WO2011054180A1 - 大孔聚合物固定醌化合物的制备方法 - Google Patents

大孔聚合物固定醌化合物的制备方法 Download PDF

Info

Publication number
WO2011054180A1
WO2011054180A1 PCT/CN2010/001758 CN2010001758W WO2011054180A1 WO 2011054180 A1 WO2011054180 A1 WO 2011054180A1 CN 2010001758 W CN2010001758 W CN 2010001758W WO 2011054180 A1 WO2011054180 A1 WO 2011054180A1
Authority
WO
WIPO (PCT)
Prior art keywords
macroporous polymer
ruthenium compound
immobilized
compound
water
Prior art date
Application number
PCT/CN2010/001758
Other languages
English (en)
French (fr)
Inventor
吕红
周集体
王竞
司伟磊
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Publication of WO2011054180A1 publication Critical patent/WO2011054180A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/036Use of an organic, non-polymeric compound to impregnate, bind or coat a foam, e.g. fatty acid ester

Definitions

  • the invention belongs to the technical field of environmental engineering water treatment, and relates to a preparation method of a macroporous polymer fixed ruthenium compound.
  • refractory organic wastewater such as halogenated, azo and nitroaromatic wastewater
  • This type of wastewater has the characteristics of high organic matter concentration and complex composition, and is one of the most difficult industrial wastewater treatments.
  • the biological treatment method is the preferred technique, and the azo bond, the nitro group and the like have a strong electron-withdrawing effect, so that it is difficult to be directly degraded by the oxidation route.
  • These refractory organics are treated by anaerobic biological treatment to improve their subsequent aerobic biodegradability. Therefore, the anaerobic-aerobic process is the most effective method for treating such wastewater.
  • most microorganisms have a slow rate of metabolism under anaerobic conditions, so anaerobic treatment is the bottleneck for complete biodegradation of such compounds.
  • humus can act as a redox mediator in the anaerobic biotransformation of refractory organics in contaminated sediments, soils and waters.
  • the active group that plays a major role in this process is humus.
  • the cockroach structure It is known from the literature that natural humus is complex in structure and its redox properties are clearly limited by source.
  • simple ruthenium compounds such as ruthenium, osmium-2-sulfonic acid (AQS), and ruthenium-2,6-disulfonic acid (AQDS) have obvious catalytic effects and are not used in large amounts.
  • the water-soluble cerium compound is less toxic and more catalytic under the same conditions.
  • the addition of water-soluble cerium compounds such as AQS (or AQDS) is easily lost with water, causing secondary pollution.
  • the invention overcomes the deficiencies of the prior art, and selects a macroporous polymer which has no biological toxicity, large specific surface area, good mass transfer performance, high mechanical strength, stable nature and is difficult to decompose as a carrier for fixing a water-soluble cerium compound, and adopts a chemical method.
  • the covalently immobilized water-soluble cerium compound is immobilized in the macroporous polymer of the biological carrier to solve the technical problem that the redox mediator easily causes secondary pollution with the loss of water, and the ruthenium compound after immobilization has good catalysis. Performance, capable of accelerating anaerobic biotransformation of refractory organics.
  • the technical solution of the present invention is: selecting a macroporous polymer containing a hydroxyl group and aminating to cause the macroporous polymer to contain a certain amount of primary amino groups. This was placed in a sodium hydroxide solution at room temperature, and then a sulfonyl chloride group-containing hydrazine compound dissolved in methylene chloride was added thereto, and the reaction was stirred for 0.5 to 2 hours to effect fixation of the water-soluble hydrazine compound.
  • Macroporous polymers containing ruthenium compounds can be used in anaerobic bioreactors to increase the rate of bioconversion of refractory organics. The details are as follows:
  • Amination reaction of a macroporous polymer containing a hydroxyl group 20 g to 50 g of diethylenetriamine and a macroporous polymer containing a hydroxyl group are added to a sodium hydroxide solution at room temperature for 2-6 hours, and then washed with water. Dry and spare.
