WO2011055616A1 - エンジン停止判定装置およびエンジン停止判定方法 - Google Patents

エンジン停止判定装置およびエンジン停止判定方法 Download PDF

Info

Publication number
WO2011055616A1
WO2011055616A1 PCT/JP2010/067964 JP2010067964W WO2011055616A1 WO 2011055616 A1 WO2011055616 A1 WO 2011055616A1 JP 2010067964 W JP2010067964 W JP 2010067964W WO 2011055616 A1 WO2011055616 A1 WO 2011055616A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
cooling water
temperature sensor
stop determination
water temperature
Prior art date
Application number
PCT/JP2010/067964
Other languages
English (en)
French (fr)
Inventor
弓指 直人
吉田 雅澄
茂樹 木野村
Original Assignee
アイシン精機株式会社
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン精機株式会社, トヨタ自動車株式会社 filed Critical アイシン精機株式会社
Priority to EP10828176.7A priority Critical patent/EP2497926B1/en
Priority to US13/505,096 priority patent/US8972154B2/en
Priority to BR112012011444-1A priority patent/BR112012011444B1/pt
Priority to CN201080048454.6A priority patent/CN102667109B/zh
Publication of WO2011055616A1 publication Critical patent/WO2011055616A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/192Mitigating problems related to power-up or power-down of the driveline, e.g. start-up of a cold engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • F02D17/04Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling rendering engines inoperative or idling, e.g. caused by abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • F02N11/0829Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode related to special engine control, e.g. giving priority to engine warming-up or learning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • F02N11/0833Vehicle conditions
    • F02N11/084State of vehicle accessories, e.g. air condition or power steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/445Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0676Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2050/00Applications
    • F01P2050/24Hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/02Parameters used for control of starting apparatus said parameters being related to the engine
    • F02N2200/023Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/08Parameters used for control of starting apparatus said parameters being related to the vehicle or its components
    • F02N2200/0811Heating state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to an engine stop determination device and an engine stop determination method for determining whether or not to stop the operation of a vehicle engine while traveling or stopping.
  • a heater core for heating a vehicle interior (see, for example, Patent Document 1).
  • This includes a first cooling water path through which cooling water circulates between the exhaust heat recovery unit and the heater core, and a second cooling water path through which cooling water circulates between the exhaust heat recovery unit and the water jacket of the engine. I have.
  • the cooling water is not circulated in the second cooling water path, but cooled in the first cooling water path.
  • the cooling water is also circulated in the second cooling water path.
  • the cooling water in the water jacket is not circulated to the heater core when the cooling water is heated, so that excessive cooling of the engine can be prevented. Further, since a large amount of cooling water is not circulated through the heater core when the cooling water is heated, the heating effect of the heater unit including the heater core can be enhanced.
  • a vehicle that stops the operation of an engine while traveling or stopping is put into practical use.
  • This is represented by a hybrid vehicle that includes an electric motor that drives a wheel in addition to the engine, and that selectively operates the engine and the electric motor in order to drive the wheel during traveling.
  • the engine is often stopped when traveling by an electric motor.
  • a hybrid vehicle determines whether or not to stop the engine operation based on the vehicle state such as the vehicle speed or the presence or absence of an accelerator operation. In addition to such a vehicle state, the engine It is necessary to consider the state of the cooling system.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an engine stop determination device and an engine stop determination method that can optimize engine stop determination according to the state of a cooling system. There is.
  • the structural feature of the invention of the engine stop determination device is that the cooling system is configured such that the cooling water circulates between the water jacket of the engine and the heater core.
  • a second cooling water path that is formed so as to merge between the water jacket and the upstream side of the heater core with respect to the water path and the first cooling water path, and the cooling water circulates between the exhaust heat recovery device and the heater core.
  • a first water temperature sensor provided between the water jacket and the on-off valve in the water jacket or on the first cooling water path, a confluence of the first cooling water path on the second cooling water path, and a heater core
  • a second water temperature sensor provided between the first water temperature sensor and the second water temperature sensor.
  • the coolant temperature detected by the first water temperature sensor and the second water temperature sensor depending on whether the heater unit including the heater core is in an operating state or a non-operating state. It is to use properly.
  • the structural feature of the invention according to claim 2 is that, in the engine stop determination device according to claim 1, when the state of the vehicle satisfies a predetermined condition and the heater unit is in an inoperative state, the first water temperature sensor When the detected coolant temperature is equal to or higher than the first threshold value, the engine stoppage is permitted.
  • the structural feature of the invention according to claim 3 is that, in the engine stop determination device according to claim 1 or 2, when the vehicle state satisfies a predetermined condition and the heater unit is in an operating state, the first water temperature sensor When the cooling water temperature detected by the second water temperature sensor is equal to or higher than the first threshold value and the cooling water temperature detected by the second water temperature sensor is equal to or higher than the second threshold value, the operation stop of the engine is permitted.
  • the stop determination unit is configured such that when the vehicle state does not satisfy the predetermined condition, the heater unit Regardless of the operating state, the engine stoppage is prohibited.
  • the on-off valve includes a cooling water temperature detected by the first water temperature sensor, and a second water temperature.
  • the valve is closed and at least one of the cooling water temperature detected by the first water temperature sensor and the cooling water temperature detected by the second water temperature sensor. The valve is opened when is equal to or greater than a predetermined value.
  • the structural feature of the invention according to claim 6 is the engine stop determination device according to any one of claims 1 to 5, wherein the cooling water pumping means is formed downstream of the heater core on the second cooling water path.
  • the electric pump is shared between the junction point on the second cooling water path and the upstream side of the electric pump as a part of the first cooling water path, and the electric pump removes the sucked cooling water from the water jacket and Discharging toward both sides of the exhaust heat recovery unit.
  • a structural feature of the invention according to claim 7 is the engine stop determination device according to any one of claims 1 to 6, further comprising an electric motor for driving the wheel, and the engine for driving the wheel during traveling. And applied to a hybrid vehicle that selectively operates an electric motor.
  • the structural feature of the invention according to claim 8 is the engine stop determination device according to any one of claims 1 to 6, wherein the engine is automatically stopped when the vehicle is stopped, and the engine is stopped when the vehicle is restarted. This is applied to an idle stop vehicle that automatically restarts.
  • the structural feature of the invention of the engine stop determination method according to claim 9 is that the cooling system includes a first cooling water path through which cooling water circulates between a water jacket and a heater core of the engine, and a first cooling water path.
  • the second cooling water passage is formed so as to merge between the water jacket and the upstream side of the heater core, and the cooling water circulates between the exhaust heat recovery device and the heater core, and in the water jacket or the first cooling.
  • a first water temperature sensor provided between the water jacket on the water path and the on-off valve, a junction between the first cooling water path on the second cooling water path, and a second provided between the heater core.
  • a water temperature sensor determines whether or not to stop the engine based on the coolant temperature detected by the first water temperature sensor and the second water temperature sensor.
  • the determination depending on whether a heater unit including a heater core is in the non-operating state or an actuated state, it is to selectively cooling water temperature detected by the first temperature sensor and the second temperature sensor.
  • the heater unit when the engine stop determination is performed based on the coolant temperature detected by the first water temperature sensor and the second water temperature sensor, and the engine stop determination is performed, the heater unit is activated.
  • the engine stop determination is optimized according to the state of the cooling system by properly using the cooling water temperature detected by the first water temperature sensor and the second water temperature sensor depending on whether the state is in the non-operating state or not. be able to. Thereby, while being able to prevent an engine temperature falling too much, the improvement of the heating effect by a heater unit can be aimed at.
  • the coolant temperature detected by the first water temperature sensor is the first threshold value.
  • the engine stoppage is determined based only on the cooling water temperature detected by the first water temperature sensor. ing. And when the cooling water temperature detected by the 1st water temperature sensor is less than a 1st threshold value, the excessive fall of the cooling water temperature in a water jacket is prevented by prohibiting an engine stop.
  • the cooling water temperature detected by the first water temperature sensor is equal to or higher than the first threshold value.
  • the cooling water temperature detected by the second water temperature sensor is equal to or higher than the second threshold, the engine is stopped to prevent the cooling water temperature in the water jacket from being excessively lowered. In addition, it is possible to prevent the heating effect from being lowered by the heater unit.
  • the heater unit when the heater unit is in an operating state, it is necessary to supply high-temperature cooling water to the heater core. Therefore, in addition to the cooling water temperature detected by the first water temperature sensor, the cooling detected by the second water temperature sensor.
  • the engine stoppage is determined based on the water temperature. When at least one of the cooling water temperature detected by the first water temperature sensor and the cooling water temperature detected by the second water temperature sensor is less than the threshold value, the water jacket is prohibited by prohibiting the engine from stopping. An excessive decrease in the temperature of the cooling water in the inside and a decrease in the heating effect by the heater unit are prevented.
  • the engine stop determination device of the fourth aspect when the vehicle state does not satisfy the predetermined condition, the engine stoppage is prohibited regardless of the operation state of the heater unit. If the state does not satisfy the predetermined condition, it is possible to reliably prohibit the engine from being stopped.
  • the on-off valve is configured such that the cooling water temperature detected by the first water temperature sensor and the cooling water temperature detected by the second water temperature sensor are both less than a predetermined value.
  • the water jacket is opened when the valve is closed and at least one of the cooling water temperature detected by the first water temperature sensor and the cooling water temperature detected by the second water temperature sensor is equal to or higher than a predetermined value. While the inside cooling water can be heated early, the heating effect by the heater unit can be improved.
  • the on-off valve is closed, so that the inside of the water jacket The cooling water is prevented from flowing into the heater core, and the cooling water in the water jacket can be warmed early by the combustion heat in the engine. Moreover, since the low-temperature cooling water in a water jacket does not reach a heater core, the heating effect by a heater unit can also be improved.
