WO2011055650A1 - シリコンの製造方法及び製造装置 - Google Patents

シリコンの製造方法及び製造装置 Download PDF

Info

Publication number
WO2011055650A1
WO2011055650A1 PCT/JP2010/068877 JP2010068877W WO2011055650A1 WO 2011055650 A1 WO2011055650 A1 WO 2011055650A1 JP 2010068877 W JP2010068877 W JP 2010068877W WO 2011055650 A1 WO2011055650 A1 WO 2011055650A1
Authority
WO
WIPO (PCT)
Prior art keywords
arc furnace
silicon
electrode
furnace
arc
Prior art date
Application number
PCT/JP2010/068877
Other languages
English (en)
French (fr)
Inventor
圭二 山原
藤本 博己
利昭 片山
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to EP10828210A priority Critical patent/EP2497747A1/en
Priority to CN2010800495470A priority patent/CN102596805A/zh
Priority to JP2011539339A priority patent/JPWO2011055650A1/ja
Publication of WO2011055650A1 publication Critical patent/WO2011055650A1/ja
Priority to US13/440,560 priority patent/US20120211350A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/023Preparation by reduction of silica or free silica-containing material
    • C01B33/025Preparation by reduction of silica or free silica-containing material with carbon or a solid carbonaceous material, i.e. carbo-thermal process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/08Heating by electric discharge, e.g. arc discharge
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B7/00Heating by electric discharge
    • H05B7/02Details
    • H05B7/144Power supplies specially adapted for heating by electric discharge; Automatic control of power, e.g. by positioning of electrodes
    • H05B7/148Automatic control of power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a method and an apparatus for producing high-purity silicon.
  • Solar cells have the advantage that the amount of carbon dioxide emission per unit of power generation is small and fuel for power generation is not required, and the demand has increased in recent years.
  • single-junction solar cells having a pair of pn junctions using single-crystal silicon or polycrystalline silicon have become mainstream, and as the demand for solar cells increases, silicon Demand is also increasing. Silicon used for solar cells is required to have high purity in order to improve battery efficiency.
  • Patent Documents 1 to 4 silicon dioxide is produced by thermally reducing silicon dioxide in an electric furnace using a carbon material.
  • a carbon material generally used charcoal, metallurgical coke, oil coke, and smoky charcoal are appropriately blended and used. These carbon materials contain volatile matter and ash. Yes.
  • these carbon materials have a large specific resistance as compared with high-purity carbon materials, can avoid the phenomenon of electrode lifting, and make it easy to secure an appropriate distance between the electrode tip and the furnace bottom.
  • the volatile matter of the carbon material is thermally decomposed in the furnace and becomes hydrogen gas, carbon monoxide gas, etc., and rises to the furnace surface over a wide range, facilitating the uniform dissipation of the gas in the arc furnace. It was. Further, for this purpose, wood chips of 10 to 20% by mass of the carbon material may be blended.
  • Japanese Unexamined Patent Publication No. 57-111223 Japanese Laid-Open Patent Publication No. 60-200818 Japanese Unexamined Patent Publication No. 61-117110 Japanese Unexamined Patent Publication No. Sho 62-260711
  • the present inventors can manufacture high-purity silicon by using a high-purity raw material in place of the conventionally used low-purity raw materials as shown in Patent Documents 1 to 4 in the production of silicon. I thought.
  • silicon carbide (SiC) having high conductivity is generated and accumulated in the furnace by the following reaction formula (1), for example, and the silicon carbide and the arc furnace electrode
  • the manufacturing equipment cannot be operated stably due to a rapid change in current (hunting) in which short-circuiting due to contact and current reduction due to contact cancellation are repeated in a short time.
  • the present invention has been made in view of the above, and provides a silicon manufacturing method and a manufacturing apparatus that can manufacture high-purity silicon and can be continuously operated without stopping the apparatus. Is an issue.
  • the inventors of the present invention have earnestly conducted research on the conditions under which high-purity silicon can be produced and the conditions for stable and continuous operation without stopping the production apparatus, and obtained the following knowledge by elucidating the details. It was. (1) In the situation where silicon carbide can be generated and accumulated in the arc furnace during silicon production, in order to stabilize the operation of the production apparatus, current or voltage using a power conditioner (preferably a saturable reactor) is used. Stabilization is effective. As a result, even when silicon carbide is generated and accumulated in the arc furnace, the overcurrent flowing through the electrode can be alleviated by the contact between the electrode and silicon carbide, and the continuous operation of the manufacturing apparatus becomes possible.
  • a power conditioner preferably a saturable reactor
  • this invention consists of the following. 1.
  • a method for producing silicon by carbon reduction in an arc furnace using a silica raw material having a content of iron, aluminum, calcium and titanium of 0.1% by mass or less and a carbon material A method for producing silicon, characterized in that, during reduction, an overcurrent flowing through the electrode due to at least one of a material change and a material arrangement change in the vicinity of the electrode of the arc furnace is mitigated using a power adjustment device.
  • the method for producing silicon according to 1 above, wherein the power adjustment device is a saturable reactor.
  • 3. The method for producing silicon according to item 1 or 2, wherein the ash content of the carbon material is 1.0% by mass or less. 4). 4.
  • a method for producing silicon by carbon reduction in an arc furnace using a silica raw material having a content of iron, aluminum, calcium and titanium, all of 0.1% by mass or less, and a carbon material comprising operating an arc furnace with a hearth power density PD (W / cm 2 ) of the arc furnace of 90 (W / cm 2 ) or more. 8).
  • PD hearth power density
  • the silicon manufacturing apparatus wherein the power adjustment apparatus is a saturable reactor. 14 14.
  • the silicon manufacturing apparatus includes a transformer, and a capacity of the transformer is 1.5 times or more of an operation output of the arc furnace.
  • a production apparatus for producing silicon by carbon reduction in an arc furnace using a silica raw material having a content of iron, aluminum, calcium and titanium, all of 0.1% by mass or less, and a carbon material A silicon manufacturing apparatus that operates the arc furnace with a hearth power density PD (W / cm 2 ) of the arc furnace set to 90 (W / cm 2 ) or more. 19.
  • the apparatus is stopped even when silicon carbide accumulates in the furnace by stabilizing the current in the apparatus with a power adjusting apparatus, preferably a saturable reactor, during carbon reduction.
  • a power adjusting apparatus preferably a saturable reactor
  • the high-purity silicon can be efficiently produced by stabilizing the arc from the arc furnace electrode.
  • the arc furnace is a so-called submerged arc method, and the operation is performed at a high output with the hearth power density of the arc furnace exceeding a specific range, thereby accumulating silicon carbide in the furnace. Therefore, it is possible to operate continuously without stopping the apparatus, and it is possible to efficiently produce high-purity silicon.
  • FIG. 1 is a view for explaining a carbon reduction reaction of silicon dioxide in an arc furnace.
  • FIG. 2 is a view for explaining a silicon manufacturing apparatus according to the present invention.
  • FIG. 3 is a view for explaining the silicon manufacturing method according to the present invention.
  • 4A to 4C are diagrams showing changes in current and voltage when the arc furnace in Example 1 is operated.
  • 5A to 5C are diagrams showing changes in current and voltage when the arc furnace in Comparative Example 1 is operated.
  • this invention manufactures silicon
  • the “near the electrode of the arc furnace” is a region that has a large effect on the current including arc discharge and contact energization.
  • the electrode diameter is D (mm), approximately 1.
  • a range of 5 ⁇ D (mm) is preferable.
  • the substance in the vicinity of the electrode of the arc furnace refers to silicon carbide (SiC) having high conductivity mainly generated by the following reaction formula (1).
  • Power adjustment device refers to a device capable of adjusting device power, and examples thereof include a saturable reactor, a current-limiting reactor, a transistor, and a thyristor. Among these, a saturable reactor is preferable. This is because the withstand capability against overcurrent and overvoltage is large and it can cope with a large current.
  • the carbon material used in the carbon reduction it is preferable to use a high-purity material from the viewpoint of avoiding contamination of the obtained silicon with impurities.
  • the ash content of the carbon material is preferably 1.0% by mass or less, and particularly preferably 0.6% by mass or less.
  • Silicon carbide accumulates by using a high-purity silica raw material and a high-purity carbon material, which may cause a short circuit in the furnace.
  • the apparatus can be stabilized even in such a case. Can be operated continuously.
  • an electrode in a silica raw material and a carbon material and generate an arc from the electrode in a furnace of an arc furnace.
  • Electrode in the silica material and the carbon material means that the electrode is inserted into the silica material and the carbon material so that at least a part of the electrode exists below the upper surface of the material. And the raw material need not be in contact. By doing so, high-purity silicon can be produced more efficiently, and continuous operation of the apparatus becomes easier.
  • the arc furnace In the production method of the present invention, it is preferable to operate the arc furnace with the hearth power density PD (W / cm 2 ) of the arc furnace being 90 (W / cm 2 ) or more, and 95 (W / cm 2 ) or more. More preferably.
  • the hearth power density PD is calculated as “the area of three different circles having the radius of the average value of the center distances for each electrode, and the sum of the three circles.
  • PD P (W) / ( ⁇ r 1 2 + ⁇ r 2 2 + ⁇ r 3 2 ).
  • r 1 is an average value (cm) of the distance between the centers of the electrode 1 and the electrode 2 and between the electrode 1 and the electrode 3
  • r 2 and r 3 are the distances between the centers obtained in the same manner for the electrode 2 and the electrode 3, respectively The average value of distance (cm).
  • the hearth power density PD is “operating output”.
  • S (cm 2 ) the cross-sectional area of the electrode
  • the arc furnace includes a transformer, and the capacity of the transformer is transformed by a transformer that is 1.5 times or more the operation output of the arc furnace. That is, assuming that the operation output is P (kW), the transformer capacity is preferably 1.5 P (kVA) or more, more preferably 2 P (kVA) or more, and further preferably 3 P (kVA) or more. This is because by increasing the capacity of the transformer, it is possible to continuously operate without interruption of current due to overcurrent.
  • silicon is produced by carbon reduction in an arc furnace using a silica raw material having a content of iron, aluminum, calcium and titanium of 0.1% by mass or less and a carbon material.
  • the arc furnace is operated with a hearth power density PD (W / cm 2 ) of the arc furnace of 90 (W / cm 2 ) or more.
  • the third aspect of the present invention is to produce silicon by carbon reduction in an arc furnace using a silica raw material having a content of iron, aluminum, calcium and titanium of 0.1% by mass or less and a carbon material.
  • the silicon manufacturing apparatus further includes a power adjustment device that relieves an overcurrent flowing through the electrode by at least one of a material change and a material arrangement change in the vicinity of the electrode of the arc furnace.
  • silicon is produced by carbon reduction in an arc furnace using a silica raw material having a content of iron, aluminum, calcium and titanium of 0.1% by mass or less and a carbon material.
  • FIG. 1 is a view for explaining the carbon reduction reaction of silicon dioxide in the arc furnace 50, and is a view focusing on one electrode tip portion. In FIG. 1, the details of the lining and the like are omitted.
  • the tip of the electrode 10 is inserted into the raw material layer 1 containing a silica raw material or a carbon material. That is, in the silicon manufacturing method and manufacturing apparatus according to the present invention, a so-called submerged arc method is employed.
  • the layer 2 containing SiO and CO is present near the tip of the electrode 10 of the raw material layer 1, and further, below the layer 2, the carbon reduction reaction in the furnace is performed.
  • the resulting Si forms a liquid layer 3 and accumulates.
  • the temperature of the upper low temperature region A is preferably 25 to 1900 ° C.
  • region B is 2000 degreeC or more.
  • reaction represented by the reaction formula (2) occurs most preferentially, and a large amount of silicon carbide occurs. It is thought that there is.
  • reaction represented by the reaction formulas (4) to (6) it is considered that the reaction represented by the reaction formula (5) occurs most preferentially in the lower high temperature region B.
  • silicon is generated by a reaction between silicon carbide generated in the upper low temperature region A and gaseous silicon oxide.
  • silicon is generated by the reaction represented by the following reaction formula (7) in the carbon reduction reaction of the silica raw material.
  • the short circuit prevents the device from operating stably and continuously, and the upper part of the furnace is heated excessively due to the rise in the electrode position. Becomes larger.
  • silicon oxide is consumed excessively, and accordingly, silicon carbide further accumulates in the furnace, and for example, the silicon outlet provided on the side surface of the furnace bottom is blocked.
  • the present invention makes it possible to stably and continuously operate the arc furnace and the entire apparatus even when the substance in the vicinity of the electrode in the furnace changes, particularly when silicon carbide is generated or accumulated in the furnace.
  • a manufacturing method and a manufacturing apparatus that can be used are provided.
  • FIG. 2 is a schematic diagram for explaining a silicon manufacturing apparatus 100 according to an embodiment of the present invention.
  • the silicon manufacturing apparatus 100 includes an arc furnace 50 having an electrode 10 therein, a power adjustment device 20 that stabilizes a current flowing through the electrode 10 of the arc furnace 50, and the electrode 10 and the power adjustment device 20.
  • a transformer 30 provided between the two is provided.
  • the furnace of the arc furnace 50 is filled with a silica raw material and a carbon material as the raw material layer 1, and the tip of the electrode 10 is buried therein.