  • the macroporous polymer containing a hydroxyl group refers to a polyvinyl alcohol foam or a polyurethane foam doped with polyvinyl alcohol. Wait.
  • the sodium hydroxide solution used may be a sodium hydroxide solution having a concentration of 2 mmol/L.
  • the sulfonium chloride group-containing ruthenium compound is derivatized from a sulfonated ruthenium compound, and the production steps are as follows: a sulfonated ruthenium compound such as AQS or AQDS is reacted with chlorosulfonic acid, and then the organic layer is separated and concentrated. Drying produces a sulfonyl chloride group-containing hydrazine compound.
  • the macroporous polymer containing a ruthenium compound can be used for promoting biotransformation of refractory organic matter, and the specific process is as follows:
  • the reactor is operated intermittently or continuously. According to the biotransformation of refractory organic matter, the hydraulic load, COD load and refractory organic matter load and hydraulic retention time are adjusted.
  • the organism is a sputum reducing flora, an activated sludge or a combination of both obtained by enrichment.
  • the effects and benefits of the present invention are:
  • the immobilization of the ruthenium compound in the macroporous polymer of the biocarrier facilitates the contact of the redox mediator with the microorganism.
  • the technical bottleneck of the water-soluble bismuth compound in the water treatment system is easy to cause secondary pollution due to the loss of water.
  • the immobilized ruthenium compound has good catalytic performance and can promote the anaerobic biotransformation rate of refractory organic substances such as azo dyes, nitroaromatic hydrocarbons and chlorinated aromatic hydrocarbons.
  • the drawing is a biodecoloration diagram of the yttrium-containing polyurethane foam provided by the present invention for different azo dyes.
  • the ordinate indicates the decolorization rate in Mmol/(g h), and the abscissa indicates different azo dyes.
  • stands for urethane foam without bismuth.
  • the polyvinyl alcohol foam containing the cerium compound can promote the anaerobic biotransformation of the azo dye, the nitroaromatic hydrocarbon and the chlorinated aromatic hydrocarbon, and the catalytic performance remains substantially unchanged after repeated use for more than 10 times.
  • the specific method is: in a 135mL serum bottle, successively added inorganic salt medium, 3 kinds of polyvinyl alcohol sputum containing bismuth compound, glucose, sputum reducing bacteria, azo dye (or nitro arene and chlorinated aromatic hydrocarbon), and Nitrogen gas was introduced for 10 minutes, and finally the stopper was sealed with a rubber stopper, and then placed in a 30-inch constant temperature shaker for 12 hours.
  • the final bacterial concentration in the serum bottle was 0.16 g/L
  • the glucose concentration was 2 g/L
  • the concentration of the azo dye or nitroarene and chlorinated aromatic hydrocarbon
  • the polyurethane foam containing ruthenium compound can promote the anaerobic biotransformation of azo dyes, nitroaromatic hydrocarbons and chlorinated aromatic hydrocarbons, and the catalytic performance remains substantially unchanged after repeated use for more than 10 times.
  • the specific method is as follows: In a 135 mL serum bottle, inorganic salt medium, glucose, guanidine reducing bacteria, azo dye (or nitroarene and chlorinated aromatic hydrocarbon) are successively added, and nitrogen gas is introduced for 10 minutes, and finally the bottle is sealed with a rubber stopper. The mouth was then placed in a 30-inch shaker for 12 h.
  • In the serum bottle 0.68 g of polyurethane foam containing cerium compound, the final sputum reducing bacteria concentration was 0.16 g/L, the glucose concentration was 2 g/L, and the concentration of azo dye (or nitroaromatic and chlorinated aromatic hydrocarbon) was 0.1 mmol/ L.
  • the biological decolorization rate of the azo dye is significantly 2-5 times higher than that of the ruthenium-free system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Biological Treatment Of Waste Water (AREA)