  • the on-off valve is opened, the cooling water in the water jacket and the cooling water in the heater core are mixed, and the cooling water circulating through both can be heated quickly.
  • the cooling water pumping means is an electric pump formed on the downstream side of the heater core on the second cooling water path, and the junction point on the second cooling water path and the electric pump The electric pump is shared as part of the first cooling water path, and the electric pump discharges the sucked cooling water toward both the water jacket and the exhaust heat recovery unit.
  • the cooling water in the first cooling water path and the second cooling water path can be circulated. Further, since the electric pump is used as the cooling water pumping means, the cooling water can be circulated in the first cooling water path and the second cooling water path regardless of whether the engine is operating or not.
  • the engine stop determination device according to the seventh aspect of the present invention, it is applied to a hybrid vehicle that includes an electric motor that drives a wheel and selectively operates the engine and the electric motor to drive the wheel during traveling.
  • the engine stop determination can be optimized according to the state of the cooling system in the hybrid vehicle.
  • the engine stop determination device of the eighth aspect of the present invention is applied to an idle stop vehicle that automatically stops the engine when the vehicle stops and automatically restarts the engine when the vehicle restarts.
  • the engine stop determination can be optimized according to the state of the cooling system in the stop vehicle.
  • the heater unit when the engine stop determination is performed and the engine stop determination is performed based on the coolant temperature detected by the first water temperature sensor and the second water temperature sensor, the heater unit Depending on the state of the cooling system, the engine stop judgment is optimal by using the cooling water temperature detected by the first water temperature sensor and the second water temperature sensor depending on whether the is in the operating state or in the non-operating state Can be
  • the block diagram which showed the traveling system of the hybrid vehicle carrying the engine stop determination apparatus by one Embodiment of this invention.
  • FIG. 1 shows an outline of a power train of a hybrid vehicle V (hereinafter referred to as a vehicle V) equipped with an engine stop determination device 200 according to the present embodiment.
  • a thick line indicates mechanical connection of the vehicle V
  • an arrow by a broken line indicates a control signal line.
  • the engine 1 of the vehicle V (corresponding to the engine of the present invention) and the electric motor 2 are connected in series via a clutch device 3 that is a wet multi-plate clutch.
  • a transmission 4 of the vehicle V is connected in series to the electric motor 2
  • the right drive wheel 6R and the left drive wheel 6L of the vehicle V (both of the present invention are both connected to the transmission 4 via a differential device 5). (Corresponding to the wheel) is connected.
  • the right driving wheel 6R and the left driving wheel 6L are collectively referred to as driving wheels 6R and 6L.
  • the engine 1 is a normal internal combustion engine that generates an output from a hydrocarbon fuel, and includes a cooling system 100 described later.
  • the electric motor 2 is not limited to this, but is a synchronous motor for driving wheels, and the transmission 4 is a normal automatic transmission.
  • the clutch device 3 is a normally closed type clutch device that normally connects the engine 1 and the electric motor 2, and interrupts torque transmission between the engine 1 and the electric motor 2. .
  • a power source 8 is connected to the electric motor 2 via an inverter 7.
  • the power source 8 is formed of a secondary battery, and the electric power supplied from the power source 8 is converted into an alternating current by the inverter 7 to rotate the electric motor 2. Further, the electric power generated by the electric motor 2 is charged to the power source 8 via the inverter 7.
  • a controller 9 (corresponding to the stop determination means of the present invention) is electrically connected to the inverter 7. As shown in FIG. 1, the controller 9 includes an engine control unit 91 and a motor control unit 92, and the operation of the electric motor 2 is controlled by the motor control unit 92.
  • the vehicle V using the power train shown in FIG. 1 selectively operates the engine 1 and the electric motor 2 in order to drive the drive wheels 6R and 6L when traveling.
  • the engine 1 rotates the drive wheels 6 ⁇ / b> R and 6 ⁇ / b> L via the transmission 4.
  • the electric motor 2 rotates the drive wheels 6 ⁇ / b> R and 6 ⁇ / b> L via the transmission 4.
  • the clutch device 3 is released, and the connection between the engine 1 and the electric motor 2 is released.
  • the electric motor 2 is driven by the engine 1 via the clutch device 3 and also functions as a generator.
  • an engine 1 is electrically connected to the controller 9, and a vehicle speed sensor D1 of the vehicle V, a shift switch D2 of the transmission 4, a throttle opening sensor D3 of the engine 1, an accelerator pedal switch D4, Detection signals from the brake pedal switch D5 and the voltage sensor D6 of the power source 8 (each of D1 to D6 corresponds to the vehicle state detection means of the present invention) are input (in FIG. 1, by S1 to S6, respectively). Show).
  • the controller 9 detects the state of the vehicle V based on these detection signals.
  • the engine control unit 91 of the controller 9 determines whether to stop the engine 1 based on these detection signals and determines whether or not to stop the operation of the engine 1. Further, in addition to the detected values, the stop determination of the engine 1 may be performed based on the exhaust system catalyst temperature and the oil temperature in the engine 1.
  • FIG. 2 shows an engine body 11 constituting the engine 1, a cooling system 100 for the engine 1, and an engine control unit 91 for controlling them.
  • the engine main body 11 is formed by a cylinder block, a cylinder head, a piston, and other auxiliary machines (all not shown), and has a water jacket 111 in which coolant as cooling water circulates.
  • the engine body 11 is driven and controlled by the engine control unit 91 of the controller 9, and is rotated or stopped (indicated by S7 in FIG. 2).
  • the heater core 12 is included in a heater unit 120 that is a heater that sends warm air into the vehicle interior.
  • the heater core 12 is a heat exchanger, and a water passage through which coolant passes is formed.
  • the heater unit 120 blows air around the water channel of the heater core 12 by a blower, and heats the air by exchanging heat between the air and the coolant.
  • the heater unit 120 is provided with an operation switch provided in the passenger compartment, and an operation state or a non-operation state is selected by a passenger operating the operation switch.
  • the heater unit 120 is electrically connected to the engine control unit 91, and a signal indicating the target hot air temperature is input to the engine control unit 91 (indicated by S8 in FIG. 2).
  • the heater core 12 and the engine main body 11 are connected by a pipe line, and a loop-shaped first cooling water passage L1 (a first cooling according to the present invention) between the water jacket 111 of the engine main body 11 and the heater core 12 is circulated. (Corresponding to the water pathway) is formed.
  • the exhaust heat recovery unit 13 is disposed on an exhaust gas passage from the engine body 11 and has a water passage through which coolant passes.
  • the exhaust heat recovery device 13 heats the coolant by exchanging heat between the exhaust gas and the coolant.
  • the exhaust heat recovery unit 13 and the heater core 12 are connected by a pipe line, and a loop-shaped second cooling water passage L2 in which coolant circulates between the exhaust heat recovery unit 13 and the heater core 12 (second cooling according to the present invention). (Corresponding to the water pathway) is formed.
  • the second cooling water passage L ⁇ b> 2 is the first cooling water at the connection portion P ⁇ b> 1 (corresponding to the junction of the present invention) located between the water jacket 111 and the upstream side of the heater core 12. It merges with the passage L1.
  • an electric pump 14 (corresponding to the cooling water pumping means of the present invention) is provided on the downstream side of the heater core 12.
  • the electric pump 14 is a fluid pressure pump driven by an electric motor (not shown), and is configured to be operable regardless of the operation stop of the engine body 11.
  • the operation of the electric pump 14 is controlled by the above-described engine control unit 91 (indicated by S9 in FIG. 2).
  • connection portion P1 and the upstream side of the electric pump 14 are shared as a part of the first cooling water passage L1, and the electric pump 14 removes the sucked coolant from the engine body 11. It discharges toward both the water jacket 111 and the exhaust heat recovery device 13, and the coolant is circulated in the first cooling water passage L1 and the second cooling water passage L2.
  • a shutoff valve 15 (corresponding to the on-off valve of the present invention) is provided in the connection path L11 located between the engine main body 11 and the connection portion P1 on the first coolant passage L1.
  • the shut-off valve 15 is not particularly limited to a specific type, type, and operating principle, but a rotary valve, a needle valve, or the like is applicable.
  • the shutoff valve 15 is controlled to be opened and closed by the engine control unit 91, and the water jacket 111 and the connection part P1 are intermittently connected (indicated by S10 in FIG. 2).
  • a first temperature sensor D7 (corresponding to the first water temperature sensor of the present invention) is provided between the engine body 11 and the shutoff valve 15 on the connection path L11.
  • the first temperature sensor D7 is a temperature sensor that detects the coolant temperature in the connection path L11, and a signal indicating the detected temperature is input to the engine control unit 91 (indicated by S11 in FIG. 2).
  • the first temperature sensor D7 does not necessarily have to be provided on the connection path L11, and may be provided in the water jacket 111 of the engine body 11.
  • a second temperature sensor D8 (first of the present invention) is provided in an introduction path L21 (located upstream of the heater core 12) formed between the connection portion P1 and the heater core 12 on the second cooling water passage L2. (Corresponding to 2 water temperature sensors).
  • the second temperature sensor D8 is a temperature sensor that detects the coolant temperature in the introduction path L21.
  • a signal indicating the detected temperature is input to the engine control unit 91 (S12 in FIG. 2). Show).
  • the EGR (Exhaust Gas Recirculation) cooler 16 is provided in the engine main body 11, and an exhaust gas passage from the engine main body 11 is formed therein.
  • the EGR cooler 16 cools the exhaust gas by exchanging heat between the exhaust gas and the coolant when the coolant passes around the exhaust gas passage.
  • the cooled exhaust gas is introduced as intake into the intake side of the engine body 11 via an EGR valve (not shown).
  • one end of the cooling path L3 is connected between the engine body 11 and the first temperature sensor D7 on the connection path L11.
  • the other end of the cooling path L3 is connected to a common path L12 for the first cooling water passage L1 and the second cooling water passage L2.
  • a known radiator 17 is provided on the cooling path L3.
  • a known thermostat 18 is disposed at a connection portion between the cooling path L3 and the common path L12. The thermostat 18 is closed when the temperature of the coolant is low, and is opened when the coolant temperature reaches a predetermined value, thereby connecting the cooling path L3 and the common path L12.
  • the cooling system 100 of the engine 1 does not necessarily require all of the above-described configurations, and may be formed by appropriately selecting the necessary configurations.
  • the engine control unit 91 closes the shut-off valve 15.
  • the coolant pumped by the electric pump 14 does not flow through the first cooling water passage L1, but circulates only through the second cooling water passage L2 (indicated by solid arrows in FIG. 2). Since the coolant in the water jacket 111 of the engine body 11 does not flow out of the engine body 11, it is heated early by the combustion heat in the engine body 11.
  • the coolant circulating through the second cooling water passage L2 is discharged from the electric pump 14 and then cooled in the EGR cooler 16 while being heated and sent to the exhaust heat recovery unit 13.
  • the coolant is further heated in the exhaust heat recovery device 13 and then reaches the heater core 12.