  • the electrode 10, the power conditioner 20, and the transformer 30 are electrically connected. In FIG. 2, other wirings and the like are omitted.
  • the impurities contained in the silica raw material include iron, aluminum, calcium, titanium, and the like, depending on the type of the silica raw material.
  • the content of iron, aluminum, calcium and titanium (hereinafter referred to as main metal impurities) is 0.1% by mass (1000 ppm by mass) or less, and 0.01% by mass or less. It is preferable that it is 0.001 mass% or less.
  • the total content of iron, aluminum, calcium, and titanium is preferably 0.1% by mass or less, more preferably 0.01% by mass or less, and 0.002% by mass or less. Further preferred.
  • the purity of the crude silicon obtained by the reduction can be improved, and the load in removing impurities in the purification process is reduced.
  • the yield of high-purity silicon can be improved.
  • the content of main metal impurities is preferably as low as possible, and is not particularly limited. However, it is usually preferably 0.0001% by mass or more and more preferably 0.0002% by mass or more from the viewpoint of difficulty in acquisition and cost. preferable.
  • the contents of boron and phosphorus in the silica raw material used in the present invention are not particularly limited, but each is preferably preferably 10 ppm by mass or less, more preferably 5 ppm by mass or less, It is more preferably 1 ppm by mass or less, particularly preferably 0.5 ppm by mass or less, and most preferably 0.1 ppm by mass or less.
  • the purity of the crude silicon obtained by the reduction can be improved, and the load in removing impurities in the purification process is reduced.
  • the yield of high-purity silicon can be improved.
  • the lower the content of boron and phosphorus, the better, and the lower limit is not particularly limited.
  • the carbon material used in the present invention is preferably a high-purity carbon material, preferably having an ash content of 1.0% by mass or less, more preferably 0.6% by mass or less, and 0.1% by mass. Or less, and most preferably 0.04% by mass or less.
  • the lower limit of the ash content is not particularly limited and is preferably as low as possible. However, from the viewpoint of difficulty in acquisition, cost, etc., it is usually preferably 0.0001 mass% (1 mass ppm) or more, and 0.001 mass % Or more is more preferable.
  • ash content can be measured according to JIS M8812.
  • the content of main metal impurities in the carbon material is preferably usually 10 ppm by mass or less, more preferably 6 ppm by mass or less, still more preferably 4 ppm by mass or less, and 2% by mass. It is particularly preferably ppm or less, and most preferably 1 mass ppm or less.
  • the contents of boron and phosphorus in the carbon material are not particularly limited, but each is preferably preferably 50 ppm by mass or less, more preferably 10 ppm by mass or less, and more preferably 5 ppm by mass or less. It is more preferable that it is 1 mass ppm or less, and it is most preferable that it is 0.5 mass ppm or less.
  • Such a silica raw material and a carbon material are charged at a predetermined ratio from the upper part of the arc furnace to form a raw material layer 1 and filled in the furnace.
  • the ratio of the silica raw material to the carbon material in the raw material layer 1 is not particularly limited, and may be the same as that conventionally applied when silicon is produced by a carbon reduction reaction.
  • the charge ratio (mass ratio) of the carbon material / silica raw material is usually preferably 0.3 or more, and more preferably 0.33 or more. Further, it is usually preferably 0.5 or less, more preferably 0.4 or less, and further preferably 0.36 or less.
  • Part of the raw material layer 1 becomes silicon by the carbon reduction reaction in the arc furnace and accumulates at the bottom of the furnace, and is taken out in liquid form, for example, from a tap (not shown) provided on the lower side surface of the arc furnace 50. As the silicon is extracted, the raw material layer 1 gradually decreases, while a new raw material is introduced from the upper part of the furnace.
  • the furnace 50 used in the present invention a conventionally known arc furnace can be applied without particular limitation.
  • the furnace inner diameter is preferably 700 mm or more and 7000 mm or less.
  • At least one electrode 10 is provided inside the arc furnace 50, and the tip of the electrode 10 is buried in the raw material layer 1 and is of a so-called submerged arc method.
  • the arc furnace 50 has a hearth power density PD (W / cm 2 ) of the arc furnace of preferably 90 (W / cm 2 ) or more, more preferably 95 (W / cm 2 ) or more, and still more preferably 100 (W / Cm 2 ) or more, particularly preferably 105 (W / cm 2 ) or more. Moreover, it is preferable to drive
  • Table 1 shows the relationship between the hearth power density PD (W / cm 2 ) and the operation output P (kW) of an arc furnace according to a conventional ferrosilicon electric furnace (silicon content: 77.1%).
  • the operating conditions of the arc furnace applied in the present invention require a much larger hearth power density than the operating conditions of the conventional arc furnace. This is a condition, and it can be seen that it is a high output operation.
  • high-purity silicon can be efficiently produced by such a high output operation, and the production apparatus 100 is continuously stopped without suppressing the accumulation of silicon carbide in the furnace. I can drive.
  • the manufacturing apparatus 100 includes a power adjustment apparatus 20.
  • the amount of current in the circuit is stabilized by the power adjustment device 20.
  • the power adjustment device 20 used in the present invention is not limited as long as it is a device that can adjust power, and examples thereof include a saturable reactor, a current-limiting reactor, a transistor, and a thyristor.
  • a saturable reactor is preferable from the viewpoint of high durability against overcurrent and overvoltage and being able to cope with a large current.
  • Examples of stabilization of the current amount in the circuit include the following modes.
  • the operating status (electrode current, etc.) of the arc furnace 50 is fed back to the saturable reactor controller 25, depending on the operating status.
  • a direct current control current is supplied from the controller, a change in the magnetic flux of the iron core provided in the saturable reactor is generated, and the impedance is changed. Thereby, the amount of current on the outlet side of the saturable reactor can be adjusted and stabilized.
  • the power adjustment device 20 When a saturable reactor is used as the power adjustment device 20, it is particularly preferable to use one having a capacity of 100% to 10% of the transformer capacity.
  • the method for connecting the power adjusting device 20, the transformer 30 and the electrode 10 is not particularly limited as long as the current flowing through the electrode 10 of the arc furnace 50 can be adjusted.
  • the power conditioner 20 and the transformer 30 can be connected in series, and the transformer 30 and the electrode 10 can be delta-connected or star-connected.
  • the power conditioner 20 Appropriately functions, the amount of current flowing through the electrode 10 and the like can be adjusted and stabilized, and the continuous operation of the manufacturing apparatus 100 becomes possible.
  • the power adjustment device 20 since the amount of current is stabilized by the power adjustment device 20, an arc can be stably and positively generated from the electrode 10, and high-purity silicon can be efficiently produced. it can.
  • the manufacturing apparatus 100 according to the present invention is provided with a transformer 30.
  • the transformer 30 is connected between the power conditioner 20 and the arc furnace 50 and functions as a furnace transformer.
  • the transformer 30 can be a conventional transformer without any particular limitation, but it is preferable to use a transformer having a large allowable current.
  • the allowable current is 1100 A (100 kW operating furnace) to 105,000 A (20,000 kW operating furnace).
  • the transformer is transformed by the transformer 30 whose capacity is 1.5 times or more of the operation output of the arc furnace. That is, when the operation output is P (kW), the transformer capacity is preferably 1.5P (kVA) or more, more preferably 2P (kVA) or more, and further preferably 3P (kVA) or more.
  • the transformer 30 can be continuously operated without stopping and without stopping the entire manufacturing apparatus 100.
  • connection method of the transformer 30, the electric power adjustment apparatus 20, and the electrode 10 if it is a form which can be appropriately transformed in the manufacturing apparatus 100, it will not specifically limit. For example, it can be set as the same form as what is used with an open arc furnace.
  • the manufacturing apparatus 100 includes a capacitor, a balancer, a switchboard, a power transformer, and the like in addition to the above-described configuration, and can energize the arc furnace 50.
  • a capacitor a balancer, a switchboard, a power transformer, and the like in addition to the above-described configuration, and can energize the arc furnace 50.
  • a switchboard a power transformer, and the like in addition to the above-described configuration, and can energize the arc furnace 50.
  • a power transformer and the like in addition to the above-described configuration
  • the silicon manufacturing apparatus 100 of the present invention since the power adjustment apparatus 20 is provided, the amount of current flowing through the electrode 10 of the arc furnace 50 can be adjusted and stabilized. Even under a situation where silicon carbide accumulates therein and a short circuit may occur, the manufacturing apparatus 100 can be continuously operated.
  • the silicon manufacturing method according to the present invention is performed by the manufacturing apparatus 100, for example. As shown in FIG. 3, the manufacturing method according to the present invention includes each step related to in-furnace setup (step S 1), energization (step S 2), and hot water (step S 3). Do work, etc.
  • Step S1 is a step of attaching the electrode 10 to the arc furnace 50, charging the raw material into the furnace, filling the raw material layer 1, and setting up the furnace in a state where silicon can be manufactured.
  • the ratio of the silica raw material in the raw material layer 1, and the carbon material as long as it was mentioned above, it should just be set as the ratio which can manufacture silicon appropriately.
  • the electrode tip of the electrode 10 is buried in the raw material layer 1 to form a so-called submerged arc method.
  • Step S2 is a step of energizing the arc furnace 50 and heating the inside of the furnace by arc discharge after the setup in the furnace is completed.
  • the temperature in the furnace heated by arc discharge is not limited, and may be the result of arc discharge.
  • the amount of current flowing through the arc furnace 50 is adjusted and stabilized by the power adjustment device 20 provided outside the arc furnace 50. As a result, even if the reaction inside the raw material layer 1 proceeds and the silicon carbide accumulated in the furnace and the electrode 10 come into contact with each other to cause a short circuit, the current generated in the electrode 10 and other devices can be reduced. Severe vibration (hereinafter referred to as current hunting) is suppressed, and the manufacturing apparatus 100 can be continuously operated without being stopped.
  • step S2 the arc furnace is operated by setting the hearth power density PD (W / cm 2 ) of the arc furnace 50 to 90 W / cm 2 or more.
  • PD hearth power density
  • Step S3 Silicon produced by carbon reduction in the arc furnace 50 gradually accumulates in the furnace bottom in a liquid state.
  • Step S3 is a step of taking out such liquid silicon by letting it flow out from a hot water outlet provided on the side surface of the furnace bottom.
  • the raw material layer 1 in the furnace gradually decreases.
  • a new carbon raw material and a carbon material are introduced from the top of the furnace in accordance with the decrease of the raw material layer 1 to continuously perform the carbon reduction reaction.
  • silicon is extracted from the silica raw material by a carbon reduction reaction.
  • silicon may be taken out in a liquid state or taken out as a solid after cooling, it is usually preferable to take out silicon as a solid.
  • the inside of the furnace is then suspended.
  • high-purity silicon can be obtained because it is subjected to a carbon reduction reaction using a high-purity silica raw material and a carbon material.
  • problems such as overcurrent and short circuit due to the use of high-purity silica raw material and carbon material are eliminated, and silicon can be continuously produced.
  • Example 1 Three 100 mm-diameter electrodes (electrodes A to C) were installed in the furnace, and silicon was manufactured by performing current control using a saturable reactor.
  • Example 3 Three 150 mm diameter electrodes were installed in the furnace, and current was controlled by a saturable reactor to produce silicon. The hearth power density was made smaller than those in Example 1 and Example 2.
  • Electrodes A to C Three 100 mm-diameter electrodes (electrodes A to C) were installed in the furnace, and silicon was produced without current control using a saturable reactor.
  • Table 2 shows the results of the accumulation state and the continuous operation state of silicon carbide (SiC) at the bottom of the arc furnace. Further, the operation results of Example 1 are shown in FIGS. 4A to 4C, and the operation results of Comparative Example 1 are shown in FIGS. 5A to 5C.
  • Example 3 when Examples 1 and 2 are compared with Example 3, by increasing the hearth power density, silicon carbide is actively consumed, the amount of silicon carbide accumulated in the furnace is reduced, and more reliably. It was found that continuous operation was possible.
  • Example 1 and Comparative Example 1 when silicon is manufactured using the manufacturing apparatus 100 according to the present invention, the current hunting suppression effect by the saturable reactor and the short circuit suppression effect by the high output operation were exhibited, the apparatus could be continuously operated in an appropriate state, and silicon could be continuously manufactured.
  • Table 3 shows the B, P, Fe, Al, Ti, Ca, Mg, and ash contents of the raw material, the carbon material, and the obtained silicon for Example 1.
  • Tables 4 and 5 show the contents of B, P, Fe, Al and the like of industrial silicon produced by the conventional method.
  • the charge ratio of carbon material / silica material was 0.33.
  • Table 4 shows data relating to “Kato et al.,“ Materia ”Vol. 41, No. 1, pp. 54-56 (2002)”.
  • Table 5 also includes “Aurich, H, Proceedings of the Flat-Plate Solar Array Project Work on Crystal Gow for High-Efficiency Silicon Solar Cells, 1986, 267-278” (Data on 1981-267-278).
  • the amount of impurities contained in the resulting silicon produced by producing silicon using a high-purity silica raw material and a high-purity carbon material is reduced. It has been found that the amount is significantly lower than before, and high-purity silicon can be produced.
  • high-purity silicon can be continuously and efficiently produced.
  • Silicon obtained by the present invention is suitably applied to solar cells and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