Description

大孔聚合物固定醌化合物的制备方法
技术领域
本发明属于环境工程水处理技术领域, 涉及大孔聚合物固定醌化合物的制 备方法。
背景技术
随着社会的发展, 每年向水体环境排放的难降解有机废水 (如含卤代、 偶 氮及硝基芳烃废水) 在大幅度增加。 这类废水具有有机物浓度高, 组分复杂等 特点, 属于最难处理的工业废水之一。 通常生物处理法是首选技术, 由于偶氮 键、 硝基等具有极强的吸电子效应, 使之直接通过氧化途径难以得到降解。 而 这些难降解有机物经厌氧生物处理, 可提高其后续好氧可生化性。 因此厌氧-好 氧工艺是处理这类废水的最有效方法。 但是多数微生物在厌氧条件下, 代谢速 率缓慢, 因此厌氧处理成为这类化合物完全生物降解的瓶颈。
近年来, 人们研究发现, 在污染的沉积物、 土壤和水体等环境中, 腐殖质 可以作为氧化还原介体加速难降解有机物的厌氧生物转化, 这一过程起主要作 用的活性基团是腐殖质上的醌类结构。 由文献可知, 天然腐殖质结构复杂, 其 氧化还原特性明显受到来源的限制。 与之比较, 结构简单的醌化合物如蒽醌、 蒽醌 -2-磺酸 (AQS)、 蒽醌 -2, 6-二磺酸 (AQDS) 等催化作用明显, 而且用量 不多。 其中水溶性醌化合物毒性小, 并且在等量条件下催化作用更强。 但在实 际的水处理体系中, 外加水溶性醌化合物如 AQS (或 AQDS) 易随出水流失, 造成二次污染。
本实验室 Guo Jianbo等(Water Rearch, 2007, 41: 426-432) 曾采用海藻酸钙 包埋法固定蒽醌作为介体, 但菌体与介体的接触受到限制, 从而影响了固定化 蒽醌的催化活性。 在此基础上, Su Yanyan等(Bioresource Technology, 2009, 100: 2982-2987)用海藻酸钙包埋法将菌体与蒽醌共固定化。 王竞等 (中国专利申请 号 200810013516.4) 分别采用包埋法、 膜反应器法和颗粒污泥法将菌体与非水 溶性醌化合物共固定化。 虽然解决了菌体与介体的接触问题, 但它们的催化活 性不如水溶性醌化合物 AQS和 AQDS高。 Li Lihua等(Bioresource Technology, 2008, 99: 6908~6916)采用吡咯电聚合-掺杂技术将水溶性蒽醌化合物 AQDS固 定在活性碳毡上, 能够使偶氮染料和硝基芳烃生物转化速率提高 2倍以上, 但 该方法难以规模化。
技术问题
本发明克服原有技术的不足, 选择具有无生物毒性, 比表面积大, 传质性能 良好, 机械强度高, 性质稳定不易分解的大孔聚合物作为固定水溶性醌化合物 的载体, 并采用化学方法, 将水溶性醌化合物共价固定在生物载体大孔聚合物 中, 解决其作为氧化还原介体易随出水流失而造成二次污染的技术问题, 而且 使固定后的醌化合物具有较好的催化性能, 能够加速难降解有机物的厌氧生物 转化。
技术解决方案
本发明的技术解决方案是: 选取含有羟基的大孔聚合物, 胺化处理, 使大 孔聚合物含有一定量的伯氨基。 在室温下, 将其放入氢氧化钠溶液中, 然后加 入溶解在二氯甲垸中的含有磺酰氯基团的蒽醌化合物, 搅拌反应 0.5-2小时, 从 而实现水溶性醌化合物的固定。 含有醌化合物的大孔聚合物可应用在厌氧生物 反应器中, 提高难降解有机物的生物转化速率。 具体内容如下:
(1)含有羟基的大孔聚合物的胺化反应: 在室温下, 在氢氧化钠溶液中加入 20g-50g二乙烯三胺和含有羟基的大孔聚合物反应 2-6小时后,水洗并干燥备用。 所述的含有羟基的大孔聚合物指聚乙烯醇泡沬或掺杂有聚乙烯醇的聚氨酯泡沬 等。 所用的氢氧化钠溶液可以选用浓度为 2mmol/L的氢氧化钠溶液。
(2)醌化合物的固定:在室温下,将上述制备的含有羟基的大孔聚合物放入氢 氧化钠溶液中, 然后加入溶解在二氯甲垸中的含有磺酰氯基团的蒽醌化合物, 搅拌反应 0.5-2小时后, 水洗并干燥, 从而将醌化合物固定在大孔聚合物上。 所 述的含有磺酰氯基团的蒽醌化合物由磺酸化蒽醌化合物衍生化而成, 生产步骤 为: AQS、 AQDS 等磺酸化蒽醌化合物与氯磺酸反应, 然后分离出有机层, 再 浓缩干燥制得含磺酰氯基团的蒽醌化合物。