  • the coolant that has heated the air for blowing in the heater core 12 (the coolant itself is cooled in the heater core 12) is sucked again by the electric pump 14 through the common path L12 and then discharged toward the EGR cooler 16. .
  • the detected value of the coolant temperature by the first temperature sensor D7 becomes equal to or greater than the valve opening threshold. Further, since the coolant circulating in the second cooling water passage L2 is also heated by the EGR cooler 16 and the exhaust heat recovery device 13, the detected value of the coolant temperature by the second temperature sensor D8 becomes equal to or higher than the valve opening threshold.
  • the engine control unit 91 opens the shutoff valve 15 and, as shown in FIG.
  • the water jacket 111 of the main body 11 communicates with the heater core 12. Therefore, the coolant pumped by the electric pump 14 circulates from the engine body 11 through the first cooling water passage L1 in addition to the second cooling water passage L2 (indicated by a thick arrow in FIG. 3). ).
  • a request signal for circulating the coolant from the first cooling water passage L1 to the second cooling water passage L2 in order to further increase the warm air temperature in the heater core 12 is output from the heater unit 120.
  • the shut-off valve 15 may be opened.
  • the coolant circulating in the first coolant passage L1 is heated in the water jacket 111 of the engine body 11 and then sent to the heater core 12 via the connection path L11 and the introduction path L21.
  • the coolant cooled in the heater core 12 is sucked by the electric pump 14 through the common path L ⁇ b> 12 and discharged again toward the engine body 11 and the EGR cooler 16. Further, when the temperature of the coolant in the common path L12 rises and the thermostat 18 opens, the coolant flows out from the engine body 11 to the cooling path L3 and is cooled by the radiator 17 (in FIG. Show).
  • step S401 the operation stop of the engine body 11 is prohibited. Therefore, the engine control unit 91 does not stop the operation of the engine body 11 except when the engine body 11 is stopped by an occupant's operation.
  • the engine control unit 91 is based on all or part of the detection signals from the vehicle speed sensor D1, the shift switch D2, the throttle opening sensor D3, the accelerator pedal switch D4, the brake pedal switch D5, and the voltage sensor D6. It is determined whether or not the state of the vehicle V satisfies a predetermined condition (step S402).
  • the predetermined condition is a condition indicating that the engine main body 11 may be stopped while the vehicle V is traveling or stopped.
  • the process returns to step S401. That is, when the state of the vehicle V does not satisfy the predetermined condition, the engine control unit 91 prohibits the operation stop of the engine 1 regardless of the operation state of the heater unit 120.
  • the detected value thw1 of the coolant temperature in the connection path L11 by the first temperature sensor D7 is a predetermined threshold value T1 (corresponding to the first threshold value of the present invention). It is determined whether or not this is the case (step S403).
  • the controller 9 estimates the combustion chamber temperature of the engine body 11, the exhaust system catalyst temperature, and the like based on the detection value thw1. When the detection value thw1 is less than the threshold value T1, the process returns to step S401.
  • step S404 it is determined whether or not the operation switch of the heater unit 120 in the vehicle compartment is turned on.
  • the operation switch of the heater unit 120 is in the OFF state, the operation stop of the engine main body 11 is permitted (step S406). Therefore, the engine control unit 91 stops the fuel supply to the combustion chamber by the injection device of the engine 1 (not shown in the injection device and the combustion chamber), and stops the engine body 11.
  • the operation switch of the heater unit 120 When the operation switch of the heater unit 120 is turned on, is the detected value thw2 of the coolant temperature in the introduction path L21 by the second temperature sensor D8 equal to or greater than a predetermined threshold value T2 (corresponding to the second threshold value of the present invention)? It is determined whether or not (step S405). When the detection value thw2 is less than the threshold value T2, the process returns to the beginning of the control flow. On the other hand, when the detection value thw2 is greater than or equal to the threshold value T2, the operation stop of the engine body 11 is permitted (step S406).
  • the threshold value T2 is set to a temperature higher than the threshold value T1, but is not limited to this.
  • the heater unit 120 when the engine body 11 is determined to be stopped based on the coolant temperature detected by the first temperature sensor D7 and the second temperature sensor D8, and the engine stop determination is performed, the heater unit 120 is in the operating state.
  • the engine 1 is optimally determined to stop depending on the state of the cooling system 100 Can be Thereby, while being able to prevent the temperature of the engine main body 11 falling excessively, the heating effect of the heater unit 120 can be improved.
  • the coolant temperature detection value thw1 detected by the first temperature sensor D7 is equal to or greater than the threshold value T1
  • the coolant temperature in the water jacket 111 can be prevented from excessively decreasing.
  • the engine 1 is determined to stop operating based only on the detection value thw1 detected by the first temperature sensor D7. ing. Then, when the detection value thw1 detected by the first temperature sensor D7 is less than the threshold value T1, the coolant temperature in the water jacket 111 is prevented from excessively decreasing by prohibiting the operation of the engine 1 from being stopped.
  • the detected value thw1 of the coolant temperature detected by the first temperature sensor D7 is equal to or greater than the threshold value T1
  • the first In addition to preventing an excessive decrease in the coolant temperature in the water jacket 111 by permitting the engine 1 to stop operating when the coolant temperature detection value thw2 detected by the two-temperature sensor D8 is equal to or greater than the threshold value T2, A reduction in the heating effect by the heater unit 120 can be prevented.
  • the heater unit 120 when the heater unit 120 is in an operating state, it is necessary to supply a high-temperature coolant to the heater core 12, so that the detection value thw2 by the second temperature sensor D8 is added to the detection value thw2 by the first temperature sensor D7. Based on this, it is determined whether the operation of the engine 1 is stopped. When at least one of the detection value thw1 detected by the first temperature sensor D7 and the detection value thw2 detected by the second temperature sensor D8 is less than the threshold values T1 and T2, the water jacket is prohibited by prohibiting the operation of the engine 1 from stopping. The excessive drop of the coolant temperature in 111 and the fall of the heating effect by the heater unit 120 are prevented.
  • the shutoff valve 15 is closed when both the coolant temperature detected by the first temperature sensor D7 and the coolant temperature detected by the second temperature sensor D8 are less than a predetermined value, and the first temperature sensor D7 By opening the valve when at least one of the detected coolant temperature and the coolant temperature detected by the second temperature sensor D8 is equal to or higher than a predetermined value, the coolant in the water jacket 111 can be heated early. At the same time, the heating effect of the heater unit 120 can be improved.
  • the water jacket 111 is closed by closing the shutoff valve 15. It is possible to prevent the coolant in the water jacket 111 from flowing out to the heater core 12 and to quickly heat the coolant in the water jacket 111 by the combustion heat in the engine body 11. Moreover, since the low-temperature coolant in the water jacket 111 does not reach the heater core 12, the heating effect by the heater unit 120 can also be improved.
  • the shutoff valve 15 is opened.
  • the coolant in the water jacket 111 and the coolant in the heater core 12 are mixed, and the coolant circulating through both can be heated quickly.
  • the electric pump 14 formed on the second cooling water passage L2 on the downstream side of the heater core 12 is used, and the first cooling water is provided between the connection portion P1 and the upstream side of the electric pump 14.
  • the electric pump 14 is shared by the passage L1 and the second cooling water passage L2, and the electric pump 14 discharges the sucked coolant toward both the water jacket 111 and the exhaust heat recovery device 13 so that the first pump can perform the first operation.
  • the coolant in the cooling water passage L1 and the second cooling water passage L2 can be circulated.
  • the engine stop determination device 200 includes the electric motor 2 that drives the drive wheels 6R and 6L, and selectively drives the engine 1 and the electric motor 2 to drive the drive wheels 6R and 6L during traveling.
  • the present invention is not limited to the above-described embodiments, and can be modified or expanded as follows.
  • the engine stop determination device according to the present invention may be applied to an idle stop vehicle that automatically stops the engine when the vehicle stops and restarts the engine automatically when the vehicle restarts. Thereby, in an idle stop vehicle, the engine stop determination can be optimized according to the state of the cooling system.
  • the means for circulating the coolant is not limited to the use of a single electric pump 14, and a water pump driven by the engine 1 and the electric pump 14 are used together.
  • a water pump driven by the engine 1 may be operated, and the electric pump 14 may be operated when the engine 1 is stopped.
  • the coolant temperature threshold T1 used to stop the engine body 11 may be set to a temperature higher than the threshold T2, or the threshold T1 and the threshold T2 may be set to the same temperature.
  • the operation stop of the engine body 11 is permitted when the detected coolant temperature thw1 in the connection path L11 is higher than the threshold value T1 (not including the case where it is equal to the threshold value T1) May be. Further, when the heater unit 120 is in an operating state, the detected value thw1 of the coolant temperature in the connection path L11 is higher than the threshold value T1 (not including the case where it is equal to the threshold value T1), and the detected value of the coolant temperature in the introduction path L21. When thw2 is higher than the threshold value T2 (not including the case where it is equal to the threshold value T2), the operation stop of the engine body 11 may be permitted.
  • the shutoff valve 15 is closed when the detection values by the first temperature sensor D7 and the second temperature sensor D8 are both less than the same valve opening threshold.
  • the first temperature sensor The valve opening threshold values of D7 and second temperature sensor D8 may be set to different values.
  • the shutoff valve 15 is opened when at least one of the detection values by the first temperature sensor D7 and the second temperature sensor D8 is equal to or greater than the valve opening threshold.
  • the shutoff valve 15 is closed and detected by the first temperature sensor D7 and the second temperature sensor D8.
  • the shutoff valve 15 may be opened when both values are equal to or greater than the valve opening threshold.
  • the engine stop determination device and the engine stop determination method according to the present invention can be used for four-wheeled vehicles, two-wheeled vehicles, and other vehicles that are hybrid vehicles or idle stop vehicles.
  • 1 is an engine
  • 2 is an electric motor
  • 6R is a right drive wheel (wheel)
  • 6L is a left drive wheel (wheel)
  • 9 is a controller (stop determination means)
  • 12 is a heater core
  • 13 is an exhaust heat recovery device
  • 14 is an electric pump (cooling water pumping means)
  • 15 is a shut-off valve (open / close valve)
  • 100 is a cooling system
  • 111 is a water jacket
  • 120 is a heater unit
  • 200 is an engine stop determination device
  • D1 is a vehicle speed sensor (vehicle state) Detection means)
  • D2 is a shift switch (vehicle state detection means)
  • D3 is a throttle opening sensor (vehicle state detection means)
  • D4 is an accelerator pedal switch (vehicle state detection means)
  • D5 is a brake pedal switch (vehicle state detection means).
  • D6 is a voltage sensor (vehicle state detection means)
  • D7 is a first temperature sensor (first water temperature sensor)
  • D8 is a second temperature sensor (first Water temperature sensor)
  • L1 is a first cooling water passage (first cooling water passage)
  • L2 is a second cooling water passage (second cooling water passage)
  • P1 is a connecting portion (confluence)
  • V is a vehicle. .