 鉄、アルミニウム、カルシウムおよびチタンの含有量が、何れも0.1質量%以下であるシリカ原料と、炭素材料とを用いて、アーク炉にて炭素還元によりシリコンを製造する方法又は装置であって、炭素還元時に、アーク炉の電極に流れる過電流を、電力調整装置を用いて緩和させること、または、アーク炉の炉床電力密度PD(W/cm)を90(W/cm)以上としてアーク炉を運転することを特徴とする、シリコンの製造方法又は製造装置。

Description

シリコンの製造方法及び製造装置
 本発明は、高純度シリコンの製造方法及び製造装置に関する。
 太陽電池は、発電量当たりの二酸化炭素排出量が少なく、発電用の燃料が不要という利点を有しており、近年その需要は増大している。現在、実用化されている太陽電池の中では、単結晶シリコン又は多結晶シリコンを用いた、一組のpn接合を有する単接合太陽電池が主流となっており、太陽電池の需要増大とともに、シリコンの需要も増大している。太陽電池に用いられるシリコンは、電池効率の向上のため高純度であることが求められる。
 シリコンの製造方法は種々提案されており、その一つに、二酸化ケイ素と炭素材料を用いた炭素還元によって粗精製シリコンを得るものがある。例えば、特許文献1~4においては、炭素材料を用いて電気炉内で二酸化ケイ素を熱還元し、シリコンを製造している。
 このような製造方法においては、炭素材料として、一般に使用されている木炭、冶金コークス、オイルコークスおよび有煙炭等を適宜配合して用いるが、これらの炭素材料は揮発分や灰分を含有している。
 このため、これらの炭素材料は高純度の炭素材料と比較して比抵抗が大きく、電極の浮き上がり現象を回避でき、適切な電極先端と炉底間の距離を確保することを容易にしていた。また、炭素材料の揮発分は炉内で熱分解され、水素ガスおよび一酸化炭素ガス等となって広範囲に亘って炉表面に上昇し、アーク炉の均一な炉内ガスの散逸を助長していた。さらに、この目的で炭素材料の10~20質量%のウッドチップを配合する場合もあった。
 これらのことは、仮に高純度炭素材料を用いた場合、電極の浮き上がり現象や均一な炉内ガスの散逸が回避できず、炉の操業が困難になることを示唆していた。
日本国特開昭57-111223号公報 日本国特開昭60-200818号公報 日本国特開昭61-117110号公報 日本国特開昭62-260711号公報
 特許文献1~4に記載されたような低純度原料を用いたシリコンの製造方法においては、得られるシリコンの純度が十分高いとはいえず、太陽電池等により容易に適用できる高純度なシリコン原料の製造方法が求められていた。
 そこで、本発明者らは、シリコンの製造において、特許文献1~4に示されるような従来用いられてきた低純度原料に換えて、高純度の原料を用いることで高純度のシリコンが製造できるものと考えた。
 すなわち、高純度の二酸化ケイ素と、高純度の炭素を用いることで、高純度のシリコンを製造できるものと考え、このような原料を用いて、アーク炉内で実際にシリコンを製造する実験を行った。
 しかしながら、このような高純度原料を用いて反応を行った場合、例えば下記反応式(1)により導電性の高い炭化ケイ素(SiC)が炉内に生成、蓄積し、当該炭化ケイ素とアーク炉電極とが接触することによる短絡と、接触解消による電流低下等が短時間に繰り返される、電流の急激な変化(ハンチング)により製造装置を安定的に運転することができないという問題に突き当たった。
SiO+3C → SiC+2CO   ・・・(1)
 本発明は、上記に鑑みてなされたものであり、高純度シリコンを製造することができ、且つ、装置を停止させることなく連続的に運転可能な、シリコンの製造方法及び製造装置を提供することを課題とする。
 本発明者らは、高純度シリコンを製造可能な条件、及び、製造装置を停止させることなく安定して連続運転させるための条件について鋭意研究を進め、詳細を解明することにより以下の知見を得た。
(1)シリコン製造の際、アーク炉内に炭化ケイ素が生成、蓄積し得る状況において、製造装置の運転を安定させるには、電力調整装置(好ましくは可飽和リアクトル)を用いた電流または電圧の安定化が有効である。これにより、アーク炉内に炭化ケイ素が生成し、蓄積した場合でも、電極と炭化ケイ素とが接触することにより電極に流れる過電流を緩和することができ、製造装置の連続運転が可能となる。
(2)アーク炉内で、いわゆるサブマージドアーク方式で炭素還元反応を行うとともに、アーク炉の炉床電力密度を特定の範囲以上として従来の常識とは異なる高出力でアーク炉を運転することにより、生成する炭化ケイ素がより積極的に消費され、アーク炉電極と炭化ケイ素との接触による短絡を抑え、製造装置の連続運転が可能となる。また、高出力運転とすることで、電極から積極的にアークを飛ばすような条件で安定させることで、高純度シリコンを効率的に製造することができる。
(3)アーク炉を高出力運転するとともに電力調整装置を用いることで、アーク炉の高出力運転をより安定的に行うことができ、電極からのアークを安定化させることができる。これにより、より効率的に高純度シリコンを製造することができる。
(4)アーク炉に備えられる変圧器の容量を大とすることで、大電流で、より安定的に装置を運転することができる。
 本発明は上記知見に基づいてなされたものである。すなわち、本発明は以下よりなる。
1.鉄、アルミニウム、カルシウムおよびチタンの含有量が、何れも0.1質量%以下であるシリカ原料と、炭素材料とを用いて、アーク炉にて炭素還元によりシリコンを製造する方法であって、炭素還元時に、前記アーク炉の電極近傍の物質変化及び物質配置の変化の少なくとも一方によって前記電極に流れる過電流を、電力調整装置を用いて緩和させることを特徴とする、シリコンの製造方法。
2.前記電力調整装置が可飽和リアクトルである前項1に記載のシリコンの製造方法。
3.前記炭素材料の灰分が1.0質量%以下である、前項1又は2に記載のシリコンの製造方法。
4.前記アーク炉の炉内において、前記電極を前記シリカ原料及び前記炭素材料に埋没させ、且つ、前記電極からアークを発生させる、前項1~3のいずれか1項に記載のシリコンの製造方法。
5.前記アーク炉の炉床電力密度PD(W/cm)を90(W/cm)以上としてアーク炉を運転する、前項1~4のいずれか1項に記載のシリコンの製造方法。
6.前記アーク炉が変圧器を備え、該変圧器の容量が前記アーク炉の運転出力の1.5倍以上である変圧器により変圧される、前項1~5のいずれか1項に記載のシリコンの製造方法。
7.鉄、アルミニウム、カルシウムおよびチタンの含有量が、何れも0.1質量%以下であるシリカ原料と、炭素材料とを用いて、アーク炉にて炭素還元によりシリコンを製造する方法であって、前記アーク炉の炉床電力密度PD(W/cm)を90(W/cm)以上としてアーク炉を運転することを特徴とする、シリコンの製造方法。
8.前記アーク炉の電極を前記シリカ原料及び前記炭素材料に埋没させ、且つ、前記電極からアークを発生させる、前項7に記載のシリコンの製造方法。
9.前記炭素材料の灰分が1.0質量%以下である、前項7又は8に記載のシリコンの製造方法。
10.可飽和リアクトルにより前記アーク炉の電極に流れる電流量を調整する、前項7~9のいずれか1項に記載のシリコンの製造方法。
11.容量が前記アーク炉の運転出力の1.5倍以上である変圧器により変圧される、前項7~10のいずれか1項に記載のシリコンの製造方法。
12.鉄、アルミニウム、カルシウムおよびチタンの含有量が、何れも0.1質量%以下であるシリカ原料と、炭素材料とを用いて、アーク炉にて炭素還元によりシリコンを製造する製造装置において、前記アーク炉の電極近傍の物質変化及び物質配置の変化の少なくとも一方によって電極に流れる過電流を緩和させる電力調整装置が備えられる、シリコンの製造装置。
13.前記電力調整装置が可飽和リアクトルである前項12に記載のシリコンの製造装置。
14.前記炭素材料の灰分が1.0質量%以下である、前項12又は13に記載のシリコンの製造装置。
15.前記アーク炉において、前記電極を前記シリカ原料及び前記炭素材料に埋没させ、且つ、前記電極からアークを発生させる、前項12~14のいずれか1項に記載のシリコンの製造装置。
16.前記アーク炉の炉床電力密度PD(W/cm)を90(W/cm)以上としてアーク炉を運転する、前項12~15のいずれか1項に記載のシリコンの製造装置。
17.前記アーク炉が変圧器を備え、該変圧器の容量が前記アーク炉の運転出力の1.5倍以上である、前項12~16のいずれか1項に記載のシリコンの製造装置。
18.鉄、アルミニウム、カルシウムおよびチタンの含有量が、何れも0.1質量%以下であるシリカ原料と、炭素材料とを用いて、アーク炉にて炭素還元によりシリコンを製造する製造装置であって、且つ、前記アーク炉の炉床電力密度PD(W/cm)を90(W/cm)以上としてアーク炉を運転する、シリコンの製造装置。
19.前記アーク炉において、前記電極を前記シリカ原料及び前記炭素材料に埋没させ、且つ、前記電極からアークを発生させる、前項18に記載のシリコンの製造装置。
20.前記炭素材料の灰分が1.0質量%以下である、前項18又は19に記載のシリコンの製造装置。
21.さらに可飽和リアクトルが備えられ、該可飽和リアクトルにより前記アーク炉の電極に流れる電流量が調整される、前項18~20のいずれか1項に記載のシリコンの製造装置。
22.前記アーク炉が変圧器を備え、該変圧器の容量が前記アーク炉の運転出力の1.5倍以上である、前項18~21のいずれか1項に記載のシリコンの製造装置。