含醌化合物的大孔聚合物可用于促进难降解有机物的生物转化中, 具体过 程如下: 将上述得到含醌化合物的大孔聚合物加入到厌氧生物反应器中, 进水 组成为难降解有机物、 共底物、 Ν¾α、 KH2P04、 MgS04、 CaCl2,COD:N: P=100:5: l o 反应器间歇或连续运行。 根据难降解有机物的生物转化情况, 调整 水力负荷、 COD负荷和难降解有机物负荷、 水力停留时间。 反应器整个运行期 间, 温度保持在 20-50°C, 溶解氧 <0.5mg/L, 进水 pH值为 6-9。所述的生物是通 过富集所获得的醌还原菌群、 活性污泥或二者组合。
有益效果
本发明的效果和益处是: 将醌化合物固定在生物载体大孔聚合物中, 易于 氧化还原介体与微生物的接触。 解决了水处理体系中水溶性醌化合物易随出水 流失而造成二次污染的技术瓶颈。 固定后的醌化合物具有较好的催化性能, 能 够促进偶氮染料、 硝基芳烃和氯代芳烃等难降解有机物的厌氧生物转化速率。 附图说明
附图是本发明提供的含醌聚氨酯泡沫对不同偶氮染料的生物脱色图。
图中: 纵坐标表示脱色速率, 单位为 Mmol/(g h), 横坐标表示不同偶氮染料。
1代表酸性大红 GR; 2代表酸性红 B; 3代表活性艳红 X-3B; 4代表直接耐 晒黑 GF; 5代表活性艳红 KE-7B; 6代表酸性大红 3R; 7代表酸性金黄 G; 8 代表酸性品红 6B。
«代表含醌聚氨酯泡沫, □代表不含醌的聚氨酯泡沫。
本发明的最佳实施方式
实施例 1
室温下,在 2mmol L氢氧化钠溶液 50mL中,加入 24g二乙烯三胺和洗涤干 燥的聚乙烯醇泡沫 5块(尺寸约为 lcm3), 搅拌反应 3小时后, 用蒸馏水冲洗干 净烘干。在 500mL带有搅拌器的烧瓶中,加入 5块胺化的聚氨酯泡沬和 2mmol/L 的 NaOH溶液 lOOmL; 将 0.6g蒽醌 -2-磺酰氯溶解在 25mL二氯甲垸中, 然后在 搅拌条件下 30分钟内添加进去, 再继续搅^^ 1小时后取出。 用蒸馏水洗净, 烘 干得到含有醌化合物的聚乙烯醇泡沫。 通过该方法制得 1 克聚乙烯醇泡沫块中 含醌量为 0.2mmol。含醌化合物的聚乙烯醇泡沫能够促进偶氮染料、硝基芳烃和 氯代芳烃的厌氧生物转化,并且重复使用 10次以上,其催化性能基本保持不变。 具体方法为: 在 135mL血清瓶中, 先后加入无机盐培养基、 含醌化合物的聚乙 烯醇泡沬 3块、 葡萄糖、 醌还原菌、 偶氮染料(或硝基芳烃和氯代芳烃), 并通 入氮气 10分钟,最后使用橡胶塞密封瓶口,然后放入 30Ό恒温摇床中培养 12h。 血清瓶中最终的菌浓度为 0.16g/L, 葡萄糖浓度为 2g/L, 偶氮染料(或硝基芳烃 和氯代芳烃) 浓度为 0.1mmol/L。
本发明的实施方式
实施例 2
在室温下, 在 2mmol/L氢氧化钠溶液 50mL中, 加入 47.85g二乙烯三胺和 洗涤干燥的 0.68g含有聚乙烯醇的聚氨酯泡沫 5块(尺寸约为 1cm3), 搅拌反应 3小时后, 用蒸馏水冲洗千净烘干。 在 500mL带有搅拌器的烧瓶中, 加入 5块 胺化的聚氨酯泡沫和 2mmol/L的 NaOH溶液 lOOmL;将 0.6g蒽醌 -2-磺酰氯溶解 在 25mL二氯甲垸中, 然后在搅拌条件下 30分钟内添加进去, 再继续搅拌 1小 时后取出。 用蒸馏水洗净, 烘干得到含有醌化合物的聚氨酯泡沫。 通过该方法 制得 1克聚氨酯泡沫块中含醌量为 0.097mmol。含醌化合物的聚氨酯泡沫能够促 进偶氮染料、 硝基芳烃和氯代芳烃的厌氧生物转化, 并且重复使用 10次以上, 其催化性能基本保持不变。 具体方法为: 在 135mL血清瓶中, 先后加入无机盐 培养基、 葡萄糖、 醌还原菌、 偶氮染料 (或硝基芳烃和氯代芳烃), 并通入氮气 10分钟, 最后使用橡胶塞密封瓶口, 然后放入 30Ό恒温摇床中培养 12h。 血清 瓶中含醌化合物的聚氨酯泡沫块 0.68g,最终的醌还原菌浓度为 0.16g/L,葡萄糖 浓度为 2g/L, 偶氮染料 (或硝基芳烃和氯代芳烃) 浓度为 0.1mmol/L。
工业实用性
从附图可以看出, 在加入含醌化合物的聚氨酯泡沬体系中, 偶氮染料的生物 脱色速率明显比无醌体系提高了 2-5倍。

Claims

权利要求
1.一种大孔聚合物固定醌化合物的制备方法, 其特征在于以下步骤:
( 1 ) 在室温下, 在氢氧化钠溶液中加入 20g-50g二乙烯三胺和含有羟基的 大孔聚合物反应 2-6小时后, 水洗并干燥备用;
(2 ) 室温下, 将上述制备的含有羟基的大孔聚合物放入氢氧化钠溶液中, 然后加入溶解在二氯甲烷中的含有磺酰氯基团的蒽醌化合物, 搅拌反应 0.5-2小 后, 水洗并干燥, 从而将醌化合物固定在大孔聚合物上; 所述的含有磺酰氯基 团的蒽醌化合物由磺酸化蒽醌化合物衍生化而成。
2.根据权利要求 1 所述的大孔聚合物固定醌化合物的制备方法, 其特征在 于: 含有羟基的大孔聚合物是聚乙烯醇泡沫或掺杂有聚乙烯醇的聚氨酯泡沫。
3.根据权利要求 1 所述的大孔聚合物固定醌化合物的制备方法, 其特征在 于: 氢氧化钠的浓度为 2mmol/L。
4. 根据权利要求 1所述的大孔聚合物固定醌化合物的制备方法, 其特征在 于: 二乙烯三胺加入量为 24g或 47.85g。
PCT/CN2010/001758 2009-11-04 2010-11-03 大孔聚合物固定醌化合物的制备方法 WO2011054180A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009103092610A CN101698699B (zh) 2009-11-04 2009-11-04 大孔聚合物固定醌化合物的制备方法
CN200910309261.0 2009-11-04

Publications (1)

Publication Number Publication Date
WO2011054180A1 true WO2011054180A1 (zh) 2011-05-12

Family

ID=42147163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001758 WO2011054180A1 (zh) 2009-11-04 2010-11-03 大孔聚合物固定醌化合物的制备方法

Country Status (2)

Country Link
CN (1) CN101698699B (zh)
WO (1) WO2011054180A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101698699B (zh) * 2009-11-04 2013-06-19 大连理工大学 大孔聚合物固定醌化合物的制备方法
CN101862680B (zh) * 2010-06-10 2011-11-16 大连理工大学 一种多孔无机填料固定醌化合物的制备方法
CN102079860B (zh) * 2010-11-25 2012-05-30 武汉纺织大学 一种含有光催化活性有机分子聚氨酯材料的制备方法
CN102079859B (zh) * 2010-11-25 2012-05-09 武汉纺织大学 一种光催化自清洁聚氨酯材料的制备方法
CN102989505B (zh) * 2012-11-27 2014-08-06 武汉大学 一种氧化还原介体的制备方法
CN103102472B (zh) * 2013-01-09 2015-05-20 河北科技大学 氯甲基化聚苯乙烯树脂1%dvb交联骨架与1,4-萘醌共聚物的合成及应用
CN103787509B (zh) * 2014-01-23 2016-08-17 河北科技大学 一种多孔功能载体制备器及其制备污水处理用多孔高分子有机载体的方法
CN104003518B (zh) * 2014-05-27 2016-09-14 河北科技大学 一种醌基涤纶网功能材料及其应用
CN106674460B (zh) * 2016-12-30 2018-11-13 河北科技大学 一种功能性呋喃树脂及其制备方法
CN106824288A (zh) * 2017-02-07 2017-06-13 天津城建大学 磁性醌介体纳米功能材料及其制备方法和应用
CN106830311A (zh) * 2017-03-01 2017-06-13 大连理工大学 一种石墨烯氧化物及醌化合物共改性含羟基大孔泡沫载体的制备方法
CN110105586B (zh) * 2019-06-04 2020-07-07 厦门理工学院 表面接枝石墨烯/蒽醌化合物复合材料的塑料、制备方法及应用
CN110157007B (zh) * 2019-06-04 2021-03-26 厦门理工学院 塑料表面接枝石墨烯和蒽醌化合物的制备方法及应用
CN111825215B (zh) * 2020-06-17 2022-05-10 龙岩市厦龙工程技术研究院 一种含氮废水的膜生物反应器处理方法
CN117985849A (zh) * 2024-02-23 2024-05-07 南京大学 一种氧化还原活性聚合物的制备方法及生物载体的制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07185568A (ja) * 1993-11-17 1995-07-25 Kawasaki Kasei Chem Ltd 水溶液中の金属イオン処理剤及び水溶液中の金属イオンの処理方法
US5474593A (en) * 1993-09-08 1995-12-12 Kawasaki Kasei Chemicals Ltd. Agent for treating metal ions in an aqueous solution, process for producing the metal ion-treating agent and method for treating metal ions in an aqueous solution
JPH08150396A (ja) * 1994-11-29 1996-06-11 Kawasaki Kasei Chem Ltd 水溶液中の金属イオンの処理方法
JPH08238488A (ja) * 1995-03-06 1996-09-17 Kawasaki Kasei Chem Ltd 水溶液中のチオ硫酸銀錯イオンの処理方法
JPH0949832A (ja) * 1995-08-08 1997-02-18 Fuji Photo Film Co Ltd 銀検出器、それを用いた銀検出方法及び除銀装置の制御方法
WO2001034832A2 (en) * 1999-11-08 2001-05-17 Polymer Laboratories Limited Assays using redox-enzymes immobilised n hydrophilic polymers
CN1792879A (zh) * 2005-10-29 2006-06-28 大连理工大学 一种固定化醌类化合物加速偶氮染料废水生物厌氧脱色方法
US20070134520A1 (en) * 2004-03-29 2007-06-14 Ebara Corporation Method and apparatus of generating electric power
CN101698699A (zh) * 2009-11-04 2010-04-28 大连理工大学 大孔聚合物固定醌化合物的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1129556C (zh) * 2000-07-10 2003-12-03 南京大学 1,4-二羟基蒽醌生产废水的治理和资源回收利用方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5474593A (en) * 1993-09-08 1995-12-12 Kawasaki Kasei Chemicals Ltd. Agent for treating metal ions in an aqueous solution, process for producing the metal ion-treating agent and method for treating metal ions in an aqueous solution
JPH07185568A (ja) * 1993-11-17 1995-07-25 Kawasaki Kasei Chem Ltd 水溶液中の金属イオン処理剤及び水溶液中の金属イオンの処理方法
JPH08150396A (ja) * 1994-11-29 1996-06-11 Kawasaki Kasei Chem Ltd 水溶液中の金属イオンの処理方法
JPH08238488A (ja) * 1995-03-06 1996-09-17 Kawasaki Kasei Chem Ltd 水溶液中のチオ硫酸銀錯イオンの処理方法
JPH0949832A (ja) * 1995-08-08 1997-02-18 Fuji Photo Film Co Ltd 銀検出器、それを用いた銀検出方法及び除銀装置の制御方法
WO2001034832A2 (en) * 1999-11-08 2001-05-17 Polymer Laboratories Limited Assays using redox-enzymes immobilised n hydrophilic polymers
US20070134520A1 (en) * 2004-03-29 2007-06-14 Ebara Corporation Method and apparatus of generating electric power
CN1792879A (zh) * 2005-10-29 2006-06-28 大连理工大学 一种固定化醌类化合物加速偶氮染料废水生物厌氧脱色方法
CN101698699A (zh) * 2009-11-04 2010-04-28 大连理工大学 大孔聚合物固定醌化合物的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIANBO GUO ET AL.: "Biocalalyst effects of immobilized anthraquinone on the anaerobic reduction of azo dyes by the salt-tolerant bacteria", WATER RESEARCH, vol. 41, 2007, pages 426 - 432 *

Also Published As

Publication number Publication date
CN101698699A (zh) 2010-04-28
CN101698699B (zh) 2013-06-19

Similar Documents

Publication Publication Date Title
WO2011054180A1 (zh) 大孔聚合物固定醌化合物的制备方法
Chen et al. A comprehensive review on biodegradation of tetracyclines: Current research progress and prospect
Vikrant et al. Recent advancements in bioremediation of dye: current status and challenges
Gu et al. Anammox bacteria enrichment and denitrification in moving bed biofilm reactors packed with different buoyant carriers: Performances and mechanisms
Jiang et al. Rapid formation of aniline-degrading aerobic granular sludge and investigation of its microbial community succession
Yan et al. Partial nitrification to nitrite for treating ammonium-rich organic wastewater by immobilized biomass system
CN101862680B (zh) 一种多孔无机填料固定醌化合物的制备方法
Xu et al. Nitrogen removal and microbial diversity of activated sludge entrapped in modified poly (vinyl alcohol)–sodium alginate gel
CN103801395B (zh) 一种水溶性蒽醌化合物修饰的石墨烯材料及其制备方法
WO2007073656A1 (fr) Préparation microbienne pour le traitement d&#39;eaux d&#39;égout contenant une huile épaisse et procédé de préparation de celle-ci
CN102181421A (zh) 一种利用聚乙烯醇-海藻酸钠-活性炭包埋强化厌氧氨氧化微生物活性的方法
Kong et al. Insights into the methanogenic degradation of N, N-dimethylformamide: the functional microorganisms and their ecological relationships
CN103351062B (zh) 一种磁性微生物载体
CN106830311A (zh) 一种石墨烯氧化物及醌化合物共改性含羟基大孔泡沫载体的制备方法
EP3580327A1 (en) Dried microbial sludge granule as additive for wastewater treatment
Mei et al. A novel membrane-aerated biofilter for the enhanced treatment of nitroaniline wastewater: Nitroaniline biodegradation performance and its influencing factors
CN104176833A (zh) 一种磁性微生物载体的制备方法
CN114807110B (zh) 一种水处理用微生物固定化颗粒及其制备方法
Yang et al. A quasi-homogeneous catalysis and electron transfer chain for biodecolorization of azo dye by immobilized phenazine redox mediator
Zhang et al. A novel modification of poly (ethylene terephthalate) fiber using anthraquinone-2-sulfonate for accelerating azo dyes and nitroaromatics removal
Ni et al. Energy-efficient anaerobic ammonia removal: from laboratory to full-scale application
CN101367580A (zh) 共固定化介体与菌体促进难降解有机物生物转化的方法
CN102616924B (zh) 一种利用酶活大豆粉提高印染废水生化处理能力的方法
Jin et al. Enhancing nitrogen removal performance using immobilized aerobic denitrifying bacteria by modified polyvinyl alcohol/sodium alginate (PVA/SA)
CN114736422B (zh) 一种均三嗪环修饰的石墨烯-聚氨酯泡沫复合物及其制备、应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10827794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10827794

Country of ref document: EP

Kind code of ref document: A1