Abstract

 本発明のエンジンの冷却系システムは、クーラントがエンジン本体のウォータジャケットとヒータコアとの間を循環する第1冷却水経路と、クーラントが排熱回収器とヒータコアとの間を循環する第2冷却水経路と、第1冷却水経路上に設けられた第1水温センサーと、第2冷却水経路上に設けられた第2水温センサーとを有している。エンジン制御部は、第1水温センサーおよび第2水温センサーによって検出されたクーラント温度に基づいてエンジン停止判定を行い、エンジン停止判定を行う場合に、ヒータコアを含んだヒータユニットが作動状態にあるか非作動状態にあるかにより、第1水温センサーおよび第2水温センサーによって検出されたクーラント温度を使い分けている。

Description

エンジン停止判定装置およびエンジン停止判定方法
 本発明は、走行中または停車時に車両のエンジンの作動停止を許可するか否かの決定をするエンジン停止判定装置およびエンジン停止判定方法に関する。
 車両エンジンの冷却系システムに関する従来技術として、車室内を暖房するためのヒータコアを備えたものがあった(例えば、特許文献1参照)。これは、冷却水が排熱回収器とヒータコアとの間を循環する第1冷却水経路と、冷却水が排熱回収器とエンジンのウォータジャケットとの間を循環する第2冷却水経路とを備えている。
 そして、第1冷却水経路に設けられた水温センサーによる検出値に基づき、冷却水が比較的低温の場合、第2冷却水経路には冷却水を循環させずに、第1冷却水経路において冷却水を循環させ、冷却水温度が上昇した場合、第2冷却水経路においても冷却水を循環させている。
 このようにすることにより、上述した従来技術においては、冷却水の加温時にウォータジャケット内の冷却水をヒータコアに循環させることがないため、エンジンの過度の冷却を防ぐことができる。また、冷却水の加温時に、ヒータコアに多量の冷却水を循環させることがないため、ヒータコアを含んだヒータユニットの暖房効果も高めることができる。
特開2008-208716号公報
 ところで、現在、走行中または停車時に、エンジンを作動停止させる車両が実用化されている。これは、エンジンに加えて車輪を駆動する電動モータを備え、走行時において車輪を駆動するために、エンジンおよび電動モータを選択的に作動させるハイブリッド車両に代表される。
 このようなハイブリッド車両においては、電動モータによって走行する場合に、エンジンは作動停止されていることが多い。通常、ハイブリッド車両は、車両速度あるいはアクセル操作の有無といった車両の状態に基づいて、エンジンの作動停止を許可するか禁止するかを判定しているが、このような車両の状態に加えて、エンジンの冷却系システムの状態を考慮する必要がある。
 すなわち、冷却水の加温中にエンジンの作動停止を行えば、エンジンの過度の冷却を招くことになる。また、ヒータコアはエンジンおよび排気による発熱を利用しているため、ヒータユニットの作動中にエンジンの作動停止を行った場合、その暖房効果も低下することになる。これまで、冷却系システムの状態を考慮して、停止判定を実行するエンジンの停止判定装置に関する従来技術はなかった。
 本発明は上記事情に鑑みてなされたものであり、その目的は、冷却系システムの状態に応じて、エンジンの停止判定を最適化することができるエンジン停止判定装置およびエンジン停止判定方法を提供することにある。
 上述した課題を解決するために、請求項1に係るエンジン停止判定装置の発明の構成上
の特徴は、冷却系システムは、冷却水がエンジンのウォータジャケットとヒータコアとの間を循環する第1冷却水経路と、第1冷却水経路に対し、ウォータジャケットとヒータコアの上流側との間において合流するように形成され、冷却水が排熱回収器とヒータコアとの間を循環する第2冷却水経路と、ウォータジャケット内または第1冷却水経路上のウォータジャケットと開閉弁との間に設けられた第1水温センサーと、第2冷却水経路上における第1冷却水経路との合流点と、ヒータコアとの間に設けられた第2水温センサーとを具備しており、停止判定手段は、第1水温センサーおよび第2水温センサーによって検出された冷却水温度に基づいてエンジン停止判定を行い、エンジン停止判定を行う場合に、ヒータコアを含んだヒータユニットが作動状態にあるか非作動状態にあるかにより、第1水温センサーおよび第2水温センサーによって検出された冷却水温度を使い分けることである。
 請求項2に係る発明の構成上の特徴は、請求項1のエンジン停止判定装置において、車両の状態が所定条件を満たしているとともに、ヒータユニットが非作動状態にある場合、第1水温センサーによって検出された冷却水温度が第1閾値以上であるときに、エンジンの作動停止を許可することである。
 請求項3に係る発明の構成上の特徴は、請求項1または2のエンジン停止判定装置において、車両の状態が所定条件を満たしているとともに、ヒータユニットが作動状態にある場合、第1水温センサーによって検出された冷却水温度が第1閾値以上であり、かつ、第2水温センサーによって検出された冷却水温度が第2閾値以上であるときに、エンジンの作動停止を許可することである。
 請求項4に係る発明の構成上の特徴は、請求項1乃至3のうちのいずれかのエンジン停止判定装置において、停止判定手段は、車両の状態が所定条件を満たしていない場合、ヒータユニットの作動状態に拘わらず、エンジンの作動停止を禁止することである。
 請求項5に係る発明の構成上の特徴は、請求項1乃至4のうちのいずれかのエンジン停止判定装置において、開閉弁は、第1水温センサーによって検出された冷却水温度、および第2水温センサーによって検出された冷却水温度がともに所定値未満であるときに閉弁され、第1水温センサーによって検出された冷却水温度、および第2水温センサーによって検出された冷却水温度のうちの少なくとも一方が所定値以上であるときに開弁されることである。
 請求項6に係る発明の構成上の特徴は、請求項1乃至5のうちのいずれかのエンジン停止判定装置において、冷却水圧送手段は、第2冷却水経路上においてヒータコアの下流側に形成された電動ポンプであり、第2冷却水経路上の合流点と電動ポンプの上流側との間は第1冷却水経路の一部として共用されており、電動ポンプは吸引した冷却水をウォータジャケットおよび排熱回収器の双方に向けて吐出することである。
 請求項7に係る発明の構成上の特徴は、請求項1乃至6のうちのいずれかのエンジン停止判定装置において、車輪を駆動する電動モータを備え、走行時において車輪を駆動するために、エンジンおよび電動モータを選択的に作動させるハイブリッド車両に適用されたことである。
 請求項8に係る発明の構成上の特徴は、請求項1乃至6のうちのいずれかのエンジン停止判定装置において、車両の停止時にエンジンを自動的に作動停止させ、車両の再発進時にエンジンを自動的に再始動させるアイドルストップ車両に適用されたことである。
 請求項9に係るエンジン停止判定方法の発明の構成上の特徴は、冷却系システムは、冷却水がエンジンのウォータジャケットとヒータコアとの間を循環する第1冷却水経路と、第1冷却水経路に対し、ウォータジャケットとヒータコアの上流側との間において合流するように形成され、冷却水が排熱回収器とヒータコアとの間を循環する第2冷却水経路と、 ウォータジャケット内または第1冷却水経路上のウォータジャケットと開閉弁との間に設けられた第1水温センサーと、第2冷却水経路上における第1冷却水経路との合流点と、ヒータコアとの間に設けられた第2水温センサーとを具備しており、第1水温センサーおよび第2水温センサーによって検出された冷却水温度に基づいて、エンジン停止判定を行うとともに、エンジン停止判定を行う場合に、ヒータコアを含んだヒータユニットが作動状態にあるか非作動状態にあるかにより、第1水温センサーおよび第2水温センサーによって検出された冷却水温度を使い分けることである。
 請求項1に係るエンジン停止判定装置によれば、第1水温センサーおよび第2水温センサーによって検出された冷却水温度に基づいてエンジン停止判定を行い、エンジン停止判定を行う場合に、ヒータユニットが作動状態にあるか非作動状態にあるかにより、第1水温センサーおよび第2水温センサーによって検出された冷却水温度を使い分けることにより、冷却系システムの状態に応じて、エンジンの停止判定を最適化することができる。
 これにより、エンジン温度が過度に低下することを防止できるとともに、ヒータユニットによる暖房効果の向上を図ることができる。
 請求項2に係るエンジン停止判定装置によれば、車両の状態が所定条件を満たしているとともに、ヒータユニットが非作動状態にある場合、第1水温センサーによって検出された冷却水温度が第1閾値以上であるときに、エンジンの作動停止を許可することにより、ウォータジャケット内の冷却水温度の過度の低下を防止することができる。
 すなわち、ヒータユニットが非作動状態にあるときには、ヒータコアに対し高温の冷却水を供給する必要はないため、第1水温センサーによって検出された冷却水温度のみに基づいて、エンジンの作動停止を判定している。そして、第1水温センサーによって検出された冷却水温度が第1閾値未満であるときには、エンジンの作動停止を禁止することにより、ウォータジャケット内の冷却水温度の過度の低下を防止している。
 請求項3に係るエンジン停止判定装置によれば、車両の状態が所定条件を満たしているとともに、ヒータユニットが作動状態にある場合、第1水温センサーによって検出された冷却水温度が第1閾値以上であり、かつ、第2水温センサーによって検出された冷却水温度が第2閾値以上であるときに、エンジンの作動停止を許可することにより、ウォータジャケット内の冷却水温度の過度の低下の防止に加え、ヒータユニットによる暖房効果の低下を防止することができる。
 すなわち、ヒータユニットが作動状態にあるときには、ヒータコアに対し高温の冷却水を供給する必要があるため、第1水温センサーによって検出された冷却水温度に加えて、第2水温センサーによって検出された冷却水温度に基づいて、エンジンの作動停止を判定している。
 そして、第1水温センサーによって検出された冷却水温度および第2水温センサーによって検出された冷却水温度のうちの、少なくとも一方が閾値未満であるときには、エンジンの作動停止を禁止することにより、ウォータジャケット内の冷却水温度の過度の低下と、ヒータユニットによる暖房効果の低下を防止している。
 請求項4に係るエンジン停止判定装置によれば、車両の状態が所定条件を満たしていない場合、ヒータユニットの作動状態に拘わらず、エンジンの作動停止を禁止することにより、冷却系システム以外の車両の状態が所定条件を満たしていない場合、確実にエンジンの作動停止を禁止することができる。
 請求項5に係るエンジン停止判定装置によれば、開閉弁は、第1水温センサーによって検出された冷却水温度、および第2水温センサーによって検出された冷却水温度がともに所定値未満であるときに閉弁され、第1水温センサーによって検出された冷却水温度、および第2水温センサーによって検出された冷却水温度のうちの少なくとも一方が所定値以上であるときに開弁されることにより、ウォータジャケット内の冷却水を早期に加温できるとともに、ヒータユニットによる暖房効果を向上させることができる。
 すなわち、第1水温センサーによって検出された冷却水温度、および第2水温センサーによって検出された冷却水温度がともに所定値未満であるときに、開閉弁が閉弁されることにより、ウォータジャケット内の冷却水がヒータコアに流出することを防いで、エンジン内の燃焼熱によってウォータジャケット内の冷却水を早期に加温できる。また、ヒータコアにウォータジャケット内の低温の冷却水が到達しないため、ヒータユニットによる暖房効果も向上させることができる。
 一方、第1水温センサーによって検出された冷却水温度、および第2水温センサーによって検出された冷却水温度のうちの少なくとも一方が所定値以上であるときに、開閉弁が開弁されることにより、ウォータジャケット内の冷却水とヒータコア内の冷却水が混ざり合い、双方を循環する冷却水を早期に加温できる。
 請求項6に係るエンジン停止判定装置によれば、冷却水圧送手段は第2冷却水経路上においてヒータコアの下流側に形成された電動ポンプであり、第2冷却水経路上の合流点と電動ポンプの上流側との間は第1冷却水経路の一部として共用されており、電動ポンプは吸引した冷却水をウォータジャケットおよび排熱回収器の双方に向けて吐出することにより、一つのポンプによって、第1冷却水経路および第2冷却水経路の冷却水を循環させることができる。
 また、冷却水圧送手段として電動ポンプにしたことにより、エンジンの作動、非作動に拘わらず、第1冷却水経路および第2冷却水経路において冷却水を循環させることができる。
 請求項7に係るエンジン停止判定装置によれば、車輪を駆動する電動モータを備え、走行時において車輪を駆動するために、エンジンおよび電動モータを選択的に作動させるハイブリッド車両に適用されたことにより、ハイブリッド車両における冷却系システムの状態に応じて、エンジンの停止判定を最適化することができる。
 請求項8に係るエンジン停止判定装置によれば、車両の停止時にエンジンを自動的に作動停止させ、車両の再発進時にエンジンを自動的に再始動させるアイドルストップ車両に適用されたことにより、アイドルストップ車両における冷却系システムの状態に応じて、エンジンの停止判定を最適化することができる。
 請求項9に係るエンジン停止判定方法によれば、第1水温センサーおよび第2水温センサーによって検出された冷却水温度に基づいて、エンジン停止判定を行うとともに、エンジン停止判定を行う場合に、ヒータユニットが作動状態にあるか非作動状態にあるかにより、第1水温センサーおよび第2水温センサーによって検出された冷却水温度を使い分けることにより、冷却系システムの状態に応じて、エンジンの停止判定を最適化することができる。
本発明の一実施形態によるエンジン停止判定装置を搭載したハイブリッド車両の走行システムを示したブロック図 図1に示した車両におけるエンジンの冷却系システムを示した簡略図 図1に示した冷却系システムにおいて、開閉弁が開状態にあるときの簡略図 エンジン停止判定による制御方法を示したフローチャート
 図1乃至図4に基づき、本発明の一実施形態によるエンジン停止判定装置200について説明する。図1は、本実施形態によるエンジン停止判定装置200を搭載したハイブリッド車両V(以下、車両Vという)のパワートレーンの概略を示している。図1において、太線は車両Vの機械的な連結を示し、破線による矢印は制御用の信号線を示している。
 図1に示したように、車両Vのエンジン1(本発明のエンジンに該当する)と電動モータ2とは、湿式多板クラッチであるクラッチ装置3を介して直列に接続されている。また、電動モータ2には車両Vのトランスミッション4が直列に接続されており、トランスミッション4には、ディファレンシャル装置5を介して、車両Vの右駆動輪6Rおよび左駆動輪6L(ともに、本発明の車輪に該当する)が接続されている。以下、右駆動輪6Rおよび左駆動輪6Lを包括して駆動輪6R、6Lという。
 エンジン1は、炭化水素系の燃料により出力を発生させる通常の内燃機関であり、後述する冷却系システム100を含んでいる。電動モータ2は、これに限定されるものではないが、車輪駆動用の同期モータであり、トランスミッション4は通常の自動変速機である。また、クラッチ装置3は、普段はエンジン1と電動モータ2との間を接続しているノーマリクローズタイプのクラッチ装置であり、エンジン1と電動モータ2との間のトルク伝達を断続している。
 電動モータ2には、インバータ7を介して電源8が接続されている。電源8は二次電池により形成されており、電源8から供給された電力がインバータ7により交流電流に変換され、電動モータ2を回転作動させる。また、電動モータ2による発電は、インバータ7を介して電源8に充電される。インバータ7には、コントローラ9(本発明の停止判定手段に該当する)が電気的に接続されている。図1に示すように、コントローラ9はエンジン制御部91とモータ制御部92を備えており、モータ制御部92により電動モータ2は作動制御される。
 図1に示したパワートレーンを用いた車両Vは、走行時に駆動輪6R、6Lを駆動するために、エンジン1および電動モータ2を選択的に作動させる。エンジン1により走行する場合、エンジン1がトランスミッション4を介して駆動輪6R、6Lを回転させる。また、電動モータ2により走行する場合、エンジン1を作動停止させ、電動モータ2がトランスミッション4を介して駆動輪6R、6Lを回転させる。この時、クラッチ装置3をレリーズさせて、エンジン1と電動モータ2との間の接続を解除している。さらに、電動モータ2は、クラッチ装置3を介してエンジン1により駆動され、発電機としても機能する。
 図1に示すように、コントローラ9にはエンジン1が電気的に接続されるとともに、車両Vの車速センサーD1、トランスミッション4のシフトスイッチD2、エンジン1のスロットル開度センサーD3、アクセルペダルスイッチD4、ブレーキペダルスイッチD5および電源8の電圧センサーD6(D1~D6の各々が、本発明の車両状態検出手段に該当する)からの検出信号がそれぞれ入力されている(図1において、それぞれS1~S6により示す)。コントローラ9は、これらの検出信号に基づいて、車両Vの状態を検出している。
 コントローラ9のエンジン制御部91は、これらの検出信号に基づいてエンジン1の停止判定を行い、エンジン1の作動停止を許可するか否かを決定している。また、これらによる検出値に加えて、排気系の触媒温度およびエンジン1内の油温に基づき、エンジン1の停止判定を行ってもよい。
 図2は、エンジン1を構成するエンジン本体11、エンジン1の冷却系システム100およびこれらを制御するエンジン制御部91を示している。以下、図2に基づいて、エンジン1の冷却系システム100について説明する。
 エンジン本体11は、シリンダブロック、シリンダヘッド、ピストンおよびその他の補機(いずれも図示せず)等により形成されており、内部に冷却水であるクーラントが循環するウォータジャケット111を有している。エンジン本体11はコントローラ9のエンジン制御部91により駆動制御され、回転作動あるいは作動停止される(図2においてS7により示す)。
 ヒータコア12は、車室内に温風を送る暖房器であるヒータユニット120に含まれている。ヒータコア12は熱交換器であり、その内部にはクーラントが通過する水路が形成されている。ヒータユニット120は、ヒータコア12の水路の周囲にブロアにより空気を送風し、空気とクーラントとの間で熱交換を行って空気を加熱している。ヒータユニット120は車室内に設けられた作動スイッチを備えており、乗員が作動スイッチを操作することにより、作動状態あるいは非作動状態が選択される。ヒータユニット120はエンジン制御部91と電気的に接続され、エンジン制御部91に対し目標とする温風温度を示す信号が入力される(図2においてS8により示す)。
 ヒータコア12とエンジン本体11とは管路により接続され、エンジン本体11のウォータジャケット111とヒータコア12との間には、クーラントが循環するループ状の第1冷却水通路L1(本発明の第1冷却水経路に該当する)が形成されている。
 排熱回収器13はエンジン本体11からの排気ガスの通路上に配置され、内部にクーラントが通過する水路を備えている。排熱回収器13は、排気ガスとクーラントとの間で熱交換を行い、クーラントを加熱している。排熱回収器13とヒータコア12とは管路により接続され、排熱回収器13とヒータコア12との間には、クーラントが循環するループ状の第2冷却水通路L2(本発明の第2冷却水経路に該当する)が形成されている。
 また、図2に示すように、ウォータジャケット111とヒータコア12の上流側との間に位置する接続部P1(本発明の合流点に該当する)において、第2冷却水通路L2は第1冷却水通路L1に対し合流している。
 第2冷却水通路L2において、ヒータコア12の下流側には電動ポンプ14(本発明の冷却水圧送手段に該当する)が設けられている。電動ポンプ14は図示しない電動モータによって駆動される流体圧力ポンプであって、エンジン本体11の作動停止に拘わらず作動可能に形成されている。電動ポンプ14は、上述したエンジン制御部91により作動制御される(図2においてS9により示す)。
 第2冷却水通路L2において、接続部P1と電動ポンプ14の上流側との間は、第1冷却水通路L1の一部として共用されており、電動ポンプ14は吸引したクーラントをエンジン本体11のウォータジャケット111および排熱回収器13の双方に向けて吐出し、第1冷却水通路L1および第2冷却水通路L2においてクーラントを循環させている。
 第1冷却水通路L1上のエンジン本体11と接続部P1との間に位置する接続路L11には、遮断弁15(本発明の開閉弁に該当する)が設けられている。遮断弁15は、特にその種類、型式、作動原理を特定のものに限定するものではないが、ロータリバルブ、ニードルバルブ等が適用可能である。遮断弁15はエンジン制御部91により開閉制御され、ウォータジャケット111と接続部P1との間を断続している(図2においてS10により示す)。
 また、接続路L11上におけるエンジン本体11と遮断弁15との間には、第1温度センサーD7(本発明の第1水温センサーに該当する)が設けられている。第1温度センサーD7は、接続路L11中のクーラント温度を検出する温度センサーで、検出温度を示す信号はエンジン制御部91に入力される(図2においてS11により示す)。第1温度センサーD7は、必ずしも接続路L11上に設けられなければならないわけではなく、エンジン本体11のウォータジャケット111内に設けられていてもよい。
 さらに、第2冷却水通路L2上の、接続部P1とヒータコア12との間に形成された(ヒータコア12の上流側に位置する)導入路L21には、第2温度センサーD8(本発明の第2水温センサーに該当する)が設けられている。第2温度センサーD8は、導入路L21中のクーラント温度を検出する温度センサーで、第1温度センサーD7と同様に、検出温度を示す信号はエンジン制御部91に入力される(図2においてS12により示す)。
 EGR(Exhaust Gas Recirculation)クーラ16はエンジン本体11に設けられており、内部にエンジン本体11からの排気ガスの通路が形成されている。EGRクーラ16は、排気ガスの通路の周囲をクーラントが通過することにより、排気ガスとクーラントとの間で熱交換を行い、排気ガスを冷却している。冷却された排気ガスは、吸気として図示しないEGRバルブを介しエンジン本体11のインテーク側に導入されている。
 また、接続路L11上におけるエンジン本体11と第1温度センサーD7との間には冷却路L3の一端が接続されている。冷却路L3の他端は、第1冷却水通路L1と第2冷却水通路L2との共用路L12に接続されている。冷却路L3上には、公知のラジエータ17が設けられている。また、冷却路L3と共用路L12との接続部には、公知のサーモスタット18が配置されている。サーモスタット18はクーラントの低温時には閉弁し、クーラント温度が所定値に達することにより開弁し、冷却路L3と共用路L12とを連通させる。
 上述した第1冷却水通路L1、第2冷却水通路L2、冷却路L3、エンジン本体11のウォータジャケット111、ヒータコア12、排熱回収器13、電動ポンプ14、遮断弁15、EGRクーラ16、ラジエータ17、サーモスタット18、第1温度センサーD7および第2温度センサーD8により、エンジン1の冷却系システム100が形成されている。本発明にとって、エンジン1の冷却系システム100は必ずしも上述した構成のすべてを必須とするものではなく、適宜、必要な構成を取捨選択して形成すればよい。
 次に、エンジン1の冷却系システム100の作動方法について説明する。図2に示すように、例えば、エンジン1の始動時にクーラントが低温であって、第1温度センサーD7および第2温度センサーD8による検出値がともに所定の開弁閾値未満である場合、エンジン制御部91は遮断弁15を閉状態とする。
 したがって、電動ポンプ14によって圧送されたクーラントは第1冷却水通路L1を流れることはなく、第2冷却水通路L2のみを循環する(図2において、実線の矢印にて示す)。エンジン本体11のウォータジャケット111内のクーラントは、エンジン本体11の外部に流出することはないため、エンジン本体11内の燃焼熱によって早期に加熱される。
 第2冷却水通路L2を循環するクーラントは、電動ポンプ14から吐出された後、EGRクーラ16において排気ガスを冷却するとともに加熱され、排熱回収器13へと送られる。クーラントは、排熱回収器13においてさらに加熱された後、ヒータコア12に到達する。ヒータコア12において送風用の空気を加熱したクーラント(クーラント自体は、ヒータコア12において冷却される)は、共用路L12を介して電動ポンプ14によって再び吸引された後、EGRクーラ16に向けて吐出される。
 エンジン本体11の作動により、ウォータジャケット111内のクーラントが加熱されると、第1温度センサーD7によるクーラント温度の検出値が開弁閾値以上になる。また、第2冷却水通路L2を循環するクーラントも、EGRクーラ16および排熱回収器13により加熱されるため、第2温度センサーD8によるクーラント温度の検出値も開弁閾値以上になる。
 第1温度センサーD7および第2温度センサーD8による検出値のうちの少なくとも一方が開弁閾値以上となった場合、エンジン制御部91は遮断弁15を開状態とし、図3に示すように、エンジン本体11のウォータジャケット111とヒータコア12との間を連通する。したがって、電動ポンプ14によって圧送されたクーラントは、第2冷却水通路L2を循環することに加えて、エンジン本体11から第1冷却水通路L1を循環する(図3において、太線の矢印にて示す)。
 また、この場合以外に、例えば、ヒータコア12において温風温度をさらに上昇させるために、第1冷却水通路L1から第2冷却水通路L2へ向けてクーラントを循環させる要求信号が、ヒータユニット120からコントローラ9に対し発せられた場合にも、遮断弁15を開状態にしてもよい。
 第1冷却水通路L1を循環するクーラントは、エンジン本体11のウォータジャケット111内において加熱された後、接続路L11および導入路L21を介してヒータコア12に送られる。ヒータコア12において冷却されたクーラントは、共用路L12を介して電動ポンプ14によって吸引され、エンジン本体11およびEGRクーラ16に向けて再び吐出される。
 また、共用路L12内のクーラントの温度が上昇してサーモスタット18が開弁すると、クーラントがエンジン本体11から冷却路L3に流出し、ラジエータ17により冷却される(図3において、破線の矢印にて示す)。
 次に、図4に基づいて、エンジン制御部91によるエンジン1の停止判定の方法について説明する。尚、図4に示した制御フローチャートは、遮断弁15が開状態にある場合と閉状態にある場合とに拘わらず実行される。
 最初に、コントローラ9がイニシャライズされると、エンジン本体11の作動停止が禁止される(ステップS401)。したがって、乗員の操作によりエンジン本体11が停止される場合を除いて、エンジン制御部91がエンジン本体11の作動停止を行うことはない。
 次に、エンジン制御部91が、上述した車速センサーD1、シフトスイッチD2、スロットル開度センサーD3、アクセルペダルスイッチD4、ブレーキペダルスイッチD5および電圧センサーD6からの検出信号の全部あるいは一部に基づき、車両Vの状態が所定条件を満たしているか否かを判定する(ステップS402)。所定条件とは、車両Vが走行中または停車中に、エンジン本体11を停止してもよい状態にあることを示す条件である。車両Vの状態が所定条件を満たしていないと判定された場合、ステップS401へと戻る。すなわち、エンジン制御部91は、車両Vの状態が所定条件を満たしていない場合、ヒータユニット120の作動状態に拘わらず、エンジン1の作動停止を禁止する。
 車両Vの状態が所定条件を満たしていると判定された場合、第1温度センサーD7による接続路L11中のクーラント温度の検出値thw1が所定の閾値T1(本発明の第1閾値に該当する)以上であるか否かが判定される(ステップS403)。コントローラ9は、検出値thw1によって、エンジン本体11の燃焼室温度および排気系の触媒温度等を推定している。検出値thw1が閾値T1未満である場合、ステップS401へと戻る。
 検出値thw1が閾値T1以上である場合、車室内にあるヒータユニット120の作動スイッチがオンされているか否かが判定される(ステップS404)。ヒータユニット120の作動スイッチがオフ状態にある場合、エンジン本体11の作動停止を許可する(ステップS406)。したがって、エンジン制御部91はエンジン1のインジェクション装置による燃焼室への燃料供給を停止し(インジェクション装置、燃焼室とも図示せず)、エンジン本体11を停止させる。
 ヒータユニット120の作動スイッチがオンされている場合、第2温度センサーD8による導入路L21中のクーラント温度の検出値thw2が所定の閾値T2(本発明の第2閾値に該当する)以上であるか否かが判定される(ステップS405)。検出値thw2が閾値T2未満である場合、制御フローの最初へと戻る。一方、検出値thw2が閾値T2以上である場合、エンジン本体11の作動停止が許可される(ステップS406)。尚、本実施形態においては、閾値T2は閾値T1よりも高い温度に設定されているが、これに限られるものではない。
 本実施形態によれば、第1温度センサーD7および第2温度センサーD8によって検出されたクーラント温度に基づいてエンジン本体11の停止判定を行い、エンジン停止判定を行う場合に、ヒータユニット120が作動状態にあるか非作動状態にあるかにより、第1温度センサーD7および第2温度センサーD8によって検出されたクーラント温度を使い分けることにより、冷却系システム100の状態に応じて、エンジン1の停止判定を最適化することができる。
 これにより、エンジン本体11の温度が過度に低下することを防止できるとともに、ヒータユニット120の暖房効果の向上を図ることができる。
 また、車両Vの状態が所定条件を満たしているとともに、ヒータユニット120が非作動状態にある場合、第1温度センサーD7によって検出されたクーラント温度の検出値thw1が閾値T1以上であるときに、エンジン1の作動停止を許可することにより、ウォータジャケット111内のクーラント温度の過度の低下を防止することができる。
 すなわち、ヒータユニット120が非作動状態にあるときには、ヒータコア12に対し高温のクーラントを供給する必要はないため、第1温度センサーD7による検出値thw1のみに基づいて、エンジン1の作動停止を判定している。そして、第1温度センサーD7による検出値thw1が閾値T1未満であるときには、エンジン1の作動停止を禁止することにより、ウォータジャケット111内のクーラント温度の過度の低下を防止している。
 また、車両Vの状態が所定条件を満たしているとともに、ヒータユニット120が作動状態にある場合、第1温度センサーD7によって検出されたクーラント温度の検出値thw1が閾値T1以上であり、かつ、第2温度センサーD8によって検出されたクーラント温度の検出値thw2が閾値T2以上であるときに、エンジン1の作動停止を許可することにより、ウォータジャケット111内のクーラント温度の過度の低下の防止に加え、ヒータユニット120による暖房効果の低下を防止することができる。
 すなわち、ヒータユニット120が作動状態にあるときには、ヒータコア12に対し高温のクーラントを供給する必要があるため、第1温度センサーD7による検出値thw1に加えて、第2温度センサーD8による検出値thw2に基づいて、エンジン1の作動停止を判定している。
 そして、第1温度センサーD7による検出値thw1および第2温度センサーD8による検出値thw2のうちの、少なくとも一方が閾値T1、T2未満であるときには、エンジン1の作動停止を禁止することにより、ウォータジャケット111内のクーラント温度の過度の低下と、ヒータユニット120による暖房効果の低下を防止している。
 また、遮断弁15は、第1温度センサーD7によって検出されたクーラント温度、および第2温度センサーD8によって検出されたクーラント温度がともに所定値未満であるときに閉弁され、第1温度センサーD7によって検出されたクーラント温度、および第2温度センサーD8によって検出されたクーラント温度のうちの少なくとも一方が所定値以上であるときに開弁されることにより、ウォータジャケット111内のクーラントを早期に加温できるとともに、ヒータユニット120による暖房効果を向上させることができる。
 すなわち、第1温度センサーD7によって検出されたクーラント温度、および第2温度センサーD8によって検出されたクーラント温度がともに所定値未満であるときに、遮断弁15が閉弁されることにより、ウォータジャケット111内のクーラントがヒータコア12に流出することを防いで、エンジン本体11内の燃焼熱によってウォータジャケット111内のクーラントを早期に加温できる。また、ヒータコア12にウォータジャケット111内の低温のクーラントが到達しないため、ヒータユニット120による暖房効果も向上させることができる。
 一方、第1温度センサーD7によって検出されたクーラント温度、および第2温度センサーD8によって検出されたクーラント温度のうちの少なくとも一方が所定値以上であるときに、遮断弁15が開弁されることにより、ウォータジャケット111内のクーラントとヒータコア12内のクーラントが混ざり合い、双方を循環するクーラントを早期に加温できる。
 また、クーラントを循環させる手段として、第2冷却水通路L2上においてヒータコア12の下流側に形成された電動ポンプ14とし、接続部P1と電動ポンプ14の上流側との間は、第1冷却水通路L1と第2冷却水通路L2とで共用されており、電動ポンプ14は吸引したクーラントをウォータジャケット111および排熱回収器13の双方に向けて吐出することにより、一つのポンプによって、第1冷却水通路L1および第2冷却水通路L2のクーラントを循環させることができる。
 また、クーラントを循環させる手段として電動ポンプ14にしたことにより、エンジン1の作動、非作動に拘わらず、第1冷却水通路L1および第2冷却水通路L2においてクーラントを循環させることができる。
 また、本実施形態によるエンジン停止判定装置200は、駆動輪6R、6Lを駆動する電動モータ2を備え、走行時において駆動輪6R、6Lを駆動するために、エンジン1および電動モータ2を選択的に作動させるハイブリッド車両Vに適用されたことにより、ハイブリッド車両Vにおける冷却系システム100の状態に応じて、エンジン1の停止判定を最適化することができる。
 <他の実施形態>
 本発明は、上述した実施形態に限定されるものではなく、次のように変形または拡張することができる。
 本発明によるエンジン停止判定装置は、車両の停止時にエンジンを自動的に作動停止させ、車両の再発進時にエンジンを自動的に再始動させるアイドルストップ車両に適用してもよい。これにより、アイドルストップ車両において、冷却系システムの状態に応じて、エンジンの停止判定を最適化することができる。
 また、クーラントを循環させる手段としては、単一の電動ポンプ14を使用することに限られるものではなく、エンジン1によって駆動されるウォータポンプと、電動ポンプ14とを併用し、エンジン1の作動時にはエンジン1によって駆動されるウォータポンプを作動させ、エンジン1の停止時には電動ポンプ14を作動させてもよい。
 また、エンジン本体11を停止させるために使用するクーラント温度の閾値T1を、閾値T2よりも高い温度に設定してもよいし、閾値T1および閾値T2を同じ温度に設定してもよい。
 また、ヒータユニット120が非作動状態の場合、接続路L11中のクーラント温度の検出値thw1が閾値T1より高い(閾値T1と等しい場合を含まない)ときに、エンジン本体11の作動停止を許可してもよい。
 また、ヒータユニット120が作動状態の場合、接続路L11中のクーラント温度の検出値thw1が閾値T1より高く(閾値T1と等しい場合を含まない)、かつ、導入路L21中のクーラント温度の検出値thw2が閾値T2より高い(閾値T2と等しい場合を含まない)ときに、エンジン本体11の作動停止を許可してもよい。
 また、上述した実施形態においては、第1温度センサーD7および第2温度センサーD8による検出値がともに同一の開弁閾値未満である場合に、遮断弁15を閉状態としているが、第1温度センサーD7および第2温度センサーD8のそれぞれの開弁閾値を、互いに異なる値に設定してもよい。
 また、上述した実施形態においては、第1温度センサーD7および第2温度センサーD8による検出値のうちの少なくとも一方が開弁閾値以上となった場合に、遮断弁15を開状態としているが、第1温度センサーD7および第2温度センサーD8による検出値のうちのいずれか一方が開弁閾値未満である場合に、遮断弁15を閉状態とし、第1温度センサーD7および第2温度センサーD8による検出値がともに開弁閾値以上となった場合に、遮断弁15を開状態としてもよい。
 本発明に係るエンジン停止判定装置およびエンジン停止判定方法は、ハイブリッド車両またはアイドルストップ車両である四輪車両、二輪車両およびその他の車両に利用することが可能である。
 図面中、1はエンジン、2は電動モータ、6Rは右駆動輪(車輪)、6Lは左駆動輪(車輪)、9はコントローラ(停止判定手段)、12はヒータコア、13は排熱回収器、14は電動ポンプ(冷却水圧送手段)、15は遮断弁(開閉弁)、100は冷却系システム、111はウォータジャケット、120はヒータユニット、200はエンジン停止判定装置、D1は車速センサー(車両状態検出手段)、D2はシフトスイッチ(車両状態検出手段)、D3はスロットル開度センサー(車両状態検出手段)、D4はアクセルペダルスイッチ(車両状態検出手段)、D5はブレーキペダルスイッチ(車両状態検出手段)、D6は電圧センサー(車両状態検出手段)、D7は第1温度センサー(第1水温センサー)、D8は第2温度センサー(第2水温センサー)、L1は第1冷却水通路(第1冷却水経路)、L2は第2冷却水通路(第2冷却水経路)、P1は接続部(合流点)、Vは車両を示している。

Claims (9)

  1.  車輪駆動用のエンジンと、
     車両の状態を検出する車両状態検出手段と、
     検出された前記車両の状態に基づいてエンジン停止判定を行い、前記エンジンの作動停止を許可するか否かを決定する停止判定手段と、
     を備え、
     前記エンジンは、冷却系システムを有しており、
     前記冷却系システムは、
     冷却水が前記エンジンのウォータジャケットとヒータコアとの間を循環する第1冷却水経路と、
     前記第1冷却水経路に対し、前記ウォータジャケットと前記ヒータコアの上流側との間において合流するように形成され、冷却水が排熱回収器と前記ヒータコアとの間を循環する第2冷却水経路と、
     前記エンジンの作動停止時においても、前記第1冷却水経路および前記第2冷却水経路において、冷却水を循環させることが可能な冷却水圧送手段と、
     前記第1冷却水経路上に設けられ、前記ウォータジャケットと前記第2冷却水経路への合流点との間を断続する開閉弁と、
     前記ウォータジャケット内または前記第1冷却水経路上の前記ウォータジャケットと前記開閉弁との間に設けられた第1水温センサーと、
     前記第2冷却水経路上における前記第1冷却水経路との合流点と、前記ヒータコアとの間に設けられた第2水温センサーと、
     を具備しており、
     前記停止判定手段は、
     前記第1水温センサーおよび前記第2水温センサーによって検出された冷却水温度に基づいて、前記エンジン停止判定を行い、
     前記エンジン停止判定を行う場合に、前記ヒータコアを含んだヒータユニットが作動状態にあるか非作動状態にあるかにより、前記第1水温センサーおよび前記第2水温センサーによって検出された冷却水温度を使い分けるエンジン停止判定装置。
  2.  前記停止判定手段は、
     前記車両の状態が所定条件を満たしているとともに、前記ヒータユニットが非作動状態にある場合、前記第1水温センサーによって検出された冷却水温度が第1閾値以上であるときに、前記エンジンの作動停止を許可する請求項1記載のエンジン停止判定装置。
  3.  前記停止判定手段は、
     前記車両の状態が所定条件を満たしているとともに、前記ヒータユニットが作動状態にある場合、前記第1水温センサーによって検出された冷却水温度が前記第1閾値以上であり、かつ、前記第2水温センサーによって検出された冷却水温度が第2閾値以上であるときに、前記エンジンの作動停止を許可する請求項1または2に記載のエンジン停止判定装置。
  4.  前記停止判定手段は、
     前記車両の状態が所定条件を満たしていない場合、前記ヒータユニットの作動状態に拘わらず、前記エンジンの作動停止を禁止する請求項1乃至3のうちのいずれか一項に記載のエンジン停止判定装置。
  5.  前記開閉弁は、
     前記第1水温センサーによって検出された冷却水温度、および前記第2水温センサーによって検出された冷却水温度がともに所定値未満であるときに閉弁され、
     前記第1水温センサーによって検出された冷却水温度、および前記第2水温センサーによって検出された冷却水温度のうちの少なくとも一方が前記所定値以上であるときに開弁される請求項1乃至4のうちのいずれか一項に記載のエンジン停止判定装置。
  6.  前記冷却水圧送手段は、
     前記第2冷却水経路上において、前記ヒータコアの下流側に形成された電動ポンプであり、
     前記第2冷却水経路上の前記合流点と前記電動ポンプの上流側との間は、前記第1冷却水経路の一部として共用されており、
     前記電動ポンプは、
     吸引した冷却水を前記ウォータジャケットおよび前記排熱回収器の双方に向けて吐出する請求項1乃至5のうちのいずれか一項に記載のエンジン停止判定装置。
  7.  前記車輪を駆動する電動モータを備え、走行時において前記車輪を駆動するために、前記エンジンおよび前記電動モータを選択的に作動させるハイブリッド車両に適用された請求項1乃至6のうちのいずれか一項に記載のエンジン停止判定装置。
  8.  前記車両の停止時に前記エンジンを自動的に作動停止させ、前記車両の再発進時に前記エンジンを自動的に再始動させるアイドルストップ車両に適用された請求項1乃至6のうちのいずれか一項に記載のエンジン停止判定装置。
  9.  車両が、
     車輪駆動用のエンジンと、
     前記車両の状態を検出する車両状態検出手段と、
     を備えており、
     検出された前記車両の状態に基づいてエンジン停止判定を行い、前記エンジンの作動停止を許可するか否かを決定するエンジン停止判定方法であって、
     前記エンジンは、冷却系システムを有し、
     前記冷却系システムは、
     冷却水が前記エンジンのウォータジャケットとヒータコアとの間を循環する第1冷却水経路と、
     前記第1冷却水経路に対し、前記ウォータジャケットと前記ヒータコアの上流側との間において合流するように形成され、冷却水が排熱回収器と前記ヒータコアとの間を循環する第2冷却水経路と、
     前記エンジンの作動停止時においても、前記第1冷却水経路および前記第2冷却水経路において、冷却水を循環させることが可能な冷却水圧送手段と、
     前記第1冷却水経路上に設けられ、前記ウォータジャケットと前記第2冷却水経路への合流点との間を断続する開閉弁と、
     前記ウォータジャケット内または前記第1冷却水経路上の前記ウォータジャケットと前記開閉弁との間に設けられた第1水温センサーと、
     前記第2冷却水経路上における前記第1冷却水経路との合流点と、前記ヒータコアとの間に設けられた第2水温センサーと、
     を具備しており、
     前記第1水温センサーおよび前記第2水温センサーによって検出された冷却水温度に基づいて、前記エンジン停止判定を行うとともに、
     前記エンジン停止判定を行う場合に、前記ヒータコアを含んだヒータユニットが作動状態にあるか非作動状態にあるかにより、前記第1水温センサーおよび前記第2水温センサーによって検出された冷却水温度を使い分けるエンジン停止判定方法。
PCT/JP2010/067964 2009-11-05 2010-10-13 エンジン停止判定装置およびエンジン停止判定方法 WO2011055616A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10828176.7A EP2497926B1 (en) 2009-11-05 2010-10-13 Engine stop determination device and engine stop determination method
US13/505,096 US8972154B2 (en) 2009-11-05 2010-10-13 Engine stop determination device and engine stop determination method
BR112012011444-1A BR112012011444B1 (pt) 2009-11-05 2010-10-13 Dispositivo de determinação de parada de motor e método de determinação de parada de motor
CN201080048454.6A CN102667109B (zh) 2009-11-05 2010-10-13 发动机停止判定装置及发动机停止判定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009253871A JP5171789B2 (ja) 2009-11-05 2009-11-05 エンジン停止判定装置およびエンジン停止判定方法
JP2009-253871 2009-11-05

Publications (1)

Publication Number Publication Date
WO2011055616A1 true WO2011055616A1 (ja) 2011-05-12

Family

ID=43969856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067964 WO2011055616A1 (ja) 2009-11-05 2010-10-13 エンジン停止判定装置およびエンジン停止判定方法

Country Status (6)

Country Link
US (1) US8972154B2 (ja)
EP (1) EP2497926B1 (ja)
JP (1) JP5171789B2 (ja)
CN (1) CN102667109B (ja)
BR (1) BR112012011444B1 (ja)
WO (1) WO2011055616A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013083077A1 (zh) * 2011-12-09 2013-06-13 Cong Yang 一种机动车热能收集系统

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8727067B2 (en) * 2011-06-30 2014-05-20 Ford Global Technologies, Llc Method for supplying power to an electrically assisted steering system
US10207567B2 (en) * 2012-10-19 2019-02-19 Ford Global Technologies, Llc Heater core isolation valve position detection
CN103939190B (zh) * 2014-02-25 2016-03-30 浙江吉利控股集团有限公司 一种利用排气管辅助加热的发动机冷却循环系统
GB2554562B (en) 2015-03-20 2021-02-10 Cummins Inc Protecting an engine in automatic stop/start applications
US9964022B2 (en) * 2015-03-26 2018-05-08 GM Global Technology Operations LLC Engine off cooling strategy
US9758171B2 (en) * 2015-06-15 2017-09-12 GM Global Technology Operations LLC Method and apparatus for controlling a multi-mode powertrain system including an engine having stop/start capability
EP3346115B1 (en) * 2015-09-01 2019-05-29 Nissan Motor Co., Ltd. Vehicle travel control method and vehicle travel control device
JP2018178881A (ja) * 2017-04-14 2018-11-15 愛三工業株式会社 Egr冷却装置
WO2019168927A1 (en) * 2018-03-01 2019-09-06 Cummins Inc. Waste heat recovery hybrid power drive
US11413951B2 (en) * 2019-06-05 2022-08-16 Ford Global Technologies, Llc Method for detecting heater core isolation valve status
CN114135403A (zh) * 2021-11-25 2022-03-04 中国第一汽车股份有限公司 发动机停缸的控制方法、装置及发动机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002021626A (ja) * 2000-07-10 2002-01-23 Toyota Motor Corp 蓄熱装置を有する内燃機関及び熱媒体の供給制御装置
JP2005048648A (ja) * 2003-07-28 2005-02-24 Toyota Motor Corp 内燃機関の蓄熱システム
JP2008208716A (ja) 2007-02-23 2008-09-11 Toyota Motor Corp 冷却系システム
JP2010084629A (ja) * 2008-09-30 2010-04-15 Fujitsu Ten Ltd エンジン自動始動制御装置、エンジン自動始動停止制御装置、車両制御システム及びエンジン再始動方法
JP2010084630A (ja) * 2008-09-30 2010-04-15 Fujitsu Ten Ltd エンジン自動始動停止制御装置及びエンジン制御方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3880752B2 (ja) * 1999-08-06 2007-02-14 本田技研工業株式会社 エンジン自動始動停止制御装置
JP2001263123A (ja) * 2000-03-16 2001-09-26 Toyota Motor Corp 内燃機関の自動始動・自動停止
JP3736295B2 (ja) * 2000-06-05 2006-01-18 三菱自動車工業株式会社 車両用空調制御装置
US6564757B2 (en) 2000-06-22 2003-05-20 Toyota Jidosha Kabushiki Kaisha Internal combustion engine including heat accumulation system, and heat carrier supply control system
JP4023729B2 (ja) 2002-08-22 2007-12-19 本田技研工業株式会社 エンジンの自動停止再始動制御装置
JP2004239082A (ja) * 2003-02-03 2004-08-26 Kobelco Contstruction Machinery Ltd 建設機械のエンジン制御装置
US6817330B1 (en) * 2003-04-23 2004-11-16 Toyota Jidosha Kabushiki Kaisha Internal combustion engine control apparatus
JP2005001523A (ja) 2003-06-12 2005-01-06 Honda Motor Co Ltd 車両用空調装置
DE602005002573T2 (de) * 2004-03-03 2008-01-24 Mazda Motor Corp. Kraftfahrzeugsteuerungssystem mit Klimaanlage
JP4341475B2 (ja) * 2004-06-04 2009-10-07 マツダ株式会社 エンジンの始動装置
JP4341634B2 (ja) * 2006-03-01 2009-10-07 トヨタ自動車株式会社 ハイブリッド車両
JP2008008215A (ja) * 2006-06-29 2008-01-17 Toyota Motor Corp 内燃機関制御装置
US7698045B2 (en) * 2006-12-28 2010-04-13 Toyota Jidosha Kabushiki Kaisha Vehicle and control method of vehicle
JP4998247B2 (ja) 2007-12-19 2012-08-15 トヨタ自動車株式会社 内燃機関の冷却水制御装置
JP4522458B2 (ja) 2008-03-04 2010-08-11 トヨタ自動車株式会社 車両用暖房装置
EP2169212B1 (en) 2008-09-30 2019-02-20 Fujitsu Ten Limited Engine control apparatus and engine control method
US8656889B2 (en) * 2009-06-25 2014-02-25 Toyota Jidosha Kabushiki Kaisha Control apparatus for a vehicle having a prime mover

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002021626A (ja) * 2000-07-10 2002-01-23 Toyota Motor Corp 蓄熱装置を有する内燃機関及び熱媒体の供給制御装置
JP2005048648A (ja) * 2003-07-28 2005-02-24 Toyota Motor Corp 内燃機関の蓄熱システム
JP2008208716A (ja) 2007-02-23 2008-09-11 Toyota Motor Corp 冷却系システム
JP2010084629A (ja) * 2008-09-30 2010-04-15 Fujitsu Ten Ltd エンジン自動始動制御装置、エンジン自動始動停止制御装置、車両制御システム及びエンジン再始動方法
JP2010084630A (ja) * 2008-09-30 2010-04-15 Fujitsu Ten Ltd エンジン自動始動停止制御装置及びエンジン制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2497926A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013083077A1 (zh) * 2011-12-09 2013-06-13 Cong Yang 一种机动车热能收集系统
CN103158497A (zh) * 2011-12-09 2013-06-19 丛洋 一种机动车热能收集系统

Also Published As

Publication number Publication date
CN102667109B (zh) 2015-10-07
BR112012011444A2 (pt) 2020-08-25
BR112012011444B1 (pt) 2021-08-24
JP2011099369A (ja) 2011-05-19
CN102667109A (zh) 2012-09-12
JP5171789B2 (ja) 2013-03-27
US8972154B2 (en) 2015-03-03
EP2497926A4 (en) 2013-05-08
EP2497926A1 (en) 2012-09-12
EP2497926B1 (en) 2016-09-07
US20120215429A1 (en) 2012-08-23

Similar Documents

Publication Publication Date Title
JP5171789B2 (ja) エンジン停止判定装置およびエンジン停止判定方法
JP3870904B2 (ja) エンジンの自動停止始動制御装置
CN103184925B (zh) 运行冷却液回路的方法
RU2470799C2 (ru) Автотранспортное управляющее устройство
JP5158215B2 (ja) ハイブリッド車両の制御装置
JP2011116366A (ja) ハイブリッド電気自動車における冷却システムの補助ポンプ構成
JP2008248715A (ja) 自動車の電動ウォータポンプ制御装置及びこの制御装置を備えた自動車用空調システム
JP2007022297A (ja) ハイブリッド車およびその制御方法
US6928962B2 (en) Hot coolant type heat accumulating apparatus for a hybrid vehicle and heat accumulating method thereof
JP2002161748A (ja) 車両用電動ウオーターポンプ装置
CN104110341B (zh) 一种混合动力车辆冷起动的预热系统和方法
CN108425736B (zh) 内燃机的冷却装置
JPH11350956A (ja) 車両の冷却装置
CN109228825B (zh) 热交换系统的控制装置
JP2006161806A (ja) 液冷式内燃機関の冷却装置
JP2012241557A (ja) 内燃機関の冷却装置
JP2007326432A (ja) ハイブリッド自動車用エンジン冷却システム
KR101898848B1 (ko) 차량 주행 제어 방법 및 차량 주행 제어 장치
JP4883038B2 (ja) 車両制御装置
JP4151406B2 (ja) 内燃機関の冷却水循環装置
JP2016215863A (ja) ハイブリッド車両
JP6583333B2 (ja) 内燃機関の冷却装置
JP4715567B2 (ja) 自動車
JP6812820B2 (ja) ハイブリッド車両
JP2009281351A (ja) 排気熱回収器の凍結防止装置およびプラグインハイブリッド車両

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080048454.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10828176

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010828176

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010828176

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13505096

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 3871/CHENP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012011444

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012011444

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120430