 本発明の製造方法によれば、炭素還元時に電力調整装置、好ましくは可飽和リアクトルにより装置内の電流を安定化することにより、炉内に炭化ケイ素が蓄積する場合であっても、装置を停止させることなく連続して運転できるとともに、アーク炉電極からのアークを安定させて高純度なシリコンを効率的に製造することができる。
 また、本発明の製造方法によれば、アーク炉をいわゆるサブマージドアーク方式とし、アーク炉の炉床電力密度を特定の範囲以上として高出力にて運転することにより、炉内の炭化ケイ素の蓄積が抑制されるので、装置を停止させることなく連続して運転できるとともに、高純度なシリコンを効率的に製造することができる。
図1は、アーク炉内における、二酸化ケイ素の炭素還元反応を説明するための図である。 図2は、本発明にかかるシリコンの製造装置を説明するための図である。 図3は、本発明にかかるシリコンの製造方法を説明するための図である。 図4(A)~(C)は、実施例1でのアーク炉を運転した場合の電流、電圧変化を示す図である。 図5(A)~(C)は、比較例1でのアーク炉を運転した場合の電流、電圧変化を示す図である。
 第1の本発明は、鉄、アルミニウム、カルシウムおよびチタンの含有量が、何れも0.1質量%以下であるシリカ原料と、炭素材料とを用いて、アーク炉にて炭素還元によりシリコンを製造する方法であって、炭素還元時に、アーク炉の電極近傍の物質変化及び物質配置の変化の少なくとも一方によって電極に流れる過電流を、電力調整装置を用いて緩和させることを特徴とする、シリコンの製造方法である。
 「アーク炉の電極近傍」とは、アーク放電と接触通電を含めた電流に大きな影響を与える領域のことで、通常は電極径をD(mm)とすると、アーク炉の電極表面からおよそ1.5×D(mm)の範囲であることが好ましい。
 「アーク炉の電極近傍の物質」とは、主に下記反応式(1)により生じる導電性の高い炭化ケイ素(SiC)をさす。炭化ケイ素とアーク炉電極とが接触することにより短絡が生じやすくなり、アーク炉電極に過電流が流れやすくなる。
SiO+3C → SiC+2CO   ・・・(1)
 「電力調整装置」とは、装置電力を調整可能な装置をいい、例えば、可飽和リアクトル、限流リアクトル、トランジスタおよびサイリスタを挙げることができる。これらの中でも、可飽和リアクトルが好ましい。過電流および過電圧に対する耐量が大きく、大電流にも対応できるためである。
 炭素還元で使用する炭素材料としては、得られるシリコンへの不純物の混入を避ける点から、高純度のものを用いるのが好ましい。具体的には、炭素材料の灰分が1.0質量%以下であることが好ましく、0.6質量%以下であることが特に好ましい。
 高純度のシリカ原料と、高純度の炭素材料を用いることにより炭化ケイ素が蓄積し、炉内の短絡等の虞があるが、本発明の製造方法によれば、このような場合でも装置を安定的に連続運転することができる。
 本発明の製造方法においては、アーク炉の炉内において、電極をシリカ原料及び炭素材料に埋没させ、且つ、電極からアークを発生させることが好ましい。
 「電極をシリカ原料及び炭素材料に埋没させ」とは、電極をシリカ原料及び炭素材料へと挿入して、電極の少なくとも一部を原料の上面よりも下方に存在させることを意味し、必ずしも電極と原料とが接触している必要はない。このようにすることで、高純度なシリコンをより効率的に製造でき、且つ、装置の連続運転がより容易となる。
 本発明の製造方法においては、アーク炉の炉床電力密度PD(W/cm)を90(W/cm)以上としてアーク炉を運転することが好ましく、95(W/cm)以上とすることがより好ましい。
 アーク炉の炉床電力密度を当該範囲とすることにより、炭化ケイ素の蓄積を抑制して装置の連続運転をより容易とし、且つ、高純度なシリコンをより効率的に製造できるからである。
 「炉床電力密度PD」とは、例えば、アーク炉に備えられる電極の本数が3本である場合(電極を炉底に向けてそれぞれ平行に設置する場合)、「運転出力P(W)を電極中心間距離の1/2の距離を半径r(cm)とする3つの円の面積の総和で割ったもの」である。つまり、PD=P(W)/3πr(cm)である。
 ただし、3本の電極中心間距離が等しく無い場合、炉床電力密度PDは、「電極毎に中心間距離の平均値を半径とする異なる3つの円の面積を求め、その3つの円の総和で運転出力P(W)を割ったもの」である。
 すなわち、PD=P(W)/(πr +πr +πr )である。ここでrは電極1と電極2、および電極1と電極3の中心間距離の平均値(cm)であり、rおよびrは各々電極2と電極3について同様にして求めた中心間距離の平均値(cm)である。
 アーク炉に備えられる電極の本数が2本である場合(電極を炉底に向けてそれぞれ平行に設置する場合)、炉床電力密度PDは、「運転出力P(W)を電極中心間距離の1/2の距離を半径r(cm)とする2つの円の面積の総和で割ったもの」である。つまり、PD=P(W)/2πr(cm)である。
 また、電極の本数が1本の場合、または、電極の本数が2本で、これらを互いに対向して設置する場合(一方が対極となる場合)は、炉床電力密度PDは、「運転出力P(W)を電極の断面積S(cm)で割ったもの」である。このとき2つの電極断面積が異なる場合は、小さい方の断面積をS(cm)とする。
 本発明の製造方法においては、前記アーク炉が変圧器を備え、該変圧器の容量がアーク炉の運転出力の1.5倍以上である変圧器により変圧されることが好ましい。すなわち、運転出力をP(kW)とすると、変圧器容量は1.5P(kVA)以上が好ましく、2P(kVA)以上がより好ましく、3P(kVA)以上がさらに好ましい。変圧器の容量を大きくすることで、過電流による電流遮断なく連続的に運転ができるからである。
 第2の本発明は、鉄、アルミニウム、カルシウムおよびチタンの含有量が、何れも0.1質量%以下であるシリカ原料と、炭素材料とを用いて、アーク炉にて炭素還元によりシリコンを製造する方法であって、前記アーク炉の炉床電力密度PD(W/cm)を90(W/cm)以上としてアーク炉を運転する、シリコンの製造方法である。
 第3の本発明は、鉄、アルミニウム、カルシウムおよびチタンの含有量が、何れも0.1質量%以下であるシリカ原料と、炭素材料とを用いて、アーク炉にて炭素還元によりシリコンを製造する製造装置であって、さらにアーク炉の電極近傍の物質変化及び物質配置の変化の少なくとも一方によって電極に流れる過電流を緩和させる電力調整装置が備えられる、シリコンの製造装置である。
 第4の本発明は、鉄、アルミニウム、カルシウムおよびチタンの含有量が、何れも0.1質量%以下であるシリカ原料と、炭素材料とを用いて、アーク炉にて炭素還元によりシリコンを製造する製造装置であって、アーク炉の炉床電力密度PD(W/cm)を90(W/cm)以上としてアーク炉を運転する、シリコンの製造方法である。
 以下、本発明を、図面を用いて詳細に説明するが、この説明は本発明の実施態様の一例であり、本発明はその要旨を超えない限り、以下の内容に限定されるものではない。
 まず、二酸化ケイ素及び炭素材料を用いて炭素還元反応を行った場合における、アーク炉内に生じる化学反応について説明する。
 図1は、アーク炉50内における、二酸化ケイ素の炭素還元反応を説明するための図であり、一本の電極先端部分について注目した図である。図1において、内張等については詳細を省略して示している。
 図1に示すように、アーク炉50の内部では、シリカ原料や炭素材料を含む原料層1の内部に電極10の先端が挿入されている。すなわち、本発明にかかるシリコンの製造方法及び製造装置においては、いわゆるサブマージドアーク方式が採用されている。
 また、アーク炉50の運転中は、原料層1の電極10先端付近に、SiOやCOが混在している層2が存在し、さらに、層2の下方には、炉内の炭素還元反応の結果として得られたSiが液層3を形成して溜まっている。
 アーク炉50内では、図1にAで示される付近に上部低温領域、図1にBで示される付近に下部高温領域が存在する。ここで、上部低温領域Aの温度は、25~1900℃であることが好ましい。また、下部高温領域Bの温度は、2000℃以上であることが好ましい。
 上部低温領域Aおよび下部高温領域Bでは、それぞれの領域において優先的に異なる反応が生じているものと考えられる。
 すなわち、上部低温領域Aでは、下記反応式(2)や(3)で表される反応が優先的に生じているものと考えられる。
SiO(g)+2C → SiC+CO(g)・・・(2)
2SiO(g) → Si+SiO・・・(3)
 前記反応式(2)および(3)で表される反応のうち、上部低温領域Aでは、特に反応式(2)で表される反応が最も優先的に起こっており、炭化ケイ素が多く生じていると考えられる。
 一方で、下部高温領域Bにおいては、下記反応式(4)~(6)で表される反応が優先的に生じているものと考えられる。
SiO+C → SiO(g)+CO(g)・・・(4)
SiO(g)+SiC → 2Si+CO(g)・・・(5)
SiO+SiC → Si+SiO(g)+CO(g)・・・(6)
 前記反応式(4)~(6)で表される反応のうち、下部高温領域Bでは、特に反応式(5)で表される反応が最も優先的に起こっているものと考えられる。
 下部高温領域Bでは、例えば、上部低温領域Aにて生成した炭化ケイ素と気体の酸化ケイ素との反応により、シリコンが生成する。
 上記反応式をまとめると、シリカ原料の炭素還元反応において、下記反応式(7)で表される反応によってシリコンが生成する。
SiO+2C → Si+2CO(g)・・・(7)
 上記反応式を見ると、例えば、上部低温領域Aにおいて生成した炭化ケイ素の反応性が悪い場合、当該炭化ケイ素が、炉内、特に電極下に蓄積し、アーク炉の電極10と接触する等して短絡が生じ、アーク炉および装置全体の運転が不安定となる。
 また、上部低温領域Aにおいて生じた炭化ケイ素が下部に移動する前に電極に接触すること等によっても、局所的に短絡が生じる虞があり、アーク炉や装置全体の運転が不安定となる。
 特に電極を押し上げるほどに炭化ケイ素が電極下に蓄積してしまうと、上記短絡によって装置を安定して連続運転ができないほか、電極位置の上昇によって炉上部を過剰に加熱することとなって熱ロスが大きくなる。また、酸化ケイ素が過剰に消費され、これに伴って炉内に炭化ケイ素がさらに蓄積し、例えば炉底部側面に備えられたシリコン出湯口が閉塞してしまうといった問題も生じる。
 本発明は、このように、炉内の電極近傍の物質が変化、特に炉内に炭化ケイ素が生成、或いは蓄積した場合であっても、アーク炉及び装置全体を安定的に連続運転することができる、製造方法及び製造装置を提供するものである。
 以下、本発明の実施形態にかかる製造装置100について説明し、当該製造装置100を用いたシリコンの製造方法について説明する。
<シリコンの製造装置100>
 図2は、本発明の一実施形態にかかるシリコンの製造装置100を説明するための概略図である。図2に示すように、シリコン製造装置100は、内部に電極10を備えるアーク炉50、アーク炉50の電極10に流れる電流を安定化させる電力調整装置20、及び、電極10と電力調整装置20の間に設けられた変圧器30を備えている。
 アーク炉50の炉内には、シリカ原料及び炭素材料が原料層1として充填されており、ここに電極10の先端が埋没されている。電極10、電力調整装置20及び変圧器30は電気的に接続されている。図2において、その他配線等については省略して示している。
(原料層1:シリカ原料)
 一般的にシリカ原料に含まれる不純物としては、シリカ原料の種類により異なるが、例えば、鉄、アルミニウム、カルシウムおよびチタン等が挙げられる。
 本発明において用いるシリカ原料は、鉄、アルミニウム、カルシウムおよびチタン(以下、主要金属不純物という)の含有量が、何れも0.1質量%(1000質量ppm)以下であり、0.01質量%以下であることが好ましく、0.001質量%以下であることがより好ましい。
 また、鉄、アルミニウム、カルシウムおよびチタンの合計の含有量が0.1質量%以下であることが好ましく、0.01質量%以下であることがより好ましく、0.002質量%以下であることがさらに好ましい。
 主要金属不純物の含有量を0.1質量%以下とすることにより、還元により得られる粗シリコンの純度を向上することができ、精製工程での不純物除去における負荷が小となる。また、高純度のシリコンの収率を向上することができる。
 主要金属不純物含有量は少ないほど好ましく、特に限定されないが、入手の困難性およびコストの点等から、通常0.0001質量%以上であることが好ましく、0.0002質量%以上であることがより好ましい。
 本発明において用いられるシリカ原料中の、ボロン及びリンの含有量は特に限定されるものではないが、各々、通常10質量ppm以下であることが好ましく、5質量ppm以下であることがより好ましく、1質量ppm以下であることがさらに好ましく、0.5質量ppm以下であることが特に好ましく、0.1質量ppm以下であることが最も好ましい。 
 シリカ原料中の、ボロン及びリンの含有量を各々10質量ppm以下とすることにより、還元により得られる粗シリコンの純度を向上することができ、精製工程での不純物除去における負荷が小となる。また、高純度のシリコンの収率を向上することができる。
 ボロン及びリンの含有量は、少ないほど好ましく、下限は特に限定されるものではない。
(原料層1:炭素材料)
 本発明において用いる炭素材料は、高純度のものを用いるのが好ましく、灰分が1.0質量%以下であることが好ましく、0.6質量%以下であることがより好ましく、0.1質量%以下であることがさらに好ましく、0.04質量%以下であることが最も好ましい。
 灰分の下限は特に限定されるものではなく、少ないほどよいが、入手の困難性、コストの点等から、通常0.0001質量%(1質量ppm)以上であることが好ましく、0.001質量%以上であることがより好ましい。
 ここで、灰分の測定は、JIS M8812により行うことができる。また、炭素材料の主要金属不純物の含有量は、各々、通常10質量ppm以下であることが好ましく、6質量ppm以下であることがより好ましく、4質量ppm以下であることがさらに好ましく、2質量ppm以下であることが特に好ましく、1質量ppm以下であることが最も好ましい。
 炭素材料中の、ボロン及びリンの含有量は特に限定されるものではないが、各々、通常、50質量ppm以下であることが好ましく、10質量ppm以下であることがより好ましく、5質量ppm以下であることがさらに好ましく、1質量ppm以下であることが特に好ましく、0.5質量ppm以下であることが最も好ましい。
 灰分、並びにボロン及びリンの含有量が前記範囲である炭素材料を用いることで、より高純度なシリコンを製造することができる。
 このようなシリカ原料及び炭素材料は、アーク炉の上部から所定の比率で投入され、原料層1とされて炉内に充填されている。
 原料層1におけるシリカ原料と炭素材料との比については、特に限定されるものではなく、従来炭素還元反応によってシリコンを製造する場合に適用されてきたものと同様としてよい。
 例えば、炭素材料/シリカ原料の仕込比率(質量比)としては、通常0.3以上であることが好ましく、0.33以上であることがより好ましい。また、通常0.5以下であることが好ましく、0.4以下であることがより好ましく、0.36以下であることがさらに好ましい。
 アーク炉内の炭素還元反応によって原料層1の一部はシリコンとなって炉底に溜まり、例えば、アーク炉50の下部側面に設けられた出湯口(不図示)から液状にて取り出される。そして、シリコンが取り出されることにより原料層1は徐々に減少し、一方で、炉上部から新たに原料が投入される。
(アーク炉50)
 本発明において用いられるアーク炉50は、従来公知のアーク炉を特に限定されずに適用することができる。特に、炉内径が700mm以上7000mm以下であることが好ましい。
 アーク炉50の内部には電極10が少なくとも一つ備えられており、当該電極10の先端は、原料層1に埋没され、いわゆるサブマージドアーク方式とされている。
 アーク炉50は、アーク炉の炉床電力密度PD(W/cm)を、好ましくは90(W/cm)以上、より好ましくは95(W/cm)以上、さらに好ましくは100(W/cm)以上、特に好ましくは105(W/cm)以上として運転することが好ましい。また、通常130(W/cm)以下として運転することが好ましい。
 表1に、従来のフェロシリコン用電気炉(シリコン含有率77.1%)に係るアーク炉の炉床電力密度PD(W/cm)と運転出力P(kW)との関係を示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、従来の炉床電力密度と比較すると、本発明において適用されるアーク炉の運転条件は、従来のアーク炉の運転条件と比較してはるかに大きい炉床電力密度を要する条件とされており、高出力運転とされていることがわかる。
 本発明においては、このような高出力運転とすることで高純度なシリコンを効率的に製造でき、且つ、炉内の炭化ケイ素の蓄積を抑制して製造装置100を停止させることなく連続して運転できる。
(電力調整装置20)
 本発明にかかる製造装置100には、電力調整装置20が備えられている。当該電力調整装置20により回路内の電流量を安定化させる。
 本発明に用いられる電力調整装置20としては、電力を調整し得る装置であれば限定されるものではないが、例えば、可飽和リアクトル、限流リアクトル、トランジスタおよびサイリスタを挙げることができる。
 この中でも過電流および過電圧に対する耐久性が高く、大電流にも対応できる観点から、可飽和リアクトルとすることが好ましい。回路内の電流量の安定化については、例えば、下記の形態を挙げることができる。
 すなわち、図2に示されるように、電力調整装置20として可飽和リアクトルを用いた場合、アーク炉50の運転状況(電極電流等)が、可飽和リアクトルコントローラ25にフィードバックされ、運転状況に応じて当該コントローラから直流制御電流が流されることで、可飽和リアクトル内部に設けられた鉄心の磁束変化を生じさせ、インピーダンスを変化させる。これにより、可飽和リアクトルの出側の電流量を調整し安定化させることができる。
 電力調整装置20として可飽和リアクトルを用いた場合、特に変圧器容量の100%~10%の容量のものを用いることが好ましい。
 また、電力調整装置20と、変圧器30及び電極10との接続方法については、アーク炉50の電極10等に流れる電流を調整可能な形態であれば特に限定されるものではない。例えば、電力調整装置20と変圧器30とを直列に接続し、変圧器30と電極10とをデルタ結線またはスター結線することができる。
 本発明においては、上記のようにアーク炉50の電極10と炉内に生成および蓄積する炭化ケイ素とが接触することで短絡が生じる虞があるが、このような状況においても、電力調整装置20が適切に機能することによって、電極10等に流れる電流量を調節して安定化させることができ、製造装置100の連続運転が可能となる。
 また、本発明においては、電力調整装置20により電流量が安定化されるので、電極10から安定して積極的にアークを発生させることができ、高純度なシリコンを効率的に製造することができる。
 (変圧器30)
 本発明にかかる製造装置100には、変圧器30が設けられている。変圧器30は、電力調整装置20とアーク炉50との間に接続されて炉用変圧器として機能する。
 変圧器30は従来の変圧器を特に限定されることなく用いることができるが、許容電流が大きいものを用いることが好ましい。具体的には、許容電流が1100A(100kW操業炉)~105,000A(20,000kW操業炉)のものを用いる。
 特に、変圧器の容量がアーク炉の運転出力の1.5倍以上である変圧器30により変圧されることが好ましい。すなわち、運転出力をP(kW)とすると、変圧器容量は1.5P(kVA)以上が好ましく、2P(kVA)以上が好ましく、3P(kVA)以上がさらに好ましい。
 これにより、変圧器30にある程度の大電流が流れた場合であっても変圧器30が停止することなく、また、製造装置100全体を停止させることなく連続的に運転することができる。
 変圧器30と電力調整装置20及び電極10との接続方法については、製造装置100において、適切に変圧可能な形態であれば特に限定されるものではない。例えば、オープンアーク炉で用いられるものと同様の形態とすることができる。
 本発明にかかる製造装置100には、上記構成のほか、コンデンサ、バランサ、配電盤および電源変圧器等が備えられ、アーク炉50への通電が可能とされている。その他の形態については、特に限定されるものではなく、従来と同様の形態が適用できる。
 以上のように、本発明にかかるシリコンの製造装置100によれば、電力調整装置20が備えられるので、アーク炉50の電極10等に流れる電流量を調節して安定化させることができ、炉内に炭化ケイ素が蓄積して短絡が生じ得る状況下であっても、製造装置100の連続運転が可能となる。
 また、電力調整装置20により電流量を安定化することにより、電極10から安定して積極的にアークを発生させることができ、炉内に炭化ケイ素が蓄積する場合であっても過電流を緩和させて装置を停止させることなく連続して運転できるとともに、高純度なシリコンを効率的に製造することができる。
 一方、アーク炉50の運転を高出力運転とすることにより、炉内の炭化ケイ素の蓄積を抑制して製造装置100を停止させることなく連続して運転できるとともに、高純度なシリコンを効率的に製造することができる。
<シリコンの製造方法>
 本発明にかかるシリコンの製造方法は、例えば、上記製造装置100により行う。図3に示すように、本発明にかかる製造方法は、炉内セットアップ(工程S1)、通電(工程S2)、出湯(工程S3)にかかる各工程を含み、炉の運転停止後に炉内のはつり作業等を行う。
(工程S1)
 工程S1は、アーク炉50に電極10を取り付け、炉内に原料を投入して原料層1を充填し、シリコンを製造可能な状態へと炉内をセットアップする工程である。原料層1におけるシリカ原料及び炭素材料の比率については、上述の通り、適切にシリコンが製造可能な比率とされていればよい。また、電極10の電極先端は原料層1に埋没されて、いわゆるサブマージドアーク方式とされる。
(工程S2)
 工程S2は、炉内セットアップが完了した後、アーク炉50を通電して、炉内をアーク放電により加熱する工程である。ここで、アーク放電により加熱された炉内温度は限定されず、アーク放電による成り行きでよい。
 アーク炉50に流れる電流量は、アーク炉50の外部に備えられた電力調整装置20により調整されて安定化される。これにより、原料層1内部の反応が進行し、炉内に蓄積した炭化ケイ素と電極10とが接触して、短絡が生じ得るような状況となっても、電極10やその他装置に生じる電流の激しい振れ(以下、電流ハンチングという。)が抑制され、製造装置100を停止させることなく、連続して運転することができる。
 一方、工程S2においては、アーク炉50の炉床電力密度PD(W/cm)を90W/cm以上としてアーク炉を運転する。これにより、高純度なシリコンを効率的に製造でき、且つ、炉内の炭化ケイ素の蓄積を抑制して製造装置100を停止させることなく連続して運転することができる。
(工程S3)
 アーク炉50内で炭素還元により生成したシリコンは、液状にて徐々に炉底に溜まる。工程S3は、このような液状のシリコンを、炉底部側面に設けられた出湯口から流出させて取り出す工程である。
 シリコンを出湯口から取り出すことで、炉内の原料層1は徐々に減少する。本発明においては、例えば、当該原料層1の減少に合わせて、新たにシリカ原料及び炭素材料を炉上部より投入することで、連続的に炭素還元反応が行われる。
 このように、工程S1~S3を経て、シリカ原料から、炭素還元反応によってシリコンが取り出される。シリコンは液状のまま取り出しても、冷却後に固体として取り出してもよいが、通常は固体として取り出すことが好ましい。シリコンの製造を停止する場合は、その後、炉内のはつり作業等を行う。
 本発明の製造方法においては、高純度なシリカ原料および炭素材料を用いて炭素還元反応に供しているため、高純度なシリコンを得ることができる。また、上述したように、高純度なシリカ原料および炭素材料を用いることによる過電流および短絡等の問題が解消され、連続的にシリコンを製造することができる。
 以下、実施例により、本発明のシリコンの製造方法及び製造装置につき、さらに詳細に説明する。
 図2に示すシリコンの製造装置100において、製造装置の連続運転試験を行った。運転条件を下記表2に示す。
(実施例1および実施例2)
 炉内に3本の100mm径電極(電極A~C)を設置して、可飽和リアクトルによる電流制御を行ってシリコンを製造した。
(実施例3)
 炉内に3本の150mm径電極を設置して、可飽和リアクトルによる電流制御を行ってシリコンを製造した。炉床電力密度を実施例1および実施例2よりも小さくした。
(比較例1)
 炉内に3本の100mm径電極(電極A~C)を設置して、可飽和リアクトルによる電流制御を行わずにシリコンを製造した。
 アーク炉の炉底部の炭化ケイ素(SiC)の蓄積状態および連続運転状況についての結果を表2に示す。また、実施例1の運転の結果を図4(A)~(C)に、比較例1の運転結果を図5(A)~(C)に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例1~3と比較例1とを比較すると、本発明に係る製造装置100を用いてシリコンを製造した場合は、可飽和リアクトルによるアーク炉の電流調整によって、炉内に炭化ケイ素が蓄積した場合であっても、短絡によりアーク炉が停止することがなく、連続運転が可能であることが分かった。
 また、実施例1、2と実施例3とを比較すると、炉床電力密度を増大させることにより、炭化ケイ素が積極的に消費され、炉内の炭化ケイ素の蓄積量が減少し、より確実に連続運転することができることが分かった。
 さらに、実施例1と比較例1との運転状況の詳細を比較すると、図4(A)~(C)から明らかなように、本発明にかかる製造装置100を用いてシリコンを製造した場合は、可飽和リアクトルによる電流ハンチング抑制効果や、高出力運転による短絡抑制効果が発揮され、装置を適切な状態で連続運転することができ、シリコンを連続的に製造することができた。
 一方、図5(A)~(C)から明らかなように可飽和リアクトルを用いずにシリコンを製造した場合は、炉内に炭化ケイ素が蓄積し、電極と炭化ケイ素とが接触して短絡が生じて電流ハンチングが大きく、装置が断続的に停止し、シリコンを連続して製造することができなかった。
 実施例1について、原料、炭素材および得られたシリコンのB、P、Fe、Al、Ti、Ca、Mgおよび灰分含量を表3に示す。また、従来の方法により生成された工業用シリコンのB、P、Fe、Al等の含有量を表4及び表5に示す。なお、炭素材料/シリカ原料の仕込比率は0.33とした。
 表4は、『加藤ら、「まてりあ」41巻、1号、54-56頁(2002)』に係るデータである。また、表5は、『Aulich,H,Proceedings of the Flat-Plate Solar Array Project Worksh on Crystal Gowth for High-Efficiency Silicon Solar Cells,86-11,267-278(1985)』に係るデータである。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表3~表5より明らかなように、本発明によれば、高純度なシリカ原料と高純度な炭素材料とを用いてシリコンを製造することによって、得られる生成シリコンに含まれる不純物の量が従来よりも格段に減少しており、高純度なシリコンを製造可能なことが分かった。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更および変形が可能であることは、当業者にとって明らかである。なお本出願は、2009年11月6日付で出願された日本特許出願(特願2009-255254)に基づいており、その全体が引用により援用される。
 本発明によれば、高純度なシリコンを、連続的に効率よく製造することができる。本発明により得られたシリコンは、太陽電池等に好適に適用される。
1 原料層
10 電極
20 電力調整装置
30 変圧器
50 アーク炉
100 シリコンの製造装置

Claims (22)

  1.  鉄、アルミニウム、カルシウムおよびチタンの含有量が、何れも0.1質量%以下であるシリカ原料と、炭素材料とを用いて、アーク炉にて炭素還元によりシリコンを製造する方法であって、炭素還元時に、前記アーク炉の電極に流れる過電流を、電力調整装置を用いて緩和させることを特徴とする、シリコンの製造方法。
  2.  前記電力調整装置が可飽和リアクトルである請求項1に記載のシリコンの製造方法。
  3.  前記炭素材料の灰分が1.0質量%以下である、請求項1又は2に記載のシリコンの製造方法。
  4.  前記アーク炉の炉内において、前記電極を前記シリカ原料及び前記炭素材料に埋没させ、且つ、前記電極からアークを発生させる、請求項1~3のいずれか1項に記載のシリコンの製造方法。
  5.  前記アーク炉の炉床電力密度PD(W/cm)を90(W/cm)以上としてアーク炉を運転する、請求項1~4のいずれか1項に記載のシリコンの製造方法。
  6.  前記アーク炉が変圧器を備え、該変圧器の容量が前記アーク炉の運転出力の1.5倍以上である変圧器により変圧される、請求項1~5のいずれか1項に記載のシリコンの製造方法。
  7.  鉄、アルミニウム、カルシウムおよびチタンの含有量が、何れも0.1質量%以下であるシリカ原料と、炭素材料とを用いて、アーク炉にて炭素還元によりシリコンを製造する方法であって、前記アーク炉の炉床電力密度PD(W/cm)を90(W/cm)以上としてアーク炉を運転することを特徴とする、シリコンの製造方法。
  8.  前記アーク炉の電極を前記シリカ原料及び前記炭素材料に埋没させ、且つ、前記電極からアークを発生させる、請求項7に記載のシリコンの製造方法。
  9.  前記炭素材料の灰分が1.0質量%以下である、請求項7又は8に記載のシリコンの製造方法。
  10.  可飽和リアクトルにより前記アーク炉の電極に流れる電流量を調整する、請求項7~9のいずれか1項に記載のシリコンの製造方法。
  11.  容量が前記アーク炉の運転出力の1.5倍以上である変圧器により変圧される、請求項7~10のいずれか1項に記載のシリコンの製造方法。
  12.  鉄、アルミニウム、カルシウムおよびチタンの含有量が、何れも0.1質量%以下であるシリカ原料と、炭素材料とを用いて、アーク炉にて炭素還元によりシリコンを製造する製造装置において、前記アーク炉の電極近傍の物質変化及び物質配置の変化の少なくとも一方によって電極に流れる過電流を緩和させる電力調整装置が備えられる、シリコンの製造装置。
  13.  前記電力調整装置が可飽和リアクトルである請求項12に記載のシリコンの製造装置。
  14.  前記炭素材料の灰分が1.0質量%以下である、請求項12又は13に記載のシリコンの製造装置。
  15.  前記アーク炉において、前記電極を前記シリカ原料及び前記炭素材料に埋没させ、且つ、前記電極からアークを発生させる、請求項12~14のいずれか1項に記載のシリコンの製造装置。
  16.  前記アーク炉の炉床電力密度PD(W/cm)を90(W/cm)以上としてアーク炉を運転する、請求項12~15のいずれか1項に記載のシリコンの製造装置。
  17.  前記アーク炉が変圧器を備え、該変圧器の容量が前記アーク炉の運転出力の1.5倍以上である、請求項12~16のいずれか1項に記載のシリコンの製造装置。
  18.  鉄、アルミニウム、カルシウムおよびチタンの含有量が、何れも0.1質量%以下であるシリカ原料と、炭素材料とを用いて、アーク炉にて炭素還元によりシリコンを製造する製造装置であって、且つ、前記アーク炉の炉床電力密度PD(W/cm)を90(W/cm)以上としてアーク炉を運転する、シリコンの製造装置。
  19.  前記アーク炉において、前記電極を前記シリカ原料及び前記炭素材料に埋没させ、且つ、前記電極からアークを発生させる、請求項18に記載のシリコンの製造装置。
  20.  前記炭素材料の灰分が1.0質量%以下である、請求項18又は19に記載のシリコンの製造装置。
  21.  さらに可飽和リアクトルが備えられ、該可飽和リアクトルにより前記アーク炉の電極に流れる電流量が調整される、請求項18~20のいずれか1項に記載のシリコンの製造装置。
  22.  前記アーク炉が変圧器を備え、該変圧器の容量が前記アーク炉の運転出力の1.5倍以上である、請求項18~21のいずれか1項に記載のシリコンの製造装置。
PCT/JP2010/068877 2009-11-06 2010-10-25 シリコンの製造方法及び製造装置 WO2011055650A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10828210A EP2497747A1 (en) 2009-11-06 2010-10-25 Method and apparatus for producing silicon
CN2010800495470A CN102596805A (zh) 2009-11-06 2010-10-25 硅的制造方法和制造装置
JP2011539339A JPWO2011055650A1 (ja) 2009-11-06 2010-10-25 シリコンの製造方法及び製造装置
US13/440,560 US20120211350A1 (en) 2009-11-06 2012-04-05 Processes and apparatuses for producing silicon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009255254 2009-11-06
JP2009-255254 2009-11-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/440,560 Continuation US20120211350A1 (en) 2009-11-06 2012-04-05 Processes and apparatuses for producing silicon

Publications (1)

Publication Number Publication Date
WO2011055650A1 true WO2011055650A1 (ja) 2011-05-12

Family

ID=43969890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068877 WO2011055650A1 (ja) 2009-11-06 2010-10-25 シリコンの製造方法及び製造装置

Country Status (5)

Country Link
US (1) US20120211350A1 (ja)
EP (1) EP2497747A1 (ja)
JP (1) JPWO2011055650A1 (ja)
CN (1) CN102596805A (ja)
WO (1) WO2011055650A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014206008A1 (de) * 2014-03-31 2015-10-01 Siemens Aktiengesellschaft Vorrichtung und Verfahren zur dynamischen Einstellung eines Elektrolichtbogenofens

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57111223A (en) 1980-08-30 1982-07-10 Intaanational Mineraruzu Ando Manufacture of silicon from quartz and carbon in electric furnace
JPS60200818A (ja) 1983-11-26 1985-10-11 インタ−ナシヨナル、ミネラルズ、アンド、ケミカル、コ−ポレ−シヨン 低シヤフト電気炉内で原料石英からシリコンを製造する方法
JPS61117110A (ja) 1984-11-07 1986-06-04 Kawasaki Steel Corp 金属珪素の製造方法ならびにその製造装置
JPS62260711A (ja) 1986-04-29 1987-11-13 ダウ・コ−ニング・コ−ポレ−シヨン 二酸化ケイ素の炭素熱還元によるケイ素の製造法
JPH04177085A (ja) * 1989-11-30 1992-06-24 Danieli & C Off Mecc Spa 制御された電流を供給される直接アーク電気炉及び直接アーク炉に制御された電流を供給する方法
JPH04231315A (ja) * 1990-08-13 1992-08-20 Dow Corning Corp 直流炉におけるケイ素の溶解法
JPH05158563A (ja) * 1991-12-09 1993-06-25 Tokuden Co Ltd 交流電力調整装置
JP2009530218A (ja) * 2006-03-15 2009-08-27 アールイーエスシー インベストメンツ エルエルシー 太陽電池及びその他の用途のシリコンの製造方法
WO2009130786A1 (ja) * 2008-04-25 2009-10-29 テイーアンドエス インベストメント リミテッド 太陽電池用シリコン原料製造方法
JP2009255254A (ja) 2008-04-18 2009-11-05 Toyota Motor Corp 圧入装置及びそれを用いた圧入方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57111223A (en) 1980-08-30 1982-07-10 Intaanational Mineraruzu Ando Manufacture of silicon from quartz and carbon in electric furnace
JPS60200818A (ja) 1983-11-26 1985-10-11 インタ−ナシヨナル、ミネラルズ、アンド、ケミカル、コ−ポレ−シヨン 低シヤフト電気炉内で原料石英からシリコンを製造する方法
JPS61117110A (ja) 1984-11-07 1986-06-04 Kawasaki Steel Corp 金属珪素の製造方法ならびにその製造装置
JPS62260711A (ja) 1986-04-29 1987-11-13 ダウ・コ−ニング・コ−ポレ−シヨン 二酸化ケイ素の炭素熱還元によるケイ素の製造法
JPH04177085A (ja) * 1989-11-30 1992-06-24 Danieli & C Off Mecc Spa 制御された電流を供給される直接アーク電気炉及び直接アーク炉に制御された電流を供給する方法
JPH04231315A (ja) * 1990-08-13 1992-08-20 Dow Corning Corp 直流炉におけるケイ素の溶解法
JPH05158563A (ja) * 1991-12-09 1993-06-25 Tokuden Co Ltd 交流電力調整装置
JP2009530218A (ja) * 2006-03-15 2009-08-27 アールイーエスシー インベストメンツ エルエルシー 太陽電池及びその他の用途のシリコンの製造方法
JP2009255254A (ja) 2008-04-18 2009-11-05 Toyota Motor Corp 圧入装置及びそれを用いた圧入方法
WO2009130786A1 (ja) * 2008-04-25 2009-10-29 テイーアンドエス インベストメント リミテッド 太陽電池用シリコン原料製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AULICH, H, PROCEEDINGS OF THE FLAT-PLATE SOLAR ARRAY PROJECT WORKSH ON CRYSTAL GROWTH FOR HIGH-EFFICIENCY SILICON SOLAR CELLS, vol. 86-11, 1985, pages 267 - 278
KATO ET AL., MATERIA, vol. 41, no. 1, 2002, pages 54 - 56

Also Published As

Publication number Publication date
CN102596805A (zh) 2012-07-18
EP2497747A1 (en) 2012-09-12
JPWO2011055650A1 (ja) 2013-03-28
US20120211350A1 (en) 2012-08-23

Similar Documents

Publication Publication Date Title
JP4410847B2 (ja) 中純度金属シリコンとその製錬法
JP2011530472A (ja) 高純度ケイ素およびその誘導体への低コスト経路
KR101275768B1 (ko) 스팀 플라즈마 토치를 이용한 umg 실리콘의 정련 장치
JP2009541193A (ja) 半導体級シリコンを生産するための装置および方法
JP2010534614A (ja) 低品位シリコン原料を用いてシリコンインゴットを形成する方法およびシステム
JPH04231315A (ja) 直流炉におけるケイ素の溶解法
CN102917980A (zh) 硅的回收方法和硅的制造方法
JPH11116229A (ja) シリコンの精製方法
JP6370232B2 (ja) 多結晶シリコンロッドの製造方法
US20100178195A1 (en) Method of solidifying metallic silicon
WO2011055650A1 (ja) シリコンの製造方法及び製造装置
CN101602506B (zh) 一种高纯多晶硅的生产方法及生产装备
JP5692216B2 (ja) シリコンの製造方法および治具
JP5408417B2 (ja) フェロニッケル製錬用電気炉の操業方法
CN101302012A (zh) 太阳能电池用光伏硅提纯工艺
TW201341602A (zh) 多晶矽及其鑄造方法
CN202107794U (zh) 具有防止意外打火保护装置的多晶炉
WO2013080981A1 (ja) 高純度金属Siの製造方法
JP4986471B2 (ja) シリコンのスラグ精錬方法
CN113753900A (zh) 一种利用脉冲电流分离多晶硅中杂质元素的方法及多晶硅
JP2010254534A (ja) 坩堝、該坩堝を用いた精製装置および精製方法
CN108840339A (zh) 一种金刚线切割硅粉的高效处理方法
CN102373500A (zh) 一种太阳能级单晶硅的生长方法和设备
ES2592814T3 (es) Purificación de un metaloide mediante proceso de refundición por arco en vacío de electrodo consumible
CN101385935B (zh) 金属硅冶炼炉水冷除尘的方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080049547.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10828210

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011539339

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010828210

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE