、表3に示す各配合量で各成分を含有するCMP研磨液を作製し、ベアウエハを研磨した後の研磨傷数及び研磨速度を測定した。なお、実施例9~14、比較例6~9における各測定は、同日に行った。各測定結果を表3に示す。また、実施例9~12、比較例6~9の測定結果を図2に示す。図2は、第1の添加剤の濃度と研磨速度及び研磨傷数との関係を示す図である。図2では、左軸が研磨速度を示し、右軸が研磨傷数を示している。
Figure JPOXMLDOC01-appb-T000006
 表3に示されるように、実施例9~14では、研磨傷の低減効果が確認され、研磨速度は高く維持されることが確認された。また、実施例9~12よりも砥粒の含有量が少ない実施例13及び14においても、研磨傷が低減されていることが確認された。一方、比較例6~9では、研磨傷数が増加することが確認された。
[実施例15~19、比較例10~12]
 実施例15~19、比較例10~12では、研磨特性に対する第1の添加剤の濃度による影響を観察した。実施例1~8と同様にして、表4に示す各配合量で各成分を含有するCMP研磨液を作製した。各CMP研磨液を用いて、ベアウエハについて研磨傷数及び研磨速度を測定し、パターンウエハについて研磨後に残った段差を測定した。なお、実施例15~19、比較例10~12における各測定は、同日に行った。各測定結果を表4に示す。
Figure JPOXMLDOC01-appb-T000007
 表4に示されるように、実施例15~19では、研磨傷の低減効果が確認され、研磨速度は高く維持されていることが確認された。一方、比較例10~12では、研磨傷数が増加することが確認された。
[実施例20~22]
 実施例20~22では、CMP研磨液の供給方法が研磨特性に与える影響を観察した。
 実施例20では、実施例1と同じ配合量のCMP研磨液(1液式)を再度調整した。
 実施例21では、酸化セリウム粒子、分散剤及び水を含む酸化セリウムスラリーと、第1の添加剤及び第2の添加剤を含む添加液とを、別々の配管で供給し、滴下直前で配管を1つにして混合し、最終的に実施例1と同じ配合量のCMP研磨液となるようにした。
 実施例22では、実施例21と同様の酸化セリウムスラリーと添加液とを別々の配管で供給し、研磨パッド上で混合して、最終的に実施例1と同じ配合量のCMP研磨液となるようにした。
 各CMP研磨液を用いて、ベアウエハについて研磨傷数及び研磨速度を測定し、パターンウエハについて研磨後に残った段差を測定した。なお、実施例20~22における各測定は、同日に行った。各測定結果を表5に示す。
Figure JPOXMLDOC01-appb-T000008
 表5に示されるように、実施例20~22では、同一の研磨傷の低減効果が確認され、研磨速度は高く維持されていることが確認された。
 1…シリコン基板(半導体基板)、2…ストッパ膜、3…酸化ケイ素膜(無機絶縁膜)、5…埋め込み部分、D…酸化ケイ素膜の膜厚の標高差(段差)。

Claims (12)

  1.  酸化セリウム粒子と、アセチレン結合を有する有機化合物と、水とを含み、
     前記アセチレン結合を有する有機化合物の含有量が、CMP研磨液全質量基準で0.00001質量%以上0.01質量%以下である、CMP研磨液。
  2.  前記酸化セリウム粒子及び前記水を含む第1の液と、前記アセチレン結合を有する有機化合物及び前記水を含む第2の液とを混合して得られる、請求項1に記載のCMP研磨液。
  3.  酸化セリウム粒子と、アセチレン結合を有する有機化合物と、アニオン性置換基を有するビニル化合物を単量体成分として含む組成物を重合させて得られるアニオン性高分子化合物又はその塩と、水とを含み、
     前記アセチレン結合を有する有機化合物の含有量が、CMP研磨液全質量基準で0.000001質量%以上0.05質量%未満である、CMP研磨液。
  4.  前記酸化セリウム粒子及び前記水を含む第3の液と、前記アセチレン結合を有する有機化合物、前記アニオン性高分子化合物又はその塩並びに前記水を含む第4の液とを混合して得られる、請求項3に記載のCMP研磨液。
  5.  前記アニオン性置換基を有するビニル化合物が、アクリル酸及びメタクリル酸から選ばれる少なくとも一種である、請求項3又は4に記載のCMP研磨液。
  6.  前記アニオン性高分子化合物又はその塩の含有量が、前記アセチレン結合を有する有機化合物の含有量より多い、請求項3~5のいずれか一項に記載のCMP研磨液。
  7.  前記アニオン性高分子化合物又はその塩の含有量が、CMP研磨液全質量基準で0.01~2.00質量%である、請求項3~6のいずれか一項に記載のCMP研磨液。
  8.  前記アセチレン結合を有する有機化合物が、アセチレングリコール類である、請求項1~7のいずれか一項に記載のCMP研磨液。
  9.  前記アセチレングリコール類が、下記一般式(1)で表される化合物である、請求項8に記載のCMP研磨液。
    Figure JPOXMLDOC01-appb-C000001

    (一般式(1)中、R~Rはそれぞれ独立に水素原子又は炭素数が1~5の置換若しくは無置換アルキル基を表し、R、Rはそれぞれ独立に炭素数が1~5の置換又は無置換アルキレン基を表し、m、nはそれぞれ独立に0又は正数を表す。)
  10.  前記アセチレングリコール類が、2,4,7,9-テトラメチル-5-デシン-4,7-ジオールである、請求項8又は9に記載のCMP研磨液。
  11.  請求項1~10のいずれか一項に記載のCMP研磨液を用いて、基体に形成された被研磨膜を研磨する工程を備える、研磨方法。
  12.  請求項1~10のいずれか一項に記載のCMP研磨液を用いて半導体基板に形成された無機絶縁膜を研磨する工程を備える、半導体基板の製造方法。
PCT/JP2010/065863 2009-11-12 2010-09-14 Cmp研磨液、並びに、これを用いた研磨方法及び半導体基板の製造方法 WO2011058816A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2010800512917A CN102686360A (zh) 2009-11-12 2010-09-14 Cmp研磨液、以及使用其的研磨方法和半导体基板的制造方法
EP10829776.3A EP2500928A4 (en) 2009-11-12 2010-09-14 CHEMICAL MECHANICAL POLISHING LIQUID AND METHOD FOR MANUFACTURING SEMICONDUCTOR SUBSTRATE, AND POLISHING METHOD USING THE POLISHING LIQUID
JP2011540440A JP5516594B2 (ja) 2009-11-12 2010-09-14 Cmp研磨液、並びに、これを用いた研磨方法及び半導体基板の製造方法
US13/504,738 US20120214307A1 (en) 2009-11-12 2010-09-14 Chemical-mechanical polishing liquid, and semiconductor substrate manufacturing method and polishing method using said polishing liquid
KR1020127012168A KR101357328B1 (ko) 2009-11-12 2010-09-14 Cmp 연마액, 및 이것을 이용한 연마 방법 및 반도체 기판의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-259264 2009-11-12
JP2009259264 2009-11-12

Publications (1)

Publication Number Publication Date
WO2011058816A1 true WO2011058816A1 (ja) 2011-05-19

Family

ID=43991477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065863 WO2011058816A1 (ja) 2009-11-12 2010-09-14 Cmp研磨液、並びに、これを用いた研磨方法及び半導体基板の製造方法

Country Status (7)

Country Link
US (1) US20120214307A1 (ja)
EP (1) EP2500928A4 (ja)
JP (1) JP5516594B2 (ja)
KR (1) KR101357328B1 (ja)
CN (1) CN102686360A (ja)
TW (1) TWI488952B (ja)
WO (1) WO2011058816A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015136832A1 (ja) * 2014-03-11 2015-09-17 信越化学工業株式会社 研磨組成物及び研磨方法並びに研磨組成物の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104745092A (zh) * 2013-12-26 2015-07-01 安集微电子(上海)有限公司 一种应用于sti领域的化学机械抛光液及其使用方法
KR102476738B1 (ko) * 2014-05-30 2022-12-13 쇼와덴코머티리얼즈가부시끼가이샤 Cmp용 연마액, cmp용 연마액 세트 및 연마 방법
SG11201610744YA (en) * 2014-07-31 2017-02-27 Hoya Corp Method for manufacturing magnetic-disk glass substrate and method for manufacturing magnetic disk
KR20210118469A (ko) * 2016-12-30 2021-09-30 후지필름 일렉트로닉 머티리얼스 유.에스.에이., 아이엔씨. 폴리싱 조성물
CN110998800B (zh) * 2017-08-14 2023-09-22 株式会社力森诺科 研磨液、研磨液套剂及研磨方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0822970A (ja) 1994-07-08 1996-01-23 Toshiba Corp 研磨方法
JPH10106994A (ja) 1997-01-28 1998-04-24 Hitachi Chem Co Ltd 酸化セリウム研磨剤及び基板の研磨法
JPH10152673A (ja) 1996-09-30 1998-06-09 Hitachi Chem Co Ltd 酸化セリウム研磨剤および基板の研磨法
WO1999031195A1 (fr) 1997-12-18 1999-06-24 Hitachi Chemical Company, Ltd. Abrasif, procede de polissage de tranche, et procede de production d'un dispositif a semi-conducteur
WO2007055278A1 (ja) * 2005-11-11 2007-05-18 Hitachi Chemical Co., Ltd. 酸化ケイ素用研磨剤、添加液および研磨方法
WO2007116770A1 (ja) * 2006-04-03 2007-10-18 Jsr Corporation 化学機械研磨用水系分散体および化学機械研磨方法、ならびに化学機械研磨用水系分散体を調製するためのキット
JP2008085058A (ja) 2006-09-27 2008-04-10 Hitachi Chem Co Ltd Cmp研磨剤用添加剤、cmp研磨剤、基板の研磨方法および電子部品
JP2009212378A (ja) * 2008-03-05 2009-09-17 Hitachi Chem Co Ltd Cmp研磨液、基板の研磨方法及び電子部品

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10154672A (ja) * 1996-09-30 1998-06-09 Hitachi Chem Co Ltd 酸化セリウム研磨剤及び基板の研磨法
JPWO2002067309A1 (ja) * 2001-02-20 2004-06-24 日立化成工業株式会社 研磨剤及び基板の研磨方法
JP2003347245A (ja) * 2002-05-28 2003-12-05 Hitachi Chem Co Ltd 半導体絶縁膜用cmp研磨剤及び基板の研磨方法
JP2003347248A (ja) * 2002-05-28 2003-12-05 Hitachi Chem Co Ltd 半導体絶縁膜用cmp研磨剤及び基板の研磨方法
TWI256971B (en) * 2002-08-09 2006-06-21 Hitachi Chemical Co Ltd CMP abrasive and method for polishing substrate
JP2008536302A (ja) * 2005-03-25 2008-09-04 デュポン エアー プロダクツ ナノマテリアルズ リミテッド ライアビリティ カンパニー 金属イオン酸化剤を含む、化学的、機械的研磨組成物において使用するジヒドロキシエノール化合物
JPWO2007055178A1 (ja) * 2005-11-08 2009-04-30 財団法人ヒューマンサイエンス振興財団 細胞の分取方法、及び当該方法に用いる基材
CN101375376B (zh) * 2006-01-31 2012-09-19 日立化成工业株式会社 绝缘膜研磨用cmp研磨剂、研磨方法、通过该研磨方法研磨的半导体电子部件
KR100725803B1 (ko) * 2006-12-05 2007-06-08 제일모직주식회사 실리콘 웨이퍼 최종 연마용 슬러리 조성물 및 이를 이용한실리콘 웨이퍼 최종 연마 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0822970A (ja) 1994-07-08 1996-01-23 Toshiba Corp 研磨方法
JPH10152673A (ja) 1996-09-30 1998-06-09 Hitachi Chem Co Ltd 酸化セリウム研磨剤および基板の研磨法
JPH10106994A (ja) 1997-01-28 1998-04-24 Hitachi Chem Co Ltd 酸化セリウム研磨剤及び基板の研磨法
WO1999031195A1 (fr) 1997-12-18 1999-06-24 Hitachi Chemical Company, Ltd. Abrasif, procede de polissage de tranche, et procede de production d'un dispositif a semi-conducteur
WO2007055278A1 (ja) * 2005-11-11 2007-05-18 Hitachi Chemical Co., Ltd. 酸化ケイ素用研磨剤、添加液および研磨方法
WO2007116770A1 (ja) * 2006-04-03 2007-10-18 Jsr Corporation 化学機械研磨用水系分散体および化学機械研磨方法、ならびに化学機械研磨用水系分散体を調製するためのキット
JP2008085058A (ja) 2006-09-27 2008-04-10 Hitachi Chem Co Ltd Cmp研磨剤用添加剤、cmp研磨剤、基板の研磨方法および電子部品
JP2009212378A (ja) * 2008-03-05 2009-09-17 Hitachi Chem Co Ltd Cmp研磨液、基板の研磨方法及び電子部品

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAGAKU KOUGAKU RONBUNSHU, vol. 6, no. 5, 1980, pages 527 - 532
See also references of EP2500928A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015136832A1 (ja) * 2014-03-11 2015-09-17 信越化学工業株式会社 研磨組成物及び研磨方法並びに研磨組成物の製造方法
US10017669B2 (en) 2014-03-11 2018-07-10 Shin-Etsu Chemical Co., Ltd. Polishing composition, polishing method, and method for producing polishing composition

Also Published As

Publication number Publication date
JP5516594B2 (ja) 2014-06-11
KR101357328B1 (ko) 2014-02-03
CN102686360A (zh) 2012-09-19
EP2500928A4 (en) 2014-06-25
KR20120073327A (ko) 2012-07-04
EP2500928A1 (en) 2012-09-19
US20120214307A1 (en) 2012-08-23
TW201127944A (en) 2011-08-16
JPWO2011058816A1 (ja) 2013-03-28
TWI488952B (zh) 2015-06-21

Similar Documents

Publication Publication Date Title
KR101277029B1 (ko) Cmp 연마액, 기판의 연마 방법 및 전자 부품
JP4983603B2 (ja) 酸化セリウムスラリー、酸化セリウム研磨液及びこれらを用いた基板の研磨方法
JP5516604B2 (ja) Cmp用研磨液及びこれを用いた研磨方法
JP6375623B2 (ja) 研磨剤、研磨剤セット及び基体の研磨方法
JP5516594B2 (ja) Cmp研磨液、並びに、これを用いた研磨方法及び半導体基板の製造方法
JP4027929B2 (ja) 半導体基板用研磨液組成物
JP5088452B2 (ja) Cmp研磨液、基板の研磨方法及び電子部品
JP2010095650A (ja) 研磨剤組成物及びこの研磨剤組成物を用いた基板の研磨方法
JP2005048125A (ja) Cmp研磨剤、研磨方法及び半導体装置の製造方法
JP2000243733A (ja) 素子分離形成方法
JP2013038211A (ja) Cmp用研磨液及びこれを用いた研磨方法
WO2018179062A1 (ja) 研磨液、研磨液セット、添加液及び研磨方法
JP6601209B2 (ja) Cmp用研磨液及びこれを用いた研磨方法
JP2009266882A (ja) 研磨剤、これを用いた基体の研磨方法及び電子部品の製造方法
JP2003158101A (ja) Cmp研磨剤及び製造方法
JP4491857B2 (ja) Cmp研磨剤及び基板の研磨方法
JP4123730B2 (ja) 酸化セリウム研磨剤及びこれを用いた基板の研磨方法
WO2021161462A1 (ja) Cmp研磨液及び研磨方法
JP4878728B2 (ja) Cmp研磨剤および基板の研磨方法
JP2003347245A (ja) 半導体絶縁膜用cmp研磨剤及び基板の研磨方法
JP2004277474A (ja) Cmp研磨剤、研磨方法及び半導体装置の製造方法
JP2005048122A (ja) Cmp研磨剤、研磨方法及び半導体装置の製造方法
JP2005005501A (ja) Cmp研磨剤、研磨方法及び半導体装置の製造方法
JP2003347246A (ja) 半導体絶縁膜用cmp研磨剤及び基板の研磨方法
JP2002203819A (ja) Cmp研磨剤及び基板の研磨方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080051291.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10829776

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011540440

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010829776

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13504738

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127012168

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE